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Abstract. We obtain asymptotic expansions for the integral

Gν(ω, λ) = ω

∫ ∞
0

exp[iωt− λ(1− cos t)− 1
2
νt2] dt,

for large values of ω and λ and ν → 0+. For positive real parameters, the real part of the
integral is associated with an exponentially small expansion in which the leading term involves
a Jacobian theta function as an approximant. The asymptotic expansions are compared with
numerically computed values of Gν(ω, λ).
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1. Introduction

In the study of the propagation of electrostatic waves in a hot magnetised Maxwellian
plasma one encounters the function defined by

Gν(ω, λ) = ω

∫ ∞
0

exp[iωt− λ(1− cos t)− 1
2
νt2] dt, Re(ν) > 0, (1.1)

known as Gordeyev’s integral [4], in the expression for the dielectric function in
the dispersion relation. The real part of the parameter ω represents the wave
frequency normalised to the ion cyclotron frequency and the real parts of the
parameters λ and ν are respectively the squares of the perpendicular and parallel
components (with respect to the magnetic field) of the wave vector normalised to
the ion Larmor radius.

In problems of physical application the behaviour of (1.1) is required for large
positive values of the real parts of ω and λ (where ω or λ, or both, may possess
small imaginary parts) and when the parameter ν is positive but very small (cor-
responding to propagation at large angles to the magnetic field). In such cases the
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representation in (1.1) becomes inconvenient for computational purposes, partic-
ularly for values of ω in the neighbourhood of a harmonic (represented by integer
values of ω) on account of the oscillatory nature of the integrand. An alternative
representation of Gν(ω, λ) can be obtained by expanding the factor exp(λ cos t) in
terms of modified Bessel functions In(λ) to find [10, p. 176]

Gν(ω, λ) =
−iω√

2ν
e−λ

∞∑
n=−∞

In(λ)Z
(
ω − n√

2ν

)
, (1.2)

where Z(x) denotes the plasma dispersion function

Z(x) = i
√
πe−x

2
erfc(−ix). (1.3)

Although this form eliminates the problems associated with a highly oscillatory
integrand, a large number of terms of the expansion must be retained when λ is
large.

A different form of Gν(ω, λ) has been given by Johnston in [5] as an integral
over a finite interval. By expanding the factor exp(1

2νt
2) in (1.1) as a Fourier

integral followed by division of the range of integration into intervals of length 2π,
he obtained after some manipulation the representation

Gν(ω, λ) =
∫ 2π

0
exp[iωt− λ(1− cos t)− 1

2
νt2]K(t) dt, (1.4)

where

K(t) = {1− e2πi(ω+iνt)}−1 − (2ν)−
1
2

4πi

∞∑
n=−∞

Z ′(ζn(t))
ζn(t)

and ζn(t) = (ω + iνt − n)/
√

2ν. The form (1.4), with suitable approximations
for K(t), was used by Brambilla in [2] to obtain asymptotic estimates for the real
part of Gν(ω, λ) (the part of main interest in the above physical application) for
ω = O(λ

1
2 ) as λ→∞ with ν → 0+. However, his results were nonuniform in the

frequency parameter ω, as separate approximations were given for ω close to and
away from the neighbourhood of a harmonic. An expansion for Gν(ω, λ) valid in
the same range of ω values has also been given in [6]. In the special case ν = 0,
the analytic continuation of G0(ω, λ) to real values of ω has been studied in detail
in [9].

In this paper we shall similarly reduce (1.1) to a finite range of integration but
with an integrand which involves a factor closely related to the Jacobian theta
functions [8]. In this manner, using the method of steepest descent, we obtain
the asymptotic expansions for large ω and λ when ν is finite (and in particular as
ν → 0+) that are uniformly valid in ω through a harmonic.
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2. Modification of the integral representation

We shall mainly be concerned with positive real values of the parameters ω, λ and
ν, although in §5 we do consider the extension of the expansion for Gν(ω, λ) to
complex vales of ω and λ. The integral for Gν(ω, λ) in (1.1) can be expressed as
an integral over a finite interval by dividing the range of integration into intervals
of length 2π to find

Gν(ω, λ) = ω

∫ 2π

0
e−λf(t)g(t){1 + F (t)} dt, (2.1)

where

F (t) =
∞∑
n=1

qn
2

exp[2πin(∆ω + iνt)], q = e−2π2ν (2.2)

and ω = N + ∆ω, with N a non-negative integer such that |∆ω| ≤ 1
2 . In (2.1) we

have introduced the abbreviations

f(t) = 1− cos t− it sinh α, sinh α = ω/λ (2.3)

and g(t) = exp(−1
2νt

2). The function F (t) in (2.2) is uniformly convergent in any
bounded domain of ω and t provided Re(ν) > 0 (so that |q| < 1) and is closely
related to the Jacobian theta functions [13, p. 462 et seq.]. It is readily shown
that F (t) satisfies the quasi-periodicity condition

F (t+ 2π) = e−2πiΨ(t)F (t)− 1, Ψ(t) = ∆ω + iν(π + t). (2.4)

Use of (2.4) then enables us to separate the integral (2.1) into two parts

Gν(ω, λ) = ω

∫ π

0
e−λf(t)g(t) dt+ ω

∫ π

−π
e−λf(t)g(t)F (t) dt. (2.5)

Since F (t) does not depend upon the large variables N and λ it is a slowly varying
function of t. With ν assumed finite, the integrand in (2.1) then possesses saddle
points at the zeros of f ′(t) = 0; that is, at the points given by sin t = i sinh α.
When λ > 0, there is a saddle point (which we shall call the principal saddle) in
the domain of interest at P0 given by t0 = iα, with the path of steepest descent
through the saddle passing to infinity at ±π +∞i. Consider the path C1 starting
from the origin in the t plane and passing to infinity at π+∞i and a second path
C2 with endpoints at ±π +∞i, as shown in Fig. 1(a). Then, provided λ > 0, the
first integral in (2.5) over [0, π] may be deformed to pass over the path C1 together
with the path CD parallel to the imaginary axis, while the second integral over
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Figure 1.
(a) The paths of integration C1 and C2 and (b) the paths of steepest descent through the principal
saddle P0 when ω > 0, λ > 0.

[−π, π] can be deformed along the path C2 together with the paths AB and CD.
We then find that

Gν(ω, λ) = I1 + I2, (2.6)

where
I1 = ω

∫
C1
e−λf(t)g(t) dt, I2 = ω

∫
C2
e−λf(t)g(t)F (t) dt, (2.7)

since the contribution from the sides AB and CD, given by∫ −π+∞i

−π
e−λf(t)g(t)F (t) dt−

∫ π+∞i

π

e−λf(t)g(t){1 + F (t)}dt

=
∫ −π+∞i

−π
e−λf(t)g(t){F (t)− e2πiΨ(t)(1 + F (t+ 2π))}dt,

vanishes on account of (2.4).

3. The asymptotic expansion when ω/λ = O(1)

We are now in a position to evaluate Gν(ω, λ) asymptotically from (2.6) by the
method of steepest descent for large positive values of ω = N + ∆ω and λ, where
it will be assumed that ∆ω, ν and ω/λ are finite. The path of steepest descent
through the saddle P0 is reconcilable with the path C2, while C1 can be deformed
into the path with Imf(t) = 0 which corresponds to the part of the imaginary axis
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between OP0 and the path C2 lying in Re(t) > 0; see Fig. 1(b). A straightforward
application of the method of steepest descent [3, p. 119; 7, p. 127; 14, p. 90] then
yields

I1 ∼ iJα +
ω√

2 coshα
e−λf(iα)g(iα)

∞∑
k=0

Γ(
1
2
k +

1
2

)
Ak

λ
1
2k+ 1

2
(3.1)

I2 ∼ ω
(

2
coshα

) 1
2

e−λf(iα)g(iα)
∞∑
k=0

Γ(k +
1
2

)
B2k

λk+ 1
2
, (3.2)

where f(iα) = 1− coshα + α sinhα and g(iα) = exp(1
2να

2). The coefficients Bk
are given by

B0 = γ0, B1 = (2sechα)
1
2

{
1
3
iγ0 tanhα+ γ1

}
,

B2 = sechα
{

1
12
γ0(3− 5 tanh2 α) + iγ1 tanhα+ γ2

}
,

B3 = (2sechα)
3
2{

2
135

iγ0 tanhα (9− 10 tanh2 α) +
1
6
γ1(1− 2 tanh2 α) +

1
3
iγ2 tanhα+

1
6
γ3

}
,

B4 = sech2α

{
1
32
γ0[

77
27

(5 tanh2 α− 6) tanh2 α+ 3] +
1
36
iγ1 tanhα (29− 35 tanh2 α)

+
5
36
γ2(3− 7 tanh2 α) +

5
9
iγ3 tanhα+

1
6
γ4

}
, . . . ,

where
γj = e

1
2 νt

2
0(d/dt)j [e−

1
2 νt

2
F (t)]t=t0 , (j = 0, 1, 2, . . . )

and, from (2.2),

F (t0) = F (iα) =
∞∑
n=1

qn
2
e2πinΩ, Ω = ∆ω − αν. (3.3)

The coefficients Ak are obtained from Bk by substitution of F (t) ≡ 1 in the
quantities γj .

The integral Jα in (3.1) corresponds to the contribution to I1 from the path
OP0. This is given by

Jα = ω

∫ α

0
e−λf(iu)g(iu) du = ω

∫ w(α)

0
e−λw

g(iu)
w′(u)

dw, (3.4)
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since w(u) ≡ f(iu) = u sinhα+1−coshu is monotonically decreasing on 0 ≤ u < α.
For finite α (i.e., for ω/λ finite as λ→∞), the algebraic expansion associated with
Jα can be obtained by Laplace’s method; see [7, p. 81]. Introduction of the power
series

sinhα
e

1
2νu

2

w′(u)
=
∞∑
k=0

Dkw
k (|w| < w(α)),

then leads to the expansion

Jα ∼
∞∑
k=0

Dk
k!
λk
, λ→∞, (3.5)

where the coefficients Dk are given by [3, p. 114]

D0 = 1, D1 = a, D2 =
1
2
a(3a+ ν),

D3 =
1
6
a2(15a+ 6ν + 1),

D4 =
1
8
a2(35a2 + 5(1 + 3ν)a+ ν2),

D5 =
1

120
a3(945a2 + 210(1 + 2ν)a+ 1 + 15ν + 45ν2),

D6 =
1

240
a3(3465a3 + 525(1 + 3ν)a2 + 7(3 + 20ν + 30ν2)a+ 5ν3), . . . ,

and, for brevity, we have put a = cosech2α.
For positive values of the parameters, Jα is real and the coefficients Ak of even

and odd order are respectively real and purely imaginary. Hence, the real and
imaginary parts of Gν(ω, λ) in this case are

Re Gν(ω, λ) ∼ ω√
2λ coshα

e−λf(iα)g(iα)
∞∑
k=0

Γ(k +
1
2

)
C2k
λk

(3.6)

Im Gν(ω, λ) ∼ Jα +
ω√

2λ coshα
e−λf(iα)g(iα)

·
∞∑
k=0

Γ(k + 1
2)

λk

{
2 Im(B2k) +

Γ(k + 1)
Γ(k + 1

2 )
A2k+1√

λ

}
, (3.7)

where C2k = A2k + 2Re(B2k).
The accurate determination of the exponentially small part of Im Gν(ω, λ) is

complicated by the fact that the evaluation of I1 for positive ω and λ is associated
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Figure 2.
The paths of steepest descent for Re(ω), Re(λ) > 0 with ω and λ possessing imaginary parts of
O(1) when θ = − arg (ω/λ) is (a) negative and (b) positive.

with a Stokes phenomenon. This can be seen from (3.5) since, when the parameters
are positive, all the coefficients in the algebraic expansion are of the same phase. In
terms of the saddle point method, when ω and λ have imaginary parts of O(1), the
saddle point at P0 will lie to the right or the left of the imaginary axis according
as θ > 0 or θ < 0, respectively, where −θ = arg(ω/λ). When P0 lies to the right,
the path Im f(t) = 0 from the origin passes to infinity at −π +∞i so that the
path C1 can be taken to coincide with this path together with the path of steepest
descent through the saddle point. When P0 lies to the left, the path Im f(t) = 0
passes to infinity at π +∞i and is reconcilable with C1; see Fig. 2. Thus, as θ
varies with fixed |ω/λ| we find, upon optimal truncation of the expansion in (3.5)
after K terms,

I1 ∼
K−1∑
k=0

Dk
k!
λk

+ ωS(θ)
(

2π
λ coshα

) 1
2

e−λf(iα)g(iα), (3.8)

where S(θ) is the Stokes multiplier which varies smoothly from 0 to 1 as θ varies
from negative to positive values [1]. To leading order, the value of S(θ) on θ = 0
is 1

2 , so that the second term on the right-hand side of (3.8) then corresponds
to the leading term in the exponentially small expansion in (3.1). When the
imaginary parts of ω and λ are small compared to their real parts, θ will be small
and an accurate determination of the exponentially small contribution to I1 will
necessitate a detailed analysis of the Stokes phenomenon to take into account the
smooth variation of S(θ) across the Stokes line θ = 0; see §5 for further discussion
on this point.

From (3.6) and (3.7), the leading asymptotic behaviour of Gν(ω, λ) (for real
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parameters) can therefore be expressed in the form

Re Gν(ω, λ) ∼ ω
√

π

2λ coshα
exp[−λ(α sinhα+ 1− coshα)] e

1
2 να

2
ϑ(Ω, q) (3.9)

Im Gν(ω, λ) ∼ Jα + ω

√
2π

λ coshα
exp[−λ(α sinhα+ 1− coshα)] e

1
2να

2
ϕ(Ω, q),

(3.10)
where, to display the dependence on Ω and q, we have put

ϑ(Ω, q) ≡ 1 + 2ReF (iα) = 1 + 2
∞∑
n=1

qn
2

cos 2πnΩ

ϕ(Ω, q) ≡ ImF (iα) =
∞∑
n=1

qn
2

sin 2πnΩ

(3.11)

with F (iα) and Ω given in (3.3); the function ϑ(Ω, q) is the Jacobian theta function
of the third kind [13, p. 463]. The real part is therefore exponentially small
for α > 0 whereas the imaginary part is dominated by the algebraic expansion
resulting from Jα in (3.5).

The approximations in (3.9) and (3.10) are not suitable in the limit ν → 0+
(q → 1−), since the sum F (iα) is then slowly convergent and accordingly becomes
difficult to compute. To overcome this problem, we rewrite F (iα) by means of the
Poisson-Jacobi transformation [11, §2.8; see also 8] in the form

F (iα) =
(2ν)−

1
2

2πi

∞∑
n=−∞

Z

(
Ω− n√

2ν

)
− 1

2
, (3.12)

where Z(x) is defined in (1.3). Then the factors appearing in (3.9) and (3.10)
become

ϑ(Ω, q) =
e−Ω2/2ν
√

2πν

{
1 + 2

∞∑
n=1

e−(n2/2ν) cosh
nΩ
ν

}

∼ e−Ω2/2ν
√

2πν

{
1 + 2 exp(− 1

2ν
) cosh

Ω
ν

}
(ν → 0+)

(3.13)

and, upon use of the asymptotic behaviour of Z(x) for large x,

ϕ(Ω, q) ∼ 1
2

{
ie−Ω2/2ν
√

2πν
erf
(
−iΩ√

2ν

)
+ cotπΩ− 1

πΩ

}
. (ν → 0+) (3.14)

We note that the approximations in (3.9), (3.10), (3.13) and (3.14) hold uniformly
in ∆ω through a harmonic (∆ω = αν).
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4. The asymptotic expansion when ω = O(λ
1
2 )

The expansions given in §3 describe the asymptotics of Gν(ω, λ) as ω and λ→∞
with ω = O(λ). For ω/λ = o(1), that is when α → 0 as λ → ∞, the principal
saddle P0 moves down the imaginary axis towards the origin with the result that
the exponential expansions in (3.6) and (3.7) [and also in (3.9) and (3.10)] remain
valid in this limit. Thus, if we let ξ0 = ω/

√
2λ and consider finite values of ξ0 as

λ→∞, we therefore obtain from (3.9) and (3.10) the leading approximations

Re Gν(ω, λ) ∼ √πξ0e−ξ
2
0ϑ(∆ω, q), (4.1)

Im Gν(ω, λ) ∼ Jα + 2
√
πξ0e

−ξ20ϕ(∆ω, q). (4.2)

In the limit ν → 0+, the factors ϑ(∆ω, q) and ϕ(∆ω, q) can be approximated
by (3.13) and (3.14) (with |∆ω| ≤ 1

2 ). The algebraic expansion for Jα in (3.5),
however, is not uniformly valid as α→ 0, since it is clear from (3.4) that1 Jα → 0.
The breakdown in the expansion (3.5) can be seen to arise when the value of the
exponential factor in the integrand in (3.4) evaluated at the saddle becomes O(1),
i.e., when ω = O(λ

1
2 ).

To determine the expansion of I1 as α → 0, we take the path C1 in (2.7) to
be the real axis between [0, π] and the line [π, π +∞i) parallel to the imaginary
axis. The contribution to I1 from this latter part of the path is readily shown to
be O(ωλ−

1
2 e−2λ) as λ→ +∞ so that, from (2.7),

I1 = ω

∫ π

0
e−λf(t)g(t) dt+O(ωλ−

1
2 e−2λ). (4.3)

Following [9], we use the expansion

e−λ(1−cos t) = e−
1
2λt

2
∞∑
n=0

(−)nSn(λ)
(2n)!

t2n, (|t| <∞)

where the coefficients Sn(λ) are given by2

S0(λ) = 1, S1(λ) = 0, S2(λ) = S3(λ) = 1, S4(λ) = λ+35λ2, S5(λ) = λ+210λ2, . . . .

1 More precisely, integration of (3.4) from the saddle P0 along the path of steepest ascent to
the origin shows that Jα ∼ −i

√
πξ0 exp(−ξ2

0)erf(iξ0) as α→ 0.

2 Higher coefficients are defined by the recursion relation in [9, p.57]. For n → ∞ and λ
bounded away from zero, Sn(λ) ∼ (2n)!(λ/24)mδn/m!, where m = [n/2] and δn = 1 (even n)
and δn = m/30 (odd n); see [9].
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Substitution of the above series into the integral on the right-hand side of (4.3)
then yields the convergent expansion3

ω

∫ π

0
e−λf(t)g(t) dt =

∞∑
n=0

Sn(λ)
(2n)!

Hn, (4.4)

where
Hn = ω

∫ π

0
t2n exp[iωt− 1

2
(λ+ ν)t2] dt

=
i(−)n+1ξ

{2(λ+ ν)}n {Z
(2n)(ξ) −Rn}, ξ =

ω√
2(λ+ ν)

, (4.5)

with

Rn = (2i)2n+1
∫ ∞

Λ
τ2ne−τ

2+2iξτ dτ, Λ = π

(
λ+ ν

2

) 1
2

and Z(2n)(ξ) denoting the 2nth derivative of the plasma dispersion function in
(1.3). Then, |Rn| = 22nΓ(n + 1

2 ,Λ
2) = O(λn−

1
2 e−

1
2π

2λ) for each integer value of
n as λ→ +∞, so that for finite values of ξ

Hn =
i(−)n+1ξ

{2(λ+ ν)}nZ
2n(ξ)

{
1 +O(λn−

1
2 e−

1
2π

2λ)
}
, λ→∞.

The Hadamard sum in (4.4) then furnishes the asymptotic expansion

ω

∫ π

0
e−λf(t)g(t) dt ∼ −iξ

∞∑
n=0

En(ξ)S̃n(λ)
λ[n/2]

(λ + ν)n
, λ→∞, (4.6)

where the square brackets denote the integer part, S̃n(λ) are the scaled coefficients
Sn(λ) given by

S̃0(λ) = 1, S̃1(λ) = 0, S̃2(λ) = S̃3(λ) = 1, S̃4(λ) = 1+
1

35λ
, S̃5(λ) = 1+

1
210λ

, . . .

and
E0(ξ) = Z(ξ), E1(ξ) = 0,

E2(ξ) =
1
24
{2ξ(−5 + 2ξ2) + (3− 12ξ2 + 4ξ4)Z(ξ)},

E3(ξ) =
1

720
{2ξ(33− 28ξ2 + 4ξ4) + (−15 + 90ξ2 − 60ξ4 + 8ξ6)Z(ξ)},

3 For positive values of the parameters, |Hn| < ωπ2n+1/(2n + 1) so that the sum in (4.4) is
an absolutely convergent Hadamard sum (cf. [12, p. 204]).
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Figure 3.
Graphs of the real and imaginary parts of Gν(ω, 100) for different ranges of ω when ν = 0.1.The
oscillatory structure present in the imaginary part is not visible on the scale of these figures.

E4(ξ) =
1

1152
{2ξ(−279+370ξ2−108ξ4+8ξ6)+(105−840ξ2+840ξ4−224ξ6+16ξ8)Z(ξ)},

E5(ξ) =
1

17280
{2ξ(2895− 5280ξ2 + 2352ξ4 − 353ξ6 + 16ξ8) + (−945 + 9450ξ2

− 12600ξ4 + 5040ξ6 − 720ξ8 + 32ξ10)Z(ξ)}, . . . ,

with ξ defined in (4.5). The expansion of Gν(ω, λ) for finite ξ (upon neglecting
exponentially small terms) is then obtained from (2.6), where the expansion of I2
is given in (3.2); this is equivalent to the result derived in [6, Eq. (6)]. For large
values of ξ, it can be shown, by use of the asymptotic expansion of Z(ξ), that (4.6)
yields the algebraic expansion in (3.5).

5. Numerical results and complex values of ω, λ

In this section we compare the accuracy of the expansions developed in §§3, 4 with
numerical results for Gν(ω, λ) computed using Mathematica from the sum in (1.2).
In Fig. 3 we illustrate the behaviour of the real and imaginary parts of Gν(ω, λ)
for two ranges of ω corresponding to ω = O(λ

1
2 ) and ω = O(λ).

The expansions of the real and imaginary parts of Gν(ω, λ) in the case of
positive parameter values are given by (3.6) (which holds for arbitrary values
of ω) and (3.7). Fig. 4 shows the behaviour of the factors ϑ(Ω, q) and ϕ(Ω, q)
defined in (3.11) which appear in the leading terms in (3.9) and (3.10); see also
(4.1) and (4.2). These factors contain the fine structure in ω: it can be seen that
ϑ(Ω, q) becomes strongly peaked as ν → 0+ in the neighbourhood of the harmonics
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The rapidly varying factors ϑ(Ω, q) and ϕ(Ω, q) as a function of Ω = ∆ω−αν for different values
of ν.

(∆ω = αν ' 0) with the width of the peak scaling roughly like 2
√

2ν, while ϕ(Ω, q)
exhibits less pronounced resonance effects and vanishes at Ω = 0 and ±1

2 .
Table 1 presents the results for Re Gν(ω, 100) for different ν and two ranges of

ω. The asymptotic values are obtained using the first two terms in the expansion
(3.6). In Table 2 we give corresponding values of Im Gν(ω, 100) obtained from
(4.7) for the range ω = O(λ

1
2 ) and from (3.10) and (3.5) for the range ω = O(λ).

In both cases 6 terms were used in the computation of the respective algebraic
expansions. It can be seen that these asymptotic approximations hold uniformly
through a harmonic.

Fig. 5 summarises the results for the case ν → 0+ when ω = O(λ
1
2 ). The

approximate value of Re Gν(ω, λ) was obtained using (4.1) together with (3.13).
To reveal the fine structure contained in Im Gν(ω, λ), the expansion for I1 in (4.6)
was subtracted off from the numerical value obtained from (1.2) and compared
with the leading term in the expansion of I2 (given by the second term on the
right-hand side of (4.2)). Nonuniform approximations for the real part of Gν(ω, λ)
in this case have been previously derived in [2] by use of the representation in (1.4).
There, the approximation ReGν(ω, λ) ∼ H(∆ω)ξ0 exp[−ξ2

0 ] was given, where in
the neighbourhood of a harmonic H(∆ω) = exp[−(∆ω)2/2ν]/

√
2ν (which agrees

with (4.1)), while away from a harmonic H(∆ω) =
√
πν2(π/ sinπω)4. For the

case illustrated in Fig. 5, this latter approximation is found to be very poor, being
in error by roughly two orders of magnitude when ∆ω ' 1

2 .
We now briefly discuss the extension of the expansions in §3 to complex values

of ω and λ. We let β = arg λ, γ = arg ω, A = |ω/λ| and restrict our attention to
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Table 1. The computed and asymptotic values of Re Gν(ω, 100) for different ν when ω = O(λ
1
2 )

and ω = O(λ).

λ = 100 ω = N + ∆ω
ν = 1.0

N = 10 N = 50
∆ω ReGν(ω, λ) Asymptotic ReGν(ω, λ) Asymptotic

0.0 7.5953929 × 10−1 7.5952920 × 10−1 3.1492512 × 10−5 3.1492102 × 10−5

0.1 7.5951439 × 10−1 7.5950429 × 10−1 3.0078551 × 10−5 3.0078159 × 10−5

0.2 7.5933985 × 10−1 7.5932976 × 10−1 2.8725402 × 10−5 2.8725028 × 10−5

0.3 7.5901725 × 10−1 7.5900717 × 10−1 2.7430578 × 10−5 2.7430221 × 10−5

0.4 7.5854819 × 10−1 7.5853811 × 10−1 2.6191686 × 10−5 2.6193428 × 10−5

0.5 7.5793431 × 10−1 7.5792424 × 10−1 2.5006426 × 10−5 2.5006101 × 10−5

ν = 0.1

0.0 9.7111401 × 10−1 9.7110781 × 10−1 3.6080839 × 10−5 3.6080831 × 10−5

0.1 9.3826929 × 10−1 9.3826314 × 10−1 3.4397747 × 10−5 3.4397691 × 10−5

0.2 8.3685821 × 10−1 8.3685331 × 10−1 3.0156276 × 10−5 3.0156200 × 10−5

0.3 7.0619053 × 10−1 7.0618758 × 10−1 2.4709080 × 10−5 2.4709016 × 10−5

0.4 5.9608918 × 10−1 5.9608810 × 10−1 1.9740274 × 10−5 1.9740246 × 10−5

0.5 5.4771793 × 10−1 5.4771798 × 10−1 1.6603339 × 10−5 1.6603355 × 10−5

ν = 0.01

0.0 3.03009782 3.03007774 1.1241006 × 10−4 1.1241003 × 10−4

0.1 1.85622570 1.85621287 6.8316509 × 10−5 6.8316390 × 10−5

0.2 4.1828073 × 10−1 4.1827797 × 10−1 1.5273900 × 10−5 1.5273856 × 10−5

0.3 3.4671187 × 10−2 3.4670990 × 10−2 1.2562556 × 10−6 1.2562510 × 10−6

0.4 1.0571872 × 10−3 1.0571827 × 10−3 3.8012109 × 10−8 3.8011958 × 10−8

0.5 2.2528086 × 10−5 2.2528088 × 10−5 6.8290175 × 10−10 6.8290240 × 10−10

Table 2. The computed and asymptotic values of Im Gν(ω, 100) for ν = 1.0 when ω = O(λ
1
2 )

and ω = O(λ).

λ = 100 ω = N + ∆ω
ν = 1.0

N = 10 N = 50
∆ω ImGν(ω, λ) Asymptotic ImGν(ω, λ) Asymptotic

0.0 0.72085642 0.72085647 1.04681856 1.04674228
0.2 0.74069539 0.74069543 1.04637664 1.04630456
0.4 0.76033872 0.76033877 1.04594153 1.04587342
0.6 0.77976723 0.77976730 1.04551307 1.04544874
0.8 0.79896249 0.79896257 1.04509114 1.04503036
1.0 0.81790681 0.81790689 1.04467557 1.04461816
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Figure 5.

The behaviour of Gν(ω, 20) for ν = 10−2 when ω = O(λ
1
2 ): (a) the numerical value of

ReGν(ω, 20) compared with the asymptotic approximation (4.1) and (b) the oscillatory struc-
ture in the expansion I2. The figure shows the numerical value of X ≡ {ImGν(ω, 20) −
I1}/(2

√
πξ0 exp(−ξ2

0)) compared with the asymptotic approximation ϕ(∆ω, q) [cf. (4.2)].

the range |β| ≤ π, |γ| ≤ 1
2π since, for ν > 0, we have from (1.1)

Gν(−ω, λ) = −G∗ν(ω∗, λ∗),

where the asterisk denotes the complex conjugate. The principal saddle P0 of f(t)
in (2.3) is located at t0 = iarcsinh{A exp[i(γ − β)]}, with the other saddles P±n
at ±πn + (−)nt0 (n = 1, 2, . . . ). As θ = − arg(ω/λ) = β − γ varies from 0 to π,
the saddles P0 and P1 describe different loci4 in the t plane according as A ≤ 1
or A > 1, as illustrated in Fig. 6. This loci pattern is periodic and adjacent pairs
of saddles P2n and P2n+1 describe a similar behaviour. In addition to the above
variation in the saddles, the paths of steepest descent of the function

eiβ(1− cos t− iAte−iθ)
pass to infinity along paths parallel to the imaginary t axis with Re (t) = ±(2k+
1)π+ β (when Im (t) > 0) and Re (t) = ±(2k+ 1)π− β (when Im (t) < 0), where
k is a nonnegative integer.

This change in the position of the saddles and the lines of steepest descent as β
and γ vary can result in the principal saddle P0 connecting with one of the adjacent

4 For −π ≤ θ < 0, the loci move in a symmetrical fashion in the opposite sense.
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to π. When θ = 0, P0 and P1 are situated at iα and π − iα, respectively, where α = arcsinhA.
When A = 1, θ = 1

2π the saddles P0, P1 become coincident to form a double saddle.
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(a) The boundaries of the domains ∆(0), ∆(±1) and ∆(0,±1) in the β, γ plane for A = 0.8.
(b) The boundaries of ∆(0), ∆(0, 1) and ∆(1) for different values of A = |ω/λ|. These domains
possess odd symmetry about the lines β = 0 and β = ± 1

2π.

saddles P±1. A detailed study of the topology of the paths of steepest descent of
(5.1) reveals that, for a given value of A, the β, γ plane is divided into domains
∆(m,n) determined by the saddles Pm, Pn which contribute to the asymptotics
of the integrals I1 and I2 in (2.7); see Fig. 7(a). Thus, ∆(0) corresponds to
the domain in which only the principal saddle P0 contributes, while ∆(0,±1)
correspond to the domains in which both the saddles P0 and P±1 contribute, and
so on. These domains depend on the value of A; Fig. 7(b) shows the boundaries of
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the domains5 ∆(0), ∆(1) and ∆(0, 1) as a function of A on which a subdominant
exponential expansion will appear (a Stokes phenomenon).

It is seen that for a finite value of |ω/λ|, the domain ∆(0) encloses the origin
(corresponding to positive values of ω and λ). For β and γ in the interior of ∆(0)
only the principal saddle P0 contributes to the expansion of I1 and I2, with the
result that the expansions in §3 will hold for complex values of ω and λ in this
domain. Outside ∆(0), the expansions must be modified to take account of an
additional contributory saddle point. In particular, as arg λ increases from 0 to
π with ω > 0 (i.e., 0 ≤ β ≤ π, γ = 0) the contributory saddle when A > 1 is P0
throughout this range (and hence is not associated with a Stokes phenomenon),
while when A < 1 the contributory saddle changes from P0 to P1, with an inter-
mediate range in which both P0 and P1 contribute; in the special case A = 1, the
change from P0 to P1 is via a double saddle when β = 1

2π. In addition, the line
γ = β also corresponds to a Stokes phenomenon for the integral I1, in which the
contribution from the saddle P0 is maximally subdominant with respect to the
algebraic expansion. When θ < 0 (i.e., γ−β > 0) in domain ∆(0), I1 is given only
by the algebraic expansion in (3.5), while when θ > 0, I1 contains, in addition,
the contribution from the saddle P0; compare Fig. 2.

From the foregoing discussion, it therefore follows that the expansions (3.1) and
(3.2) remain valid when ω/λ is finite and either ω or λ (or both) have imaginary
parts of O(1). As mentioned in §1, this is a situation which often arises in physical
applications of (1.1).

References

[1] M. V. Berry, Uniform asymptotic smoothing of Stokes’s discontinuities, Proc. Roy. Soc.
Lond. Ser. A 422 (1989), 227–246.

[2] M. Brambilla, Propagation and absorption of waves near the lower hybrid resonance, Plasma
Phys. 18 (1976), 669–677.

[3] R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic
Press, London 1973.

[4] G. V. Gordeyev, Plasma oscillations in a magnetic field, Sov. Phys. JETP 6 (1952),
660–669.

[5] G. L. Johnston, Representation of the dielectric function of magnetised plasma, Phys.
Fluids 16 (1973), 1540-1541.

[6] C. Maroli, V. Petrillo & E. Ganoutas, An asymptotic form of the Gordeyev function for
initial value problems, Europhys. Lett. 5(3) (1988), 229–233.

[7] F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York 1974.
[8] R. B. Paris, On the asymptotic behaviour of Gordeyev’s integral. Technical Report EUR-

CEA-FC 829 (1976).
[9] J. P. M. Schmitt, The magnetoplasma dispersion function: some mathematical properties,

J. Plasma Phys. 12 (1974), 51–59.
[10] T. H. Stix, The Theory of Plasma Waves, McGraw-Hill, New York 1962.

5 Note that when A > 1, only the domains ∆(0) and ∆(0, 1) are present in Fig. 7(b).



338 R. B. Paris ZAMP

[11] E. C. Titchmarsh, Theory of Fourier Integrals, Oxford Univ. Press, Oxford 1975.
[12] G. N. Watson, Theory of Bessel Functions, Cambridge Univ. Press, Cambridge 1966.
[13] E. T. Whittaker & G. N. Watson, Modern Analysis, Cambridge Univ. Press, Cambridge

1965.
[14] R. Wong, Asymptotic Expansion of Integrals, Academic Press, London 1989.

R. B. Paris
Division of Mathematical Sciences
University of Abertay Dundee
Dundee DD1 1HG, UK
Fax: 01382 308877

(Received: March 11, 1997)


