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MINIMAL SURFACES IN FLAT TORI
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1 Introduction

Calibrated geometries were initially introduced by Harvey and Lawson to
construct many examples of volume minimizing submanifolds. The simplest
of these is Kähler geometry and it has been known for a long time from
the work of Wirtinger and Federer that complex submanifolds of Kähler
manifolds minimize volume in their homology class. The converse of this
fact can be loosely stated as: is an even-dimensional volume minimizing
submanifold of a Kähler manifold necessarily holomorphic?

Of course, this cannot be true in this generality. To start with, if the
dimension of the submanifold is 2p, then it had better be of type (p, p)
(that is, its homology class should be Poincaré dual to a cohomology class
of type (n − p, n − p)) in order for it to stand a chance of being holo-
morphic. For instance, let g1 and g2 be two different hyperbolic metrics
on a surface Σ of genus > 2. Let M = (Σ, g1) × (Σ, g2) with the Kähler
form dA1 − dA2 where dAj , j ∈ {1, 2}, is the oriented element of area on
Σ with the metric gj . M is then a Kähler Einstein manifold of negative
scalar curvature and, by a theorem of Schoen, the diagonal class ∆ in M is
represented by a unique embedded Lagrangian area-minimizing surface S.
(This result is contained in the proof of Proposition 2.12 in [S].) Being
Lagrangian, S is as far as possible from being holomorphic, but S does not
provide a suitable counterexample to the converse of the Wirtinger–Federer
theorem because it is not of type (1, 1). Now a Kähler Einstein manifold of
nonzero scalar curvature is algebraic and therefore, by the Lefschetz the-
orem, every integral cohomology class of type (1, 1) is Poincaré dual to a
divisor. However, the Wirtinger–Federer theorem applies only to effective
algebraic cycles and therefore, it may still be possible to find an example
of a stable minimal surface of type (1, 1) in a Kähler Einstein 4-manifold of
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negative scalar curvature which is not plus or minus holomorphic. Indeed,
the present authors expect plenty of such examples (including Lagrangian
ones) to exist, though they are not aware of any.

Another possible obstruction to the converse of the Wirtinger–Federer
theorem is that the Kähler manifold may not contain any complex sub-
varieties while, by the general methods of geometric measure theory, one
can represent any integral homology class by a volume minimizing integral
current. Therefore, one has to ask for a converse of the Wirtinger–Federer
theorem in suitably restricted settings, such as those about to be described.

If M is a Kähler manifold with positive Ricci curvature, then M is
algebraic and H2(M,C) is purely of type (1, 1). Therefore it is reasonable
to ask whether, in this case, an area minimizing surface is necessarily plus
or minus holomorphic. This is still open but one does have the following
important results:

Theorem 1.1 (Lawson–Simons, [LaS]). The only closed stable minimal
integral currents of CPn with the Fubini–Study metric are the algebraic
cycles.

Theorem 1.2 (Siu–Yau, [SiuY]). An area (energy) minimizing two-sphere
in a Kähler manifold with positive holomorphic bisectional curvature is plus
or minus holomorphic.

A Riemannian manifold is called special Kähler if its holonomy group
lies in SU(n). This happens if and only if the Ricci curvature is zero and
the metric is Kähler for some integrable complex structure (not necessarily
unique). Any two dimensional cohomology class in a special Kähler mani-
fold is of type (1, 1) with respect to one of the integrable complex structures
compatible with the given metric. (This follows from the classification of
special Kähler manifolds in [B].) The appropriate question now is: is an
area minimizing surface in a special Kähler manifold necessarily holomor-
phic with respect to one of the integrable complex structures compatible with
the given metric? For a long time it was felt that this question should have
an affirmative answer. Evidence for this came from the following theorems
of the second author.

Theorem 1.3 ([M1]). An area minimizing surface in a flat four-torus is
holomorphic with respect to a complex structure compatible with the given
flat metric.

Theorem 1.4 ([M2]). Let f : (Σ, µ) → (Rn/Λ, eucl) be a conformal
stable minimal immersion of a hyperelliptic Riemann surface (Σ, µ) into
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a flat torus (Rn/Λ, eucl). Then f(Σ) lies in an even dimensional totally
geodesic flat subtorus T of (Rn/Λ, eucl) and is holomorphic with respect
to an integrable complex structure compatible with the flat metric on T .

One of the main results of this paper is to establish the following theorem
which shows that the hyperelliptic assumption in Theorem 1.4 is essential.
Theorem 1.5. For any nonhyperelliptic Riemann surface (Σγ , µ) of genus
γ > 4, there exists a conformal stable minimal immersion f : (Σγ , µ) →
(R2γ/Λ, eucl) into a flat torus, which is not holomorphic with respect to
any complex structure compatible with the flat metric.

An example of a hyperKähler four-manifold M which contains a stable
minimal two-sphere which is not holomorphic with respect to any of the
integrable complex structures compatible with the given metric on M can
be found in ([MW]). (Micallef later realised that the minimal two-sphere in
this example is, in fact, area minimizing.) This counterexample to the con-
verse of the Wirtinger–Federer theorem is not totally satisfactory because
M is noncompact.

The basic idea of the proof of Theorem 1.5 is to start with a holomorphic
map of a Riemann surface (Σγ , µ) into a flat complex torus (Cn/Λ, eucl).
We then deform the map and the metric on the torus, but not the confor-
mal structure on Σγ , in such a way as to destroy holomorphicity but not
minimality, stability and conformality.

More precisely, the proof has three key ingredients which are interesting
in their own right.

(i) A useful characterization (Theorem 2.3) of holomorphic maps in terms
of an algebraic property of the Weierstrass representation.

(ii) An algebraic geometric criterion for the deformation of a holomorphic
immersion into a nonholomorphic minimal immersion (Theorem 2.4).

(iii) An algebraic geometric characterization of those holomorphic maps
which have only translational Jacobi fields (Theorem 3.1). This guar-
antees the stability of the maps obtained by the deformation process
in (ii).

We also generalize Theorem 1.5 to stable nonholomorphic minimal im-
mersions of Σγ into T 2γ−2k, for k = 1, 2 or 3 and sufficiently large γ. We
expect that such examples also exist for any k 6 γ − 4 but the algebraic
geometric difficulties in our construction become considerable.

The proof of Theorem 1.5 makes it clear that stable minimal surfaces
come in families. This is discussed towards the end of section 3 but we refer
to [Ar1] for a thorough treatment of this topic. We complete this section by
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proving that stable nonholomorphic minimal surfaces exist in any flat torus
of dimension > 8 (Theorem 3.6). However, we now lose track of topological
and conformal properties of the surface other than the fact that it has to
be nonhyperelliptic.

A similar strategy to the one described above has been used by the
authors and G.P. Pirola ([ArMP]) to prove the existence of stable embed-
ded nonholomorphic minimal surfaces of finite total curvature in euclidean
spaces of sufficiently high dimension. In this case the technical difficulties
are considerably harder since we have to deal with holomorphic differentials
with assigned poles, and no real periods, on punctured Riemann surfaces.

At the end of section 3, we study surfaces which minimize area among
maps from Σγ into T 2γ which induce a fixed isomorphism ρ : H1(Σγ,Z)→
H1(T 2γ ,Z). The techniques are now based on the variational methods em-
ployed by the first author in [Ar2]. We can only handle the case γ = 4. The
cases γ = 2 and 3 were dealt with in [Ar2] where a classical result on prin-
cipally polarised abelian surfaces and three-folds based on the Matsusaka–
Ran criterion is proved by purely differential geometric methods. Roughly
speaking, we prove that degeneration to a Riemann surface with nodes can
happen during the area minimization process only if the metric is hermi-
tian with respect to a complex structure which makes the torus split into
a product of Jacobi varieties of Riemann surfaces of genus smaller than 4.
As a consequence, we characterize (in Theorem 3.7) the flat metrics on T 8

which admit a nonholomorphic surface of genus 4 which minimizes area
among surfaces which induce ρ. Some of the results we establish should
still hold for γ > 5 but it does not seem worthwhile to put in the effort
required to overcome the considerable technical difficulties.

We conclude the paper by remarking that the nonholomorphic area
minimizing surfaces produced by Theorem 3.7 have a 6-fold cover which
no longer minimizes area in its homology class. This contrasts with the
two-sided hypersurface situation where stability implies the stability of any
cover ([FS]).

2 Minimal and Holomorphic Immersions

It is best to start by fixing our notation.

Σγ := a fixed compact oriented topological surface with-
out boundary and of genus γ.

µ := a conformal structure on Σγ .
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K := the canonical bundle (i.e., the bundle of differen-
tial forms of type (1, 0)) of (Σγ, µ).

Tn := torus of R-dimension n, viewed as a Lie group but
without any further geometric structure such as a
metric, complex structure, etc.

Λ := a lattice of maximal rank in Rn.
eucl := the standard euclidean metric on Rn.
g := a flat metric on Tn or Rn. With respect to a

parallel frame, g can be represented by a positive
definite matrix.

J := a parallel (constant) complex structure on T 2n or
R2n. J and g are compatible if J is an isometry
w.r.t. g. In this case, we often refer to J as being
orthogonal and g as being hermitian.

J0 :=
(

0 −Idn
Idn 0

)
, the standard complex structure on R2n.

We will denote (R2n, J0) by Cn.

A flat torus will be denoted either by (Tn, g) or by (Rn/Λ, eucl). Of
course, (Rn/Λ, eucl) is isometric to (Rn/Λ′, eucl) (in which case they rep-
resent the same flat torus) iff Λ′ = OΛ for some O ∈ O(n,R). A com-
plex torus will be denoted by any of (T 2n, J), Cn/Λ and (R2n/Λ, J0).
In the same way as for flat tori, Cn/Λ is biholomorphic to Cn/Λ′ (in
which case they represent the same complex torus) iff Λ′ = LΛ for some
L ∈ GL(n,C) ⊂ GL(2n,R). A flat complex torus will be denoted by
any of (T 2n, g, J), (Cn/Λ, eucl) and (R2n/Λ, J0, eucl). (Cn/Λ, eucl) and
(Cn/Λ′, eucl) are equivalent as Kähler tori iff Λ′ = UΛ for some U ∈ U(n).

The basic tool in studying minimal surfaces in flat tori is given by the
classical:

Theorem 2.1 (Generalized Weierstrass Representation). If f : (Σγ , µ)→
(Rn/Λ, eucl) is a conformal minimal immersion then, after a translation, f
can be represented by

f(p) = Re


∫ p
p0
η1

...∫ p
p0
ηn

 mod Λ ,

where p0 ∈ Σγ and the ηi’s are holomorphic differentials on (Σγ , µ) satisfy-
ing

1.
∑n

i=1 η
2
i = 0, and
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2. {Re (
∫
σ η1, . . . ,

∫
σ ηn)t | σ ∈ H1(Σγ,Z)} is a sublattice of Λ.

A useful way to rewrite the above theorem is the following: fix a basis
{ω1, . . . , ωγ} of the space of holomorphic differentials of (Σγ , µ) and write
it as a column vector ω. Thus the row vector ωt = (ω1, . . . , ωγ). By Theo-
rem 2.1 a conformal minimal immersion f : (Σγ , µ)→ (Rn/Λ, eucl) is deter-
mined, up to translations, by n holomorphic differentials ηt = (η1, . . . , ηn)
which satisfy the quadratic condition (1). We therefore have η = Mω,
where M is a n × γ complex matrix and the conformality relation (1) be-
comes

ηtη = ωtM tMω = 0 . (1)

The condition (2) on the periods can be translated into the following:
let {σR, 1 6 R 6 2γ} be a basis of H1(Σγ ,Z) and define ΩjR =

∫
σR
ωj .

Then the lattice generated by the columns ofRe(MΩ) has to be a sublattice
of Λ.

The set of matrices satisfying (1) and the above condition parametrizes
the space of conformal minimal immersions of (Σγ , µ) into (Rn/Λ, eucl) ;
we denote by fM the immersion associated to the matrix M as above.

Given a compact Riemann surface there is a special class of confor-
mal minimal immersions into flat tori of even dimension, namely the ones
holomorphic w.r.t. a complex structure compatible with the metric. Let us
recall that to every (Σγ , µ) it is possible to associate a complex torus, called
the jacobian of the Riemann surface (denoted by J (Σγ , µ) from now on),
in the following way: take a basis {ω1, . . . , ωγ} of the space of holomorphic
differentials of (Σγ , µ), and consider

Λω =
{
Re

(∫
σ
ω1, . . . ,

∫
σ
ωγ,

∫
σ
iω1, . . . ,

∫
σ
iωγ

)t ∣∣∣ σ ∈ H1(Σγ ,Z)
}
.

If η = Lω is a different basis, L ∈ Gl(γ,C), it is clear that (R2γ/Λω, J0)
is biholomorphic via L to (R2γ/Λη, J0). The jacobian J (Σγ , µ) is the well
defined point in the moduli space of complex tori represented by either of
(R2γ/Λω, J0) and (R2γ/Λη, J0). Indeed we shall often write J (Σγ , µ) for
either of these complex tori.

By classical theorems due to Abel and Jacobi the map jp0 : (Σγ, µ) →
J (Σγ , µ), defined by

jp0(p) = Re

(∫ p

p0

ω1, . . . ,

∫ p

p0

ωγ ,

∫ p

p0

iω1, . . . ,

∫ p

p0

iωγ

)t
mod Λω

is a holomorphic embedding. It satisfies the following universal property
among holomorphic maps, and is therefore called the Abel–Jacobi map:
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Theorem 2.2 (Universal property of the Abel–Jacobi map). If f : (Σγ , µ)
→ (R2n/Λ, J) is a full holomorphic map of a Riemann surface (Σγ , µ) to a
complex torus (R2n/Λ, J), then f factors through J (Σγ , µ), i.e. there exists
a C-linear map A : J (Σγ , µ) → (R2n/Λ, J) s.t. if p0 is a fixed point in Σγ

and fp0(z) := f(z)− f(p0) for all z ∈ Σγ , then

Σγ
fp0−→ (R2n/Λ, J)
↘ jp0 ↑ A

J (Σγ , µ)

(2)

commutes. In particular J (Σγ , µ) contains a codimension n complex sub-
torus, given by the kernel of A.

For any choice of basis ω, the map jp0 : (Σγ , µ) → (R2γ/Λω, eucl) is a
conformal minimal immersion. Observe that two different bases ω and η of
holomorphic differentials will lead to isometric flat tori if and only if η = Lω
with L unitary. Thus there are many – in a sense which will be made more
precise in section 3 – minimal immersions associated to the Abel–Jacobi
map.

We now seek an effective way to recognize holomorphic maps in terms
of the matrix M defined in (1) above. Suppose in fact that fM : (Σγ , µ)→
(R2n/Λ, eucl) is an immersion holomorphic w.r.t. a compatible complex
structure J . Then there exists O ∈ O(2n) s.t. J = OtJ0O.

By Theorem 2.2 there exists a complex linear map L : (R2γ/Λ′, J0) →
(R2n/OΛ, J0), where (R2γ/Λ′, J0) is the jacobian of (Σγ , µ). For a fixed
point p0 ∈ Σγ , we have that f̃ := O ◦ fp0 = L ◦ jp0 . On representing L by
a complex n× γ matrix we obtain

f̃(p) = Re

∫ p

p0

OMω = Re

∫ p

p0

(Idn iIdn)tLω mod OΛ .

We have proved the following:
Lemma 2.1. Let f : (Σγ , µ) → (R2n/Λ, eucl) be a full conformal min-
imal immersion into a flat torus, given by f(p) = Re

∫ p
p0
Mω mod Λ

and J a complex structure given by OtJ0O, with O ∈ O(2n). Then J is
compatible with the euclidean metric and f is holomorphic w.r.t. the com-
plex structure J if and only if there exists L, a complex n× γ matrix, s.t.
M = O(Idn iIdn)tL.

We can now establish the following characterization of holomorphic
maps we have been seeking:
Theorem 2.3. A full conformal minimal immersion f : (Σγ , µ) →
(R2n/Λ, eucl) given by f(p) = Re

∫ p
p0
Mω mod Λ is holomorphic w.r.t.
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some complex structure compatible with the metric if and only if M tM = 0.

Proof. By Lemma 2.1 we have to prove that M tM = 0 implies M =
O(Idn iIdn)tL with L a complex n × γ matrix and O ∈ O(2n). Since f
is full, we have n 6 γ, and then it is clearly sufficient to prove this claim
for n = γ and also for immersions that are not necessarily full because,
under our assumptions, f defines a minimal immersion (now possibly not
full) into a flat torus of dimension 2γ. We associate to M the 2γ × 2γ
real matrix M̃ given by M̃ =

(
A C
B D

)
where M t = (A + iB C + iD). The

condition M tM = 0 is then equivalent to
AAt + CCt −BBt −DDt = 0
ABt +BAt + CDt +DCt = 0 .

}
(3)

We say that a 2γ× 2γ real matrix N =
(
X Y
Z T

)
is inM(γ,C) (the set of

γ×γ complex matrices) iff Z = −Y and X = T , since such elements satisfy
NJ0 = J0N . Given N =

(
X Y
−Y X

)
we denote by NC the matrix X − iY .

Since

M̃M̃ t =
(
AAt + CCt ABt + CDt

BAt +DCt BBt +DDt

)
(4)

we have that M tM = 0 implies M̃M̃ t ∈ M(γ,C). Moreover M̃M̃ t is
semipositive definite and therefore MM t = 0 implies that (M̃M̃ t)C is
semipositive definite. Therefore (M̃M̃ t)C = P 2

C, where PC is hermitian
semipositive definite. We then have M̃ = PO, O ∈ O(2γ), and thus
M t = PC(Idγ iIdγ)O as we claimed. �

We now explain how to deform a holomorphic map through nonholo-
morphic minimal immersions:
Theorem 2.4. Let f : (Σγ , µ)→ (R2n/Λ, J0) be a holomorphic immersion
given by f(p) = Re

∫ p
p0

(η1, . . . , ηn, iη1, . . . , iηn)t mod Λ. If the ηi’s satisfy
a nontrivial quadratic relation, i.e. there exist aij ∈ C, not all zero, s.t.
aij = aji and ∑

i,j

aijηi · ηj = 0 , (5)

then there exists a family of conformal minimal immersions fs : (Σγ , µ) →
(R2n/Λs, eucl) s.t. f0 = f and fs is holomorphic w.r.t. a compatible complex
structure if and only if s = 0.

Proof. Let us denote by A the matrix (aij) and by ηt the row vector
(η1, . . . , ηn). For s ∈ C, set As = Idn − sA. For small |s|, As has rank
n and therefore, by standard linear algebra we know that there exists an
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invertible n × n matrix L such that LtsAsLs = Idn. (Ls can be chosen to
depend smoothly on s.)

Let M t
s = (Idn i(L−1

s )t) and let Λs = {Re
∫
σMsη | σ ∈ H1(Σγ ,Z)} .

Consider then the family of maps fs : (Σγ , µ) → (R2n/Λs, eucl) given by
fs(p) = Re

∫ p
p0
Msη mod Λs. Observe that M t

sMs = sA and therefore, by
Theorem 2.3, fs is holomorphic w.r.t. some compatible complex structure
for small s if and only if s = 0. On the other hand fs is conformal for
any s: indeed, ηtM t

sMsη = sηtAη = 0 by (5). Thus, the maps fs have all
the required properties. �

Corollary 2.1. Let f : (Σγ , µ)→ (Cn/Λ, eucl) be a full holomorphic im-
mersion given by f(p) = Re (

∫ p
p0
η1, . . . ,

∫ p
p0
ηn,
∫ p
p0
iη1, . . . ,

∫ p
p0
iηn)t mod Λ .

If
1
2n(n+ 1) > 3γ − 3 (6)

then there exists a family of conformal minimal immersions fs : (Σγ , µ) →
(R2n/Λs, eucl) s.t. f0 = f and fs is holomorphic w.r.t. a compatible complex
structure if and only if s = 0.

Proof. Let V be the vector space generated by the ηi’s. We will show that
if n satisfies (6), then the assumptions of Theorem 2.4 are easily satisfied:
indeed, a nontrivial quadratic relation among the ηi’s corresponds precisely
to a nontrivial element in the kernel of the cup-product map

Sym2 : (V ⊗ V )/Λ2V → H0((Σγ , µ), 2K
)
.

Therefore, since dim(H0((Σγ , µ), 2K)) = 3γ − 3 and dim((V ⊗ V )/Λ2V ) =
n(n+ 1)/2, condition (6) implies ker(Sym2) 6= {0}. �

Theorem 2.3 implies the holomorphicity of certain minimal immersions
of surfaces of low genus into a flat torus. For example, we obtain the
following result which was stated without proof in [M2], and which was
also known to W. Meeks.

Corollary 2.2. If f : (Σ3, µ) → (R6/Λ, eucl) is a conformal minimal
immersion of a nonhyperelliptic Riemann surface of genus 3, then it is
holomorphic w.r.t. some complex structure compatible with the metric.

Proof. We have seen that f is given by

f(p) = Re

(∫ p

p0

η1, . . . ,

∫ p

p0

η6

)t
mod Λ ,
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where η1, . . . , η6 are R-independent holomorphic differentials on (Σ3, µ) sat-
isfying

6∑
i=1

η2
i = 0 . (7)

Choosing ω = (ω1, ω2, ω3)t a basis of H0((Σ3, µ),K) we get η = Mω, where
η = (η1, . . . , η6)t, M ∈M(6× 3,C) and (7) becomes

ωtM tMω = 0 . (8)
But Noether’s theorem (see e.g. [ACGH]) shows that the canonical curve

in CP 2 of a nonhyperelliptic surface of genus 3 is not contained in any
quadric and so (8) has to be the quadric of rank 0. Therefore M tM = 0. �

Remark 2.1. The same argument as in the proof of Corollary 2.2 proves
the following result.

Corollary 2.3. Every conformal minimal immersion f : (Σ2, µ) →
(R4/Λ, eucl) is holomorphic w.r.t. some complex structure compatible with
the metric.

Remark 2.2. The conclusion of Corollary 2.2 holds when (Σ3, µ) is
hyperelliptic provided that the map is stable. This was proved by Micallef
in [M2].

Remark 2.3. The condition of stability in Remark 2.2 is essential. An
example of a full, minimal immersion (Σ3, µ) → (R6/Λ, eucl) which is un-
stable can be constructed as follows: first observe that the canonical image
of a hyperelliptic Riemann surface of genus 3 is contained in a nontriv-
ial quadric. This follows directly from the fact (see [ACGH]) that such a
(Σ3, µ) is the Riemann surface of the algebraic function

w2 = (z − a1) · · · (z − a8) .
Therefore it has a basis of holomorphic differentials of the form

ω1 = dz
w , ω2 = z dzw , ω3 = z2 dz

w ,

where z,w are coordinates over C2. Therefore ω2
2 = ω1ω3. We now take

M t to be any 3× 6 complex matrix with ReM and ImM of maximal rank
and such that

M tM =

 0 0 1
2

0 −1 0
1
2 0 0

 . (9)

The map
f(p) = Re

∫ p

p0

Mω mod Λ
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is then a full conformal minimal immersion not holomorphic w.r.t. any
compatible complex structure and therefore, by Remark 2.2, it is unstable.
For example

M t =
1
2

 1− i 1 + i i 1 i −1
0 −2i 2i 0 2 0

1 + i 1− i −i −1 i 1

 (10)

satisfies all the required properties.

3 Stable Minimal Surfaces via Deformations

In this section we prove the main theorems about the existence of stable
minimal surfaces in flat tori which are not holomorphic w.r.t. any compati-
ble complex structure. Our strategy is to start with a holomorphic map of
a Riemann surface (Σγ , µ) into a flat complex torus (Cn/Λ, eucl). We then
deform the map and the metric on the torus, but not the conformal struc-
ture on Σγ , in such a way as to destroy holomorphicity but not minimality,
stability and conformality.

For this to work we need the Jacobi fields of the holomorphic map,
seen as a minimal immersion, to come only from the translations on the
torus. The following theorem gives an algebraic geometric condition which
is equivalent to this property.
Theorem 3.1. Let f : (Σγ , µ) → (Cn/Λ, eucl) be a holomorphic im-
mersion. Let η1, . . . , ηn be the holomorphic differentials such that f(p) =∫ p
p0

(η1, . . . , ηn)t mod Λ . Then the space of Jacobi fields of f as a minimal
immersion is precisely the space of translations of the torus if and only if
the linear map (α1, . . . , αn) 7→ α1 ·η1 +· · ·+αn ·ηn : H0(Cn⊗K)→ H0(2K)
is surjective.

Proof. By a theorem of Simons in [Si], the space of Jacobi fields is the
space of holomorphic sections of the normal bundle νΣγ . To calculate this
dimension we consider the following exact sequence:

0→ TΣγ → Cn → νΣγ → 0
and the associated long exact sequence:

0→ H0(Cn)
χ→ H0(νΣγ)

ψ→ H1(TΣγ)
φ→ H1(Cn)→ · · ·

Since this sequence is exact we have immediately h0(νΣγ) = dimCH0(νΣγ)
> n. Geometrically this is just the fact that H0(Cn) corresponds to the
translations in the torus which, of course, induce Jacobi fields on the sur-
face.
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By Serre–Kodaira duality H1(TΣγ) = (H0(2K))∗ and H1(Cn) =
(H0(Cn ⊗ K))∗. We observe that if φ is injective then ψ = 0 in which
case H0(νΣγ) = kerψ = imχ = Cn which is what we wish to establish.
Now φ is injective iff the dual map φ∗ : H0(Cn⊗K)→ H0(2K) is surjective.
All that remains is to calculate φ∗ which we now do.

In the dual sequence

0→ (νΣγ)∗ → (Cn)∗
df∗→ (TΣγ)∗ → 0

df∗ is just the pullback via f of 1-forms from Cn/Λ to Σγ . Therefore if
(α1, . . . , αn) is a n-tuple of holomorphic differentials, then φ∗(α1, . . . , αn) =
α1 · η1 + · · · + αn · ηn, where · denotes the symmetric product between
holomorphic differentials. �

We can now prove one of the main results in this paper.
Theorem 3.2. For any nonhyperelliptic Riemann surface (Σγ , µ) of genus
γ > 4, there exists a conformal stable minimal immersion f : (Σγ , µ) →
(R2γ/Λ, eucl) into a flat torus, which is not holomorphic with respect to any
complex structure compatible with the metric. (In fact, we shall produce
a family of such minimal immersions.)

Proof. Given a nonhyperelliptic Riemann surface (Σγ , µ) of genus γ > 4 ,
we know, by Noether’s Theorem (see [ACGH]), that its canonical image
is contained in a quadric of rank k, 3 6 k 6 γ. Therefore we can apply
Theorem 2.4 to the Abel–Jacobi map (for any choice of basis of holomorphic
differentials) of such a Riemann surface, and get a family of conformal
minimal immersions fs which are not holomorphic w.r.t. any compatible
complex structure for s 6= 0. (Of course, f0 is the Abel–Jacobi map.)

We will now show that Theorem 3.1 guarantees the stability of fs for
small values of |s|. First, let us recall that f0 is an embedding, and therefore,
since the family fs is smooth in s, it is clear that, for small |s|,

(i) fs is also an embedding,
(ii) Es = {(p, v) ∈ Σγ × R2γ | v ∈ fs∗(TpΣγ)} is a smooth family of

subbundles of the trivial bundle Σγ ×R2γ = f∗s (T (T 2γ)),
(iii) the normal bundle ν(s) of fs is the orthogonal complement of Es in

Σγ ×R2γ with the Euclidean metric,
(iv) if Πs : C∞(Σγ ,R2γ) → Γ(ν(s)) is the obvious orthogonal projection

and i0 : Γ(ν(0)) → C∞(Σγ ,R2γ) is the obvious inclusion then, Ps =
Πs ◦ i0 : Γ(ν(0))→ Γ(ν(s)) is a bundle isomorphism,

(v) the metrics on the tangent bundle TΣγ and the normal bundle ν(s)
induced by fs from the Euclidean metric on Σγ ×R2γ vary smoothly
with s.
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By means of Ps we shall regard the second variation quadratic form
∂2Afs as acting on Γ(ν(0)). It is easy to verify that for small |s|,

∂2Afs(ψ) > 1
2∂

2Af0(ψ) +O(s)
∫

Σγ
|ψ|2dA0 (11)

where dAs is the element of area for the metric on Σγ induced by fs.
For each v ∈ R2γ , denote still by v the constant section p 7→ v of

Σγ×R2γ. Let Ξs = {Πs(v) | v ∈ R2γ} and denote by Ξ⊥s the L2-orthogonal
complement of Ξs in Γ(ν(s)).

Now by Noether’s Theorem, the surjectivity hypothesis required in The-
orem 3.1 is satisfied by the Abel–Jacobi map of any nonhyperelliptic Rie-
mann surface of genus at least 4. Therefore, the space of Jacobi fields of
f0 is precisely Ξ0. Furthermore, since f0 is area minimizing (and, in par-
ticular, stable), there exists λ > 0 such that ∂2Af0(ψ) > λ

∫
Σγ
|ψ|2dA0, for

any ψ ∈ Ξ⊥0 . It follows from (11) that, for |s| small enough, ∂2Afs(ψ) >
λ
4

∫
Σγ
|ψ|2dA0 for all ψ ∈ Ξ⊥0 and therefore, index + nullity of fs is at

most 2γ. But the nullity of fs is always at least 2γ (because of translations
in the torus) and therefore the nullity equals 2γ and the index is zero, that
is, fs is stable for sufficiently small |s|. �

We want to apply the ideas used in the proof of the previous theorem
also to the case of minimal immersions of surfaces of genus γ into flat tori
of dimension less than 2γ. This requires us to produce a subspace V of
H0((Σγ , µ),K) of C-dimension n < γ with the property that any basis
η1, . . . , ηn of V satisfies the following three conditions:

(i) the period condition 2 in Theorem 2.1 with Λ equal to the lattice of
the jacobian of (Σγ , µ),

(ii) the surjectivity of the cup-product map in Theorem 3.2 and
(iii) the inequality (6) in Corollary 2.1.

To this aim, let us denote by F1 the Hodge bundle over the moduli
space Mγ of Riemann surfaces of genus γ, i.e. the bundle whose fibre over
(Σγ , µ) is H0((Σγ, µ),K), and by Gr(k, F1) the bundle overMγ whose fibre
is the grassmannian of k-dimensional subspaces of H0((Σγ, µ),K). Points
in Gr(k, F1) will be denoted by (µ, V ) where V is a k-dimensional subspace
of H0((Σγ , µ),K).

Condition (ii) above will be fulfilled by appealing to the following
Theorem 3.3 (Gieseker [G]). The points (µ, V ) ∈ Gr(3, F1) for which
the cup-product map

V ⊗H0((Σγ , µ),K
)
→ H0((Σγ , µ), 2K

)
is surjective (12)
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form an open and dense subset Gγ3 of Gr(3, F1) whose projection onto Mγ

is precisely the nonhyperelliptic locus.
Note that this theorem is not stated in this form in [G]. Nevertheless

Theorem 1.1. in [G], combined with the well-known fact that property (12)
is open under deformations of conformal structures, gives Theorem 3.3 as
stated.

The next theorem will enable us to satisfy condition (i).
Theorem 3.4 (Colombo–Pirola, [CoP]). For k = 1, 2 or 3 and γ > 3, there
exists a dense subset Lγk ofGr(γ−k, F1) such that if (µ, Vk) ∈ Lγk then, given
any basis {η1, . . . , ηγ−k} of Vk, Λ = {(

∫
σ η1, . . . ,

∫
σ ηγ−k)

t | σ ∈ H1(Σγ ,Z)}
is a sublattice of the lattice of the jacobian of (Σγ , µ) and the map

p 7→
∫ p

p0

(η1, . . . , ηγ−k)t mod Λ

is a well defined holomorphic immersion into Cγ−k/Λ.
Once again the above statement is not precisely the one in [CoP]. On

the other hand, from the proofs of Theorems 1 and 3 in [CoP], we know
that Theorem 3.4 holds if there exists (µ, Vk) ∈ Gr(γ−k, F1) such that the
cup-product map

Vk ⊗ V ⊥k → H0((Σγ , µ), 2K
)

is injective. (13)
For k = 1 any (µ, V1) satisfies (13), while for k = 2 we can choose any V2

which is base point free. For k = 3 we can choose any (µ, Vk) such that Vk
contains a 3-dimensional subspace W for which (µ,W ) ∈ Gγ3 . Since φ : W ⊗
H0((Σγ , µ),K)→ H0((Σγ , µ), 2K) is surjective and dimH0((Σγ , µ), 2K) =
3γ−3, we deduce that kerφ = Λ2(W ) and therefore kerφ∩(Vk⊗V ⊥k ) = {0}
i.e. (13) holds.

Theorem 3.5. For k = 1, 2 or 3 and γ > 5+2k+
√

1+24k
2 (i.e. γ > 7 for

k = 1, γ > 9 for k = 2, γ > 10 for k = 3), there exists a dense subset Dγk
of the moduli space of nonhyperelliptic Riemann surfaces of genus γ, such
that if µ ∈ Dγk , then there exists a conformal stable minimal immersion
f : (Σγ , µ) → (R2(γ−k)/Λ, eucl) into a flat torus, which is not holomorphic
w.r.t. any compatible complex structure.

Proof. Let
L̃γk = Lγk ∩

{
(µ, V ) ∈ Gr(γ − k, F1) | ∃ W ⊂ V s.t. (µ,W ) ∈ Gγ3

}
and let π : Lγk → Mγ denote the natural projection. L̃γk is clearly not
empty by Theorems 3.3 and 3.4; indeed, Dγk := π(L̃γk) is dense in the
nonhyperelliptic locus.
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By Theorem 3.1, the holomorphic maps corresponding to L̃γk via Theo-
rem 3.4 have only translational Jacobi fields.

Moreover, if
(γ − k)(γ − k + 1)

2
> 3γ − 3 (14)

then, by Corollary 2.1, we can deform these holomorphic maps and get a
family of conformal minimal immersions which are not holomorphic w.r.t.
any compatible complex structure. (Observe that (14) holds if and only if
γ > 5+2k+

√
1+24k

2 .)
Finally, the same argument as in the proof of Theorem 3.2 shows that

for small |s| the deformed maps are stable. �

Remark 3.1. (i) The simple dimensional count used in the paragraph
after Theorem 3.4 shows that when γ−k = 3 the surjectivity of the map in
(12) implies that the holomorphic differentials spanning V3 cannot satisfy a
nontrivial quadratic relation. Consequently, we cannot deform holomorphic
maps to (C3/Λ, eucl) which have only translational Jacobi fields to maps
which are minimal but not holomorphic. In other words, we cannot produce
stable nonholomorphic minimal immersions into flat tori of R-dimension 6
by means of the strategy that was used to prove Theorems 3.2 and 3.5.

(ii) Another natural question is whether Dγk contains families of Rie-
mann surfaces. From Colombo–Pirola’s analysis one easily gets that Dγ3
does not contain any family, while Dγ1 and Dγ2 contain families of (real)
dimensions 4γ − 4 and 2γ − 2 respectively.

It is evident from the proofs of Theorems 3.2 and 3.5 that stable non-
holomorphic minimal surfaces come in families. We wish to describe these
families more precisely. There are three key pieces of data associated to a
conformal minimal immersion f : (Σγ , µ)→ (Rn/Λ, eucl) :

(i) the conformal structure µ,
(ii) the flat metric g on the torus (equivalently, the lattice Λ) and,
(iii) the induced action f∗ from H1(Σγ ,Z) to H1(Tn,Z).

In a continuous family of maps the action on homology does not change.
Now if

f0, f1 : (Σγ , µ)→ (Rn/Λ, eucl)
are two conformal minimal immersions of the same Riemann surface into
the same flat torus such that (f0)∗ = (f1)∗ then, in particular, they are
homotopic harmonic maps and, by Hartman’s Uniqueness Theorem, they
can only differ by a translation. In the families produced so far, the confor-
mal structure stays fixed and therefore, the metric of the torus must move.
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There is an interaction between the metric and the induced action on the
first homology which is particularly interesting when the action is an iso-
morphism (as is the case in Theorem 3.2). We digress briefly to describe
this.

Consider a fixed isomorphism ρ : H1(Σγ ,Z) → H1(R2γ/Λ, eucl) (note
that all maps inducing ρ represent the same 2-homology class though the
converse is not true), and denote by Qρ the integral two-form on T 2γ defined
by

Qρ =
γ∑
i=1

ρ(σi)∗ ∧ ρ(τi)∗ ,

where {σi, τi} is a symplectic basis of H1(Σγ ,Z) with respect to the inter-
section form χ. If f : Σγ → T 2γ is any map which induces ρ on the first
homology, then by construction, f∗(Qρ) viewed as a skewsymmetric form
on H1(Σγ ,Z) is equal to χ.

Consider next a flat metric g on T 2γ . According to Calabi ([C]), there
exists a unique complex structure Jρ,g on T 2γ with respect to which g is
hermitian and Qρ is of type (1, 1). The pair (Jρ,g, Qρ) endow T 2γ with the
structure of a principally polarized abelian variety. It is convenient at this
point to recall the way various geometric structures on a torus are related.

Flat tori. The space of flat metrics Rn on Tn is easily identified with
Gl(n,R)\ /O(n,R) Sl(n,Z)

where A,A′ ∈ Gl(n,R) are identified if A′ = OAX for some O ∈ O(n) and
X ∈ Sl(n,Z). dimRRn = 1

2n(n+ 1) .

Kähler tori. The space of Kähler structures Kγ on T 2γ is described by

Gl(2γ,R)+\ /U(γ) Sl(2γ,Z)

where A,A′ ∈ Gl(2γ,R) are identified if A′ = UAX for some U ∈ U(γ)
and X ∈ Sl(2γ,Z). dimRKγ = 3γ2.

Symplectic tori. The space of symplectic structures Sγ on T 2γ is de-
scribed by

Gl(2γ,R)+\ /Sp(γ,R) Sl(2γ,Z)

where A,A′ ∈ Gl(2γ,R) are identified if A′ = SAX for some S ∈ Sp(γ,R)
and X ∈ Sl(2γ,Z). Kγ is fibred over Sγ , the fibres being those complex
structures which are compatible with a fixed symplectic form ω. (Recall
that a complex structure J is compatible with ω if there exists a metric g
which is hermitian w.r.t. J such that ω is the Kähler form of (J, g).) Thus
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the space Aω of complex structures on T 2γ which are compatible with ω
can be identified with

Sp(γ,R)\ /U(γ) Sp(γ,Z)

dimRAω = γ2 + γ.

Principally polarised abelian varieties. Let Q be an unimodular
integral skewsymmetric two-form on T 2γ. In particular, Q is a symplectic
form. The space of abelian varieties principally polarised by Q is AQ.

Let Cγ denote the set of complex structures on T 2γ . (We warn the reader
that, as explained by Kodaira and Spencer on page 413 in [KoS], a theorem
of Siegel implies that Cγ is not even a Hausdorff space when γ > 2.) We
have the obvious injective inclusion

iA : AQ → Cγ
which simply forgets the polarisation Q. We also have the following fibra-
tions:

Zγ −→ Kγ
πR−→ R2γ

Hγ −→ Kγ
πC−→ Cγ

where
Hγ = Gl(γ,C)\ /U(γ) Sl(2γ,Z) ∩Gl(γ,C)

is the space of flat metrics on T 2γ which are hermitian w.r.t. a fixed complex
structure J (dimR Hγ = γ2), and

Zγ = SO(2γ,R)\ /U(γ) SO(2γ,Z)

is the space of complex structures on T 2γ which are orthogonal w.r.t. a
fixed flat metric g; it has real dimension equal to γ2 − γ. We set:
Jγ := iA(J̃γ) where
J̃γ := {(Cγ/Λ, Qρ) ∈ AQρ | (Cγ/Λ, Qρ) is the Jacobi variety of a Riemann

surface of genus γ}.
dimR Jγ = 6γ − 6 if γ > 2 and dimR J1 = 2.

Jγ, hy := iA({(J (Σγ , µ), Qρ) ∈ J̃γ | (Σγ , µ) is a hyperelliptic Riemann
surface}).

Jγ, nhy := Jγ \ Jγ, hy.
Nγ := {(R2γ/Λ, eucl) ∈ R2γ | (R2γ/Λ, J0, Qρ) ∈ J̃γ} = πR ◦ (πC)−1(Jγ)

= space of flat tori arising from Abel–Jacobi maps.
Nγ, hy and Nγ, nhy are defined in the obvious way.
The rest of the paper will be devoted to studying the following problem:
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Given a Riemann surface (Σγ , µ) and an isomorphism ρ : H1(Σγ ,Z) →
H1(T 2γ ,Z), describe the set

Rµ,ρ := {g ∈ R2γ |∃ a stable conformal minimal immersion f : (Σγ , µ)→
(T 2γ , g)which is not holomorphic w.r.t. any complex
structure compatible with g and which induces ρ} .

We will also study Rρ =
⋃
µ∈Mγ

Rµ,ρ where Mγ is the moduli space of
Riemann surfaces of genus γ.

Given a flat torus (T 2γ ,g) and an isomorphism ρ : H1(Σγ ,Z)→H1(T 2γ ,Z),
it would also be interesting to study the set

Mg,ρ := {(Σγ , µ) ∈Mγ |∃ a stable conformal minimal immersion f :

(Σγ , µ)→ (T 2γ , g)which is not holomorphic
w.r.t. any complex structurecompatible with
g and which induces ρ} .

For instance, by analogy with the uniqueness of the Abel–Jacobi map
among all holomorphic maps, it would be nice to prove that Mg,ρ con-
tains at most one point. The first author has shown that such a result is,
in general, false if the assumption of stability is dropped (Theorem 1.2 and
Corollary 1.1 in [Ar1]).

We start our study of Rµ,ρ by noting that Theorem 1.4 establishes
that it is empty, irrespective of ρ, whenever (Σγ , µ) is hyperelliptic. If we
also take Corollary 2.2 into account then we see that Rρ is empty when
γ = 2 and 3. On the other hand, Theorem 3.2 shows that Rµ,ρ is definitely
nonempty whenever (Σγ , µ) is nonhyperelliptic and γ > 4. But how ‘big’ is
it? The deformations in Theorem 3.2 move the metric out of Nγ, nhy inside
R2γ . In order to calculate the dimension of Nγ, nhy we recall that Nγ is
fibred over Jγ , the fibres beingHγ. Indeed, each fibre corresponds to all the
minimal immersions associated to the Abel–Jacobi map of a fixed Riemann
surface. We also see that dimNγ = dimJγ + dimHγ. We further note
that, for γ > 3, the nonhyperelliptic Riemann surfaces are open and dense
in the space of all Riemann surfaces of the same genus γ and therefore,
for γ > 3, dimNγ, nhy = dimNγ . We can now compare the dimensions of
Nγ, nhy and R2γ :

(i) N1 = R2 (this is a classical fact we shall not need) and,
(ii) for γ > 2, we have

dimR2γ − dimNγ = (2γ2 + γ)− (γ2 + 6γ − 6) = (γ − 2)(γ − 3) .
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The above discussion leads to a fuller understanding of Theorem 3.2. It
is not hard to show that, for γ = 2 and 3, Nγ is open and dense in R2γ .
Therefore, we require γ > 4 to have any hope for the type of deformation
argument used in Theorem 3.2 to work. We have already observed that the
codimension of Nγ, nhy in R2γ is equal to (γ−2)(γ−3). But this is precisely
the dimension of the space of quadrics satisfied by the canonical curve of
a nonhyperelliptic Riemann surface. Hence, in light of Theorem 2.4, we
expect Rµ,ρ to contain a disc of R-dimension (γ − 2)(γ − 3) transverse to
Nγ, nhy whenever (Σγ , µ) is nonhyperelliptic. This would imply the exis-
tence of a neighbourhood Vγ of Nγ, nhy in R2γ such that Vγ \ Nγ, nhy is
contained in Rρ. We do not pursue this analysis here because such a result
is implied by Theorem 1.5, part 2, in [Ar1] where the relation between the
conformal structure of a minimal surface in a flat torus and the torus lat-
tice is dicussed in great detail. However, we should point out that, rather
surprisingly, the invertibility of the differential of the relevant map turns
out to rely heavily yet again on the fact that the Jacobi fields for the Abel–
Jacobi map of a nonhyperelliptic Riemann surface of genus at least 4 are
all translational (c.f. Theorem 3.1 and Noether’s Theorem).

It seems reasonable to expect that Rρ contains the complement of the
closure of Nγ in R2γ . We will prove this below (Theorem 3.7) for γ = 4.
But first we prove
Theorem 3.6. For any flat torus (R2γ/Λ, eucl), γ > 4, there exists a
stable conformal minimal immersion f : (Σγ, µ) → (R2γ/Λ, eucl) of some
nonhyperelliptic Riemann surface of genus γ.

Proof. As mentioned above, the infinitesimal study of the period map in
[Ar1] establishes that, for γ > 4, there exists an open subset Vγ of Nγ, nhy
in R2γ such that, whenever Λ0 ∈ Vγ \Nγ, nhy there exists a stable conformal
nonholomorphic minimal immersion f of a nonhyperelliptic Riemann sur-
face of genus γ into (R2γ/Λ0, eucl) which induces an isomorphism between
the first homology groups. Because of the density of Q in R, it is easy to see
that given any flat torus defined by a lattice Λ there exists a finite rieman-
nian cover I : (R2γ/Λ0, eucl) → (R2γ/Λ, eucl) for some Λ0 ∈ Vγ \ Nγ, nhy.
The map I ◦ f is then a conformal minimal immersion of a nonhyperellip-
tic Riemann surface of genus γ into the given flat torus with the following
properties:

(i) It is stable: in fact if there exists a deformation of I ◦ f for which the
second variation of area is negative, then the lift of this deformation
to f would contradict its stability.
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(ii) It is not holomorphic w.r.t. any compatible complex structure: in fact,
if J is a complex structure on (R2γ/Λ, eucl) compatible with the met-
ric, let J̃ be the complex structure on (R2γ/Λ0, eucl) obtained by
pulling back J via I. Observe that J̃ is compatible with the met-
ric on R2γ/Λ0 because I is a local isometry. Furthermore, I is a
holomorphic map between the two tori equipped with these complex
structures and, since it is locally invertible (not in a unique way, of
course), I ◦ f is holomorphic w.r.t. J if and only if f is holomorphic
w.r.t. J̃ . The nonholomorphicity of f therefore implies the same for
I ◦ f . �

The above theorem indicates that loosing control on the topological
requirements on the minimal map has the effect of making all flat tori
indistinguishable when studying stable minimal maps. On the other hand
the next results show that, by fixing the action on the first homology groups,
also the complex geometry of abelian varieties comes into play. We therefore
study the space Rρ directly, that is, without viewing it as the union of Rµ,ρ
over all conformal structures µ.

Theorem 3.7. Given an isomorphism ρ : H1(Σ4,Z) → H1(T 8,Z) and
a flat metric g on T 8, suppose that (T 8, Qρ, Jρ,g) is a principally polar-
ized abelian variety which is neither a Jacobi variety, nor the product of
lower dimensional Jacobi varieties. Then there exists a (possibly branched)
nonholomorphic minimal immersion f : Σ4 → (T 8, g) which induces ρ and
which minimizes area among all maps which induce ρ. In particular, for
γ = 4, Rρ is open and dense in R8, the space of 8-dimensional flat tori.

Remark 3.2. (i) The proof below will give no information on how the
conformal structure induced on Σ by f depends on ρ and g.

(ii) It would be interesting to establish whether or not f is unique.

Proof. By the main result in [Ar2] we know that there exists a map
f : Σ̃4 → (T 8, g) of a Riemann surface of genus 4, possibly with nodes,
such that on each part of Σ̃4, f restricts to a stable minimal immersion.
If Σ̃4 has no nodes (in which case Σ̃4 = Σ4) and f is holomorphic w.r.t. a
compatible complex structure J , then by Theorem 2.2 and because f∗(Qρ)
is the intersection form of the surface, (T 8, Qρ, J) is isomorphic as a prin-
cipally polarized abelian variety to the jacobian of Σ4. Now g is hermitian
and Qρ is of type (1, 1) w.r.t. both J and Jρ,g. Therefore, by a theorem of
Calabi in [C] J = Jρ,g which results in (T 8, Qρ, Jρ,g) being the jacobian of
Σ4, contrary to assumption. It follows that f cannot be holomorphic. It
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remains to prove that Σ̃4 cannot have more than one part.
If Σ̃4 does have nodes, then each of its parts, Σi, has genus 0 < γi < 4.

Therefore, by Theorem 1.4 and Corollary 2.2, fi = f|Σi : Σi → (T 2γi , gi =
g|T 2γi ) has to be holomorphic w.r.t. a complex structure Ji on T 2γi com-
patible with gi. Let Qi = Qρ|Σi and χi = the intersection form of Σi.
Then f∗i (Qi) = χi and again this, together with the universal property of
the Abel–Jacobi map, implies that (T 2γi , Qi, Ji) are isomorphic as prin-
cipally polarized abelian varieties to the jacobians of the Σi’s. Hence,
(T 8, Qρ,⊕iJi) is isomorphic as a principally polarized abelian variety to the
product of the jacobians of the Σi’s. We just need to show that ⊕iJi = Jρ,g.
This is done using Calabi’s theorem as above once we establish that ⊕iJi
is a complex structure on T 8 compatible with g. But, as in the proof of
Theorem 3.3 in [Ar2], this can be done by using Morgan’s theorem in [Mo]
(see [Ar2] for details).

Finally, let X be the space of abelian varieties that are principally po-
larized by Qρ and which are the product of p Jacobi varieties of Σi with∑p

i=1 γi = 4. Then dimRX = 6
∑p

i=1(γi − 1) + 2k = 24− 6p+ 2k where k
is the number of elliptic curves among the Σi’s. Let NX denote the space
of flat metrics on T 8 which are hermitian with respect to a complex struc-
ture J for which (T 8, J,Qρ) ∈ X . Then dimR NX = dimR X + dimR H4 =
40 − 6p + 2k. Of course, p > 2 if k > 1 and k is at most p. Therefore
40− 6p+ 2k 6 34 which is strictly less than 36, the dimension of R8. We
showed above that Rρ contains R8 \ NX and therefore, the complement of
Rρ in R8 has codimension at least 2. In particular, Rρ is open and dense
in R8. �

Remark 3.3. If (T 8, Qρ, Jρ,g) does split as a principally polarized abelian
variety into a product of Jacobi varieties of Σi’s then the area minimizing
process must yield the Riemann surface with nodes whose parts are the Σi’s.
Thus the proof of Theorem 3.7 provides a criterion for degeneration to occur
when minimizing area in certain homotopy classes in a flat 8-dimensional
torus.

We expect Rρ to be open and dense in R2γ for all γ > 4. Unfortunately
the proof above works only in the case when all the possible degenerations of
the Riemann surface are holomorphic, and this might not be the case when
γ > 4. It is unclear how to avoid this hypothesis when trying to prove that
⊕iJi is compatible with g using Morgan’s theorem. This probably means
that the set of flat metrics for which degenerations occur is strictly larger
than the set of metrics which are hermitian on nonsimple abelian varieties
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principally polarised by Qρ.
Remark 3.4. Fisher–Colbrie and R. Schoen ([FS]) proved that the uni-
versal cover of a two-sided stable minimal hypersurface is also stable. The
work of M. Ross and C. Schoen ([RS]) proved that the assumption on the
hypersurface being two-sided is essential. Here, we note that a 6-fold cover
of the nonholomorphic area minimizing surface produced in Theorem 3.7
no longer minimizes area in its homology class. This is because of the
following proposition which is essentially contained in Remark 5.3 in [La].

Proposition 3.1. Let (T 2γ , J,Q), γ > 4, be a principally polarized abelian
variety. Let

ρ : H1(Σγ,Z)→ H1(T 2γ ,Z)
be an isomorphism such that Qρ = Q. Let g be a flat metric on T 2γ which is
hermitian w.r.t. J . Suppose that f : Σγ → (T 2γ , g) is a (possibly branched)
immersion such that

(i) f∗ = ρ,
(ii) it minimizes area among all maps u : Σγ → (T 2γ, g) for which u∗ = ρ

and,
(iii) it is not holomorphic w.r.t. any complex structure compatible with g.

Let π : Σγ′ → Σγ be a covering map of degree (γ − 1)!. Then f ◦ π is not
area minimizing in the homology class PD(Qγ−1) = (γ − 1)![f(Σγ)].

Proof. Simply observe that the class PD(Qγ−1) can be represented by an
effective holomorphic cycle, namely the theta divisor intersected with itself
γ − 1 times (see, for example, [LB]). �
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