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Abstract

We consider several generalizations of the concept of an intersection
body and show their connections with the Fourier transform and em-
beddings in Lp-spaces. These connections lead to generalizations of
the recent solution to the Busemann–Petty problem on sections of
convex bodies.

1 Introduction

The concept of an intersection body was introduced by Lutwak [Lu] in
1988. Let K and L be symmetric star bodies in Rn. We say that K is
the intersection body of L if the radius of K in every direction is equal
to the (n − 1)-dimensional volume of the central hyperplane section of L
perpendicular to this direction, i.e. for every vector ξ from the unit sphere
Sn−1 in Rn,

‖ξ‖−1
K = voln−1(L ∩ ξ⊥) . (1)

Here ‖ξ‖K is the Minkowski functional of K and ξ⊥ = {x ∈ Rn : (x, ξ) =
0}. A star body K in Rn is called an intersection body of a star body if
there exists a star body L satisfying (1).

A more general concept was introduced in [GoLW]. A star body K is
called an intersection body if there exists a finite Borel measure µ on Sn−1

so that, for every φ ∈ C(Sn−1),∫
Sn−1

‖x‖−1
K φ(x)dx =

∫
Sn−1

dµ(ξ)
∫
Sn−1∩ξ⊥

φ(x)dx .

It is easily seen that intersection bodies of star bodies are those intersec-
tion bodies for which the corresponding measure µ has positive continuous
density.
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Intersection bodies are closely related to the following Busemann–Petty
problem (BP-problem): suppose that K,L are symmetric convex bodies in
Rn so that for every ξ ∈ Sn−1

voln−1(K ∩ ξ⊥) ≤ voln−1(L ∩ ξ⊥) .
Does it follow that voln(K) ≤ voln(L)? The answer is negative if n > 4 and
affirmative if n ≤ 4, and the solution appeared as the result of work of many
people (see [Z2] and [GKS] for the history of the problem and solution in all
dimensions). Lutwak [Lu] found a connection between intersection bodies
and the BP-problem that played an important role in the solution: if K is an
intersection body then the answer to the question is affirmative for every L,
and if L is not an intersection body one can perturb it to construct a body
K which together with L gives a counterexample. Therefore, the answer to
the BP-problem in Rn is affirmative if and only if every symmetric convex
body in Rn is an intersection body. The unified solution to the BP-problem
in [GKS] also made use of the following Fourier transform characterization
of intersection bodies found in [K2]: a symmetric star body K in Rn is an
intersection body if and only if ‖x‖−1

K is a positive definite distribution.
More general classes of bodies were introduced in [K5] and [Z1]. Each of

these classes is related to a certain generalization of the BP-problem in the
same way, as intersection bodies are related to the original BP-problem,
i.e. the answer is affirmative if the body K belongs to this class, and if L
does not belong to the corresponding class one can use it to construct a
counterexample. Therefore, the answer is affirmative in Rn if and only if
every symmetric convex body belongs to the corresponding class of bodies.

First, let us consider the class of bodies introduced in [K5].

Definition 1. Let K and L be star bodies in Rn, and 1 ≤ k < n. We say
that K is a k-intersection body of L if for every H ∈ G(n, n− k)

volk(K ∩H⊥) = voln−k(L ∩H) . (2)
We say that K is a k-intersection body of a star body if there exists L
satisfying (2) for every H.

It was shown in [K5] that an infinitely smooth symmetric star body
K in Rn is a k-intersection body of a star body if and only if the Fourier
transform of ‖x‖−kK is a positive continuous function outside of the origin in
Rn. The corresponding generalization of the BP-problem is as follows. Let
K,L be symmetric convex bodies in Rn that are (k − 1)-smooth for some
integer k, 1 ≤ k < n (see section 2). For each ξ ∈ Sn−1 define the parallel
section function of a body K in the direction of ξ by

AK,ξ(t) = voln−1
(
K ∩ {x ∈ Rn : (x, ξ) = t}

)
, t ∈ R .
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Suppose that k is an odd integer and for every ξ ∈ Sn−1

(−1)(k−1)/2A
(k−1)
K,ξ (0) ≤ (−1)(k−1)/2A

(k−1)
L,ξ (0) ,

where A(k−1)
K,ξ (0) stands for the derivative of the order k − 1 at zero. Does

it follow that voln(K) ≤ voln(L)? It was proved in [K5] that the answer is
affirmative if k ≥ n−3 and negative if k < n−3. The case k = 1 represents
the answer to the original BP-problem.

Another generalization of intersection bodies was introduced in [Z1].

Definition 2. For 1 ≤ k < n, we say that a star body K in Rn is a
generalized k-intersection body if there exists a finite Borel measure µ on
the Grassmanian G(n, n− k) such that for every f ∈ C(Sn−1)∫

Sn−1
‖x‖−kK f(x)dx =

∫
G(n,n−k)

dµ(H)
∫
Sn−1∩H

f(x)dx . (3)

This class of bodies is related to the so-called generalized Busemann–
Petty problem (GBP-problem). Suppose that 1 ≤ k < n and symmetric
convex bodies K,L in Rn satisfy

voln−k(K ∩H) ≤ voln−k(L ∩H)
for every (n − k)-dimensional subspace H of Rn. Does it follow that
voln(K) ≤ voln(L)? It was proved by Bourgain and Zhang [BZ] that if
n− k > 3 the answer to the GBP-problem is negative. The problem is still
open in the cases where n− k = 2, 3.

In this article we present an interpretation of these classes of bodies
in the language of functional analysis. The concept of embedding of a
normed space in Lp was extended in [K4] (analytically with respect to p) to
negative values of p. In section 3, we modify the definition of k-intersection
bodies of star bodies and introduce a more general class of k-intersection
bodies. We then prove that a symmetric star body in Rn is a k-intersection
body if and only if the space (Rn, ‖ · ‖K) embeds in L−k. Both conditions
in the latter statement are equivalent to ‖x‖−kK being a positive definite
distribution. We also give a purely geometric criterion for the existence of
a k-intersection body for a given body L. In section 4, we introduce the
concept of embedding in L−p(Rk) by extending (analytically with respect
to p) the property of embedding in the spaces Lp(Rk) of vector valued
functions. We prove that a symmetric star body K is a generalized k-
intersection body if and only if the space (Rn, ‖·‖K) embeds in L−k(Rk). We
then show that if a space (Rn, ‖ · ‖) embeds in L−p(Rk) then it also embeds
in L−p. This immediately implies that every generalized k-intersection
body is a k-intersection body. In section 5, we use the latter fact to give
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a new proof of the result of Bourgain and Zhang that the answer to the
GBP-problem is negative if the dimension of sections is greater than 3.
Another result in section 5 generalizes the positive part of the solution to
the original Busemann–Petty problem. We prove that ifK,L are symmetric
convex bodies in Rn and, for every three-dimensional subspace H of Rn,∫

Sn−1∩H
‖x‖−n+1

K dx ≤
∫
Sn−1∩H

‖x‖−n+1
L dx ,

then voln(K) ≤ voln(L). The question of whether it is possible to replace
the three-dimensional subspaces in the latter result by subspaces of higher
dimension (with an absolute constant in the inequality; the solution to
the original BP-problem shows that this is impossible without a constant
even for four dimensional integrals) is related to the famous hyperplane
(or slicing) problem, see [MP]. Our main tool is the Fourier transform of
distributions and its connection with volumes of lower dimensional sections,
established in section 2 and generalizing the formula for hyperplane sections
from [GKS, Th.2].

2 Volumes of Sections and the Fourier Transform

We recall some notations related to the Fourier transform of distributions.
As usual, we denote by S(Rn) the space of rapidly decreasing infinitely dif-
ferentiable functions (test functions) in Rn, and S ′(Rn) is the space of distri-
butions over S(Rn). The Fourier transform f̂ of a distribution f ∈ S ′(Rn)
is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for every test function φ. A distribution is
called even homogeneous of degree p ∈ R if 〈f(x), φ(x/α)〉 = |α|n+p〈f, φ〉
for every test function φ and every α ∈ R, α 6= 0. The Fourier transform
of an even homogeneous distribution of degree p is an even homogeneous
distribution of degree −n − p. If f ∈ C(Sn−1), we denote by f(θ)r−k

the extension of f to a homogeneous of degree −k function on Rn \ {0}.
If p > −1 and p is not an even integer, then the Fourier transform of
the function h(z) = |z|p, z ∈ R is equal to (|z|p)∧(t) = cp|t|−1−p (see
[GeS, p. 173]), where cp = 2p+1√π Γ((p+1)/2)

Γ(−p/2) . The well-known connection
between the Radon transform and the Fourier transform is that, for every
ξ ∈ Sn−1, the function t → φ̂(tξ) is the Fourier transform of the function
z →

∫
(x,ξ)=z φ(x) dx. A distribution f is called positive definite if, for every

test function φ, 〈f, φ ∗ φ(−x)〉 ≥ 0. According to L.Schwartz’s generaliza-
tion of Bochner’s theorem, a distribution is positive definite if and only if
it is the Fourier transform of a tempered measure in Rn ([GeV, p. 152]).
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Let K be a body that is star-shaped with respect to the origin. The
Minkowski functional of K is given by

‖x‖K = min{a ≥ 0 : x ∈ aK} , x ∈ Rn .
We call K a star body if ‖ · ‖K is continuous and positive on Sn−1. We
say that a star body K is (k− 1)-smooth (infinitely smooth) if the restric-
tion of ‖x‖K to the sphere Sn−1 belongs to Ck−1(Sn−1) (correspondingly,
C∞(Sn−1)). We denote by G(n, k) the Grassmanian of k-dimensional sub-
spaces of Rn. Throughout the paper, dH denotes integration with respect
to the normalized Haar measure on the Grassmanian. However, integrating
over the sphere or its sections with respect to the uniform measure, we do
not normalize this measure. If H ∈ G(n, k) then

voln−k(K ∩H) =
1

n− k

∫
Sn−1∩H

‖x‖−n+k
K dx . (4)

The first result connecting the volume of sections of star bodies with
the Fourier transform was established in [K1, Th. 1]. It was based on the
following observation ([K1, Lemma 1]):

Proposition 1. Let f be an even continuous homogeneous function of
degree −n+ 1 on Rn \ {0}, n > 1. Then, for every ξ ∈ Sn−1,

f̂(ξ) = π

∫
Sn−1∩{(θ,ξ)=0}

f(θ)dθ .

Putting f(x) = ‖x‖−n+1
K in Proposition 1 and using (4), we immediately

see that for every symmetric star body K in Rn and every ξ ∈ Sn−1,

voln−1(K ∩ ξ⊥) =
1

π(n− 1)
(
‖x‖−n+1

K

)∧(ξ) .

This formula was generalized in [GKS, Th. 2]:

Theorem 1. Let K be an origin-symmetric infinitely smooth star body in
Rn, and let k ∈ N ∪ {0}, k 6= n. Suppose that ξ ∈ Sn−1, and let AK,ξ be
the corresponding parallel section function of K.

(a) If k is odd, then(
‖x‖−n+k

K

)∧(ξ) = (−1)k/2π(n− k)A(k−1)
K,ξ (0) ;

(b) if k is even, then(
‖x‖−n+k

K

)∧(ξ)

= ck

∫ ∞
0

AK,ξ(z)−AK,ξ(0)−A′′K,ξ(0) z
2

2 − · · · −A
(k−2)
K,ξ (0) zk−2

(k−2)!

zk
dz ,

where ck = (−1)k/2 2(n− k)(k − 1)!.
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Remark 1. The condition of Theorem 1 that K is infinitely smooth can
be weakened. It is enough to assume that the body K is (k− 1)-smooth to
prove the statements (a) and (b) in exactly the same way as was done in
[GKS]. Also if K is (k−1)-smooth the expressions in the right-hand side of
(a) and (b) are continuous functions of ξ on the sphere. In particular, if K
is infinitely smooth, then for every k ∈ N∪{0}, (‖x‖−n+k

K )∧ is a continuous
function on Sn−1. Moreover, if K and Km, m ∈ N are (k− 1)-smooth star
bodies such that the distance between the functions ‖·‖K and ‖·‖Km in the
space C(k−1)(Sn−1) approaches zero as m→∞, then the distance between
the functions (‖x‖−n+k

K )∧ and (‖x‖−n+k
Km

)∧ in the space C(Sn−1) also has
limit zero. We can choose the bodies Km to be infinitely smooth.

We now generalize the result of Theorem 1 to the case of lower dimen-
sional sections. Let H ∈ G(n, n − k), 1 ≤ k < n and let ξ1, . . . , ξk be an
orthonormal basis in H⊥. For a star body K in Rn, the (n−k)-dimensional
parallel section function AK,H is a function on Rk defined by

AK,H(u) = voln−k
(
K ∩ {H + u1ξ1 + · · ·+ ukξk}

)
=
∫
{x∈Rn:(x,ξ1)=u1,...,(x,ξk)=uk}

χ(‖x‖K)dx , u ∈ Rk , (5)

where χ is the indicator function of the interval [0, 1].
Let ‖u‖2 be the Euclidean norm of u ∈ Rk. For every q ∈ C, the value of

the distribution ‖u‖−q−k2 /Γ(−q/2) on a test function φ ∈ Rk can be defined
in the usual way (see [GeS, p. 71]) and represents an entire function of q ∈ C.
If K is infinitely smooth the function AK,H is infinitely differentiable at the
origin, and the same regularization procedure can be applied to define the
action of these distributions on the function AK,H . The function

q 7→
〈
‖u‖−q−k2
Γ(−q/2)

, AK,H(u)
〉

(6)

is an entire function of q ∈ C. In particular, if q = 2m, m ∈ N ∪ {0}, then〈
‖u‖−q−k2
Γ(−q/2)

∣∣∣∣
q=2m

, AK,H(u)
〉

=
(−1)mΩk

2m+1k(k + 2) . . . (k + 2m− 2)
∆mAK,H(0) ,

(7)
where Ωk = 2πk/2/Γ(k/2) is the surface area of the unit sphere Sk−1 in Rk,
and ∆ =

∑k
i=1 ∂

2/∂u2
i is the k-dimensional Laplace operator (for details,

see [GeS, p. 71-74] and [GKS, p. 698-700]). According to the theory of
fractional derivatives (see for example [SKM]), the value of the function (6)
at q is equal (up to a constant) to ∆q/2AK,H(0). Note that these quantities
do not depend on the choice of an orthonormal basis in H⊥.
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We also use the following well-known fact (see for example [GeS, p. 76]):
for any v ∈ Rk and q < −k + 1,

(v2
1 + · · ·+ v2

k)
(−q−k)/2 =

Γ(−q/2)
2Γ((−q − k + 1)/2)π(k−1)/2

∫
Sk−1

∣∣(v, u)
∣∣−q−kdu .

(8)

Theorem 2. Let K be an infinitely smooth symmetric star body in Rn,
1 ≤ k < n. Then for every H ∈ G(n, n − k) and every m ∈ N ∪ {0},
m 6= (n− k)/2,

∆mAK,H(0) =
(−1)m

2kπk(n− 2m− k)

∫
Sn−1∩H⊥

(‖x‖−n+2m+k
K )∧(θ)dθ .

Proof. Let q ∈ (−k,−k + 1). Then,〈
‖u‖−q−k2
Γ(−q/2)

, AK,H(u)
〉

=
1

Γ(−q/2)

∫
Rk
‖u‖−q−k2 AK,H(u)du . (9)

Using the expression (5) for the function AK,H , writing the integral in
polar coordinates and then using (8), we see that the right-hand side of (9)
is equal to

1
Γ(−q/2)

∫
Rn

(
(x, ξ1)2 + · · ·+ (x, ξk)2)(−q−k)/2χ(‖x‖K)dx

=
1

Γ(−q/2)(n−q−k)

∫
Sn−1

(
(θ, ξ1)2 + · · ·+ (θ, ξk)2)(−q−k)/2‖θ‖−n+q+k

K dθ

=
1

2Γ(−q−k+1
2 )π(k−1)/2

∫
Sn−1
‖θ‖−n+q+k

K dθ

∫
Sk−1

∣∣∣∣( k∑
i=1

uiξi, θ

)∣∣∣∣−q−kdu
=

1
2Γ(−q−k+1

2 )π(k−1)/2

∫
Sk−1

du

∫
Sn−1
‖θ‖−n+q+k

K

∣∣∣∣( k∑
i=1

uiξi, θ

)∣∣∣∣−q−kdθ .
(10)

Let us show that the function under the integral over Sk−1 is the Fourier
transform of ‖x‖−n+q+k

K at the point
∑
uiξi. For any even test function

φ ∈ S(Rn), using the connection between the Fourier and Radon transforms
and the expression for the Fourier transform of the distribution |z|q+k−1 (see
the beginning of section 2), we get〈

(‖x‖−n+q+k
K )∧, φ

〉
=
〈
‖x‖−n+q+k

K , φ̂
〉

=
∫
Rn
‖x‖−n+q+k

K φ̂(x)dx

=
∫
Sn−1

‖θ‖−n+q+k
K dθ

∫ ∞
0

zq+k−1φ̂(zθ)dz



1514 A. KOLDOBSKY GAFA

=
1
2

∫
Sn−1

‖θ‖−n+q+k
K

〈
|z|q+k−1, φ̂(zθ)

〉
dθ

=
2q+k
√
π Γ((q + k)/2)

2Γ((−q − k + 1)/2)

∫
Sn−1

‖θ‖−n+q+k
K

〈
|t|−q−k,

∫
(x,θ)=t

φ(x)dx
〉
dθ

=
2q+k
√
πΓ((q + k)/2)

2Γ((−q − k + 1)/2)

∫
Rn

(∫
Sn−1

∣∣(θ, ξ)∣∣−q−k‖θ‖−n+q+k
K dθ

)
φ(ξ)dξ .

Since φ is an arbitrary test function, this proves that, for every ξ ∈ Rn,(
‖x‖−n+q+k

K

)∧(ξ) =
2q+k
√
πΓ((q + k)/2)

2Γ((−q − k + 1)/2)

∫
Sn−1

∣∣(θ, ξ)∣∣−q−k‖θ‖−n+q+k
K dθ .

Together with (10), the latter equality shows that〈
‖u‖−q−k2
Γ(−q/2)

, AK,H(u)
〉

=
2−q−kπ−k/2

Γ( q+k2 )(n−q−k)

∫
Sn−1∩H⊥

(
‖x‖−n+q+k

K

)∧(θ)dθ .

(11)
We have proved (11) under the assumption that q ∈ (−k,−k + 1).

However, both sides of (11) are analytic functions of q ∈ C in the domain
where Re(q) > −k, q 6= n − k. (For every q ∈ C, Re(q) > −k, one can
see from the proof of Theorem 1 in [GKS] that the Fourier transform of
‖x‖−n+q+k

K is a continuous function on the sphere Sn−1.) This implies that
the equality (11) holds for every q from this domain.

Putting q = 2m, m ∈ N ∪ {0}, m 6= (n− k)/2 in (11) and applying (7)
and the fact that Γ(x+ 1) = xΓ(x), we get the desired formula. 2

Theorem 2 (with m = 0) and the expression (4) for the volume of central
sections imply the following fact that was proved in [K5, Lemma 7] using
other methods.

Corollary 1. Let K be an infinitely smooth symmetric star body in Rn,
1 ≤ k < n. Then for every (n− k)-dimensional subspace H of Rn,∫

Sn−1∩H
‖x‖−n+k

K dx =
1

(2π)k

∫
Sn−1∩H⊥

(‖x‖−n+k
K )∧(θ)dθ .

We need one more application of Theorem 2.

Corollary 2. Let K be an infinitely smooth symmetric convex body in
Rn, 1 ≤ k ≤ n− 3. Then for every k-dimensional subspace H of Rn,∫

Sn−1∩H

(
‖x‖−n+k+2

K

)∧(θ)dθ ≥ 0 .

Proof. Since K is symmetric and convex, so is Ki = K ∩ span(H, ξi) for
every i = 1, . . . , n, where ξi, i = 1, . . . , k is an orthonormal basis in H⊥.
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By the Brunn-Minkowski theorem (see for example [Sc, Th. 6.1.1]), the cen-
tral hyperplane section has maximal volume among all hyperplane sections
perpendicular to a given direction. Therefore, the parallel section function
ui 7→ AK∩H,ξi(ui) of the body K ∩H in the direction of ξi has maximum
at zero, and A

′′
K∩H,ξi(0) ≤ 0 for every i. This implies that ∆AK,H(0) ≤ 0,

and the result follows from Theorem 2 with m = 1. 2

Finally, we prove a formula that will allow us to work with the integrals
appearing in Theorem 2.

Lemma 1. Let 1 ≤ k < n, and f, g ∈ C(Sn−1). Then∫
Sn−1

g(x)dx
∫
Sn−1∩x⊥

f(ξ)dξ

= c(n, k)
∫
G(n,k)

(∫
Sn−1∩H⊥

f(ξ)dξ
)(∫

Sn−1∩H
g(x)dx

)
dH , (12)

where c(n, k) = (ΩnΩn−1)/(ΩkΩn−k), and Ωk = 2πk/2/Γ(k/2) is the surface
area of the unit sphere Sk−1 in Rk.

Proof. Let O(n) be the group of linear isometries of the n-dimensional
Euclidean space. We identify every element U of O(n) with the n-tuple
(u1, . . . , un) of orthonormal vectors ui = Uei, where ei, i = 1, . . . , n, is
the standard basis in Rn. By the conditional expectation theorem (see for
example [F, Ch. 5]), there exists a probability measure ν on G(n, k) so that,
for every continuous function F on O(n), the expectation of F with respect
to the normalized Haar measure dU on O(n) is equal to the expectation
with respect to dν(H) of the conditional expectations E(F |u1, . . . , uk ∈ H).
In other words,∫
O(n)

F (U)dU =
∫
G(n,k)

∫
um+1,...un∈H⊥

dUn−k

∫
u1,...,uk∈H

F (U)dUk dν(H) ,

where dUk, dUn−k are the Haar measures on O(k) and O(n − k), respec-
tively. Since the measure ν is invariant with respect to isometries, it is the
Haar measure on G(n, k). Putting F (U) = f(u1)g(un) we get the desired
formula. 2

3 k-intersection Bodies

In view of (2) and (4), a star body K is the k-intersection body of a star
body L if and only if for every H ∈ G(n, n− k)

1
k

∫
Sn−1∩H⊥

‖x‖−kK dx =
1

n− k

∫
Sn−1∩H

‖x‖−n+k
L dx . (13)
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The uniqueness theorem for the Radon transforms (see, for example, [G,
Th. 7.2.3]), implies that, for a given L, the k-intersection body is unique, if
it exists. The existence of the k-intersection body (with k > 1) is a more
complicated matter. It was proved in [K5,Th. 4] that an infinitely smooth
symmetric star body K is an intersection body of a star body if and only if
the Fourier transform of ‖x‖−kK is a positive continuous function on Rn\{0}.
The proof of this fact is a combination of Corollary 1 and the uniqueness
theorem for the Radon transforms. We now present an approximation
argument that allows to avoid the condition that K is infinitely smooth.

Proposition 2. Let K be a symmetric star body in Rn that is a k-
intersection body of a star body. Then (‖x‖−kK )∧ is a positive continuous
function on Rn \ {0}. The corresponding body L is then given by

‖θ‖−n+k
L =

n− k
(2π)n−kk

(
‖x‖−kK

)∧(θ) , θ ∈ Sn−1 . (14)

Proof. Suppose that K,L are symmetric star bodies in Rn so that K is
the k-intersection body of L. Let Km ⊂ K, m ∈ N be infinitely smooth
symmetric star bodies in Rn approximating K in the uniform metric on the
sphere. Then, as m→∞,∫

Sn−1∩H⊥
‖x‖−kKmdx→

∫
Sn−1∩H⊥

‖x‖−kK dx

uniformly with respect to H ∈ G(n, n−k). By Corollary 1 and the equality
(13), ∫

Sn−1∩H

(
‖x‖−kKm

)∧(θ)dθ → (2π)n−kk
n− k

∫
Sn−1∩H

‖x‖−n+k
L dx (15)

uniformly with respect to H. Denote the constant in the right-hand side
by c. Let ψ ∈ C∞(Sn−1) be an even infinitely differentiable function on the
sphere. Then, by Remark 1 or [K5, Lemma 5], (ψ(θ)r−1)∧ is an infinitely
differentiable function on Rn\{0}. The uniform convergence in (15) implies
that∫

G(n,n−k)

(∫
Sn−1∩H

(
‖x‖−kKm

)∧)(∫
Sn−1∩H⊥

(
ψ(θ)r−1)∧)dH

= c

∫
G(n,n−k)

(∫
Sn−1∩H

‖x‖−n+k
L

)(∫
Sn−1∩H⊥

(
ψ(θ)r−1)∧)dH .

Applying Lemma 1 to both sides of the latter equality, we get∫
Sn−1

(
‖x‖−kKm

)∧(ξ)
(∫

Sn−1∩ξ⊥

(
ψ(θ)r−1)∧)dξ

= c

∫
Sn−1

‖ξ‖−n+k
L

(∫
Sn−1∩ξ⊥

(
ψ(θ)r−1)∧)dξ .
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Since the function (ψ(θ)r−1)∧ is homogeneous of degree −n+ 1, by Propo-
sition 1, ∫

Sn−1∩ξ⊥
(ψ(θ)r−1)∧ =

1
π

(
(ψ(θ)r−1)∧

)∧(ξ) =
(2π)n

π
ψ(ξ) .

Therefore,∫
Sn−1

(
‖x‖−kKm

)∧(ξ)ψ(ξ) dξ → c

∫
Sn−1

‖ξ‖−n+k
L ψ(ξ)dξ , (16)

as m→∞.
Let φ ∈ S(Rn) be any even test function. For every m, ‖x‖−kKm |φ̂(x)| ≤

‖x‖−kK |φ̂(x)|, and the latter function belongs to L1(Rn) as the product of
a locally integrable, bounded outside of the origin function ‖x‖−kK and an
L1-function |φ̂|. By the dominated convergence theorem and formula (16)
applied to the function ψ(ξ) =

∫∞
0 tk−1φ(tξ)dt,〈

(‖x‖−kK )∧, φ
〉

=
∫
Rn
‖x‖−kK φ̂(x)dx

= lim
m→∞

∫
Rn
‖x‖−kKmφ̂(x)dx = lim

m→∞

∫
Rn

(
‖x‖−kKm

)∧(y)φ(y)dy

= lim
m→∞

∫
Sn−1

(
‖x‖−kKm

)∧(ξ)dξ
∫ ∞

0
tk−1φ(tξ)dt

= c

∫
Sn−1

‖ξ‖−n+k
L dξ

∫ ∞
0

tk−1φ(tξ)dt = c

∫
Rn
‖y‖−n+k

L φ(y)dy .

Since φ is an arbitrary even test function, we get (‖x‖−kK )∧(y) = c‖y‖−n+k
L .

2

Suppose that K is a k-intersection body of a star body. By Proposition
2, (‖x‖−kK )∧ is a positive continuous, homogeneous of degree −n+k function
on Rn \ {0}. For every even test function φ ∈ S(Rn), we have∫

Rn
‖x‖−kK φ(x)dx =

1
(2π)n

∫
Rn

(
‖x‖−kK

)∧(y)φ̂(y)dy

=
1

(2π)n

∫
Sn−1

(
‖x‖−kK

)∧(ξ)
∫ ∞

0
tk−1φ̂(tξ)dt .

Similar to how it was done in the case k = 1 in [GoLW], we define a
more general class of bodies by replacing the positive continuous function
(‖x‖−kK )∧ in the latter equality by any measure on the sphere Sn−1.

Definition 3. Let 1 ≤ k < n. We say that a symmetric star body K in
Rn is a k-intersection body if there exists a measure µ on Sn−1 such that,
for every even test function φ in Rn,∫

Rn
‖x‖−kK φ(x)dx =

∫
Sn−1

dµ(ξ)
∫ ∞

0
tk−1φ̂(tξ)dt . (17)
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The calculation before Definition 3 immediately shows that every sym-
metric k-intersection body of a star body is also a k-intersection body.

Let us look at k-intersection bodies from a different point of view. As-
sume that p > 0 and E = (Rn, ‖ · ‖) is an n-dimensional subspace of
Lp(Ω, σ), where (Ω, σ) is a space with finite measure. Let f1, . . . , fn be a
basis in E and, for every ω ∈ Ω, denote by f(ω) = (f1(ω), . . . , fn(ω)) ∈ Rn.
Let µ be the image of the measure ‖f(ω)‖p2dσ(ω) under the mapping ω 7→
f(ω)/‖f(ω)‖2. This means that µ is a finite Borel measure on Sn−1 such
that, for every Borel setA in Rn, µ(A) is equal to the measure ‖f(ω)‖p2dσ(ω)
of the set {ω ∈ Ω : f(ω)/‖f(ω)‖2 ∈ A}.

For every x ∈ Rn, we have

‖x‖p = ‖x1f1 + . . . xnfn‖pLp =
∫

Ω

∣∣x1f1(ω) + · · ·+ x1f1(ω)
∣∣pdσ(ω)

=
∫
Sn−1

∣∣(x, ξ)|pdµ(ξ) . (18)

The fact that embedding in Lp is equivalent to the representation (18) was
known to P. Lèvy [L]. Now we write (18) in a different form. Suppose
that p is not an even integer. Let us apply both sides of (18) to a test
function φ ∈ S(Rn) and use the connection between the Fourier and Radon
transforms and the formula for the Fourier transform of the function |t|p
(see the beginning of section 2). We get∫

Rn
‖x‖pφ(x)dx =

∫
Sn−1

dµ(ξ)
∫
Rn

∣∣(x, ξ)∣∣pφ(x)dx

=
∫
Sn−1

dµ(ξ)
∫
R
|t|p
(∫

(x,ξ)=t
φ(x)dx

)
dt

=
∫
Sn−1

〈
|t|p,

∫
(x,ξ)=t

φ(x)dx
〉
dµ(ξ) = cp

∫
Sn−1

〈
|z|−1−p, φ̂(zξ)

〉
dµ(ξ) .

This calculation gives another condition for embedding of a space in Lp
that looks more complicated than (18). However, if p < 0 the action of the
distribution |z|−1−p can be written as an integral, and the latter calculation
allows us to extend the concept of embedding of a finite dimensional space
in Lp to negative values of p. The following definition was first given in [K4].

Definition 4. Suppose that x→ ‖x‖ is a homogeneous of degree 1, even
continuous, positive outside of the origin function on Rn. We say that
(Rn, ‖ · ‖) embeds in L−p, 0 < p < n, if there exist a finite symmetric
measure µ on the sphere Sn−1 so that, for every even test function φ,∫

Rn
‖x‖−pφ(x)dx =

∫
Sn−1

dµ(ξ)
∫ ∞

0
tp−1φ̂(tξ)dt .
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The condition that 0 < p < n guarantees absolute convergence of the
integral in the left-hand side. It was proved in [K4, Th. 1] that (Rn, ‖ · ‖)
embeds in L−p, 0 < p < n if and only if ‖x‖−p is a positive definite
distribution. Using this result and comparing Definitions 3 and 4 we get

Theorem 3. Let K be a symmetric star body in Rn, 1 ≤ k < n. The
following are equivalent:

(i) K is a k-intersection body;
(ii) The function ‖x‖−kK is a positive definite distribution on Rn;
(iii) The space (Rn, ‖ · ‖K) embeds in L−k.

In particular, the fact that K is a k-intersection body if and only if the
Fourier transform of ‖x‖−kK is a tempered measure on Rn extends the result
of Proposition 2 to the class of k-intersection bodies.

Let us translate some known results on embedding in L−p into the
language of k-intersection bodies. First, the unit ball of any n-dimensional
subspace of Lq with 0 < q ≤ 2 is a k-intersection body for every 1 ≤
k < n − 1 (see [K4, Th .2]). Every symmetric convex body in Rn is a k-
intersection body for k = n − 3, n − 2, n − 1 (see [K5, Corollary 3]). The
unit balls of the spaces `nq , 2 < q ≤ ∞ are k-intersection bodies if and only
if k = n− 3, n− 2, n− 1 (see [K3, Theorems 1,2]).

We conclude this section with a translation of the Fourier transform
characterization of k-intersection bodies into the language of geometry.
This purely geometric formulation suggests that there may be a proof not
using the Fourier transform.

Theorem 4. Let L be a (k−1)-smooth symmetric star body in Rn, where
k is an odd integer, 1 ≤ k < n. If (−1)(k−1)/2A

(k−1)
L,ξ (0) > 0 for every

ξ ∈ Sn−1, then the body K defined by

‖ξ‖K = 2π
(πk)1/k

(
(−1)(k−1)/2A

(k−1)
L,ξ (0)

)−1/k

has the property that the k-dimensional volume of the section of K by
any k-dimensional subspace is equal to the (n − k)-dimensional volume of
the section of L by the orthogonal subspace. In other words, K is the
k-intersection body of L.

Proof. By Theorem 1 (one needs only (k−1)-smoothness in the proof), the
Fourier transform of ‖x‖−n+k

L is a positive continuous function on Sn−1,
and for every ξ ∈ Sn−1,

‖ξ‖−kK =
(2π)n−kk
n− k

(
‖x‖−n+k

L

)∧(ξ) .
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Approximate the body L in the norm of the space Ck−1(Sn−1) by a sequence
of infinitely smooth bodies Lm. By Remark 1, the functions (‖x‖−n+k

Lm
)∧

converge to (‖x‖−n+k
L )∧ in the uniform metric on Sn−1. Therefore, by

Corollary 1 and the equality (4), for every H ∈ G(n, n− k),

voln−k(L ∩H) =
1

n−k

∫
Sn−1∩H

‖x‖−n+k
L dx

=
1

n−k lim
m→∞

∫
Sn−1∩H

‖x‖−n+k
Lm

dx

=
(2π)n−k

n− k lim
m→∞

∫
Sn−1∩H⊥

(
‖x‖−n+k

Lm

)∧(ξ)dξ

=
(2π)n−k

n− k

∫
Sn−1∩H⊥

(
‖x‖−n+k

L

)∧(ξ)dξ

=
1
k

∫
Sn−1∩H⊥

‖ξ‖−kK dξ = volk(K ∩H⊥) . �

It follows from Proposition 2 and Theorem 1(a) that if
(−1)(k−1)/2A

(k−1)
L,ξ (0) ≤ 0 at any point ξ then the k-intersection body of

L does not exist. Also if k is even the statement of Theorem 4 holds if
one replaces (−1)(k−1)/2A

(k−1)
L,ξ (0) by the expression appearing in part (b)

of Theorem 1.

4 Generalized k-intersection Bodies

The class of generalized k-intersection bodies (see Definition 2) also admits
a functional analytic interpretation. Suppose that p > 0 and k is an integer,
1 ≤ k < n. If (Ω, σ) is a space with finite measure then Lp(Rk) is the space
of (classes of equivalence of) measurable functions f : Ω 7→ Rk such that

‖f‖p =
∫

Ω

∥∥f(ω)
∥∥p

2dσ(ω) <∞ .

Consider an n-dimensional subspace (Rn, ‖ · ‖) of Lp(Rk). An argument,
similar to that in the scalar case, shows that there exists a finite Borel
measure ν on Rnk such that, for every x ∈ Rn,

‖x‖p =
∫
Rnk

(
(x, ξ1)2 + · · ·+ (x, ξk)2)p/2dν(ξ) , (19)

where we arrange vectors ξ1, . . . , ξk ∈ Rn consequently to form a vector
ξ ∈ Rnk.

Let us assume that p is not an even integer and apply both sides of
(19) to an even test function φ ∈ S(Rn). For every u ∈ Rk, denote by
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Hξ(u) = {x ∈ Rn : (x, ξi) = ui, i = 1, . . . , k}. Note that the Fourier
transform of the function u 7→

∫
Hξ(u) φ(x) dx at a point v ∈ Rk is equal

to φ̂(v1ξ1 + · · · + vkξk) (see for example the proof of Lemma 6 in [K5]).
Also, since p is not an even integer, (‖u‖p2)∧(v) = Cp‖v‖−p−k2 , where Cp =
2p+kπk/2Γ((p+ k)/2)/Γ(−p/2) (see [GeS, p. 192]). We have∫

Rn
‖x‖pφ(x)dx =

∫
Rnk

dν(ξ)
∫
Rn

(
(x, ξ1)2 + · · ·+ (x, ξk)2)p/2φ(x)dx

=
∫
Rnk

dν(ξ)
∫
Rk
‖u‖p2

(∫
Hξ(u)

φ(x) dx
)
du

=
Cp

(2π)k

∫
Rnk

〈
‖v‖−p−k2 , φ̂(v1ξ1 + · · ·+ vkξk)

〉
dν(ξ) .

If p < 0 the function ‖v‖−p−k2 is locally integrable on Rk, so we can
extend the concept of embedding in Lp(Rk) to negative values of p.

Definition 5. Let x → ‖x‖ be a homogeneous of degree 1, even contin-
uous, positive outside of the origin function on Rn. For any 0 < p < n
and an integer k, 1 ≤ k < n, we say that the space (Rn, ‖ · ‖) embeds in
L−p(Rk) if there exists a finite Borel measure ν on Rnk such that for every
test function φ ∈ S(Rn)∫

Rn
‖x‖−pφ(x) dx =

∫
Rnk

dν(ξ)
∫
Rk
‖v‖p−k2 φ̂(v1ξ1 + · · ·+ vkξk)dv . (20)

Note that the integral in the left-hand side converges absolutely, since
‖x‖−p is a locally integrable (0 < p < n) bounded outside of the origin
function and |φ| is an L1-function on Rn.

It is well known that, for p > 0, the spaces Lp and Lp(Rk) can be
embedded isometrically in each other. One of these embeddings extends to
the negative case.

Theorem 5. Suppose that 0 < p < n, k is an integer, 1 ≤ k < n. If a
space (Rn, ‖ · ‖) embeds in L−p(Rk) then it also embeds in L−p.

Proof. Let us write the inner integral in the right-hand side of (20) in polar
coordinates v = tθ, t ∈ [0,∞), θ ∈ Sk−1:∫
Rn
‖x‖−pφ(x) dx =

∫
Rnk

dν(ξ)
∫
Sk−1

dθ

∫ ∞
0

tp−1φ̂
(
t(θ1ξ1 + · · ·+ θkξk)

)
dt .

(21)
Denote by µ the measure on Sn−1 that is the image of the measure

‖θ1ξ1 + · · ·+ θkξk‖−p2 dν(ξ)× dθ
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under the mapping τ : Rnk × Sk−1 7→ Sn−1

τ(ξ, θ) =
θ1ξ1 + · · ·+ θkξk
‖θ1ξ1 + · · ·+ θkξk‖2

.

Making a substitution r = t‖θ1ξ1 + · · · + θkξk‖2 in the inner integral in
the right-hand side of (21) and then the substitution corresponding to the
mapping τ , we get the equality (17). The fact that µ is a finite measure on
Sn−1 immediately follows from (21) with φ(x) = exp(−‖x‖22). 2

The author does not know whether every space that embeds in L−p also
embeds in L−p(Rk).

Our next result shows the connection between generalized k-intersection
bodies and embedding in L−k(Rk).
Theorem 6. Let 1 ≤ k < n. A symmetric star body K is a generalized
k-intersection body if and only if (Rn, ‖ · ‖K) embeds in L−k(Rk).
Proof. It is easily seen that K is a generalized k-intersection body if and
only if there exists a finite Borel measure µ on G(n, n−k) so that, for every
test function φ ∈ S(Rn),∫

Rn
‖x‖−kK φ(x)dx =

∫
G(n,n−k)

dµ(H)
∫
H
φ(x)dx . (22)

In fact, writing the integrals over Rn and H in (22) in polar coordinates
one gets condition (3). Note that every infinitely differentiable function
g on Sn−1 can be represented in the form g(θ) =

∫∞
0 tn−k−1φ(tθ), where

φ ∈ S(Rn). Take for example the function φ(x) = u(t)g(θ), x = tθ, t ∈ R,
θ ∈ Sn−1, where u ∈ S(R),

∫∞
0 tn−k−1u(t)dt = 1.

Suppose that (Rn, ‖·‖) embeds in L−k(Rk). Let us now modify condition
(20) of Definition 5 (we put p = k). Putting φ(x) = exp(−‖x‖22) in (20), we
see that the measure ν of the set of those ξ, for which ξ1, . . . , ξk are linearly
dependent, is equal to zero. If ξ1, . . . , ξk are linearly independent then∫

Rk
φ̂(v1ξ1 + · · ·+ vkξk) dv = c(ξ)

∫
H⊥

φ̂(x)dx ,

where H⊥ = span(ξ1, . . . , ξk), integration over H⊥ is with respect to an
orthonormal basis in H⊥, and c(ξ) are positive constants appearing as the
result of changing the coordinates of integration. On the other hand, by
[K5, Lemma 6], ∫

H⊥
φ̂(x) dx = (2π)k

∫
H
φ(x)dx . (23)

Therefore, condition (20) with p = k is equivalent to (22) with the measure
µ on G(n, n− k) defined by

µ(A) =
∫
{ξ:(span(ξ1,...,ξk))⊥∈A}

c(ξ)dν(ξ)
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for every Borel set A ⊂ G(n, n−k). Thus, K is a generalized k-intersection
body.

Conversely, suppose that K is a generalized k-intersection body, and let
µ be the corresponding measure on G(n, n− k). Let τ : G(n, n− k)→ Rnk
be a continuous mapping so that for every H ∈ G(n, n − k), τ(H) = ξ =
(ξ1, . . . , ξk), where ξ1, . . . , ξk form an orthonormal basis in H⊥. Define a
measure ν on Rnk as the image of µ under the mapping τ , i.e. for every
Borel set A ⊂ Rnk

ν(A) = µ
{
H ∈ G(n, n− k) : τ(H) ∈ A

}
.

Then, by (22) and (23),∫
Rn
‖x‖−kK φ(x)dx =

∫
G(n,n−k)

dµ(H)
∫
H
φ(x)dx

=
∫
Rnk
dν(ξ)

∫
(span(ξ1,...,ξk))⊥

φ(x)dx =
1

(2π)k

∫
Rnk

dν(ξ)
∫
span(ξ1,...,ξk)

φ̂(x)dx

=
∫
Rnk

dν(ξ)
∫
Rk
φ̂(v1ξ1 + · · ·+ vkξk)dv . �

Corollary 3. Let 1 ≤ k < n, and let K be a symmetric star body in
Rn. If K is a generalized k-intersection body then it is also a k-intersection
body.

Proof. By Theorem 6, if K is a generalized k-intersection body then (Rn, ‖·
‖K) embeds in L−k(Rk). Then, by Theorem 5, (Rn, ‖ · ‖K) embeds in L−k,
and the result follows from Theorem 3. 2

Our next result gives a sufficient condition for generalized k-intersection
bodies in terms of the Fourier transform.

Proposition 3. Let K be an infinitely smooth star body in Rn, and
1 ≤ k < n. For H ∈ G(n, n− k) put

µ(H) =
πc(n, k)
(2π)n

∫
Sn−1∩H⊥

(
‖x‖−kK ‖x‖

k−1
2
)∧(θ)dθ ,

where c(n, k) is the constant from Lemma 1. Then the signed measure
µ(H)dH satisfies the equation (3). Therefore, if µ(H) ≥ 0 for every H ∈
G(n, n− k) then K is a generalized k-intersection body.

Proof. By a version of Parseval’s formula from [K5, Lemma 3], for every
f ∈ C(Sn−1)

(2π)n
∫
Sn−1

‖x‖Kf(x)dx =
∫
Sn−1

(
‖x‖−kK ‖x‖

k−1
2
)∧(ξ)

(
f(θ)r−n+1)∧(ξ)dξ .
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On the other hand, by Proposition 1 and Lemma 1, the right-hand side of
the latter formula is equal to

π

∫
Sn−1

(
‖x‖−kK ‖x‖

k−1
2
)∧(ξ)

(∫
Sn−1∩ξ⊥

f(θ) dθ
)
dξ

= πc(n, k)
∫
G(n,n−k)

(∫
Sn−1∩H⊥

(
‖x‖−kK ‖x‖

k−1
2
)∧(ξ)dξ

)
·
(∫

Sn−1∩H
f(θ)dθ

)
dH . �

5 Generalizations of the Busemann–Petty Problem

First, we give a new proof of the result of Bourgain and Zhang [BZ] that
the solution to the generalized Busemann–Petty problem is negative if the
dimension of sections is greater than 3.

Theorem 7 ([BZ]). If n − k > 3 then the answer to the GBP-problem is
negative.

Proof. A result of Zhang [Z1, Th. 7] is that the answer to GBP is affir-
mative if and only if every symmetric convex body in Rn is a generalized
k-intersection body. In view of Theorem 5, this means that every sym-
metric convex body in Rn must also be a k-intersection body. However, if
k < n− 3 then for every 2 < q ≤ ∞, the unit ball of the space `nq is not a
k-intersection body, as mentioned in section 3 after Theorem 3. 2

Our techniques allow us to generalize the positive solution to the original
BP-problem in dimension 4 from [Z2] in the following way:

Theorem 8. Let K,L be symmetric star bodies in Rn so that K is convex
and, for every H ∈ G(n, 3),∫

Sn−1∩H
‖x‖−n+1

K dx ≤
∫
Sn−1∩H

‖x‖−n+1
L dx .

Then voln(K) ≤ voln(L).

Proof. We can assume without loss of generality that K,L are infinitely
smooth. In fact, one can approximate K in the uniform metric on the
sphere by a sequence of infinitely smooth convex bodies contained in K,
and approximate L by a sequence of infinitely smooth star bodies containing
L, then the result for approximating bodies easily implies the general result.
By Corollary 2 with k = n− 3, for every H ∈ G(n, 3)∫

Sn−1∩H⊥
(‖x‖−1

K )∧(θ)dθ ≥ 0 .
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Therefore,∫
G(n,3)

(∫
Sn−1∩H⊥

(
‖x‖−1

K

)∧(θ) dθ
)(∫

Sn−1∩H
‖x‖−n+1

K dx

)
dH

≤
∫
G(n,3)

(∫
Sn−1∩H⊥

(
‖x‖−1

K

)∧(θ)dθ
)(∫

Sn−1∩H
‖x‖−n+1

L dx

)
dH .

Applying Lemma 1 to both sides of this inequality, we get∫
Sn−1

(
‖x‖−1

K

)∧(θ)dθ
∫
Sn−1∩θ⊥

‖x‖−n+1
K dx

≤
∫
Sn−1

(
‖x‖−1

K

)∧(θ)dθ
∫
Sn−1∩θ⊥

‖x‖−n+1
L dx .

By Proposition 1,∫
Sn−1

(
‖x‖−1

K

)∧(θ)
(
‖x‖−n+1

K

)∧(θ)dθ ≤
∫
Sn−1

(
‖x‖−1

K

)∧(θ)
(
‖x‖−n+1

L

)∧(θ)dθ .

Now we can apply a version of Parseval’s formula from [K5, Lemma 3] to
remove the Fourier transforms and then use Hölder’s inequality:

nvoln(K) =
∫
Sn−1

‖x‖−nK dx ≤
∫
Sn−1

‖x‖−1
K ‖x‖

−n+1
L dx

≤
(∫

Sn−1
‖x‖−nK dx

)1/n(∫
Sn−1

‖x‖−nL dx

)(n−1)/n

= n
(
voln(K)

)1/n(
voln(L)

)(n−1)/n
.

The result follows. 2
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