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c© 1997 Birkhäuser Verlag, Basel

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Kolmogorov theorem and classical perturbation theory

Antonio Giorgilli and Ugo Locatelli

Abstract. We reconsider the original proof of Kolmogorov’s theorem in the light of classical
perturbation methods based on expansions in some parameter. With a careful analysis of the
accumulation of small divisors we prove that their effect is bounded by a geometrically increasing
numerical sequence. This allows us to achieve the proof without using the so called quadratic
method.
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1. Introduction

The aim of this paper is to reconsider the proof of Kolmogorov’s theorem (usually
referred to as KAM theorem) in the light of classical perturbation theory. By this
we mean that we give a proof based on classical expansions on some parameter.
As in Kolmogorov’s original proof, we proceed performing an infinite sequence of
canonical transformations bringing the Hamiltonian in a suitable normal form.
This presents some strong connections with the method of Lindstedt’s series: one
of the main differences is that we find absolutely convergent series (see point 4
below).

We recall that Kolmogorov’s theorem concerns the dynamical problem of a
canonical system of differential equations with Hamiltonian

H(p, q) = h(p) + εf(p, q, ε) , p ∈ G ⊂ Rn , q ∈ Tn , (1)

where G an open set and ε is a small parameter (see [1]). The problem is to prove
the existence of quasi periodic solutions for the system above, with given non
resonant frequencies (see [1]). As is well known, the main technical difficulty in
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studying such a system with the methods of classical perturbation theory is due
to the so called small denominators.

From a formal viewpoint, this problem has been faced with two different meth-
ods, namely (i) direct construction of solutions in the form of series expansions,
and (ii) reduction of the Hamiltonian to a suitable normal form, from which the
existence of the wanted solution turns out to be evident. The first method goes
back to Lindstedt and Poincaré; the second one has been used by Poincaré, but
the crucial contribution is due to Kolmogorov.

There is a strict relation between these two methods, which has been pointed
out by Poincaré in chapt. IX of his M�ethodes Nouvelles[2]. Indeed, the method of
Lindstedt consists in looking for solutions p(t), q(t) which are quasiperiodic func-
tions of time, with fixed (nonresonant) frequencies ω. The functions p(t), q(t) are
constructed as power series expansions in the parameter ε. However, as remarked
by Poincaré, this method presents some problems of formal consistency. Poincaré
used the method of normal form to overcome this difficulty. Precisely, his sug-
gestion was to look for a near to identity canonical transformation of the form
p = p′ + ψ(p′, q′) , q = q′ + ϕ(p′, q′) such that the transformed Hamiltonian de-
pends only on the action variables p′. Here too, the functions ψ , ϕ are constructed
as power series expansions in ε. In this case no consistency problems show up, so
that the procedure can be formally performed. On the other hand, the solutions
for the Hamiltonian in normal form are p′ = p′0 , q

′ = ωt+ q′0, where p′0, q
′
0 are in-

tegration constants. Thus, the transformation of variables gives also the solutions
looked for by Lindstedt.

Having settled the formal consistency, and the equivalence, of the two methods,
one is naturally lead to consider the problem of convergence. This has been indeed
discussed by Poincaré (see chapt. XIII, N. 149): it is known that he attempted
to prove the divergence of Lindstedt’s expansions, without success. His conclusion
was that convergence can not be excluded in case the frequencies satisfy some
suitable nonresonance conditions, but “il est fort invraisemblable”.

Our paper is concerned precisely with the convergence of the series expansions
generated by the method of construction of the normal form, but taking into
account also the ideas introduced by Siegel and Kolmogorov. In order to explain
our view point, it is useful to recall some historical aspects of the development
of this problem. We do not attempt to give a complete report. We just limit our
discussion to a few points that lie at the basis of our idea.
1. A first significant result concerning the convergence of series with small divisors
was obtained by Siegel studying two different problems, namely: (i) the problem of
conjugating an analytic mapping of the complex plane into itself, with the origin as
a fixed point, to the linear part of the mapping (see [3]), and (ii) the normal form
of a system of differential equations in the neighbourhood of an equilibrium point
(see [4]). The first problem is known as “Siegel center problem”, and the formal
solution is known as Schröder series; the corresponding series for the Hamiltonian
case are the series of Lindstedt. In both cases the formal solution is given as a series
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containing small divisors. Siegel proved that in both cases the series is convergent,
and so the problem has an analytic solution, provided the rotation number of the
mapping, or the eigenvalues of the linear part of the differential equations, satisfy
a strong irrationality condition of diophantine type. The proof is based on a clever
analysis of the accumulation of small divisors. An interesting aspect is that one
and the same idea allows one to achieve the proof of convergence both for the
series of Schröder and for the normal form.
2. The idea of Siegel does not apply to the Hamiltonian case. In rough terms, the
reason is the following: in Siegel’s case the small denominators do not repeat; in
the Hamiltonian case they do repeat. To make things simple, let us discuss the
problem in terms of an expansion in powers of a small parameter ε (actually, in
the case of Siegel the small parameter is the radius of a neighbourhood of the
origin). Consider a real nonresonant vector ω, and define two sequences {αr}r>0
and {βr}r>0 as

αr = min
0<|k|≤r

|k · ω| , βr = min
|k|=r

|k · ω| , k ∈ Zn . (2)

The nonresonance condition implies that all α’s and β’s are different from zero.
Remark that the sequence αr is monotonically decreasing to zero, while the se-
quence βr is quite random, although its lim inf is zero. In the cases considered
by Siegel the worst possible denominator in the coefficient of εr is the product
β1 · . . . · βr. In the series of Lindstedt and in the normal form of Poincaré one
finds instead a denominator α1 · . . . · αr. Therefore, one is lead to investigate the
convergence of a series with a general term of either form

εr

β1 · . . . · βr
,

εr

α1 · . . . · αr
.

The first case applies to Siegel’s problems; the latter case to the Hamiltonian
problem. Assume now that the vector ω satisfies the diophantine condition αr ≥
γr−τ for some γ > 0 and τ ≥ n − 1. A naive use of this condition would give
β1 · . . . · βr ≥ γr (r!)−τ (remark that βr ≥ αr). Siegel’s argument is that one has
instead β1 ·. . .·βr ≥ Cr for some constant C < 1; this exactly because the sequence
βr is not monotonic: very small values are very rare. In the words of Siegel, “this
simple remark is the main argument of the whole proof”. However, this argument
does not apply to the product α1 · . . . · αr, that can be estimated from below
only by γr (r!)−τ . Therefore, the series above turn out to be convergent for the
sequence βr, namely in Siegel’s cases, and divergent for the sequence αr, namely
in the Hamiltonian case.
3. The proof of existence of quasiperiodic solution was first given by Kolmogorov
in the short note [1]. He solved the problem by introducing two novel ideas: (i) look-
ing for a special set of initial conditions leading to conditionally periodic motions
on an invariant torus, and (ii) replacing the classical expansion in the small pa-
rameter ε by a superconvergent iteration procedure using the generalized Newton’s
method. His method is reminiscent of Poincaré ’s construction of the normal form,
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with two crucial differences. Firstly, instead of eliminating all dependencies on the
angles, Kolmogorov looks for an Hamiltonian of the form (hereafter referred to as
Kolmogorov’s normal form)

H(p, q) = ω · p+R(p, q) , R = O(p2) ,

with frequencies ω satisfying a diophantine irrationality condition. This makes
evident the existence of a single invariant torus p = 0, carrying quasiperiodic mo-
tions with frequencies ω. The second difference is that no use is made of power
expansions in a small parameter during the construction of the normal form. This
results in a superconvergent procedure known as “quadratic method”. It is a com-
mon opinion that the achievement of the proof of Kolmogorov’s theorem is strongly
based on the use of this fast convergence (in addition to the original Kolmogorov’s
paper [1], see also the subsequent articles by Moser [5][6] and Arnold[7][8]).
4. The convergence of Lindstedt’s series in view of Kolmogorov’s theorem has been
discussed by Moser in [6] (see also [9]). His conclusion is that the series of Lindstedt
are actually convergent, but a proof of their convergence can not be achieved via
the usual method of majorants going back to Cauchy. However, Moser shows that
an indirect proof of convergence can be given using the method of Kolmogorov.
This complicated state of affairs has been clarified in the recent works of Elias-
son [10][11][12], Gallavotti[13][14], and Chierchia and Falcolini[15] (see also [16], [17],
[18]). Indeed, Eliasson proved that in Lindstedt’s expansions there are cancella-
tions of critical terms. In slightly more precise terms the situation is the following.
The method of Lindstedt produces the coefficients of the power expansion in ε
as Fourier expansions in the angles q. The coefficient of a single Fourier mode is
actually the sum of several terms, with different combinations of small divisors.
Formally, the solution has the form

∑
s ε
sas(q), with as(q) =

∑
j∈J bj exp(kj · q),

where J is a set of indexes, and bj and kj are a numerical coefficient and a Fourier
mode, respectivley. The set J of indexes labels the set of terms produced by Lind-
stedt’s algorithm, and takes into account that the same Fourier mode is generated
many times, with different coefficients. Now, some divisors cause the corresponding
coefficient bj to grow very fast, so that

∑
s ε

s
∑
j |bj | diverges (for ε 6= 0). That is:

the series generated by Lindstedt’s algorithm is not absolutely convergent. Now,
the coefficients of the critical terms do compensate each other, leaving a remain-
der which grows not faster than geometrically. Eliasson did not give an explicit
mechanism of cancellation. Such an explicit mechanism has been provided in the
works of Gallavotti and, more recently, of Chierchia and Falcolini. As a matter of
fact, they give an algorithm of summation of Lindstedt’s series from which con-
vergence follows. Therefore, the problem of convergence for Lindstedt’s series can
be considered as definitely settled.

In view of the discussion above, we think it is natural to ask what happens if
one tries to implement the construction of Kolmogorov’s normal form via classical
expansions in powers of ε (as was suggested by Poincaré), instead of using the
quadratic method introduced by Kolmogorov. This paper is concerned with ex-
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actly this point. One is tempted to conjecture that one will find exactly the same
situation as for Lindstedt’s series; that is, the algorithm produces series which are
not absolutely convergent, but there are cancellations which make them to con-
verge. By the way, this conjecture is in agreement with the common belief that the
quadratic method is an essential tool for the proof of Kolmogorov’s theorem. One
could also conjecture that the algorithm will produce exactly the same expansions
as the method of Lindstedt. Now, our point is that both these conjectures are false.
We show instead that the construction of the normal form can be implemented in
such a way that one produces absolutely convergent series.

The basic idea, that we borrow from Siegel, is that one should start with a
careful analysis of the mechanism of accumulation of small divisors. Pushing the
ideas of Siegel a little further, we discover that the accumulation in the expansions
in a parameter is the same that is expected in the quadratic method of Kolmogorov.
This fact replaces the “simple remark” of Siegel, and allows us to prove the absolute
convergence of our expansions. By the way, we point out that our considerations
could be easily applied also to the problems investigated by Siegel, thus sharpening
his analysis in such a way that it can be applied to the Hamiltonian case.

The non necessity of a mechanism of cancellations makes the conclusion trivial,
in some sense: one could say that our proof is just a modification of that of Kol-
mogorov. However, we emphasize that the algorithm of Kolmogorov has never been
compared with the classical methods: that the power expansions in a parameter
could be absolutely convergent is quite unexpected. We believe that our scheme
brings into light some mechanisms which are present in all problems involving small
divisors, and that are not evident in the proofs based on the quadratic scheme.
Furthermore, one should notice that in practical applications the Hamiltonian is
typically known only as an expansion in ε with coefficients expanded in Fourier
series. In such a case one practically works with a finite order expansion in ε and
some suitable truncation of the Fourier series. Thus, it is interesting to have an
explicit constructive algorithm supported by quantitative estimates. Therefore, we
believe that a direct proof of the convergence of the classical scheme of expansion
in a parameter is of interest in itself.

The paper is organized as follows. In sect. 2 we recall the statement of Kol-
mogorov’s theorem, and illustrate in an informal way the main idea of our scheme.
We also discuss the relations with the algorithms of Lindstedt and of Kolmogorov.
The rest of the paper is devoted to the proof. In sect. 3 we establish an appropriate
algebraic and analytic framework, and reformulate the theorem in a form adapted
to our scheme of proof. In sect. 4 we give the scheme of proof. We try to simplify
the scheme omitting many technical details which are the tedious but unavoidable
tools in this kind of results. However, in order to make the paper self contained,
most technical details are explicitly worked out in sect. 5, which contains only
technical matter.
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2. Formulation of the theorem and discussion

We recall the formal statement of the theorem, essentially in the form given by
Kolmogorov in his original paper [1]. The Hamiltonian (1) will be assumed to
be real analytic for sufficiently small values of the parameter ε, and to be a real
holomorphic function of p, q in the complex domain

Dδ,ξ = Gδ ×Tn
ξ (3)

where δ and ξ are positive parameters, G ⊂ Rn, and

Tn
ξ = {q ∈ Cn : | Im(q)| < ξ}

Gδ =
⋃
p∈G

Bδ(p) , (4)

Bδ(p) being the open ball of radius δ and center p in Cn.
Following the original idea of Kolmogorov, we consider a point p∗ ∈ G such

that the frequencies ω := ∂h
∂p (p∗) satisfy a diophantine condition

|k · ω| ≥ γ|k|−τ (5)

for some positive γ and some τ ≥ n− 1. Furthermore, we denote

Cij =
∂2h

∂pi∂pj
(p∗) . (6)

Kolmogorov’s theorem can now be stated as follows.
Theorem. Consider the Hamiltonian (1); assume that h(p) and f(p, q, ε) for ε
small enough are uniformly bounded in ε and real analytic functions in the domain
Bδ(p∗)×Tn

ξ , where p∗ ∈ G is such that the corresponding unperturbed frequencies ω
satisfy the diophantine condition (5). Suppose moreover that there exists a positive
constant m such that for every v ∈ Rn one has

m
∑
i

|vi| ≤
∑
i

∣∣∣∑
j

Cijvj

∣∣∣ , (7)

where Cij is the matrix defined by (6). Then there exists a positive ε∗ such that for
|ε| < ε∗ the following statement holds true: there exists a real analytic canonical
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transformation

p = p∗ + p′ + ϕ(p′, q′, ε) , q = q′ + ψ(p′, q′, ε) , (8)

mapping the domain B%(0)×Tn
σ to Bδ(p∗)×Tn

ξ for some positive % < δ and σ < ξ,
which gives the Hamiltonian the Kolmogorov’s normal form

H ′(p′, q′, ε) =
n∑
j=1

ωjp
′
j +R(p′, q′, ε) , (9)

where R(p′, q′, ε) is at least quadratic in p′. The change of variables is near the
identity, in the sense that one has ϕ,ψ = O(ε1/2).

In view of the form of the transformed Hamiltonian it is evident that the torus
p′ = 0 is invariant under the canonical flow, and that the flow on that torus is
given by q′(t) = ωt + q′0, where q′0 is the initial phase. Therefore, in view of (8),
the solutions of Lindstedt should be compared with

p = p∗ + ϕ(0, ωt+ q′0, ε) , q = ωt+ q′0 + ψ(0, ωt+ q′0, ε) . (10)

As a byproduct of the proof we obtain explicit estimates that we report here.
Let E0 and F0 by constants such that

sup
p
|h(p)| ≤ E0 , sup

p,q,ε
|f(p, q, ε)| ≤ F0 , (11)

the supremum being taken over p ∈ Bδ(p∗), q ∈ Tn
ξ and ε in some interval around

zero. Then one has the following quantitative estimates:

ε∗ =
ε

A
(12)

% =
δ

2
, σ =

ξ

2
(13)

|ϕ| < 1
8 |ε|

1/2A1/2% , |ψ| ≤ 1
8 |ε|

1/2A1/2σ (14)

ε = min

{
1,
[

2n+2E0
δ

(
2Kτ

γξ
+

4e
mδ

)]−2

,

[
2n+2E0K

τ

γδξ

(
1+

2n+3E0K
τ

eγδξ

)]−2}
(15)

K =
⌈
−4
ξ

lnµ
⌉

(16)

µ =
1

3 · 22τ+21(ζ(3/2))4 (17)

A = eKξ/4
(

1 + e−ξ/4

1− e−ξ/4

)n
F0
E0

; (18)

here, ζ(s) =
∑
j≥1 1/js denotes the Riemann zeta function, and d·e denotes the

smallest integer larger than the argument.

We come now to illustrating in an informal way the idea which lies at the basis
of our proof of Kolmogorov’s theorem. We include this part with the purpose of
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making transparent the technical mechanism of control of the accumulation of
small divisors that will be used in the next sections.

Let us briefly recall the scheme of proof proposed by Kolmogorov in his original
memoir [1]. Consider the Hamiltonian

H(p, q) = ω · p+A(q) +B(q) · p+
1
2
C(q)p · p+O(p3) (19)

where the function A(q) and the vector valued function B(q) are assumed to be
small. As usual, all functions are assumed to be analytic. The goal is to kill the
unwanted terms independent of p and linear in p, namely A(q) + B(q) · p. To
this end, Kolmogorov’s suggestion is to look for a canonical transformation with
generating function

S(p̂, q) = p̂ · q +X(q) + ξ · q + Y (q) · p̂ , (20)

where X(q) is a function, Y (q) is a vector function, and ξ is a real vector. The
latter three quantities are so determined that the Hamiltonian (6) is transformed
to a new Hamiltonian Ĥ(p̂, q̂) of the same form, with new functions Â(q̂) and B̂(q̂),
which, however, have smaller size than A(q) and B(q). By iterating this procedure
one constructs an infinite sequence of canonical transformations which is proven to
converge to an analytic canonical transformation, say, p = ψ(p′, q′), q = ϕ(p′, q′)
which brings the Hamiltonian in Kolmogorov’s normal form (9).

A technical remark is that no use is made here of power expansions in the small
parameter ε. Indeed, at every step all terms independent of p and linear in p are
collected together, and used in order to determine the generating function for the
next step. This results in a fast convergence, usually called quadratic. However,
this also makes impossible a direct comparison of the equations representing the
flow on the torus with the solutions of Lindstedt. Indeed, looking at Kolmogorov’s
proof one immediately realizes that if the Hamiltonian (1) is analytic in ε then the
functions ψ and ϕ are analytic in ε, too. This means that the solutions can be ex-
panded in power series of ε. The resulting series must coincide with a resummation
of Lindstedt’s series. Therefore, the convergence of Kolmogorov’s construction im-
plies the convergence, but not necessarily the absolute convergence, of Lindstedt’s
series. A direct comparison can not be made, because the explicit expansion in ε
is not given by Kolmogorov’s method.

We now modify the algorithm of Kolmogorov by using explicitly the expansion
in ε. In order to simplify the discussion, let us consider here the simple case of an
Hamiltonian of the form

H(p, q) = ω · p+
p2

2
+ ε [A(q) +B(p, q) + C(p, q)] , (22)

where A(q) is independent of p, and B(p, q) and C(p, q) are assumed to be linear
and quadratic in p, respectively; moreover, let us assume that A, B and C are
trigonometric polynomials of degree K > 1. By the way, we can always assume
that A(q) has zero average over the angles, because a constant in the Hamiltonian
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is irrelevant. The present case already contains all the essential difficulties. The
general case will be considered in the following sections.

We use the formalism of Lie series in order to perform canonical transforma-
tions. In brief, having given a generating function εχ the transformation of the
Hamiltonian is written as H ′ = exp(Lεχ)H = H + εLχH + 1

2ε
2L2

χH + . . . , where
Lχ· = {χ, ·}. A similar formula is easily written for a generating function εsχ, with
s > 1. The advantage is that reordering all expansions in powers of ε is very easy,
because the algorithm of Lie series gives exactly that power expansion. For more
details see for instance [19].

Let us illustrate the first step. In order to keep trace also of the powers of p,
we perform the transformation of Kolmogorov via composition of two canonical
transformations with generating functions, respectively, χ1 = X(q) + ξ · q and
χ2 = Y (q) · p. With the first transformation we get

Ĥ = exp(Lεχ1)H = ω · p+
p2

2
+ ε

[
A+ {χ1, ω · p}+B + {χ1,

p2

2
}+ C

]
+ ε2 . . . ,

and we determine the function X(q) and the real vector ξ so that A+{X,ω ·p} = 0
and the average of B + {ξ · q, p2/2} is zero. The constant term {ξ · q, ω · p} = ξ · ω
is constant, and so it can be neglected. This kills the unwanted term A(q). With
the second transformation we get

H ′ = exp(Lεχ2)Ĥ = ω · p+
p2

2
+ ε

[
{χ2, ω · p}+ B̂ + {χ2,

p2

2
}+ C

]
+ ε2 . . . ,

where B̂ = {χ1, p
2/2}+B has vanishing average, so that we can determine χ2 by

solving the equation {χ2, ω · p}+ B̂ = 0.
After this step we find an Hamiltonian of the form

H ′(p, q) = ω · p+
p2

2
+ εC′1(p, q) + ε2 [A′2(q) +B′2(p, q) + C′2(p, q)] + ε3 . . . , (22)

namely, in Kolmogorov’s normal form up to terms of order ε2. The functions A′s,
B′s and C′s are determined as the part of the coefficient of εs which is independent
of p, linear in p and quadratic in p, respectively. Since the generating functions are
at most linear in p, no terms of degree higher than 2 in p are generated. Moreover,
the A′s, B

′
s and C′s turn out to be trigonometric polynomials of degree sK in the

angles q.
Concerning the small divisors, from the equations determining χ1 and χ2 one

immediately sees that each term in the Fourier expansion of X(q) contains exactly
one denominator k · ω with k ∈ Zn and 0 < |k| ≤ K, and that each term in the
Fourier expansion of χ2 contains at most two such denominators. Changing a little
the definition of the sequence {αr}r≥1 in (2) to

αr = min
0<|k|≤rK

|k · ω| , (23)
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we see that the worst possible denominator in χ1 and χ2 is α1 and α2
1, respectively.

Furthermore, the worst possible denominator in the coefficient of εs in transformed
Hamiltonian is α2s−2

1 for terms independent of p, α2s−1
1 for terms linear in p and

α2s
1 for terms quadratic in p. This is easily checked.

We proceed now by successively eliminating the part independent of p and
linear in p from the coefficients of ε2, ε3, . . . , without adding them up. That is, we
proceed as almost everybody did before Kolmogorov. This way we always work
with powers of ε. Following the idea of Siegel, we look carefully at the accumulation
of small divisors. A naive consideration would be that the transformation with the
generating functions of order s adds two denominators αs; thus, after r steps
of normalization one expects to find a denominator (α1 · . . . · αr)2. This would
bring us back to the considerations of point 2 in the introduction, thus supporting
the conjecture that there are cancellations. But it is not so. The key remark is
the following. A term which appears in the generating function χ1 at order εs

contributes to χ2 at orders εs, . . . , ε2s−1, but can contribute again to χ1 only at
order ε2s or higher. On the other hand, a term which appears in the generating
function χ2 at order εs does not contribute to the generating functions of order
εs+1, . . . , ε2s−1, and can contribute again to the generating functions only at order
ε2s or higher. Checking this fact requires a careful analysis of the algorithm, but
does not involve any essential difficulty; a detailed exposition can be found in [19].
In rough terms, let the Hamiltonian be in Kolmogorov’s normal form up to order
εs−1, and let the term of order εs contain a product of small divisors that we
denote with ds. For instance, from the discussion above we get d1 = 1 and d2 = α2

1.
Performing the normalization at order εs we introduce a new pair of small divisors
αs, so that the generating functions will contain a denominator dsα2

s . On the other
hand, the Poisson bracket between a generating function and a term of order εs

in the Hamiltonian generates a term of order ε2s containing a denominator d2
sα

2
s .

By the argument above, no small divisor will be added until we determine the
generating function of order ε2s. Thus, we get the recursive relation d2s = d2

sα
2
s .

If we consider only orders which are powers of 2, this leads to the conclusion that
the worst possible denominator at order ε2r is

d2r =
(
α2r−1

1 α2r−2

2 · . . . · α2r−1

)2
.

Consequently, the worst possible denominator in the generating function χ2 at
order ε2r is d2rα

2
2r . This is exactly the form expected in the quadratic procedure

of Kolmogorov (see, e.g., [20]).
Now, the problem is that there are terms of order εs, where s is not a power of

two. Thus, we need some conjecture on the worst possible denominator at every
order. In fact, we prove that:
The worst denominator that can appear at order εr is a product of the form
αj1 · . . . · αjs satisfying the following rules:
(i) the indexes jk do not exceed r;
(ii) the number of factors αjk is at most 2r;
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(iii) the indexes obey the selection rule∑
k

log2 jk ≤ 2(r − 1) .

It is an easy matter to check that the conjecture fits perfectly the general form
d2sα

2
2s of the worst possible denominator in χ2 at order r = 2s (use induction).

Proving that it works fine at every order is the main part of our scheme of proof
of Kolmogorov’s theorem.

Thus, we are naturally led to the problem of investigating the convergence of
a series with general term

εr

αj1 · . . . · αj2r
,

and with the denominators obeying the rules above. It is now an easy matter to
check that if the denominators are bounded from below by the usual diophantine
condition (5), then the expression above grows not faster than geometrically with
r. Indeed, according to (5) and (23) one has αs ≥ γ(sK)−τ , and so

εr

αj1 · . . . · αj2r
≤ εr

2r∏
s=1

Kτ

γ
jτs .

Now, in view of (ii) the number of factors Kτ/γ is at most 2r, and in view of (iii)
one has

log2
∏
s

jτs = τ
∑
s

log2 js ≤ 2(r − 1)τ ;

We conclude
εr

αj1 · . . . · αj2r
≤ 1

2τ

(
2τKτε

γ

)2r
,

as claimed. This elementary remark is the key of our result.
In order to compare our expansions with the series generated by Lindstedt’s

algorithm, let us remark that the restrictions above on the accumulation of small
divisors are actually very strong. For instance, a denominator of the form α1 ·. . .·αr
is forbidden by our rules. As a matter of fact, a denominator of this form does
appear in the series generated by Lindstedt’s algorithm (see for instance the con-
struction given in [14]). This immediately leads to the conclusion that our series
and the series of Lindstedt are actually different, and that they coincide only after
resummation of all coefficients of the same Fourier modes. The advantage of our
algorithm with respect to Lindstedt is that it produces absolutely convergent ex-
pansions, while Lindstedt’s series are not absolutely convergent. The disadvantage
is that it is less efficient, because it requires the construction of a lot of auxil-
iary function, while the algorithm of Lindstedt produces immediately the wanted
solutions.
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In the rest of the paper we consider the case of a general Hamiltonian. This
requires in particular considering functions which are not trigonometric polyno-
mials in the angles. This seems to invalidate the mechanism above for the control
of the accumulation of small divisors. However, this is just a technical matter,
and there are many ways to get rid of this problem. Following Poincaré, we use
the exponential decay of the coefficients in the Fourier expansion of an analytic
function (see [2], chapt. XIII, n. 146, p. 98–99). In view of this fact, we can split
the Hamiltonian in a sum of trigonometric polynomials and introduce an artificial
small parameter (that will be denoted by µ) which plays the role of the expansion
parameter. This seems to be a rather artificial procedure, but is fully equivalent
to considering the case of an Hamiltonian which is a trigonometric polynomial.
Moreover, we emphasize that in a practical computation one is always restricted
to considering truncated Fourier expansions. This is reflected in our scheme.

3. General setting

Our aim in this section is to introduce an appropriate algebraic and analytic frame-
work, also fixing the notations. In particular, in sect. 3.3 we introduce the technical
tools which allow us to dominate the accumulation of small divisors in a direct
manner.

3.1 Algebraic and analytic framework

For fixed non negative integers N and l we shall denote by Pl,N the distinguished
class of functions which are homogeneous polynomials of degree l in p ∈ Rn and
trigonometric (nonhomogeneous) polynomials of degreeN in q ∈ Tn. In particular,
P0,N is the class of trigonometric polynomials of degree N in q independent of p,
Pl,0 is the class of homogeneous polynomials of degree l in p independent of q, and
P0,0 turns out to be the class of constants. It is convenient to let 0 ∈ Pl,N for all
l, N , so that the class Pl,N has the structure of a linear space. A function f ∈ Pl,N
can be written as

f(p, q) =
∑
|j|=l

∑
|k|≤N

fj,kp
j exp(ik · q) . (24)

Here, j ∈ Zn is an integer vector with non negative components; k ∈ Zn; |k| =
|k1|+ . . .+ |kn|, and similarly for |j|; fj,k ∈ C are complex coefficients; moreover
we use the multi index notation pj = pj11 · . . . · pjnn and k · q = k1q1 + . . . + knqn.
We shall also use the notation 〈·〉 for the average of a function over the angles q.

The following algebraic properties are immediate: if f ∈ Pl,N and f ′ ∈ Pl′,N ′
then:
(i) if l = l′ then f + f ′ ∈ Pl,max(N,N ′).
(ii) for 1 ≤ j ≤ n one has ∂f

∂pj
∈ Pl−1,N and ∂f

∂qj
∈ Pl,N ; in particular for l = 0 one

has ∂f
∂pj

= 0, and for N = 0 one has ∂f
∂qj

= 0.
(iii) ff ′ ∈ Pl+l′,N+N ′ .
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(iv) {f, f ′} ∈ Pl+l′−1,N+N ′ ; in particular, {f, f ′} = 0 in either case l = l′ = 0 or
N = N ′ = 0. Here, {·, ·} denotes the Poisson bracket.
We introduce norms on the spaces Pl,N as follows. Recall that a function f ∈

Pl,N can be written as in (24); having fixed a positive parameter σ we define the
norm of f as

‖f‖σ =
∑
|j|=l

∑
|k|≤N

|fj,k| exp(|k|σ) . (25)

The norm is well defined, due to the finite number of terms in the sum. By the way,
the definition is correct also in the case of an infinite Fourier expansion, provided
f is analytic in q and σ is small enough. A useful property of this norm is that
one has

|f(p, q)| ≤ ‖f‖σ%l for all (p, q) ∈ B% ×Tn
σ . (26)

3.2 Reformulation of the theorem

Here we reformulate the main theorem in a form adapted to our algebraic scheme.
Proposition 1. Consider a real analytic Hamiltonian

H(p, q) =
n∑
j=1

ωjpj +
∑
l≥2

h
(0)
l (p) +

∑
s>0

∑
l≥0

f
(0,s)
l (p, q) , (27)

with h
(0)
l ∈ Pl,0 and f

(0,s)
l ∈ Pl,sK for some positive integer K. Assume that (5)

and (7) are satisfied with positive γ, τ and m. Assume moreover

‖h(0)
l ‖σ ≤ Eηl0 , ‖f (0,s)

l ‖σ ≤ ε0Eµ
sηl0 (28)

with positive constants E , ε0 , µ , η0 and σ. Then there exist positive constants % , ε
and µ such that the following statement holds true: if ε0 < ε and µ < µ then there
exists a real analytic canonical transformation C satisfying

B%/4(0)×Tn
σ/4 ⊂ C(B%/2(0)×Tn

σ/2) ⊂ B3%/4(0)×Tn
3σ/4 (29)

which changes the Hamiltonian to Kolmogorov’s normal form

H(∞)(p, q) =
∑
j

ωjpj + h(∞)(p, q) , (30)

h(∞) being a power series in p starting with terms of degree 2. The canonical
transformation is close to the identity, in the sense that one has |p−p′| = O(ε1/2

0 ),
|q − q′| = O(ε1/2

0 ), where (p′, q′) = C(p, q).
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Estimated values are

% =
1
η0

(31)

µ =
1

3 · 22τ+21(ζ(3/2))4 , ζ(s) =
∑
j≥1

1/js (32)

ε = min

{
1 ,
[
4Eη0

(
Kτ

γσ
+

2eη0
m

)]−2
,

[
2Eη0K

τ

γσ

(
1 +

4Eη0K
τ

eγσ

)]−2
}

(33)

|p− p′| ≤ 1
8ε

1/2
0 % , |q − q′| ≤ 1

8ε
1/2
0 σ . (34)

The main theorem will be obtained from this proposition in sect. 4.4.

3.3 Small divisors
Instead of using the explicit diophantine condition (5) we may fix a positive con-
stant Ω and a sequence {αr}r≥1 of positive real numbers such that

|k · ω| ≥ Ωαr for 0 < |k| ≤ rK , k ∈ Zn , (35)

and
αr ≤ 1 for all r ≥ 1 . (36)

The latter condition can be satisfied, of course, via an appropriate choice of Ω.
Recalling that the small divisors are expected to accumulate according to the

rules stated at the end of sect. 2, we introduce a special function defined as follows.
Let {ϑr}r≥1 be a sequence of positive real numbers, with ϑr ≤ 1 for all r. Let r ≥ 0
and s ≥ 0 be integers, and q ≥ 0 be real. Let also Jr,s,q for r ≥ 1 and s ≥ 1 be
defined as the set of integers arrays the elements of which are positive and not
exceeding r, the array containing at most s elements, and satisfying the selection
rule that the sum of the base 2 logarithms of the elements does not exceed q.
Formally:

Jr,s,q =
{
j = {j1, . . . , jk} : jm ∈ {1, . . . , r} , 1 ≤ k ≤ s ,

k∑
m=1

log2 jm ≤ q
}
.

(37)
Then we define the function T (ϑ, r, s, q) as

T (ϑ, 0, s, q) = T (ϑ, r, 0, q) = 1 ,

T (ϑ, r, s, q) = max
j∈Jr,s,q

∏
m

ϑ−1
jm

. (38)

In the following, we shall refer to the argument s as the number of divisors, and
to the argument q as the selection rule. The following inequalities are immediate:

if r′ ≤ r then T (ϑ, r′, s, q) ≤ T (ϑ, r, s, q) ,
if s′ ≤ s then T (ϑ, r, s′, q) ≤ T (ϑ, r, s, q) ,
if q′ ≤ q then T (ϑ, r, s, q′) ≤ T (ϑ, r, s, q) .

(39)
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The condition ϑr ≤ 1 is required here for the cases r′ = 0 or s′ = 0. It is also an
easy matter to prove that the following inequalities hold:

T (ϑ, r, s, q)T (ϑ, r′, s′, q′) ≤ T (ϑ,max(r, r′), s+ s′, q + q′) , (40)
T (ϑ, r, s, q) ≤ ϑr′T (ϑ,max(r, r′), s+ 1, q + log2 r

′) . (41)

In order to prove (40) just note that in view of definition (37) the union of two
arrays j ∈ Jr,s,q and j′ ∈ Jr′,s′,q′ does belong to Jmax(r,r′),s+s′,q+q′ ; then the
proof is trivial. In order to prove (41), note that by definition (38) one has

ϑ−1
r′ ≤ T (ϑ, r′, 1, log2 r

′) ;

then use (40).

4. Scheme of proof

In the spirit of Kolmogorov’s scheme, we construct an infinite sequence {H(r)}r≥0
of Hamiltonians, with the condition that H(r) is in Kolmogorov’s normal form up
to order r. To this end, we perform an infinite sequence of perturbation steps, each
consisting of a near to identity canonical transformation which changes H(r−1) to
H(r). The transformation removes all terms of order r which are not yet in normal
form. The canonical transformation at step r is generated via composition of two
Lie series of the form

exp(L
χ

(r)
2

) ◦ exp(L
χ

(r)
1

) (42)

where
χ

(r)
1 (q) = X(r)(q) +

∑
i

ξ
(r)
i qi , χ

(r)
2 (p, q) =

∑
i

Y
(r)
i (q)pi (43)

with ξ(r) ∈ Rn, X(r) ∈ P0,rK and χ
(r)
2 ∈ P1,rK . Here, as usual, we denote Lg· =

{g, ·}. The quantities X(r)(q), Y (r)
i (q) and ξ(r) are unknowns to be determined so

that H(r) is in Kolmogorov’s normal form up to order r.

4.1 Formal algorithm

After r steps the Hamiltonian is written as

H(r) =
∑
i

ωipi +
r∑
s=0

∑
l≥2

h
(s)
l +

∑
s>r

∑
l≥0

f
(r,s)
l , (44)

where h(s)
l is of class Pl,sK and f

(r,s)
l is of class Pl,sK . We can always assume

that 〈f (r−1,r)
0 〉 = 0, because a constant in the Hamiltonian can be neglected. The

functions are recursively defined as follows. The terms of order r of the Hamiltonian
are

h
(r)
l = L

χ
(r)
2
h

(0)
l + f̂

(r,r)
l for l ≥ 2 . (45)
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The perturbation is

f
(r,kr+m)
0 =

k−1∑
j=0

1
j!
Lj
χ

(r)
2

f̂
(r,(k−j)r+m)
0 for k ≥ 1 , 0 ≤ m < r , kr +m > r ;

f
(r,kr)
1 =

k − 1
k!

Lk−1
χ

(r)
2

f̂
(r,r)
1 +

k−2∑
j=0

1
j!
Lj
χ

(r)
2

f̂
(r,(k−j)r)
1 for k ≥ 2 ;

f
(r,kr+m)
1 =

k−1∑
j=0

1
j!
Lj
χ

(r)
2

f̂
(r,(k−j)r+m)
1 for k ≥ 1 , 0 < m < r ;

f
(r,kr+m)
l =

1
k!
Lk
χ

(r)
2
h

(m)
l +

k−1∑
j=0

1
j!
Lj
χ

(r)
2

f̂
(r,(k−j)r+m)
l

for l ≥ 2 , k ≥ 1 , 0 ≤ m < r , kr +m > r .

(46)

The functions f̂ are given by

f̂
(r,r)
0 = 0 ,

f̂
(r,r+m)
0 = f

(r−1,r+m)
0 for 0 < m < r ;

f̂
(r,kr+m)
l =

1
k!
Lk
χ

(r)
1
h

(m)
l+k +

k−1∑
j=0

1
j!
Lj
χ

(r)
1

f
(r−1,(k−j)r+m)
l+j

for l ≥ 0 , k ≥ 1 , l+ k > 1 , 0 ≤ m < r .

(47)

The generating functions χ(r)
1 = X(r) +

∑
i ξ

(r)
i qi and χ

(r)
2 are determined by the

equations ∑
i

ωi
∂X(r)

∂qi
+ f

(r−1,r)
0 = 0 , (48)

∑
j

Cijξ
(r)
j + b

(r)
i = 0 , (49)

∑
i

ωi
∂χ

(r)
2

∂qi
+ {X(r), h

(0)
2 }+ f̃

(r−1,r)
1 = 0 . (50)

where
f̃

(r−1,r)
1 = f

(r−1,r)
1 − 〈f (r−1,r)

1 〉 ,
and the real matrix C and the real vector b(r) are defined as

Cij =
∂2h

(0)
2

∂pi∂pj
, b

(r)
i =

∂〈f (r−1,r)
1 〉
∂pi

. (51)

This algorithm is obtained by writing in explicit form the exponential operators
in (42). The details are deferred to the technical section 5.1
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4.2 Estimates depending on parameters

We now translate our formal algorithm, as expressed in section 4.1, into a recursive
scheme of estimates on the norms of the various functions. To this end, having
fixed d ∈ R, 0 < d ≤ 1/4, we consider a sequence {δr}r≥1 of positive real numbers
satisfying

δr+1 ≤ δr ,
∑
r≥1

δr ≤
d

2
. (52)

Moreover, we introduce a further sequence {dr}r≥0 of positive real numbers recur-
sively defined as

d0 = 0 , dr = dr−1 + 2δr . (53)

With this setting we look for estimates on the Hamiltonian and on the generating
functions at every normalization step r. However, we need first two elementary
technical estimates concerning on the one hand the generalization of Cauchy’s
estimates in view of our choice of the norm, and, on the other hand, the estimate
of the generating functions as determined by equations (48)–(51).

Lemma 1. Let χ(r)
1 and χ

(r)
2 be as in (43), and let f ∈ Pl,N . Then for every

positive d < 1 one has

∥∥∥∥∂χ(r)
1
∂q

∥∥∥∥
(1−d)σ

≤ ‖X
(r)‖σ
edσ

+ |ξ(r)| , for (54)

∥∥∥∥∂χ(r)
2
∂q

∥∥∥∥
(1−d)σ

≤ ‖χ
(r)
2 ‖σ
edσ

, for (55)

∥∥∥∥∂χ(r)
2
∂p

∥∥∥∥
(1−d)σ

≤ ‖χ(r)
2 ‖σ , for (56)

∥∥∥Ls
χ

(r)
1
f
∥∥∥

(1−d)σ
≤ s!

(
l

s

)(‖X(r)‖σ
dσ

+ e|ξ(r)|
)s
‖f‖σ for 0 ≤ s ≤ l , (57)

∥∥∥Ls
χ

(r)
2
f
∥∥∥

(1−d)σ
≤ s!

(
l + s

s

)(‖χ(r)
2 ‖σ
dσ

)s
‖f‖σ for s ≥ 0 . (58)

Note that in view of f ∈ Pl,N one has Ls
χ

(r)
1

f = 0 for s > l. The proof is deferred

to the technical section 5.2. We emphasize that the estimates do not depend on
the order of truncation of the Fourier expansion, namely rK and N . In fact the
estimates hold true also in the case of infinite Fourier series, provided all the
functions are analytic.
Lemma 2. The equations (48)–(50) admit solutions X(r) ∈ P0,rK, ξ(r) ∈ Rn and
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χ
(r)
2 ∈ P1, rK satisfying

‖X(r)‖(1−dr−1)σ ≤
‖f (r−1,r)

0 ‖(1−dr−1)σ

αrΩ
, (59)

|ξ(r)| ≤ 1
m
‖f (r−1,r)

1 ‖(1−dr−1)σ , (60)

‖χ(r)
2 ‖(1−dr−1−δr)σ ≤

1
αrΩ

2‖f (r−1,r)
0 ‖(1−dr−1)σ‖h

(0)
2 ‖σ

αrδreΩσ
+ ‖f (r−1,r)

1 ‖(1−dr−1)σ

 .(61)

Here, the fact that at order r we work with Fourier expansions truncated at order
rK is crucial, of course. The proof is deferred to the technical section 5.2
Lemma 3. Let H(p, q) be as in proposition 1 and satisfy the nondegeneracy condi-
tion (7). Let the sequences {αr}r≥1, {δr}r≥1 and {dr}r≥0 be determined according
to (35), (52) and (53) respectively. Given η0 as in proposition 1, define the se-
quence {ηr}r≥1 as

ηr = (1 + δr)(1 + αrδ
2
r )ηr−1 . (62)

Define also the sequences {al}l≥0 and {bl}l≥0 as

a0 = 2 , b0 = 0 , a1 = 1 , b1 = 1 , and al = 0 , bl = 2 for l ≥ 2 .
(63)

Assume

ε0 ≤ 1 , (64)

4ε1/2
0 Eη0

(
1

Ωσ
+

2eη0
m

)
≤ 1 , (65)

2ε1/2
0 Eη0

1
Ωσ

(
1 +

4Eη0
eΩσ

)
≤ 1 . (66)

Then at every step r > 0 in the normalization procedure the following estimates
hold: for the generating functions we have

‖X(r)‖(1−dr−1)σ

eδrσ
+ |ξ(r)| ≤ ε

1/2
0

2eη0
(24µ)rT (αδ2, r, 2r − 1, 2r− 2− log2 r) , (67)

‖χ(r)
2 ‖(1−dr−1−δr)σ ≤ ε

1/2
0 δ2

rσ(24µ)rT (αδ2, r, 2r, 2r− 2) ; (68)

for the functions h(r) and f (r,s)
l we have∥∥∥h(r)

l

∥∥∥
(1−dr)σ

≤ 1
8ε

1/2
0 Eηlr(24µ)rT (αδ2, r, 2r, 2r− 2) , (69)∥∥∥f (r,s)

l

∥∥∥
(1−dr)σ

≤ 1
8ε0Eη

l
r(24µ)sT (αδ2, r, 2s− al, 2s− 2 + bl log2 r − 2 log2 s) (70)

where l ≥ 2 in (69), and l ≥ 0 , s ≥ r in (70).
Here, αδ2 denotes the sequence {αrδ2

r}. The proof is deferred to sect. 5.2.
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4.3 Choice of parameters and proof of proposition 1
In this section we make a choice for the sequences {αr}r≥1 and {δr}r≥1, and for
the parameter d. According to the diophantine condition (5), which was assumed
by proposition 1, we set

αr = r−τ , Ω = γK−τ , (71)

with γ > 0 depending on the frequencies ω, and with τ > n− 1. We also set

δr =
d

Br3/2 , B = 2ζ(3/2) , (72)

where ζ(s) is the Riemann zeta function; with this choice, condition (52) is fulfilled.
Finally we set

d = 1
4 . (73)

Substituting Ω as given by (71) in the hypotheses (64), (65) and (66) of lemma 3
we readily recover the condition (33) of proposition 1. Thus, lemma 3 applies. We
now specialize the estimates with our choice of the constants. We get

‖X(r)‖(1−dr−1)σ

eδrσ
+ |ξ(r)| ≤ ε

1/2
0 δ2

r

22τ+7eη0rτ

(
µ

µ

)r
(74)

‖χ(r)
2 ‖(1−dr−1−δr)σ ≤

ε
1/2
0 δ2

rσ

22τ+6

(
µ

µ

)r
, (75)

with µ given by

µ =
d4

3 · 22τ+9B4 ;

by the way, (32) is computed from this by substituting (72) and (73). In order to
prove (74) and (75) we proceed as follows. Using the definition (38) of the function
T , with ϑj replaced by αjδ2

j , we get

T (αδ2, r, s, q) = max
j∈Jr,s,q

∏
m

1
αjmδ

2
jm

=
(
B

d

)2s
max

j∈Jr,s,q

∏
m

jτ+3
m

(recall that the number of divisors is at most s, and that B/d > 1). Furthermore,
in view of the selection rule we have

log2
∏
m

jτ+3
m = (τ + 3)

∑
m

log2 jm ≤ (τ + 3)q .

This holds for every j ∈ Jr,s,q. We conclude

T (αδ2, r, s, q) ≤
(
B

d

)2s
2(τ+3)q . (76)

Substituting this inequality in (68) we readily get (75). In order to obtain (74)
from (67) we use also T (αδ2, r, 2r − 1, 2r − 2− log2 r) ≤ αrδ

2
rT (αδ2, r, 2r, 2r − 2)

and αr = r−τ .
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We use now (74) and (75) in order to estimate the canonical transformation. We
denote by (p(0), q(0)) the original coordinates, and by (p(r), q(r)) the coordinates
at step r. We also denote by Ĉ(r) the canonical transformation mapping (p(r), q(r))
to (p(r−1), q(r−1)). The transformation is written explicitly as

p(r−1) = exp(L
χ

(r)
1

)p̂(r) = p̂(r) +
∂χ

(r)
1

∂q(r−1)

p̂(r) = exp(L
χ

(r)
2

)p(r) = p(r) +
∑
s≥1

1
s!
Ls−1
χ

(r)
2

∂χ
(r)
2

∂q(r)

q(r−1) = exp(L
χ

(r)
2

)q(r) = q(r) −
∑
s≥1

1
s!
Ls−1
χ

(r)
2

∂χ
(r)
2

∂p(r) .

(77)

Note that the generating function χ
(r)
1 does not change the angles. Consider now

a sequence of domains B(3d−dr)%(0)×Tn
(3d−dr)σ, with dr and % given by (53) and

by (31) respectively. Using lemma 1, (31), (73) and (74), and recalling (26), we get
the estimate

|p(r−1) − p̂(r)| < ε
1/2
0 δ2

r%

22τ+7erτ

(
µ

µ

)r
|p̂(r) − p(r)| < ε

1/2
0 δr%

22τ+6

(
µ

µ

)r∑
s≥1

[
ε
1/2
0 δr

22τ+6

(
µ

µ

)r]s−1

|q(r−1) − q(r)| < ε
1/2
0 δ2

rσ

22τ+6

(
µ

µ

)r∑
s≥1

[
ε
1/2
0 δr

22τ+6

(
µ

µ

)r]s−1

.

In view of the condition µ < µ the series in the latter estimates converges, with

∑
s≥1

[
ε
1/2
0 δr

22τ+6

(
µ

µ

)r]s−1

< 2 .

Thus, the series (77) defining the canonical transformation is absolutely convergent
in the domain B(3d−dr−1−δr)%(0)×Tn

(3d−dr−1−δr)σ
, and so, by Weierstrass theorem,

is analytic. Furthermore, one has the estimates

|p(r−1) − p(r)| < ε
1/2
0 δr% , |q(r−1) − q(r)| < ε

1/2
0 δrσ .

A similar argument applies to the inverse of Ĉ(r), which is defined as a composition
of Lie series generated by −χ(r)

2 and −χ(r)
1 . We conclude that

B(3d−dr)%×T
n
(3d−dr)σ ⊂ Ĉ

(r)(B(3d−dr−1−δr)%×T
n
(3d−dr−1−δr)σ) ⊂ B(3d−dr−1)%×T

n
(3d−dr−1)σ .

Consider now the sequence of transformations C(r) = Ĉ(1) ◦ . . . ◦ Ĉ(r). For
(p(r−1), q(r−1)) ∈ B(3d−dr−1)δr×Tn

(3d−dr−1)σ the transformation is clearly analytic,
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and one has

|p(0) − p(r)| < ε
1/2
0 %

r∑
j=1

δj , |q(0) − q(r)| < ε
1/2
0 σ

r∑
j=1

δj .

On the other hand, by (72) and (73) one has
∑
j≥1 δj ≤ d/2 = 1/8, and so, by

Weierstrass theorem, the sequence C(r) converges to an analytic canonical trans-
formation C satisfying (34) and (29).

It remains to prove that the transformed Hamiltonian H ◦ C is given the
form (30), where h(∞), according to (44), is in Kolmogorov’s normal form, be-
ing

h(∞) =
∑
s≥0

∑
l≥2

h
(s)
l .

To this end, we first prove that the sequence of Hamiltonians
{
H(r)

}
r≥0

given

by (44) actually converges to an analytic Hamiltonian, H(∞) say. Using (69), (70)
and (76) we get

‖h(r)
l ‖(1−dr)σ ≤

ε
1/2
0 E

22τ+9

(
µ

µ

)r
ηlr , ‖f (r,s)

l ‖(1−dr)σ ≤
ε0E

22τ+9

(
µ

µ

)s (r
s

)2τ+6
ηlr .

(78)
Recalling now that we are considering H(r) as defined on the domain
B(3d−dr−1−δr)%(0) × Tn

(3d−dr−1−δr)σ
, where the canonical transformation C(r) is

defined, for all (p, q) in that domain we estimate

|h(r)
l (p, q)| < ‖h(r)

l ‖(1−dr)σ(3%/4)l , |f (r,s)
l (p, q)| < ‖f (r,s)

l ‖(1−dr)σ(3%/4)l . (79)

We need now the elementary inequality

ln
∏
r≥1

(1 + δr)(1 + αrδ
2
r ) <

∑
r≥1

δr(1 + αrδr) <
(
1 + d

2
)∑
r≥1

δr <
(
1 + d

2
)
d
2 = 9

64

(use αr ≤ 1,
∑
r δr ≤ d/2 and d = 1/4). From this we get ηr < e9/64η0 and, using

% = 1/η0, also 3ηr%/4 < 1. Putting this inequality in (79) and (78) and adding up
we get∑

l≥2

|h(r)
l (p, q)| < C1

(
µ

µ

)r
,
∑
s>r

∑
l≥0

|f (r,s)
l (p, q)| < C2

(
µ

µ

)r+1
,

where C1 and C2 are finite constants, the actual value of which is not relevant.
Thus, recalling

H(r) −H(r−1) =
∑
l≥2

h
(r)
l +

∑
s>r

∑
l≥0

f
(r,s)
l −

∑
s≥r

∑
l≥0

f
(r−1,s)
l ,

in the domain B(3d−dr−1−δr)%(0)×Tn
(3d−dr−1−δr)σ

we have the uniform estimate∣∣∣H(r)(p, q)−H(r−1)(p, q)
∣∣∣ < C3

(
µ

µ

)r
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with some positive constant C3. In view of µ < µ, this proves that the sequence
of functions H(r) is uniformly convergent in the domain B%/2 ×Tn

σ/2, and so, by

Weierstrass theorem, it defines an analytic Hamiltonian H(∞).
The proof that H(∞) = H ◦C is a straightforward consequence of a well known

property of Lie series. Indeed, given a canonical mapping Ĉ(r) of the form (77) and
any analytic function g(p, q) on the domain where the mapping is defined, then
one has g ◦ Ĉ(r) = exp(L

χ
(r)
2

) ◦ exp(L
χ

(r)
1

)g. A repeated use of this property allows

us to establish that H(r) = H ◦ C(r) for every r, and the conclusion H(∞) = H ◦ C
easily follows. This concludes the proof of proposition 1.

4.4 Proof of the main theorem

We give the Hamiltonian (1) the form (27), also producing explicit estimates for
the constants ε0 , η0 , E , µ and σ. Having fixed the point p∗ we translate the origin
of the action variables in p∗ via the canonical transformation p′ = p− p∗ , q′ = q.
Then we expand both h(p) and f(p, q, ε) in power series of p′ around the origin,
and get (primes are omitted, and an unessential constant is ignored)

h(p) =
n∑
j=1

ωjpj +
∑
l≥2

hl(p) , f(p, q, ε) =
∑
l≥0

fl(p, q, ε) ,

hl(p) and fl(p, q, ε) denoting homogeneous polynomials of degree l in p. Finally,
we pick an arbitrary positive integer K and split the expansion of fl(p, q, ε) in
Fourier series of the angles as

f
(1)
l =

∑
0≤|k|≤K

cl,k(p, ε) exp(ik · q) ,

f
(s)
l =

∑
(s−1)K<|k|≤sK

cl,k(p, ε) exp(ik · q) for s > 1.

Identifying hl and f (s)
l with h(0)

l and f (0,s)
l respectively, the form (27) is achieved.

By the analyticity assumptions there are constants ε0 , E , η0 , µ and σ such
that (28) is satisfied. Estimated values are

η0 =
2
δ
, E = 2n−1E0 , µ = e−Kξ/4 , ε0 = εeKξ/4

(
1 + e−ξ/4

1− e−ξ/4

)n
F0
E0

, σ =
ξ

2
,

(80)
E0 and F0 being given by (11). The estimate of the constants η0 and E is a
straightforward application of Cauchy’s estimate to Taylor’s expansion of an ana-
lytic function. The estimate of µ , σ and ε0 uses also the exponential decay of the
coefficients in Fourier expansion of a periodic analytic function, and can be found
in [21], lemma 8.

Thus, we have given the Hamiltonian (1) a form to which proposition 1 can be
applied, provided the conditions ε0 ≤ ε and µ ≤ µ are satisfied. We show that this
is possible by just computing the explicit estimates for the main theorem.
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The condition on µ can be easily satisfied by suitably determining the parame-
ter K. For, in view of (80), we ask e−Kξ/4 ≤ µ; on the other hand, in view of (33)
we are interested in keeping K as small as possible; this gives (16). Thus, we are
left only with the condition ε0 ≤ ε; in view of (80) this gives (15) and (12). Finally,
% is determined by (31), and this, using again (80), gives (13). This concludes the
proof.

5. Proofs and technical lemmas

In this section we work out in detail the proof of all lemmas of sect. 4. The formal
part of sect. 5.1 is nothing but an explicit formulation of the normalization step
with use of the Lie series algorithm. It reduces in fact to a suitable reordering of
terms. Some estimates of sect. 5.2 (proofs of lemmas 1 and 2) are just an adaptation
of known estimates to our norm. The main part, which includes the mechanism of
control of the small divisors, is the proof of lemma 3 in sect. 5.3.

5.1 Justification of the formal algorithm

We use induction. For r = 0 the form (44) of the Hamiltonian coincides with (27).
Assuming that the Hamiltonian has the form (44) with r − 1 in place of r, we
perform the canonical transformation (42), thus transforming the Hamiltonian
H(r−1) to H(r). The proof of the lemma is nothing but an algebraic calculation
which leads to the recursive transformation formulæ stated in the lemma.

It is convenient to reorder all terms in the HamiltonianH(r−1), splitting it into
blocks of size r. To this end we replace the index s ≥ r in the perturbation with
the index kr +m with k ≥ 1 and 0 ≤ m < r, and write

H(r−1) =
∑
i

ωipi +
r−1∑
s=0

∑
l≥2

h
(s)
l +

∑
k≥1

r−1∑
m=0

∑
l≥0

f
(r−1,kr+m)
l . (81)

We first compute exp(L
χ

(r)
1

)H(r−1). To this end we notice that by (48) one has

X(r) ∈ P0,rK . A straightforward application of the properties (ii) and (iv) of
sect. 3.1 gives L

χ
(r)
1

(Pl,sK) ⊂ Pl−1,(s+r)K for l ≥ 1, and L
χ

(r)
1

(
P0,sK

)
= {0}.

Thus in the expansion of exp(L
χ

(r)
1

)H(r−1) one has∑
i
ωipi ∈ P1,0

L
χ

(r)
1

(∑
i
ωipi

)
∈ P0,rK ;

Lk
χ

(r)
1
h

(m)
l+k ∈ Pl,(kr+m)K for l ≥ 0 , k ≥ 1 , l + k > 1, 0 ≤ m < r ;

Lj
χ

(r)
1

f
(r−1,(k−j)r+m)
l+j ∈ Pl,(kr+m)K for 0 ≤ j < k , l ≥ 0 , k ≥ 1 , 0 ≤ m < r ;

(82)
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this takes into account all terms. Now we define new functions f̂ (r,kr+m)
l by collect-

ing all terms of class Pl,kr+m, with l ≥ 0, k ≥ 1 and 0 ≤ m < r. For l = 0 , k = 1,

forgetting the constant term
∑
i ωiξ

(r)
i , we define

f̂
(r,r)
0 =

∑
i

ωi
∂X(r)

∂qi
+ f

(r−1,r)
0 .

For all other values of the indexes l , k , m we define f̂ (r,kr+m)
l as in the second and

third of (47); we must split the definition because there is no contribution to the
class P0,r+m coming from the third of (82). We determine X(r) by the condition

f̂
(r,r)
0 = 0, which is nothing but equation (48). By the way, this also justifies the

first of (47). Thus, all terms independent of p at order r have been removed. We
conclude that the Hamiltonian transformed with χ

(r)
1 has the form

Ĥ(r) := exp(L
χ

(r)
1

)H(r−1) =
∑
i

ωipi+
r−1∑
s=0

∑
l≥2

h
(s)
l +

∑
k≥1

r−1∑
m=0

∑
l≥0

f̂
(r,kr+m)
l . (83)

Remark that this is similar to the form (81), with however f̂ (r,kr+m) in place of
f (r−1,kr+m) and with f̂

(r,r)
0 = 0.

We compute now exp(L
χ

(r)
2

)Ĥ(r). To this end we notice that by (50) one

has χ(r)
2 ∈ P1,rK . A straightforward application of the properties (ii) and (iv)

of sect. 3.1 gives L
χ

(r)
2

(Pl,sK) ⊂ Pl,(s+r)K for all s, l. Thus in the expansion of

exp(L
χ

(r)
2

)Ĥ(r) one has

Lj
χ

(r)
2

(∑
i
ωi · pi

)
∈ P1,jrK for j ≥ 0 ;

Lj
χ

(r)
2

h
(s)
l ∈ Pl,(jr+s)K for j ≥ 0 , l ≥ 2 , 0 ≤ s < r ;

Lj
χ

(r)
2

f̂
(r,(k−j)r+m)
l ∈ Pl,(kr+m)K for 0 ≤ j < k , l ≥ 0 , k ≥ 1 , 0 ≤ m < r ;

this takes into account all terms. Proceeding as above, we define new functions
f

(r,kr+m)
l with l ≥ 0, k ≥ 1 and 0 ≤ m < r by collecting all terms belonging to
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the same class Pl,(kr+m)K . Thus we define

f
(r,kr+m)
0 =

k−1∑
j=0

1
j!
Lj
χ

(r)
2

f̂
(r,(k−j)r+m)
0

for k ≥ 1 , 0 ≤ m < r ;

f
(r,kr)
1 =

1
k!
Lk
χ

(r)
2

(∑
i
ωi · pi

)
+
k−1∑
j=0

1
j!
Lj
χ

(r)
2

f̂
(r,(k−j)r)
1

for k ≥ 1 ;

f
(r,kr+m)
1 =

k−1∑
j=0

1
j!
Lj
χ

(r)
2

f̂
(r,(k−j)r+m)
1

for k ≥ 1 , 0 < m < r ;

f
(r,kr+m)
l =

1
k!
Lk
χ

(r)
2
h

(m)
l +

k−1∑
j=0

1
j!
Lj
χ

(r)
2

f̂
(r,(k−j)r+m)
l

for l ≥ 2 , k ≥ 1 , 0 ≤ m < r .

(84)

Remark that for k = 1 , m = 0 the first equation gives f (r,r)
0 = f̂

(r,r)
0 = 0. Now

we also impose the condition f (r,r)
1 = 0, so that all terms which are linear in p are

removed at order r. To this end we replace (47) with k = 1, m = 0 and l = 1 in
the second of (84) with k = 1, thus getting the condition∑

i

ωi
∂χ

(r)
2

∂qi
+ L

χ
(r)
1
h

(0)
2 + f

(r−1,r)
1 = 0 . (85)

Recalling now that h(0)
2 ∈ P2,0, write it as

h
(0)
2 =

1
2

∑
i,j

Cijpipj ,

with Cij defined by (51). This gives

L
χ

(r)
1
h

(0)
2 = {X(r), h

(0)
2 }+

∑
i,j

Cijpiξ
(r)
j . (86)

Furthermore, separate out the average part of f (r−1,r)
1 , writing

f
(r−1,r)
1 = 〈f (r−1,r)

1 〉+ f̃
(r−1,r)
1 , (87)

and remark that, in view of 〈f (r−1,r)
1 〉 ∈ P1,0, we have

〈f (r−1,r)
1 〉 =

∑
i

b
(r)
i pi , (88)
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with b(r)i given by (51). Substituting (86) and (87) in condition (85), and using (88)
we readily get the equations (49) and (50), thus defining ξ(r) and χ(r)

2 . We use now
equation (50) in order to transform the second of (84) with k > 1 as follows. We
separate the term j = k − 1 in the sum over j, thus writing

f
(r,kr)
1 =

1
k!
Lk
χ

(r)
2

(∑
i
ωi · pi

)
+

1
(k − 1)!

Lk−1
χ

(r)
2

f̂
(r,r)
1 +

k−2∑
j=0

1
j!
Lj
χ

(r)
2

f̂
(r,(k−j)r)
1 .

Then we remark that the first two terms, in view of (50), give

1
k!
Lk−1
χ

(r)
2

[
L
χ

(r)
2

(∑
i
ωi · pi

)
+ kf̂

(r,r)
1

]
=
k − 1
k!

Lk−1
χ

(r)
2

f̂
(r,r)
1 .

Thus we get

f
(r,kr)
1 =

k − 1
k!

Lk−1
χ

(r)
2

f̂
(r,r)
1 +

k−2∑
j=0

1
j!
Lj
χ

(r)
2

f̂
(r,(k−j)r)
1 , (89)

to be used in place of the second of (84). We conclude that the transformed Hamil-
tonian H(r) := exp(L

χ
(r)
2

) ◦ exp(L
χ

(r)
1

)H(r−1) takes the form

H(r) =
∑
i

ωipi +
r−1∑
s=0

∑
l≥2

h
(s)
l +

∑
k≥1

r−1∑
m=0

∑
l≥0

f
(r,kr+m)
l , (90)

with f
(r,r)
0 = f

(r,r)
1 = 0, i.e., is in Kolmogorov’s normal form up to order r, as

required. Writing it in the form (44) given in the statement of the lemma is just
a matter of reordering all terms in a convenient fashion, as follows. First, put
h

(r)
l = f

(r,r)
l for l ≥ 2, and this gives (45). Notice that this takes into account

the case k = 1 , m = 0 in (84). Then rewrite the equations (84) by excluding the
case above, which is made through the condition kr + m > r, and by replacing
the second equation by (89). Finally, identify the double sum over k ≥ 1 and
0 ≤ m < r in (90), excluding the case k = 1, m = 0, with the sum over s > r
in (44).

5.2 Generalized Cauchy estimates

We start with the
Proof of lemma 1. For s = 0 the statement is trivial. For s > 0 we proceed by
first proving the inequalities∥∥L

χ
(r)
1
f
∥∥

(1−d′−d)σ ≤ l
(
‖X(r)‖σ
e(d+ d′)σ

+ |ξ(r)|
)
‖f‖(1−d′)σ ,

∥∥L
χ

(r)
2
f
∥∥

(1−d′−d)σ ≤
(

l

e(d+ d′)σ
+

1
edσ

)
‖χ(r)

2 ‖σ ‖f‖(1−d′)σ ,

(91)
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which hold for 0 ≤ d′ < 1 and 0 < d < 1 − d′. To this end, recall that f ∈ Pl,N
can be given the form (24), and write X(r) in the similar form

X(r) =
∑
k′

xk′ exp(ik′ · q) .

Then compute

LX(r)f = i
∑
k′,j,k

∑
m

k′mjm
pm

xk′fjkp
j exp(i(k + k′) · q) ,

Lξ(r)·qf = i
∑
j,k

∑
m

jmξ
(r)
m

pm
fjkp

j exp(ik · q) .

By the definition of the norm we get the estimate∥∥LX(r)f
∥∥

(1−d′−d)σ ≤
∑
k′,j,k

∣∣∣∑
m

k′mjm

∣∣∣ |xk′ | |fjk|e(1−d′−d)|k+k′|σ

≤ l
∑
k′

|k′|e−(d+d′)|k′|σ|xk′ |e|k
′|σ
∑
j,k

|fjk|e(1−d′)|k|σ

≤ l

e(d+ d′)σ
‖X(r)‖σ ‖f‖(1−d′)σ .

(92)

Here, we used the elementary inequality∣∣∣∑
m

k′mjm

∣∣∣ ≤∑
m

|k′m| |jm| ≤ |k′|
∑
m

|jm| = l|k′| ,

and the general inequality

xαe−δx ≤
( α
eδ

)α
for positive α, x, δ (93)

with 1 , (d+ d′)σ and |k′| in place of α , δ and x respectively. Similarly, using the
inequality ∣∣∣∣∑

m

jmξ
(r)
m

∣∣∣∣ ≤∑
m

|jm| |ξ(r)
m | ≤ |ξ(r)|

∑
m

|jm| = l|ξ(r)| ,

we get ∥∥Lξ(r)·qf∥∥(1−d′−d)σ ≤ l|ξ
(r)| ‖f‖(1−d′)σ .

Recalling that χ
(r)
1 = X(r) + ξ(r) · q, the first of (91) follows from the latter

inequality together with (92). The proof of the second of (91) is similar. Write

χ
(r)
2 =

∑
j′,k′

yj′k′p
j′ exp(ik′ · q) , (94)
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and compute

L
χ

(r)
2
f = i

∑
j,k,j′,k′

∑
m

k′mjm − kmj′m
pm

yj′k′fjkp
j+j′ exp(i(k + k′) · q) .

By the definition of the norm we estimate∥∥L
χ

(r)
2
f
∥∥

(1−d′−d)σ ≤
∑

j,k,j′,k′

|yj′k′ | |fjk|e(1−d′−d)|k+k′|σ
∣∣∣∣∑
m

k′mjm − kmj′m
∣∣∣∣

≤
∑
j,k

|fjk|e(1−d′)|k|σ
∑
j′,k′

e−(d′+d)|k′|σ|yj′k′ |e|k
′|σ
∣∣∣∣∑
m

k′mjm

∣∣∣∣
+
∑
j,k

e−d|k|σ|fjk|e(1−d′)|k|σ
∑
j′,k′

|yj′k′ |e|k
′|σ
∣∣∣∣∑
m

kmj
′
m

∣∣∣∣ ,
and the second of (91) follows from

∣∣∑
m k
′
mjm

∣∣ ≤ l|k′| and
∣∣∑

m kmj
′
m

∣∣ ≤ |k| (use

|j′| = 1 in view of χ(r)
2 ∈ P1,rK). From (91) one readily gets (54) and (55) just

putting f = p, i.e., l = 1 and ‖f‖σ = 1. Concerning (56), just differentiate (94)
and use the definition of the norm. Coming to (57) and (58), for s = 0 they are
trivial, and for s = 1 are nothing but (91) with an extra factor e. For s > 1, let
δ = d/s. Note also that from f ∈ Pl,N one gets Lj

χ
(r)
1

f ∈ Pl−j,jrK+N . Thus, using

the first of (91) with δ in place of d, (j − 1)δ in place of d′ and Lj−1
χ

(r)
1

f in place of

f we get∥∥Lj
χ

(r)
1

f
∥∥

(1−jδ)σ ≤ (l − j + 1)

(
‖X(r)‖σ
ejδσ

+ |ξ(r)|
)∥∥∥∥Lj−1

χ
(r)
1

f

∥∥∥∥
(1−(j−1)δ)σ

.

Applying s times this inequality we get∥∥Ls
χ

(r)
1
f
∥∥

(1−d)σ ≤ ‖f‖σ
s∏
j=1

[
(l − j + 1)

(
‖X(r)‖σ
ejδσ

+ |ξ(r)|
)]

≤ ‖f‖σ
s∏
j=1

[
(l − j + 1)

(
s‖X(r)‖σ
ejdσ

+
s|ξ(r)|
j

)]

≤
(s
e

)s(‖X(r)‖σ
dσ

+ e|ξ(r)|
)s
‖f‖σ

s∏
j=1

(l − j + 1)
j

,

and in view of the trivial inequality (s/e)s < s! the estimate (57) readily follows.
With a similar procedure, from the second of (91) we get the recursive estimate∥∥Lj

χ
(r)
2

f
∥∥

(1−jδ)σ ≤
(

l

ejδσ
+

1
eδσ

)
‖χ(r)

2 ‖σ
∥∥Lj−1

χ
(r)
2

f
∥∥

(1−(j−1)δ)σ

=
s(l + j)
ejdσ

‖χ(r)
2 ‖σ

∥∥Lj−1
χ

(r)
2

f
∥∥

(1−(j−1)δ)σ .
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Iterating s times this estimate, and proceeding as above, one readily gets (58).
Q.E.D.
Lemma 4. Let f ∈ Pl,rK and < f >= 0. Then the equation∑

j

ωj
∂χ

∂qj
= f (95)

admits a solution χ ∈ Pl,rK with

‖χ‖σ ≤
1
αrΩ
‖f‖σ (96)

The procedure for solving (95) is well known. Write

χ =
∑
j,k

xjkp
j exp(ik · q) , f =

∑
j,k

fjkp
j exp(ik · q) ,

with known coefficients fjk and unknowns xjk. Then one gets i(k · ω)xjk = fjk.
In view of (35) we get the estimate |xjk| ≤ |fjk|/(αrΩ), and (96) follows from the
definition of the norm.

Proof of lemma 2. The estimate (59) is a straightforward application of lem-
ma 4 to eq. (48). By the property of the matrix Cij of being nondegenerate there
exists a solution ξ(r) of (49), which by (7) satisfies

|b(r)| =
∣∣∣∑
j

Cijξ
(r)
j

∣∣∣ ≥ m|ξ(r)| .

On the other hand, by the definition of the norm one has

|b(r)| = ‖〈f (r−1,r)
1 〉‖(1−dr−1)σ ≤ ‖f

(r−1,r)
1 ‖(1−dr−1)σ .

Combining the latter two inequalities one gets (60). Proceeding as in the proof of
lemma 1, eq. (92), and using (28) and (59), we get∥∥LX(r)h

(0)
2
∥∥

(1−dr−1−δr)σ
≤ 2
δreσ

‖X(r)‖(1−dr−1)σ‖h
(0)
2 ‖σ

≤ 2
αrδreΩσ

‖f (r−1,r)
0 ‖(1−dr−1)σ‖h

(0)
2 ‖σ .

Then, (61) is a straightforward application of lemma 4 to eq. (50). Q.E.D.

5.3 Proof of lemma 3

The proof is essentially a translation of the recursive algorithm of section 4.1 in-
to an algebraic scheme of recursive estimates. The underlying idea of the proof
is that the norm of every function is estimated taking into account three contri-
butions: (i) accumulation of constants and factors coming from the estimate of
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Poisson brackets (lemma 1) and of the solution of the equations for the generating
functions (lemma 2); (ii) accumulation of small divisors; (iii) counting the number
of Poisson brackets generated by the algorithm. The constants of the point (i) are
controlled using hypotheses (64)–(66). The meaning is essentially that we get rid
of all constants by just spending a factor ε1/2. The accumulation of small divisors
is controlled using the function T (. . . ) introduced in section 3.3. Remark that also
the estimate of Poisson brackets generates small denominators due to the restric-
tions δ of the analyticity domain. Actually, these denominators obey the same
accumulation mechanism of the small denominators due to integer combinations
of the frequencies. This control is the most unpleasant part of the proof, because
it requires checking several cases, and repeating the same calculations in different
situations. The number of Poisson brackets is estimated via a recursive sequence
{νr,s} introduced in the next lemma. An arithmetic argument is needed in order
to bound geometrically that sequence. All proofs are made by induction. The main
part of the proof is the following
Lemma 5. Let the sequences {νr,s}r≥0, s≥r and {ν̂r,s}r≥1, s≥r be recursively defined
as

ν0,s = 1 ,

ν̂r,kr+m = νkr−1,rνm,m +
k−1∑
j=0

νjr−1,rνr−1,(k−j)r+m ,

νr,kr+m = νkr−1,rνm,m +
k−1∑
j=0

νjr−1,rν̂r,(k−j)r+m ,

(97)

where s ≥ 0 , k ≥ 1 , 0 ≤ m < r. Then for r ≥ 1 one has the following estimates.
(i) The generating functions are estimated by∥∥∥X(r)

∥∥∥
(1−dr−1)σ

δreσ
+ |ξ(r)| ≤ ε0E

e
νr−1,rµ

rζ1 T (αδ2, r, 2r − 1, 2r− 2− log2 r) , (98)

‖χ(r)
2 ‖(1−dr−1−δr)σ ≤ ε0Eνr−1,rηr−1µ

rζ2δ
2
rσ T (αδ2, r, 2r, 2r − 2) , (99)

where

ζ1 =
1

Ωσ
+

2eη0
m

, ζ2 =
1

Ωσ

(
1 +

4Eη0
eΩσ

)
. (100)

(ii) The functions f̂ (r,s)
l are estimated by∥∥f̂ (r,r)

l

∥∥
(1−dr−1−δr)σ

≤ ε1/2
0 Eν̂r,r(1 + αrδ

2
r )lηlr−1µ

r (101)

×T (αδ2, r, 2r− al, 2r− 2 + (bl − 2) log2 r) for l ≥ 1 ,∥∥f̂ (r,s)
l

∥∥
(1−dr−1−δr)σ

≤ ε0Eν̂r,s(1 + αrδ
2
r )lηlr−1µ

s (102)

×T (αδ2, r, 2s− al, 2s− 2 + bl log2 r − 2 log2 s) for s > r , l ≥ 0 .
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Here, al and bl are defined by (63).
(iii) The functions h(r)

l are estimated by∥∥h(r)
l

∥∥
(1−dr)σ ≤ ε

1/2
0 Eνr,rη

l
rµ
r T (αδ2, r, 2r, 2r − 2) for l ≥ 2 . (103)

(iv) The functions f (r,s)
l are estimated by∥∥f (r,s)

l

∥∥
(1−dr)σ ≤ ε0Eνr,sη

l
rµ
s (104)

×T (αδ2, r, 2s− al, 2s− 2 + bl log2 r − 2 log2 s) for s > r , l ≥ 0 .

We prove all estimates by induction. This requires a direct check for r = 1, and
an induction step from r − 1 to r. Throughout the proof we shall repeatedly use
some elementary estimates that we collect here.

In view of definition (62) of the sequence {ηr} and of the properties (36) of
{αr} and (52) of {δr} one readily proves the chain of inequalities

η0 < . . . < ηr−1 < (1 + αrδ
2
r )ηr−1 < ηr < . . . < 2η0 . (105)

In view of hypotheses (64)–(66) and of (100) and (105) we have

2ε0Eηrζ1 < ε
1/2
0 , ε0Eηrζ2 < ε

1/2
0 . (106)

The binomial coefficients satisfy the following estimate(
r + s

s

)
<

(1 + d)r+s

ds
for r ≥ 0 , s ≥ 0 , d > 0 ; (107)

we can always assume s ≤ r, of course. Finally, for r ≥ 1 and k ≥ 1 the following
inequalities hold true:

k + log2 r ≥ log2(kr +m) for 0 ≤ m ≤ r ,
j + log2((k − j)r +m) ≥ log2(kr +m) for 0 ≤ m ≤ r , 0 ≤ j < k .

(108)

(i) Estimates on the generating functions. We use lemma 2, and produce estimates
for the expressions in lemma 1. Considering first the case r = 1, write the second
of (28) as ∥∥f (0,s)

l

∥∥
σ
≤ ε0Eν0,sη

l
0µ

sT (αδ2, 0, 0, 0) ,

which is true in view of ν0,s = T (αδ2, 0, 0, 0) = 1. Substituting this in (59), (60)
and (61) we get

‖X(1)‖σ
δ1eσ

+ |ξ(1)| ≤ ε0Eν0,1µ

(
T (αδ2, 0, 0, 0)
α1δ1eΩσ

+
η0T (αδ2, 0, 0, 0)

m

)
,

‖χ(1)
2 ‖(1−δ1)σ ≤

ε0Eν0,1η0µ

α1Ω

(
2Eη0T (αδ2, 0, 0, 0)

α1δ1eΩσ
+ T (αδ2, 0, 0, 0)

)
.
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Then (98) and (99) follow from (100) and the inequalities (see (41))

T (αδ2, 0, 0, 0) <
1

α1δ1
T (αδ2, 0, 0, 0) < T (αδ2, 1, 1, 0) ,

T (αδ2, 1, 1, 0) ≤ α1δ
2
1T (αδ2, 1, 2, 0) .

For r > 1 we substitute (104) in (59), (60) and (61), and using (63) and (105) we
get

1
δreσ

‖X(r)‖(1−dr−1)σ + |ξ(r)|

≤ ε0Eνr−1,rµ
r

(
T (αδ2, r − 1, 2r− 2, 2r− 2− 2 log2 r)

αrδreΩσ

+
ηr−1T (αδ2, r − 1, 2r− 1, 2r − 2− log2 r)

m

)
,

‖χ(r)
2 ‖(1−dr−1−δr)σ

≤ ε0Eνr−1,rηr−1µ
r

αrΩ

(
2Eηr−1T (αδ2, r − 1, 2r − 2, 2r− 2− 2 log2 r)

αrδreΩσ

+T (αδ2, r − 1, 2r− 1, 2r− 2− log2 r)
)
.

Then (98) and (99) follow from (100), (105) and from the inequalities (see (41))

1
αrδr

T (αδ2, r − 1, 2r− 2, 2r− 2− 2 log2 r) < T (αδ2, r, 2r − 1, 2r− 2− log2 r) ,

T (αδ2, r, 2r− 1, 2r − 2− log2 r) ≤ αrδ2
rT (αδ2, r, 2r, 2r − 2) .

This concludes the estimates for the generating functions.

(ii) Estimates for the functions f̂
(r,s)
l . We apply lemma 1 to equations (47), us-

ing (28), (98), (103) and (104) where appropriate. With separate estimates for the
cases m = 0 and m > 0, for l ≥ 0 , k ≥ 1 , l+ k > 1 we get

1
k!

∥∥Lk
χ

(r)
1
h

(0)
l+k
∥∥

(1−dr−1−δr)σ
≤ εk/20 Eνkr−1,rν0,0(1 + αrδ

2
r )lηlr−1µ

kr

×T (αδ2, r, 2kr− al, 2kr− 2 + bl log2 r − 2 log2(kr)) ,
1
k!

∥∥Lk
χ

(r)
1
h

(m)
l+k
∥∥

(1−dr−1−δr)σ
≤ ε0Eν

k
r−1,rνm,m(1 + αrδ

2
r )lηlr−1µ

kr+m

×T (αδ2, r, 2(kr +m)− al, 2(kr +m)− 2 + bl log2 r − 2 log2(kr +m))
for 0 < m < r .

(109)
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To this end, recalling that r = 1 implies m = 0, from (57) we get

1
k!

∥∥Lk
χ

(r)
1
h

(0)
l+k
∥∥

(1−dr−1−δr)σ
≤ Eν0,0η

l+k
0

(
ε0Eνr−1,rµ

rζ1
)k

×
(
l + k

k

)(
T (αδ2, r, 2r− 1, 2r − 2− log2 r)

)k
for r ≥ 1 , m = 0 ;

1
k!

∥∥Lk
χ

(r)
1
h

(m)
l+k
∥∥

(1−dr−1−δr)σ
≤ ε1/2

0 Eνm,mη
l+k
m µm

(
ε0Eνr−1,rµ

rζ1
)k

×
(
l + k

k

)(
T (αδ2, r, 2r− 1, 2r − 2− log2 r)

)k
T (αδ2,m, 2m, 2m− 2)

for r ≥ 2 , 0 < m < r .

(110)

In order to estimate the latter expressions we need the further estimates(
l + k

k

)(
T (αδ2, r, 2r− 1, 2r− 2− log2 r)

)k
≤ 2(1 + αrδ

2
r )l+kT (αδ2, r, 2kr− al, 2kr − 2 + bl log2 r − 2 log2(kr)) ,(

l + k

k

)(
T (αδ2, r, 2r− 1, 2r− 2− log2 r)

)k
T (αδ2,m, 2m, 2m− 2)

≤ 2(1+αrδ2
r)
l+kT (αδ2, r, 2(kr+m)−al, 2(kr+m)−2+bl log2 r− 2 log2(kr+m)) .

(111)

The first estimate is to be used for r ≥ 1 , m = 0, while the second one applies
to the case r ≥ 2 , 0 < m < r. The proof requires some care, since several cases
must be considered. For l = 0 the binomial coefficient is 1 (recall also that l = 0
implies k ≥ 2); for l = k = 1 the binomial coefficient is 2, which justifies the
factor 2. For all other values of l and k the binomial coefficient can be estimated
by (107) with αrδ

2
r in place of d; in the latter case the numerator justifies the

factor (1 + αrδ
2
r )l+k in the estimate, while the denominator, is included in the

estimate of the functions T (αδ2, . . . ) according to (41); notice that we use (41)
with denominator (αrδ2

r )min(l,k). The number of divisors is estimated according to
the following table:

(2r − 1)k for r ≥ 1 , l = 0 , k ≥ 2 ,m = 0 ,
2r − 1 for r ≥ 1 , l = 1 , k = 1 ,m = 0 ,
(2r − 1)k + 1 for r ≥ 1 , l = 1 , k ≥ 2 ,m = 0 ,
2kr for r ≥ 1 , l ≥ 2 , k ≥ 1 ,m = 0 ,
2(kr +m)− k for r > 1 , l = 0 , k ≥ 2 , 0 < m < r ,

2(r +m)− 1 for r > 1 , l = 1 , k = 1 , 0 < m < r ,

2(kr +m) + 1− k for r > 1 , l = 1 , k ≥ 2 , 0 < m < r ,

2(kr +m) for r > 1 , l ≥ 2 , k ≥ 1 , 0 < m < r .

The selection rule is 0 for r = 1, while for r > 1 it is evaluated according to the
table



Vol. 48 (1997) Kolmogorov theorem and classical perturbation theory 253

2kr− 2k − k log2 r for l = 0 , k ≥ 2 ,m = 0 ,
2r − 2− log2 r for l = 1 , k = 1 ,m = 0 ,
2kr− 2k + log2 r − k log2 r for l = 1 , k ≥ 2 ,m = 0 ,
2kr− 2k for l ≥ 2 , k ≥ 1 ,m = 0 ,
2(kr +m)− 2− 2k − k log2 r for l = 0 , k ≥ 2 , 0 < m < r ,

2(r +m)− 4− log2 r for l = 1 , k = 1 , 0 < m < r ,

2(kr +m)− 2− 2k + log2 r − k log2 r for l = 1 , k ≥ 2 , 0 < m < r ,

2(kr +m)− 2− 2k for l ≥ 2 , k ≥ 1 , 0 < m < r .

In view of (63) and (108) it is now an easy matter to check that the number of
divisors never exceeds 2(kr + m) − al and that the selection rule never exceeds
2(kr + m) − 2 + bl log2 r − 2 log2(kr +m), as stated in (111). Substituting (111)
in (110), and using also (105) and (106) one readily gets (109).

We obtain now the estimate∥∥∥∥k−1∑
j=0

1
j!
Lj
χ

(r)
1

f
(r−1,(k−j)r+m)
l+j

∥∥∥∥
(1−dr−1−δr)σ

≤ ε0E(1 + αrδ
2
r )lηlr−1µ

kr+m (112)

×T (αδ2, r, 2(kr +m)− al, 2(kr +m)− 2 + bl log2 r − 2 log2(kr +m))

×
k−1∑
j=0

νjr−1,rνr−1,(k−j)r+m

for l ≥ 0 , k ≥ 1 , 0 ≤ m < r , l + k +m > 1 ;

this estimate applies to both the second and third equation (47), which justifies
the condition l + k + m > 1 instead of l + k > 1. Recalling that r = 1 implies
m = 0, we get
1
j!

∥∥∥Lj
χ

(1)
1

f
(0,k−j)
l+j

∥∥∥
(1−δ1)σ

≤ ε0Eν0,k−jη
l+j
0 µk−j

(
ε0Eν0,1µζ1

)j
×
(
l + j

j

)(
T (αδ2, 1, 1, 0)

)j
for l ≥ 0 , k ≥ 1 , l + k > 1 , 0 ≤ j < k ;

1
j!

∥∥∥Lj
χ

(r)
1

f
(r−1,(k−j)r+m)
l+j

∥∥∥
(1−dr−1−δr)σ

≤ ε0Eνr−1,(k−j)r+mη
l+j
r−1µ

(k−j)r+m (ε0Eνr−1,rµ
rζ1
)j

×
(
l + j

j

)(
T (αδ2, r, 2r − 1, 2r− 2− log2 r)

)j
×T (αδ2, r − 1, 2((k − j)r +m)− al+j ,

2((k − j)r +m)− 2 + bl+j log2(r − 1)− 2 log2((k − j)r +m))
for r > 1 , l ≥ 0 , k ≥ 1 , 0 ≤ m < r , l+ k +m > 1 , 0 ≤ j < k .

(113)
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In order to estimate the latter expressions we use(
l + j

j

)(
T (αδ2, 1, 1, 0)

)j
≤ (1 + α1δ

2
1)l+jT (αδ2, 1, 2k − al, 2k − 2− 2 log2 k) ,(

l + j

j

)(
T (αδ2, r, 2r− 1, 2r− 2− log2 r)

)j
×T (αδ2, r − 1, 2((k − j)r +m)− al+j ,

2((k − j)r +m)− 2 + bl+j log2(r − 1)− 2 log2((k − j)r +m))
≤ cj(1+αrδ2

r )l+jT (αδ2, r, 2(kr+m)−al, 2(kr+m)−2+bl log2 r−2 log2(kr+m))

(114)

with c0 = 1 and cj = 2 for j > 0. The first inequality must be used for r = 1,
and the second one for r > 1. In order to check the estimates we proceed as
for (111), bounding the binomial coefficients the same way. We evaluate the number
of divisors according to the table

j for r = 1 , l = 0 , k ≥ 2 ,m = 0 ,
j + 1 for r = 1 , l = 1 , k ≥ 1 ,m = 0 ,
2j for r = 1 , l ≥ 2 , k ≥ 1 ,m = 0 ,
2(kr +m)− j − aj for r > 1 , l = 0 , k ≥ 1 , j ≥ 0 , 0 ≤ m < r

2(kr +m)− 1 for r > 1 , l = 1 , k ≥ 1 , j = 0 , 0 ≤ m < r ,

2(kr +m)− 1 for r > 1 , l = 1 , k ≥ 2 , j = 1 , 0 ≤ m < r ,

2(kr +m) + 1− j for r > 1 , l = 1 , k ≥ 3 , j ≥ 2 , 0 ≤ m < r ,

2(kr +m) for r > 1 , l ≥ 2 , k ≥ 1 , j ≥ 0 , 0 ≤ m < r .

On the other hand, the selection rule is 0 for r = 1, while for r > 1, k ≥ 1,
0 ≤ m < r and 0 ≤ j < k it is evaluated according to the table

2(kr+m)−2−2j−j log2 r+bj log2(r−1)−2 log2((k−j)r+m) for l = 0, j ≥ 0 ,
2(kr+m)−2+log2(r−1)−2 log2(kr+m) for l = 1, j = 0 ,
2(kr+m)−4−log2 r+2 log2(r−1)−2 log2((k−1)r+m) for l = 1, j = 1 ,
2(kr+m)−2+log2 r−2j−j log2 r+2 log2(r−1)−2 log2((k−j)r+m) for l = 1, j ≥ 2 ,
2(kr +m)− 2− 2j + 2 log2(r − 1)− 2 log2((k − j)r +m) for l ≥ 2, j ≥ 0 .

In view of (63) and (108) it is now an easy matter to check that the number of
divisors never exceeds 2(kr + m) − al (recall that j < k) and that the selection
rule never exceeds 2(kr + m) − 2 + bl log2 r − 2 log2(kr + m), as stated in (114).
Substituting (114) in (113), and using also (105) and (106) one readily gets (112).
Finally, using (112) together with (109) in order to estimate (47) we get (101)
and (102). This concludes the estimates for the functions f̂ (r,s)

l .

(iii) Estimates for the functions h
(r)
l and f

(r,s)
l . The proof is similar to the previous

one for the functions f̂ (r,s)
l . Some simplification is due to the extra factor δr in the

estimate (99) for the generating function χ(r)
2 We apply lemma 1 to equations (46),
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using (28), (101), (102) and (103) where appropriate. Separating the cases m = 0
and m > 0, for l ≥ 2 , k ≥ 1 we estimate

1
k!

∥∥∥Lk
χ

(r)
2
h

(0)
l

∥∥∥
(1−dr)σ

≤ εk/20 Eνkr−1,rν0,0η
l
rµ
kr

×T (αδ2, r, 2kr, 2kr− 2 + 2 log2 r − 2 log2(kr)) ,
1
k!

∥∥∥Lk
χ

(r)
2
h

(m)
l

∥∥∥
(1−dr)σ

≤ ε0Eν
k
r−1,rνm,mη

l
rµ
kr+m

×T (αδ2, r, 2(kr +m), 2(kr +m)− 2 + 2 log2 r − 2 log2(kr +m))
for 0 < m < r .

(115)

The first estimate applies to (45) and to the fourth of (46). In order to prove (115),
recalling that r = 1 implies m = 0 we get

1
k!

∥∥Lk
χ

(r)
2
h

(0)
l

∥∥
(1−dr)σ ≤ Eν0,0η

l
0
(
ε0Eνr−1,rηr−1µ

rζ2
)k

×
(
l + k

k

)(
δr T (αδ2, r, 2r, 2r− 2)

)k
for r ≥ 1 , m = 0 ;

1
k!

∥∥Lk
χ

(r)
2
h

(m)
l

∥∥
(1−dr)σ ≤ ε

1/2
0 Eνm,mη

l
mµ

m
(
ε0Eνr−1,rηr−1µ

rζ2
)k

×
(
l + k

k

)(
δr T (αδ2, r, 2r, 2r − 2)

)k
T (αδ2,m, 2m, 2m− 2)

for r ≥ 2 , 0 < m < r .

(116)

In order to estimate the latter expressions we use(
l + k

k

)(
δr T (αδ2, r, 2r, 2r− 2)

)k
≤ (1 + δr)l+kT (αδ2, r, 2kr, 2kr− 2 + 2 log2 r − 2 log2(kr)) ,(

l + k

k

)(
δr T (αδ2, r, 2r, 2r− 2)

)k
T (αδ2,m, 2m, 2m− 2)

≤ (1 + δr)l+kT (αδ2, r, 2(kr +m), 2(kr +m)− 2 + 2 log2 r − 2 log2(kr +m)) .

(117)

This is seen as follows. In all cases we may use the estimate (107) for the binomial
coefficient, with δr in place of d; for, the denominator δr is compensated by the
same factor in front of T (αδ2, . . . ). Recalling that l ≥ 2, the number of divisors
is 2kr + m in all cases. The selection rule gives 0 for r = 1, while for r > 1 it is
evaluated as

2kr − 2k for k ≥ 1 ,m = 0 ,
2(kr +m)− 2− 2k for k ≥ 1 , 0 < m < r .

In view of (108) it is now an easy matter to check that the selection rule never
exceeds 2(kr+m)−2+2 log2 r−2 log2(kr+m), as stated in (117). Substituting (117)
in (116), and using also (106) one readily gets (115).
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We obtain now the estimate∥∥∥∥k−1∑
j=0

1
j!
Lj
χ

(r)
2

f̂
(r,(k−j)r+m)
l

∥∥∥∥
(1−dr)σ

≤ ε0Eη
l
rµ
kr+m (118)

×T (αδ2, r, 2(kr +m)− al, 2(kr +m)− 2 + bl log2 r − 2 log2(kr +m))

×
k−1∑
j=0

νjr−1,rν̂r,(k−j)r+m ,

which holds for l ≥ 0 , k ≥ 1 , 0 ≤ m < r , kr +m > r. This estimate can be used
for all equations (46), including the second one. For (45), which corresponds to the
case k = 1 , m = 0, we just use (101). Remark also that a separate check for r = 1
is not necessary here, because all functions involved have already been estimated.
Proceeding as in the previous cases we get

1
j!

∥∥Lj
χ

(r)
2

f̂
(r,r)
l

∥∥
(1−dr)σ

≤ ε1/2
0 Eν̂r,r(1 + αrδ

2
r )lηlr−1µ

r
(
ε0Eνr−1,rηr−1µ

rζ2
)j

×
(
l + j

j

)(
δr T (αδ2, r, 2r, 2r− 2)

)j
T (αδ2, r, 2r − al, 2r − 2 + (bl − 2) log2 r)

for l ≥ 1 , j > 0 ,
1
j!

∥∥Lj
χ

(r)
2

f̂
(r,(k−j)r+m)
l

∥∥
(1−dr)σ

≤ ε0Eν̂r,(k−j)r+m(1 + αrδ
2
r )lηlr−1µ

(k−j)r+m (ε0Eνr−1,rηr−1µ
rζ2
)j

×
(
l + j

j

)(
δr T (αδ2, r, 2r, 2r− 2)

)j
×T (αδ2, r, 2((k − j)r +m)− al,

2((k − j)r +m)− 2 + bl log2 r − 2 log2((k − j)r +m))
for l ≥ 0 , 0 ≤ m < r , (k − j)r +m > r .

(119)

In order to estimate the latter expressions we use(
l + j

j

)(
δr T (αδ2, r, 2r, 2r− 2)

)j
×T (αδ2, r, 2((k − j)r +m)− al,

2((k − j)r +m)− 2 + bl log2 r − 2 log2((k − j)r +m))
≤ (1+δr)l+jT (αδ2, r, 2(kr+m)−al, 2(kr+m)−2+bl log2 r−2 log2(kr+m)) ,

(120)

which holds for both cases (119). Indeed, using again (107) with δr in place of d the
number of divisors is evaluated as 2(kr+m)−al; on the other hand, the selection
rule is evaluated as 2(kr+m)−2+bl log2 r−2j−2 log2((k−j)r+m), which in view
of (108) does not exceed 2(kr+m)−2+bl log2 r−2 log2(kr+m). Substituting the
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latter inequality in (119), and using also (106), one readily gets (118). Using (118)
together with (115) in order to estimate all equations (46) we get (104). Finally,
using (101) and the first of (115) we get (103). This concludes the estimates for
the functions h(r)

l and f
(r,s)
l .

In order to complete the proof of lemma 3 we need only an estimate of the
sequences (97).
Lemma 6. The sequence {νr,s} is bounded by

νr,s ≤
24s

8
for r ≥ 1 , s ≥ 1 . (121)

We start by replacing (97) by

ν0,s = 1 , νr,kr+m =
k∑
j=0

(j + 1)νjr−1,rνr−1,(k−j)r+m (122)

for s ≥ 0 , k ≥ 0 , 0 ≤ m < r. This sequence is equivalent to (97) in the sense that
for s ≥ r the values νr,s computed via (97) and via (122) actually coincide. Let us
prove this claim. We extend the sequences (97) to {νr,s}r≥0,s≥0 and {ν̂r,s}r≥1,s≥0
(i.e., we add terms with s < r) via the definition

ν0,s = 1

ν̂r,kr+m =
k∑
j=0

νjr−1,rνr−1,(k−j)r+m

νr,kr+m =
k∑
j=0

νjr−1,rν̂r,(k−j)r+m

(123)

for s ≥ 0 , k ≥ 0 , 0 ≤ m < r. For s ≥ r the values νr,s and ν̂r,s computed by
the sequences (97) and (123) coincide. Indeed, just remark that for k = 0 one has
νr,m = ν̂r,m = νr−1,m = . . . = νm,m, so that the term j = k in the sums in (123)
coincides with the term out of sum in (97). Obtaining (122) from (123) requires a
few calculations:

νr,kr+m =
k∑
j=0

νjr−1,r

k−j∑
i=0

νir−1,rνr−1,(k−j−i)r+m

=
k∑
j=0

νjr−1,r

k∑
l=j

νl−jr−1,rνr−1,(k−l)r+m

=
k∑
l=0

l∑
j=0

νlr−1,rνr−1,(k−l)r+m
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=
k∑
l=0

(l + 1)νlr−1,rνr−1,(k−l)r+m ;

here, the only hidden point is that in the second line we introduced the index
l = i+ j. The last line is nothing but (122).

Coming to the study of the sequence (122), we observe that the following prop-
erties hold true:

ν0,s < . . . < νs,s = νs+1,s = . . . for s ≥ 0 , (124)
νr,r = 3νr−1,r for r ≥ 1 , (125)

ν1,s ≤ 2
3νs−1,s−1 for s > 2 , (126)

νr,s ≤ νr−1,s + 2
3νr,rνs−r,s−r for s > r > 1 . (127)

The relevant property here is the first one. It means that we can estimate any ele-
ment in the (infinite) matrix νr,s by the diagonal one νs,s. That is, it is enough to es-
timate the diagonal elements. Let us prove these properties. In order to prove (124)
isolate the first term in the sum (122), thus writing

νr,s = νr−1,s +
k∑
j=1

. . . ,

and remark that the sum does not exist for k = 0 (i.e, for s < r), while it is
positive for k ≥ 1; then (124) follows. Using νr−1,0 = ν0,0 = 1, by direct check
one readily obtains (125). The proof of (127) requires some extra calculation. Still
writing s = kr +m, which implies here k ≥ 1, compute

νr,kr+m = νr−1,kr+m +
k∑
j=1

(j + 1)νjr−1,rνr−1,(k−j)r+m

= νr−1,kr+m + νr−1,r

k−1∑
l=0

(l + 2)νlr−1,rνr−1,(k−1−l)r+m

≤ νr−1,kr+m + 2νr−1,r

k−1∑
l=0

(l + 1)νlr−1,rνr−1,(k−1−l)r+m

= νr−1,kr+m + 2νr−1,rνr,(k−1)r+m ;

then (127) follows in view of (k − 1)r + m = s − r and of (124) and (125). The
proof of (126) is a small modification of the latter calculation: observing that r = 1
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implies m = 0, and so k = s, write

ν1,s = ν0,s + ν0,1

s−1∑
l=0

(l + 2)νl0,1ν0,s−1−l

≤ ν0,s − 1 + 2ν0,1

s−1∑
l=0

(l + 1)νl0,1ν0,s−1−l

= 2ν1,s−1

(the point here is that for l ≥ 2 one has l+ 2 ≤ 2(l+ 1)− 1; recall also s > 2) then
use again (124).

We come now to the estimate of the diagonal elements νr,r of (122). We claim:

νr,r ≤
6r

2
λr for r ≥ 1 , (128)

where {λr}r≥1 is a sequence recursively defined as

λ1 = 1 , λr =
r−1∑
j=1

λjλr−j . (129)

Indeed, for r = 1, 2 just compute ν1,1 = 3, ν2,2 = 18 and λ2 = 1, so that equality
holds. For r > 2 start with (125), then repeatedly use (127) and (124), and at the
end use (126) in order to calculate

νr,r = 3νr−1,r

≤ 3νr−2,r + 2νr−1,r−1ν1,1

· · ·
≤ 3ν1,r + 2(ν2,2νr−2,r−2 + . . .+ νr−1,r−1ν1,1)

< 2
r−1∑
j=1

νj,jνr−j,r−j .

From this, (128) is readily proved by induction (recall that it is true for r = 1, 2).
The final step is the estimate of the sequence (129). We claim

λr =
2r−1(2r − 3)!!

r!
≤ 4r−1 , (130)

where the standard notation (2n+1)!! = 1 ·3 · . . . · (2n+1) has been used. In order
to prove this claim, let the function g(z) be defined as g(z) =

∑
r≥1 λrz

r, so that
λr = g(r)(0)/r!. Then it is immediate to check that the recursive definition (129)
is equivalent to the equation g = z + g2. By repeated differentiation of the latter
equation one readily finds

g′ =
1

1− 2g
, . . . , g(r) =

2r−1(2r − 3)!!
(1− 2g)2r−1
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(check by induction). From this, (130) follows.
Collecting now (130), (128) and (124) one gets (121).

Substituting (121) in (98), (99), (103) and (104)and using (106) one gets the
estimates (67), (68), (69) and (70). This concludes the proof of lemma 3.

References

[1] A. N. Kolmogorov, Preservation of conditionally periodic movements with small change
in the Hamilton function, Dokl. Akad. Nauk SSSR, 98 (1954), 527.
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