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1. Introduction and statement of the result

In a previous paper [1] we studied the stability in the neighbourhood of an invariant
KAM torus for a Hamiltonian system in the light of Nekhoroshev’s theory. The
aim of the present work is to produce a global version of that result which brings
to light a strong connection existing between the Nekhoroshev [2, 3] and the KAM
[4, 5, 6] theorems.

The main point is that Arnold’s construction of the set of invariant tori can
be completely reformulated using Nekhoroshev’s theorem as a basic iterative tool.
Indeed, a careful reading of the usual proof of Nekhoroshev’s theorem allows one
to extract the following information: on the one hand, one has stability over times
of the order of O(exp(1/ε)) all over the phase space; on the other hand, in a
subset of phase space characterized by absence of resonances with order smaller
than O(1/ε) the Hamiltonian can be given the form of an integrable system with a
perturbation of size O(1/ exp(1/ε)). In such a domain the theorem of Nekhoroshev
can be applied again, and the same procedure can be iterated infinitely many times,
giving rise to a process similar to that of Arnold’s proof of KAM theorem. Actually,
the only technical difference is that the quadratic step of Arnold is replaced by a
Nekhoroshev step reducing the perturbation to be exponentially small.

The interest is that one finds a complete connection between the theorem by
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Nekhoroshev and KAM theorem, which can be expressed, in rough words, by
saying that the applicability of Nekhoroshev theorem implies the existence of a
structure of nested domains, centered on invariant tori, characterized by stabili-
ty times increasing with exponential steps. This result has been announced in a
previous short communication [7]; we provide here a more precise statement and
a self–contained proof.

We consider a canonical system of differential equations with Hamiltonian

H(p, q) = h(p) + f(p, q) , (1)

where p ∈ G ⊂ Rn are action variables, and q ∈ Tn are angles. The Hamiltonian
will be assumed to be real analytic in G×Tn, and to admit a holomorphic extension
to a complex domain G% × Tn

ξ , where % and ξ are positive constants, and

G% =
⋃
p∈G

B%(p) , Tn
ξ = {q ∈ Cn : | Im qj | < ξ , 1 ≤ j ≤ n} . (2)

Here, B%(p) denotes the open complex ball of radius % and center p, namely

B%(p) = {p′ ∈ Cn : |p′ − p| < %} ,

where | · | denotes the norm |p| = maxj |pj |. The symbol ‖ · ‖ will denote the
Euclidean norm. We shall also denote

ω(p) =
∂h

∂p
, A(p) =

∂2h

∂p∂p
(3)

the frequencies and the Hessian matrix of the unperturbed Hamiltonian h(p),
respectively. With a little abuse, we shall denote by Vol(G%) the volume of the real
part of the complex domain G%.

Moreover, we shall say that a torus T is (δ, T )–stable if, for every orbit satisfying
(p(0), q(0)) ∈ T , one has |p(t) − p(0)| < δ for all times t such that |t| < T .

Theorem. Consider the Hamiltonian (1), real holomorphic in the phase space
G% × Tn

ξ , where G ⊂ Rn, and % and ξ are positive constants. Assume that there
are positive constants ε, m, M , V and Ω such that

sup
(p,q)∈G%×Tn

ξ

|f(p, q)| ≤ ε ;(a)

sup
p∈G%

‖A(p)v‖ ≤ M‖v‖ for all v ∈ Rn ;(b)

inf
p∈G%

|A(p)v · v| ≥ m‖v‖2 for all v ∈ Rn ;(c)

sup
p∈G%

‖ω(p)‖ ≤ Ω ;(d)

Vol(ω(G%/2)) ≥ V Ωn−1 .(e)
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Then there exists a positive constant ε∗ such that for every |ε| < ε∗ the following
holds true: there are positive constants T∗, C1 . . . C4 and µ, a positive sequence
{D(r)}r≥0 of nested domains, with D(0) = G%/2 ×Tn and three sequences {εr}r≥0,
{%r}r≥0 and {xr}r≥0, of positive numbers, monotonically decreasing to zero as

xr =
µCr

1εr

%2
r

,

ε0 = ε , εr < Cr
2εr−1 exp

(
−x

−1/(4n)
r−1

)
,

%0 = % , %r < C3x
1/4
r−1%r−1 ,

such that:
(i) D(r+1) ⊂ D(r) ;
(ii) for every r, D(r)is a set of n–dimensional tori diffeomorphic to G(r)

%r/2 × Tn,

where G(r)
%r/2 has the form (2);

(iii) Vol(D(r+1)) > (1 − C4%r) Vol(D(r)) ;
(iv) D(∞) =

⋂
r≥0 D(r) is a non empty set of invariant tori for the flow ϕt, and

moreover one has Vol(D(∞)) > exp
(
−5

9C4%0
)
VolD(0);

(v) for every p(r) ∈ G(r) the torus p(r)×Tn ⊂ D(r) is (%r/2, T∗ exp(x−1/(4n)
r )/22(n+1)r)–

stable;
(vi) for every p(r) ∈ G(r) there exists an invariant torus T ⊂ B%r (p(r)) × Tn

We add some comments concerning the threshold ε∗ for the applicability of
the theorem. The question is whether the value for applicability of Nekhoroshev’s
theorem is already enough for performing the process of iteration or if some further
more restrictive condition is necessary. Actually from the proof it turns out that
the iteration of the theorem requires a condition of the form

x0 :=
µε

%2 < O(n−n) ,

while only the weaker condition x0 < 1 is strictly required for Nekhoroshev’s the-
orem (see condition (62) below and condition (4), respectively). However, it is an
easy matter to see that the stronger condition above is essentially the same that
one obtains by demanding the theorem of Nekhoroshev to be not just applicable,
but also meaningful. Indeed, a straightforward estimate on the original Hamilto-
nian gives immediately a stability time of order %/ε; thus, Nekhoroshev’s theorem
is significant if it gives a longer stability time, i.e., if

exp


(%2

µε

) 1
2n


 >

%

ε
.
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This, taking into account that µ is of the form αn, with some constant α > 1,
actually gives a condition similar to the one above, at least for what concerns the
dependence on n.

Let us add a brief comment about the contents of the paper. Although there
are already several proofs of Nekhoroshev’s theorem in the existing literature none
of them is sufficient for our purposes because we need to extract all the necessary
information for the iteration. For this reason we decided to include a self consistent
proof of the theorem, taking into account the improvements made by several au-
thors since the first version by Nekhoroshev. These improvements concern mainly
the so called geometric part of the theorem. Precisely, the convexity of the Hamil-
tonian together with the conservation of energy are used in order to bound the
motion inside the resonance regions. This idea was first exploited by Benettin and
Gallavotti [8], and was used by Lochak [10, 11], who succeeded in finding optimal
values for the exponent in the exponential estimate. Unfortunately, the elegant
formulation by Lochak cannot be used here for our purposes, because it gives no
information on the non–resonant region. Thus, we follow the latest exposition by
Pöschel [12] and Delshams and Gutierrez [13].

The scheme of the paper is as follows. In section 2 we state the Nekhoroshev
theorem in a form adapted to iteration, postponing the details of the proof to the
technical section 4. Section 3 contains the proof of the main theorem.

2. Iterative version of Nekhoroshev’s theorem

Proposition 1. Let H(p, q) = h(p) + f(p, q) be real holomorphic in the complex
domain G2δ ×Tn

σ, where G ⊂ Rn and and σ are positive constants. Denote ω(p) =
∂h/∂p, A(p) = ∂2h/∂p∂p. Assume that there are positive constants ε, m, M , V
and Ω such that

sup
(p,q)∈G2δ×Tn

σ

|f(p, q)| ≤ ε ;(a)

sup
p∈G2δ

‖A(p)v‖ ≤ M‖v‖ for all v ∈ Rn ;(b)

inf
p∈G2δ

|A(p)v · v| ≥ m‖v‖2 for all v ∈ Rn ;(c)

sup
p∈G2δ

‖ω(p)‖ ≤ Ω ;(d)

Vol(ω(Gδ)) ≥ V Ωn−1 .(e)

Then there exists positive constants µ and T such that the following holds true: if

µε

δ2 < 1 (4)
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then
(i) for every orbit p(t) with initial point p(0) ∈ Gδ one has

‖p(t) − p(0)‖ < δ for all |t| < T exp

[(
δ2

µε

)1/(4n)]
;

(ii) there exist G′ ⊂ Gδ, a positive δ′ < δ/4 and a real holomorphic canonical
transformation (p, q) = C(p′, q′) mapping G′

2δ′ × Tn
σ/4 to Gδ × Tn

5σ/16 such that
the transformed Hamiltonian is holomorphic in the complex domain G′

2δ′ ×Tn
σ/4

and takes the form
H ′(p′, q′) = h′(p′) + f ′(p′, q′) .

(iii) the transformed Hamiltonian H ′(p′, q′) satisfies (a)–(d) with new constants ε′,
m′, M ′, and Ω′ given by

ε′ = 4ε

(
1 + e−σ/4

1 − e−σ/4

)
exp

[
−
(

δ2

µε

)1/(4n)]
(5)

M ′ = M

(
1 +

1
2

√
µε

δ2

)
(6)

m′ = m

(
1 − 1

2

√
µε

δ2

)
(7)

Ω′ = Ω +
m

12
√

nBnKn

(
µε

δ2

)3/4
δ ; (8)

(iv) the volume of G′ satisfies

Vol(G′) ≥
(

1 − 2n+2Mn+1δ

V mn(B −
√

2)Bn−1

)
Vol Gδ (9)

and the property (e) remains valid with a new constant

V ′ = V

[
1−
(

Ω′

Ω

)n−1 2n+3Mδ

(B −
√

2)Bn−1V

](
1+

m

12
√

nBnKnΩ

(
µε

δ2

)3/4
δ

)1−n

.

(10)
Estimated values of µ, T and δ′ are

µ = max (λ∗, µ∗, ν∗) , T =
σ

4Ω

(
1 − e−σ/4

1 + e−σ/4

)n

,

δ′ =
1

4
√

nBnKn

(
µε

δ2

)1/4
δ ,

(11)
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where

K =
⌈

4(1 + 3 ln 2)
σ

⌉
, λ∗ =

3m(B −
√

2)B2nK2n

2M2 ,

µ∗ =
210√nK2nB2n

MKσ

(
1 + e−σ/4

1 − e−σ/4

)n

, ν∗ =
26n2B2nK2n

m

(
1 + e−σ/4

1 − e−σ/4

)n

,

B = 1 +
√

2 +
4M

m
max

{
6
√

n,

(
24Mδ

V

)1/n
}

.

(12)

3. Proof of the main theorem

Set G(0) = G, ε0 = ε, %0 = %, ξ0 = ξ, m0 = m, M0 = M , V0 = V and Ω0 = Ω.
Apply proposition 1 with ε0, %0/2, ξ0, m0, M0, V0 and Ω0 in place of ε, δ, σ, m,
M , V and Ω, respectively. With these values, define the constants K0, B0, T0 and
µ0 according to (11) and (12), namely

K0 =
⌈

4(1 + 3 ln 2)
ξ0

⌉
, T0 =

ξ0
4Ω0

(
1 − e−ξ0/4

1 + e−ξ0/4

)n

,

B0 = 1 +
√

2 +
4M0
m0

max

{
6
√

n,

(
23M0%0

V0

)1/n
}

,

µ0 = (B0K0)2n max

{
3m0(B0 −

√
2)

2M2
0

,

210√n

M0K0ξ0

(
1 + e−ξ0/4

1 − e−ξ0/4

)n

,
26n2

m0

(
1 + e−ξ0/4

1 − e−ξ0/4

)n
}

.

(13)

Then proposition 1 can be applied provided

x0 :=
4µ0ε0

%2
0

< 1 ,

which is satisfied if ε is small enough.
Now we proceed by induction. Assuming that proposition 1 has been applied

r − 1 times, for 0 ≤ s < r we have constants εs, %s, ξs, ms, Ms, Ωs and Vs,
domains D(s) = G(s)

%s/2 × Tn
ξs

, and Hamiltonians H(s) of the form (1) real analytic

in G(s)
%s × Tn

ξs
and satisfying the hypotheses (a)–(e) of proposition 1. In order to
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perform the next step we recursively define

εr = 4εr−1

(
1 + e−ξr−1/4

1 − e−ξr−1/4

)n

exp
(
−x

−1/(4n)
r−1

)
,

%r =
1

4
√

nBn
r−1K

n
r−1

x
1/4
r−1%r−1 , ξr =

ξr−1
4

,

mr = mr−1

(
1 −

x
1/2
r−1
2

)
, Mr = Mr−1

(
1 +

x
1/2
r−1
2

)
,

Ωr = Ωr−1 +
mr−1

24
√

nBn
r−1K

n
r−1

x
3/4
r−1%r−1 ,

Vr = Vr−1

(
1− 2n+2Ωn−1

r Mr−1%r−1

Ωn−1
r−1 (Br−1 −

√
2)Bn−1

r−1 Vr−1

)(
1+

mr−1x
3/4
r−1%r−1

24
√

nBn
r−1K

n
r−1Ωr−1

)1−n

,

(14)
with

xr =
4µrεr

%2
r

(15)

and with constants µr, Br and Kr defined according to (11) and (12) as

Kr =
⌈

4(1 + 3 ln 2)
ξr

⌉
,

Br = 1 +
√

2 +
4Mr

mr
max

{
6
√

n,

(
23Mr%r

Vr

)1/n
}

,

µr = (BrKr)2n max

{
3mr(Br −

√
2)

2M2
r

,

210√n

MrKrξr

(
1 + e−ξr/4

1 − e−ξr/4

)n

,
26n2

mr

(
1 + e−ξr/4

1 − e−ξr/4

)n
}

.

(16)

If x0 is small enough then the sequences xr , εr and %r decrease to zero, the se-
quences Mr and Ωr are monotonically increasing, but bounded, and the sequences
mr and Vr are monotonically decreasing, but bounded far from zero. More pre-
cisely, we prove that for every r ≥ 0 one has

mr > m∞ , Mr < M∞ , Ωr < Ω∞ , Vr > V∞ , (17)

with some positive constants m∞, M∞, Ω∞ and V∞. This is quite evident from
the form of the sequencies. Since we want also to produce explicit estimates of the
constants, we report the detailed computation in appendix A. An explicit condition
on x0 is given there by (62). We also prove that we can set

m∞ = 9
10m0 , M∞ = 10

9 M0 , Ω∞ = (1 + 10−4)Ω0 , V∞ = 5
6V0 . (18)
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Thus, proposition 1 can be applied for every r.
Now we go back to the statement of the theorem. The sequences xr, εr, %r are

given by (15) and (14), so it is just matter of finding the constants C1, C2 and C3,
that clearly exist. Explicit values are computed in appendix A as

C1 = 27n+1λ2n+1 , C2 =
23n+2

(1 − e−ξ0/4)n
, C3 =

1
4
√

nBn
0 Kn

0
. (19)

The statements (i) and (ii) are consequence of the statement (ii) of proposition 1,
by identifying D(r) with Gδ × Tn and D(r+1) with G′

δ′ × Tn. The statement (iii)
follows from the estimate (9), taking into account that Vol(D(r)) = (2π)n Vol(Gδ)
and Vol(D(r+1)) > (2π)n Vol(G′), with the constant C4 estimated by

C4 =
2n+2Mn+1

∞
V∞mn∞(B0 −

√
2)Bn−1

0
.

Postponing the proof of (iv), we come now to (v). This follows from the statement
(i) of proposition 1, just replacing δ with %r/2 and δ2/(µε) with xr. From (11) one
has

T >
ξr

4Ω∞

(
1 − e−ξ0/4

1 + e−ξ0/4

)n

=
T∗

[22(n+1)]r

where

T∗ =
ξ0

4Ω∞

(
1 − e−ξ0/4

1 + e−ξ0/4

)
;

In order to prove (iv) we first show that the volume of D(∞) is positive. To this
end, we iterate (9) as

Vol(D(r+1)) ≥
r∏

s=0

(
1 − 2n+1Mn+1

s %s

Vsmn
s (Bs −

√
2)Bn−1

s

)
Vol(D(0)) ,

and recall that the factor in parenthesis is always positive. However, we should
prove that the infinite product is not zero. To this end we should prove that
the sequence {%s} decreases to zero fast enough. From the explicit estimates in
appendix A we get indeed

r∑
s=0

%s < 10
9 %0 . (20)

Using this inequality and the definition above of the constant C4 we get the esti-
mate on the volume of D(∞) in (iv).

We now prove that D(∞) is a set of invariant KAM tori. Let D̃(r) = G(r)
%r ×Tn,

so that D(r) ⊂ D̃(r). Since %r → 0, we clearly have D(∞) =
⋂

r≥0 D̃(r). Let now
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x ∈ D(∞), so that x ∈ D(r) for every r. Denote by (p(r), q(r)) the coordinates of x

in G(r)
%r/2 × Tn. Then, by (i) of proposition 1, one has ϕtx ∈ D̃(r) for t < Tr, say,

with Tr monotonically increasing to infinity. Since r is arbitrary and D̃(s) ⊂ D̃(r)

for s > r, we also have ϕtx ∈ D̃(r) for |t| < Ts for all s, i.e., ϕtx ∈ D̃(r) for all
t and for all r. Thus, by definition of D(∞), we get ϕtx ∈ D(∞) for all t. This
shows that the set D(∞) is invariant for the Hamiltonian flow. By the form of the
Hamiltonian in D̃(r) we also have dist(ϕtx, (p(r), q(r) + ω(r)(p(r))t)) < O(ε1/2

r ) for
|t| < O(ε−1/2

r ), where ω(r)(p(r)) is the unperturbed frequency at step r. On the
other hand, by construction we have ω(r) → ω(∞) with ω(∞) non resonant and
|ω(r) − ω(∞)| < O(εr). Thus we also have dist(ϕtx, (p(r), q(r) + ω(∞)(p(r))t)) <

O(ε1/2
r ) for |t| < O(ε−1/2

r ). Since r is arbitrary, we conclude that the orbit ϕtx is
dense on a torus, which, by invariance belongs to D(∞). The same trivially holds
for the closure of ϕtx, namely for the torus.

Concerning (vi), it is enough to remark that the theorem can be applied to
every open ball B%r (p(r)) × Tn. This concludes the proof.

4. Proof of proposition 1

We follow the traditional scheme of proof of Nekhoroshev’s theorem, composed
by an analytic part and of a geometric part. Although several proofs are already
available in the literature there is a problem of determining explicit values for all
the constants which makes it unpleasant to reconstruct the proof making refer-
ence to several papers. For this reason we give here an essentially self contained
exposition.

4.1. Technical settings

In this section we introduce domains and norms to be used in the rest of the proofs.
We start with the definition of resonance module. This is defined as a subgroup
M ∈ Zn satisfying span(M) ∩ Zn = M; here both M and Zn are considered as
subsets of Rn, and span(M) is the linear subspace in Rn generated by M. The
integer dim(span(M)) will be called the dimension or multiplicity of the resonance
module.

A set W ⊂ Rn will be called a non–resonance domain of type (M, α, δ, N) in
case

|k · ω(p)| > α for all p ∈ Wδ , k ∈ Zn \ M and |k| ≤ N .

Here, |k| = |k1|+ . . . |kn|, α and δ are real positive parameters, N a positive integer
and M a resonance module. For any point p ∈ W the plane of fast drift PM(p) is
defined as

PM(p) = {p′ ∈ W : p′ − p ∈ span(M)} (21)
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In the rest of this section we recall now some known facts about generalization of
Cauchy’s estimates, canonical transformations defined through the Lie transform
algorithm and normal forms. Our aim is only to establish a clear technical setting,
without entering unnecessary details. An introductory exposition can be found for
instance in [15].

Let f(p, q) be a real analytic function on a domain G ×T, with an holomorphic
extension to a complex domain Gδ × Tn

σ′ for some positive δ, σ′, and consider the
Fourier expansion

f(p, q) =
∑

k

fk(p) exp(ik · q) .

We say that f is in normal form with respect to a resonance module M in case
the Fourier expansion of f has the form

f(p, q) =
∑
k∈M

fk(p) exp(ik · q) ,

i.e., it contains only harmonics belonging to M. In particular, if M = {0}, then
one has f = f(p). The weighted Fourier norm of f is defined as

‖f‖δ,σ =
∑

k

|fk|δ exp(|k|σ) ,

|fk|δ denoting the usual supremum norm over the complex domain Gδ. The defini-
tion is consistent for every non negative σ < σ′ in view of the known property of
exponential decay of coefficients in the Fourier expansion of an analytic function.

The following properties generalize the Cauchy estimates for derivatives of an-
alytic functions to the case of the weighted Fourier norm. If f and g have bounded
norms ‖f‖δ,σ and ‖g‖(1−d′)(δ,σ) with some non negative d′ < 1, then:
(i) for 0 < d < 1 and 1 ≤ j ≤ n, one has∥∥∥∥ ∂f

∂pj

∥∥∥∥
(1−d)(δ,σ)

≤ 1
dδ

‖f‖(δ,σ) ,

∥∥∥∥ ∂f

∂qj

∥∥∥∥
(1−d)(δ,σ)

≤ 1
edσ

‖f‖(δ,σ) , (22)

(ii) for 0 < d < 1 − d′ one has

‖{f, g}‖(1−d′−d)(δ,σ) ≤ 2
ed(d + d′)δσ

‖f‖δ,σ‖g‖(1−d′)(δ,σ) . (23)

Similarly, let g1, . . . , gs and f be analytic functions with bounded norms ‖gj‖δ,σ

and ‖f‖δ,σ. Then for every positive d < 1 one has

‖Lgs ◦ . . . ◦ Lg1f‖(1−d)(δ,σ) ≤ s!
e2

(
2e

d2δσ

)s

‖g1‖(δ,σ) · . . . · ‖gs‖(δ,σ)‖f‖(δ,σ) .

(24)
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Here, we used the common notation Lχ· = {χ, ·}, where {·, ·} denotes the Poisson
bracket.

For a fixed non–negative integer N we shall denote by FN the class of func-
tions f(p, q) which are trigonometric polynomials in q of degree N , i.e., admit a
truncated Fourier expansion f(p, q) =

∑
|k|≤N fk(p) exp(ik · q).

With these settings, and having fixed a positive integer K, we expand the
Hamiltonian as

H(p, q) = H0(p) + H1(p, q) + . . . , (25)

where H0(p) = h(p) and Hs(p, q) ∈ FsK for s ≥ 0. A convenient way is the
following: referring to the Fourier expansion of f(p, q) in the Hamiltonian, de-
fine Hs(p, q) =

∑
(s−1)K≤|k|<sK fk(p) exp(ik · q). With this definition, and using

the property of exponential decay of coefficients, it is an easy matter to find the
estimates on the norms

‖Hs‖δ,σ/2 ≤ e−(s−1)Kσ/4|f |δ,σ
(

1 + e−σ/4

1 − e−σ/4

)n

(26)

(see [14], lemma 8).
Having given a generating sequence χ = {χr}r≥1 of analytic functions, we

define a canonical transformation via the linear operator

Tχ =
∑
s≥0

Es , where E0 = Id , Es =
s∑

j=1

j

s
Lχj Es−j . (27)

The operator Tχ is invertible, and an explicit form for T −1
χ is:

T −1
χ =

∑
s≥0

Ds , where D0 = Id , Ds = −
s∑

j=1

j

s
Ds−jLχj . (28)

Writing the canonical transformation as p′ = Tχp , q′ = Tχq, one has that a
function f ′(p′, q′) is transformed to f(p, q) =

(
Tχf ′)(p, q). Similarly, for the inverse

transformation p = T −1
χ p′ , q = T −1

χ q′ one has f ′(p′, q′) =
(
T −1

χ f
)
(p′, q′).

A condition for convergence of the canonical transformation is the following:
assume

‖χs‖δ,σ ≤ βs−1

s
G (29)

with some positive β and G; assume also the convergence condition

2eG

d2δσ
+ β ≤ 1

2
; (30)

then, for every positive d < 1/2 both the operators Tχ and T −1
χ define an analytic

canonical transformation mapping the domain G(1−d)δ ×Tn
(1−d)σ to Gδ ×Tn

σ , with
the properties

|p − p′| < dδ , |q − q′| < dσ . (31)
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This claim can be proved using the estimates

‖Esf‖(1−d)(δ,σ) ≤
(

2eG

d2δσ
+ β

)s

‖f‖δ,σ

‖Dsf‖(1−d)(δ,σ) ≤
(

2eG

d2δσ
+ β

)s

‖f‖δ,σ ,

(32)

which holds for every positive d < 1.

4.2. The Analytic part: local normal forms

The scheme of the analytic part is the following: one considers a non–resonance
domain W of type (M, α, δ, N) with N = rK, r and K being positive integers. On
the non resonance domain, one performs a canonical transformation which gives
the Hamiltonian (25) the form

H(r) = H0 + Z1 + . . . + Zr + R(r) , R(r) =
∑
s>r

H
(r)
s (33)

where Zj ∈ FjK is in normal form with respect to M, H
(r)
s ∈ FsK , and R(r) is a

non–normalized remainder.
Denoting by p′, q′ the new canonical variables, it is an easy matter to check

that any function Iλ = λ · p′ with span(M) ⊥ λ ∈ Rn is a first integral for
the normalized Hamiltonian H0 + Z1 + . . . Zr. Thus, every orbit (p′(t), q′(t)) with
p′(0) ∈ W lies on the plane of fast drift PM(p′(0)) until it leaves W , if ever.

In the original variables p, q the picture of the flow is described by the following
proposition, which constitutes the analytic part of Nekhoroshev’s theorem.

Proposition 2. Let W be a non–resonance domain of type (M, α, 2δ, N) with
N = rK, r and K being positive integers and with some positive δ. Assume that
the Hamiltonian H = h(p) + f(p, q) is analytic in the domain W2δ × Tn

σ for some
positive σ, and that the hypotheses (a) and (d) of the theorem are satisfied. Assume
moreover that for every p(0) ∈ W there is ω∗ ⊥ M such that ‖ω(p(0)) − ω∗‖ < δM
for some positive δM, and that

δ >
2
m

(
δM +

√
δ2
M + 6mε

)
. (34)

Then the following holds true: there exists a constant T such that if

µ :=
(

210rE
eαδσ

+ 4e−Kσ/4
)

≤ 1
2

, E = ε

(
1 + e−σ/4

1 − e−σ/4

)n

, (35)

then one has
|p(t) − p(0)| ≤ δ for all |t| < Tµ−r .
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An estimated value of T is:

T =
σ

4Ω

(
1 − e−σ/4

1 + e−σ/4

)n

. (36)

In order to be able to iterate the theorem of Nekhoroshev, we need some addi-
tional informations concerning non–resonance domains characterized by the mod-
ule M = {0}, i.e., completely non–resonance regions in action space. This is given
by the following

Proposition 3. Let W be a non–resonance domain of type ({0}, α, 2δ, N) with
N = rK. Assume that the Hamiltonian h(p) + f(p, q) satisfies the hypotheses (a),
(b) and (c) of the theorem. Assume moreover the hypothesis (35) of proposition 2
and the further condition

E <
mδ2

16n
. (37)

Then there exists a canonical transformation (p, q) = C(p′, q′) mapping Wδ ×
Tn

σ/4 → W3δ/2 × Tn
3σ/8 and satisfying

|p − p′| <
δ

4
, |q − q′| <

σ

16
(38)

which gives the Hamiltonian the form H ′(p′, q′) = h′(p′) + f ′(p′, q′); the Hamilto-
nian h′ satisfies the hypotheses (a), (b), (c) and (d) with new constants ε′, M ′,
m′ and Ω′ estimated as

ε′ = 4µrE (39)

M ′ = M +
23nE
δ2 (40)

m′ = m − 23nE
δ2 (41)

Ω′ = Ω +
8
√

n

3δ
E . (42)

The proof is deferred to appendix B.

4.3. The geometric part: geography of resonances

The aim of the geometric part can be briefly described as follows. One is given an
open set V ∈ Rn to be extended to a complex domain Vδ, an integer N specifying
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the highest resonance to be taken into account, and a real analytic map ω : Vδ →
Cn satisfying

‖A(p)v‖ ≤ M‖v‖ , |A(p)v · v| ≥ m‖v‖2 for all v ∈ Rn , (43)

where A(p) = ∂ω/∂p. Moreover, we assume the further condition

Vol(ω(V)) > V Ωn−1 , Ω = sup
p∈Vδ

‖ω(p)‖ , (44)

for some positive V . The complex extension is needed only in order to introduce
non–resonance domains. Indeed the problem of the geometric part is precisely to
construct a family of non–resonance domains of type (M, α, δM, N) parameterised
by a family of suitable non–resonance modules M and constants α and δM de-
pending on M. This family of domains must be a covering of V . The construction
is made in the space Rn of frequencies and then mapped back to the action space
V via the frequency mapping ω(p).

We start with some definitions.
1) N–moduli and resonance parameters. If M ⊂ Zn is a resonance module, we
denote MN = {k ∈ M : |k| ≤ N}, and call a module M with dim(M) = s a
N–module in case MN contains s independent vectors k ∈ Zn. To the N–moduli
we associate positive parameters β0 < β1 < . . . < βn, the index referring to the
dimension of M. They will be determined below. Moreover, we shall denote by
|M| the volume of the parallelepiped generated by any basis of M.
2) Resonant plane and resonant zone. To a N–module M we associate the reso-
nant plane defined as

RM = {ω ∈ Rn : k · ω = 0 ∀k ∈ M} .

The resonant zone is defined as

ZM =
⋃

ω∈RM

{ω′ ∈ Rn : ‖ω′ − ω‖ < δM} ,

where δM = βs/|M|.
3) Resonant region of order s. To the family of all N–moduli of fixed dim(M) = s
we associate the resonant region

Z∗
s =

⋃
dim M=s

ZM .

By definition, Z∗
0 = Rn; we also set Z∗

n+1 = ∅.
4) Resonant block. To a N–module M of dimM = s we associate the resonant
block

BM = (ZM \ Z∗
s+1) .
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We now give the following

Lemma 1. Let the parameters β1, . . . , βn satisfy

βs > BNβs−1 , s = 1, . . . , n

with a constant B >
√

2. Then the following holds true:
i) the resonant blocks are a covering of Rn, i.e.

Rn =
⋃
M

BM

the union being over the set of all N–moduli.
ii) For every N–module M and for every ω ∈ BM one has

|k · ω| > αM for k /∈ M , |k| ≤ N ,

with αM = (B −
√

2)NδM.

The property i) is a trivial consequence of the definition. For the proof of ii)
see [12], geometric lemma, p. 201.

The main result of the geometric part is given by the following

Proposition 4. Consider an open domain V ⊂ Rn with a frequency map ω(p)
satisfying (43) and (44) on Vδ for some positive δ. Let also N be a positive integer,
and define

β0 =
2Mδ

(B −
√

2)BnNn
, βs = BNβs−1 , 0 < s ≤ n , (45)

with a constant B >
√

2. Let also

WM = {p ∈ V : ω(p) ∈ BM} .

Thus the following holds true:
i) the domains WM cover V, i.e.

V =
⋃
M

WM

the union being over the set of all N–moduli;
ii) for every p ∈ WM there exists ω∗ ⊥ M such that

‖ω(p) − ω∗‖ < δM .
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iii) for every N–module M, WM is a non–resonant domain of type

(M,
αM
2

,
αM

2
√

nMN
, N)

with αM = (B −
√

2)NδM; moreover one has αM/(2
√

nMN) < δ.

Proof. i) and ii) are a trivial consequence of the construction. In order to prove
iii), let p ∈ WM,αM/(2MN); then there exists p0 ∈ WM, with |p − p0| <

αM/(2
√

nNM). So, for k /∈ M, |k| ≤ N , we get

|k · ω(p)| ≥ |k · ω(p0)| + |k · (ω(p) − ω(p0))|

≥ αM −
√

nNM‖p − p0‖ >
αM
2

.

as claimed. The inequality αM/(2
√

nMN) < δ is true in view of the definition of
β0 in (45). �

We finally state the following lemma on the volume of the non–resonance do-
main W0.

Lemma 2. With the same hypotheses of proposition 4, but with the stronger con-
dition on the constant B

B >
√

2 +
4M

m

(
4Mδ

V

)1/n

,

the nonresonant part W0 of V satisfies

Vol(W0) >

(
1 − 2n+2Mn+1δ

V mnBn−1(B −
√

2)

)
Vol(V) . (46)

Remark that in view of the condition on B the constant in parentheses is always
positive.

Proof. Consider the image ω(V) through the frequency map ω(p). We first estimate
Vol (Z∗

1 ∩ ω(V)). To this end, let M be any resonant N–module with dim(M) = 1.
By definition, we have

ZM ∩ ω(V) ⊂
⋃

ω∈RM∩ω(V)

BδM(ω) ,

where RM is the (n−1) dimensional plane associated to M. In view of the second
condition in (44) on ω we have diam(RM ∩ ω(V)) < Ω, and so also

Vol(ZM ∩ ω(V)) ≤ 2Ωn−1δM < 2Ωn−1β1 . (47)
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Using the known fact that the number of integer vectors k satisfying |k| ≤ N does
not exceed 2nNn−1, we immediately get, using (44)

Vol(Z∗
1 ∩ ω(V)) < 2n+1Ωn−1Nn−1β1 <

2n+1Nn−1

V
β1 Vol(ω(V)) .

Mapping back everything to V , we estimate

Vol(ω−1(Z∗
1 ∩ ω(V))) <

2n+1Nn−1Mn

V mn
β1 Vol(V) .

Thus, remarking that W0 = V \ ω−1(Z∗
1 ∩ ω(V)) and substituting β1 as given by

(45) we get (46). �

4.4. Choice of the parameters and conclusion of the proof

We first obtain estimates depending on the parameters r, the order of normaliza-
tion, and K, the initial Fourier cutoff. The exponential estimate of Nekhoroshev
will come out from a proper choice of the latter parameters. Thus, let us fix r ≥ 1,
K ≥ 1, N = rK and an arbitrary constant B satisfying the condition of lemma
2. Considering the domain G2δ we apply the geometric proposition 4 to V = Gδ.
The hypotheses (43) and (44) are satisfied in view of (b)–(e) of proposition 1.
Thus, we cover the domain Gδ with a family of nonresonance domains WM of type
(M, αM/2, αM/(2

√
nMN), N), with M running over the set of all N–moduli.

We recall that the constants αM are defined together with the constants δM and
β0, . . . , βn as

αM = (B −
√

2)rKδM ,

δM =
βs

|M| , s = dimM ,

β0 =
2Mδ

(B −
√

2)BnrnKn
,

βs = BrKβs−1 .

(48)

To every domain we apply the analytic proposition 2, remarking that the pa-
rameters α and δ must be replaced by αM/2 and αM/(4

√
nMrK), respectively,

depending on the resonance module M, while δM is given by (48). Having this in
mind, conditions (35) and (34) become

µM :=
(

213√nr2MKE
eα2

Mσ
+ 4e−Kσ/4

)
≤ 1

2
(49)

and
αM

4
√

nMrK
>

2
m

(
δM +

√
δ2
M + 6mε

)
, (50)
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with ε given by condition(a) of proposition 1. With these conditions proposition 2
gives the estimate

|p(t) − p(0)| <
αM

4
√

nMrK
for |t| < Tµ−r

M , (51)

with T given by (36). With αM as in (48), we replace condition (50) by

(B −
√

2)
4
√

nM
>

2
m

[
1 +

√
1 +

6mε

δ2
M

]
,

which is satisfied by imposing

6mε

δ2
M

≤ 1 , B >
√

2 +
24

√
nM

m
. (52)

We look now for uniform estimates with respect to M, and therefore uniform
also in Gδ. Using the trivial inequality δM > β0, the first of (52) is replaced by

λ∗εr2n

δ2 ≤ 1 , λ∗ =
6m(B −

√
2)2B2nK2n

4M2 . (53)

Concerning the condition (49), using

αM > α0 :=
2Mδ

Bnrn−1Kn−1

we immediately get

µM < µ0 :=
µ∗r2nε

2eδ2 + 4e−Kσ/4 , µ∗ =
212√nK2n−1B2n

Mσ

(
1 + e−σ/4

1 − e−σ/4

)
, (54)

so that condition (49) can be replaced by µ0 ≤ 1/2. We come now to the choice
of r and K. To this end we determine r and K by the conditions

4e−Kσ/4 <
1
2e

, µ
r2nε

δ2 < 1 , with µ = max(µ∗, λ∗) ,

with λ∗ as in (53); notice that this implies µ0 ≤ 1/e, so that the condition above
on µ0 is satisfied. We set

K =
⌈

4(1 + 3 ln 2)
σ

⌉
, r =

⌊(
δ2

µε

)1/(4n)⌋
, (55)



120 A. Giorgilli and A. Morbidelli ZAMP

where b·c denotes the integer part, and d·e the integer part plus 1. The choice
1/(4n) instead of the more natural 1/(2n) will be necessary below, in proving
statement (iii).

Since r must be a positive integer, we have the condition µε < δ2, which is
assumed in the statement of proposition 1. With the choice above of r and K,
and using µ0 < 1/e, the statement (51) is replaced by the uniform estimate (i) in
proposition 1, where the constant T is given in (36), and is already independent
of M. Thus, the statement (i) of proposition 1 is proven.

The statement (ii) follows from proposition 3. First, we check the condition (37).
To this end, substituting α0/(4

√
nMrK) in place of δ we rewrite the condition as

ν∗εr2n

δ2 < 1 , ν∗ =
26n2B2nK2n

m

(
1 + e−σ/4

1 − e−σ/4

)n

.

This is satisfied in view of the definition (11) of µ. Next, we evaluate δ′ as
α0/(4

√
nMrK), which gives the third of (11). Finally, the form of the transformed

Hamiltonian is explicitly stated by proposition 3.
The statement (iii) is also consequence of proposition 3. Indeed: the new con-

stants M ′, m′ and Ω′ are computed from (40), (41) and (43), substituting again
α0/(8

√
nMrK) in place of δ, and using µ ≥ ν∗ in view of the definition of µ;

concerning ε′, replace in (39) µ with µ0 < 1/e, and use r as given by (55).
We come finally to statement (iv). Using the estimate (46) of lemma 2 we

immediately find (9). The estimate (10) requires a short discussion. We follow
the scheme of proof of lemma 2, up to the estimate (47). This estimate must be
changed taking into account a further enlargement of the resonant zones ZM due
to the replacement of the frequency map ω(p) with ω′(p′). This is estimated by
Ω′ − Ω, with Ω′ given by (8). On the other hand, replacing Ω with Ω′ in (47) we
get

Vol(ZM ∩ ω′(V)) < 2Ω′n−1(β1 + |Ω′ − Ω|) .

We claim |Ω′ − Ω| < β1. For, by (45) we get

β1 =
2Mδ

(B −
√

2)Bn−1rn−1Kn−1
>

2M

BnKn−1

(
µε

δ2

)1/4
δ ,

where (55) has been used, and our claim follows by straightforward comparison
with (8). Using this, we estimate

Vol(G′
δ′ ) > Vol(ω′(G′)) >

[
1 −

(
Ω′

Ω

)n−1 2n+2Nn−1β1
V

]
Vol(ω(Gδ))

>

[
1 −

(
Ω′

Ω

)n−1 2n+2Nn−1β1
V

]
Ωn−1V ,
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so that using (8) we conclude

V ′ = V

[
1 −

(
Ω′

Ω

)n−1 2n+2Nn−1β1
V

](
1 +

m

12
√

nBnKnΩ

(
µε

δ2

)3/4
δ

)1−n

.

Substituting β1 as given by (45) we get (10). By the definition (12) of B and by
the trivial inequality Ω′ < 2Ω (use δ < Ω) one immediately checks V ′ > 0. This
concludes the proof.

A. Explicit estimates for the main theorem

In view of (16) and of definition (14) of ξr we easily get

K0 < Kr−1 < Kr ≤ 4Kr−1 ≤ 4rK0 ,

On the other hand, we also have the elementary inequality(
1 + e−ξr/4

1 − e−ξr/4

)
< 4

(
1 + e−ξr−1/4

1 − e−ξr−1/4

)
< 4r

(
1 + e−ξ0/4

1 − e−ξ0/4

)
. (56)

Moreover, Krξr ≥ Kr−1ξr−1/2 and Krξr ≥ K0ξ0/2. All these inequalities are
clearly true for all r ≥ 0. Let us now assume, by induction, that (17) hold for 0 ≤
s < r; this is true, of course, for r=1. Putting this hypothesis and the inequalities
above in (16), for 0 ≤ s < r we get

Bs < λB0 < λBs−1 , Bs −
√

2 < λ(B0 −
√

2) < λ(Bs−1 −
√

2) ,

µs < 26n+1λ2n+1µs−1 , µs < 2s(6n+1)λ2n+1µ0
(57)

with

λ =
M

1+1/n
∞ m0V

1/n
0

M
1+1/n
0 m∞V

1/n
∞

.

We now proceed to estimating the sequence xr. To this end, recalling (15) and
using the estimates (57) we first get, for 0 ≤ s ≤ r,

xs = 26n+7λ2n+1nB2n
s−1K

2n
s−1

(
1 + e−ξs−1/4

1 − e−ξs−1/4

)n√4µs−1εs−1

%2
s−1

exp
(
−x

−1/(4n)
s−1

)

< absx
1/2
s−1 exp

(
−x

−1/(4n)
s−1

)
,

where

a = nB2n
0 K2n

0 λ4n+126n+7
(

1 + e−ξ0/4

1 − e−ξ0/4

)n

, b = 26n .
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It is also useful to remark that in view of n ≥ 1 and K0 ≥ 1 we have the numerical
estimates

B0 > 26 , b ≥ 26 . (58)

We prove now that, provided x0 is small enough (the condition on x0 will be
expressed in (62) below), one has

r∑
s=0

x1/2
s <

π2

96
. (59)

Indeed, consider the infinite sequence {yr}r≥0 recursively defined as

y0 = x0 , yr = abr exp(−y
−1/(4n)
r−1 ) . (60)

It is evident that if x0 < 1 and if this sequence is decreasing then one has xs ≤ ys

for 0 ≤ s ≤ r. We first prove by induction that for every r one has

yr <
η

[(r + 1) ln b + ln a]4n
(61)

provided η is sufficiently small, in particular η < 1, and provided the inequality is
satisfied for r = 0. To this end, using (60) and (61), by the induction hypothesis
we get

ln yr = (r ln b + ln a) − y
−1/(4n)
r−1 < (r ln b + ln a)(1 − η−1/(4n)) ,

so that it is enough to demand that the r.h.s. is smaller than the r.h.s. of (61), i.e.
that

(η−1/(4n) − 1)(r ln b + ln a) > 4n ln[(r + 1) ln b + ln a] − ln η .

This is true provided

η−1/(4n) − 1 +
ln η

r ln b + ln a
>

4n ln[(r + 1) ln b + ln a]
r ln b + ln a

.

Remarking that the l.h.s. is clearly increasing with r (recall η < 1), while the r.h.s.
is clearly decreasing, it is enough to satisfy the inequality for r = 0. This gives the
condition

η−1/(4n) − 1 +
ln η

ln a
>

4n ln(ln b + ln a)
ln a

,

which is clearly satisfied for η small enough. For instance, an explicit estimate is
easily found by using

1
2
η−1/(4n) +

ln η

ln a
> 0 for η <

(
ln a

8n

)4n

,
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which gives the condition

η <

[
8n ln(ln b + ln a)

ln a
+ 1
]−4n

.

For r = 0, recalling also that y0 = x0, (61) gives the condition on x0

x0 <

[
(ln b + ln a)

(
8n ln(ln b + ln a)

ln a
+ 1
)]−4n

, (62)

which is clearly satisfied provided ε is small enough. This ensures that (61) is
satisfied for every r.

Concerning (59), just remark that in view of n > 1 one has

xr < yr <
η

[(r + 1) ln b]4
;

this readily gives ∑
s≥0

x1/2
s <

η1/2

ln2 b

∑
s≥0

1
s2 =

η1/2π2

6 ln2 b
,

so that (59) follows in view of (58), which gives ln b > 4, and in view of η < 1 .
Furthermore the claim that the sequences εr and %r decrease to zero, is proven in
view of the convergence of xr to 0 and of the definition (14).

We come now to the proof of (17). For mr and Mr we use the elementary
estimates (

1 − y

2

)−1
≤ 1 + y for 0 ≤ y ≤ 1 . (63)

and

ln
r∏

s=0

(1 + x1/2
s ) <

r∑
s=0

x1/2
s <

π2

96

where (59) has been used. This immediately gives

r∏
s=0

(
1 + x1/2

s

2

)
< exp

(
π2

96

)
= 1.108 . . . ,

r∏
s=0

(
1 − x1/2

s

2

)
> exp

(
−π2

96

)
= 0.902 . . . ,

so that, in view of (14) the first two inequalities (17) are satisfied with m∞ and
M∞ given, e.g., by (18). Concerning the estimate for Ωr, with a trivial use of the
convexity condition we have Ωr−1 > mr−1%r−1. Using the expression of Ωr in (14)
we immediately get

Ωr < Ωr−1

(
1 +

x
3/4
r−1

24
√

nBn
r−1K

n
r−1

)
.
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Proceeding by induction, this easily gives

Ω0 < . . . < Ωr−1 < Ωr < Ω0

r−1∏
s=0

(
1 +

x
3/4
s

24
√

nBn
0 Kn

0

)
< Ω0 exp

(
π2

59904

)
, (64)

so that (17) is satisfied with Ω∞ given, e.g., by (18). The estimate for Vr requires
a short discussion. Firstly, using ms%s < Ωs, Bs > B0 > 26, K0 > 1, n ≥ 1 and
(59) we get

r∏
s=0

(
1 +

ms%sx
3/4
s

24
√

nBn
s Kn

s Ωs

)
<

r∏
s=0

(
1 +

x
3/4
r

24
√

nBn
0 Kn

0

)
< exp

(
π2

48 · 26n

)
. (65)

Secondly, by the definition of %r in (14) and by (61) we also have (recall that
ln b > 4)

%s <
1

4
√

nBn
0 Kn

0
· %s−1
s ln b

<
%0

(16
√

nBn
0 Kn

0 )ss!
.

This gives
∑r

s=0 %s < 10
9 %0 , namely (20). Thirdly, using (63) we get

r−1∏
s=0

[
1 −

(
Ωs+1
Ωs

)n−1 2n+2Ms%s

(Bs −
√

2)Bn−1
s Vs

]−1

<

r−1∏
s=0

[
1 +

(
Ω∞
Ω0

)n−1 2n+3M∞%s

(B0 −
√

2)Bn−1
0 V∞

]

< exp

[(
Ω∞
Ω0

)n−1 10 · 2n+3M∞%0

9(B0 −
√

2)Bn−1
0 V∞

]
.

(66)

On the other hand, by (13) we have

B0 −
√

2 >
4M0
m0

(
8M0%0

V0

)1/n

;

recalling also (64), and using, e.g., Ω∞/Ω0 < 10/9 and (18) we bound the expres-
sion (66) by

exp
(

2 · 5n+1V0
9n+1V∞

)

Replacing the latter expression and (65) in the definition (14) for Vr we get the
condition

Vr > V0 exp
(

−2 · 5n+1V0
9n+1V∞

)
exp

(
− (n − 1)π2

48 · 26n

)
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so that (17) is satisfied for some V∞ < V0. For instance, we demand the r.h.s. of
the latter expression be greater than V∞, and this is satisfied with V∞ given, e.g.,
by (18). This proves that the sequences mr, Mr, Ωr and Vr defined by (14) satisfy
(18) for every r ≥ 0.

Finally, we come to (19). All constant are computed from the sequences xr,
εr and %r given by (15) and (14). In particular, C1 is estimated using (57) and
recalling that µ0 ≡ µ, and (56) is used for C2.

B. Proof of propositions 2 and 3

Starting with the Hamiltonian (25) we look for a canonical transformation gener-
ated via the truncated sequence χ(r) = {χ1, . . . , χr} which gives the transformed
Hamiltonian the form (33). To this end, we solve with respect to the unknowns
χ1, . . . , χr and Z1, . . . , Zr the equation T

(r)
χ H(r) = H . Using the linearity of Tχ

and the expansions (25) and (33) we readily get equations

Zs − LH0χs = Ψs , 1 ≤ s ≤ r , (67)

where

Ψ1 = H1 , Ψs = Hs −
s−1∑
j=1

j

s
(Lχj Hs−j + Es−jZj) for 1 < s ≤ r . (68)

These equations are deduced as follows. Write the equation Tχ(r)H(r) = H as

∑
s≥0

EsH0 +
∑
s≥1

s∑
j=1

Es−jZj + Tχ(r)R(r) =
∑
s≥0

Hs ,

where the operators {Es}s≥0 are recursively defined by (27). This equation is
satisfied by solving the system

EsH0 +
s∑

j=1

Es−jZj = Hs , 1 ≤ s ≤ r

∑
s>r

EsH0 +
∑
s>r

r∑
j=1

Zj + Tχ(r)R(r) =
∑
s>r

Hs .

(69)

The second equation just defines R(r) but it is actually useless. The first equation
for s = 1 immediately gives (68), while, for s > 1, it can be rewritten as

Zs − LH0χs = Hs −
s−1∑
j=1

j

s
Lχj Es−jH0 −

s−1∑
j=1

Es−jZj =: Ψs .
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It remains to prove that the right hand side coincides with Ψs as given by (68).
To this end, replace here Es−jH0 as given by the first of (69) and split Es−jZj ,
getting

Ψs = Hs −
s−1∑
j=1

j

s
Lχj Hs−j −

s−1∑
j=1

j

s
Es−jZj

+
s−1∑
j=1

j

s
Lχj

s−j∑
m=1

Es−m−jZm −
s−1∑
j=1

s − j

s
Es−jZj .

We show now that the last two terms cancel each other. Indeed, using the recursive
definition of Es−j , and exchanging the sums, one gets

−
s−1∑
j=1

s − j

s
Es−jZj = −

s−1∑
j=1

s − j

s

s−j∑
m=1

m

s − j
LχmEs−j−mZj

= −
s−1∑
m=1

m

s
Lχm

s−1∑
j=1

Es−j−mZj .

This cancels out the next to last term above, as claimed.
The solution of equation (67) is a well known matter. Denoting by ck(p) the

coefficients of the Fourier expansion of Ψs, we put Zs =
∑

k∈M ck(p) exp(ik · q)
(the normal form part of Ψs), and determine χs by solving in the usual way the
equation −LH0χs = Ψs − Zs; precisely, the coefficients of χs are determined as
ick(p)/(k · ω(p)). By the way, this also shows that χs ∈ Fs and Zs ∈ Fs, provided
Ψs ∈ Fs. The easy proof that Ψs ∈ Fs is made by induction.

Let now W be a non–resonance domain of type (M, α, 2δ, N) with N = rK.
It is an easy matter to see that the Hamiltonian (25) can be given the normal
form (33) with respect to M up to order r. For, no denominator k · ω(p) can
vanish in the domain W2δ. We now produce explicit quantitative estimates for the
transformation.

We start by estimating the generating function. In order to avoid unnecessary
complication in the notations, we treat here the complex extensions of the do-
mains as free parameters, that we denote by %, ξ. The relation with the analogous
quantities δ, σ in propositions 2 and 3 is % = 2δ, ξ = σ/2. We prove the following

Lemma 3. Let ‖Hs‖(%,ξ) ≤ hs−1E for s ≥ 1 and some positive h and E. Then,
for every positive d < 1 one has

‖χs‖(1−d)(%,ξ) ≤ βs−1E
sα

‖Zs‖(1−d)(%,ξ) ≤ ‖Ψs‖(1−d)(%,ξ) ≤ βs−1E
s
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where

β =
24(r − 1)E

eαd2%ξ
+ 4h . (70)

Proof. We first remark that the solution of (47) given above satisfies the estimates

‖Zs‖%,ξ ≤ ‖Ψs‖%,ξ , ‖χs‖%,ξ ≤ 1
α

‖Ψs‖%,ξ , (71)

for whatsoever % and ξ. This is an easy consequence of the definition of non–
resonance domain. For 1 ≤ s ≤ r, we define ds = d

√
(s − 1)/(r − 1), and look for

sequences {ηs}1≤s≤r and {ϑ̃s,m}0≤s≤r−1, 1≤m≤r−s such that

‖Ψs‖(1−ds)(%,ξ) ≤ ηsE , ‖EsZm‖(1−ds+m)(%,ξ) ≤ ϑ̃s,mE . (72)

In view of (68) we immediately get η1 = 1; moreover by (71) and by E0Zm = Zm

we also have ϑ̃0,m = ηm. Now we look for a recursive definition of the sequences
η and ϑ̃. To this end, using (68) and the generalized Cauchy estimates (23) we
immediately get

‖Ψs‖(1−ds)(%,ξ) ≤ hs−1E +
s−1∑
j=1

j

s

(
2

eds(ds − dj)%ξα
ηjh

s−1−jE + ϑ̃s−j,j

)
E .

Furthermore, by

EsZm =
s∑

j=1

j

s
Lχj Es−jZm

we also get

‖EsZm‖(1−ds+m)(%,ξ) ≤
s∑

j=1

j

s
· 2E2

e(ds+m − dj)(ds+m − ds+m−j)%ξα
ηj ϑ̃s−j,m

In view of the trivial inequality

(
√

s − 1 −
√

j − 1)(
√

s − 1 −
√

s − j − 1) ≥ 1
2

for 1 ≤ j ≤ s − 1

we get

1
(ds+j−dm)(ds+j −ds+j−m)

=
r − 1

(
√

s+j−1 −
√

m−1)(
√

s+j−1 −
√

s+j−m−1)d2 ≤ 2(r−1)
d2

1
ds(ds − dj)

=
r − 1√

s − 1(
√

s − 1 −
√

j − 1)d2 ≤ 2(r − 1)
d2 .
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Thus the sequences can be defined as

ηs = hs−1 +
Cr

s

s−1∑
j=1

jηjh
s−j−1 +

1
s

s−1∑
j=1

jϑ̃s−j,j

ϑ̃s,m =
Cr

s

s∑
j=1

jηj ϑ̃s−j,m ,

with

Cr =
4(r − 1)E
eαd2%ξ

. (73)

Our task now is to estimate the latter sequences, remarking that, in view of (72)
and (71) it is actually enough to estimate the sequence ηs. Recalling that η1 =
1 and ϑ̃0,m = ηm, one readily gets (by induction) ϑ̃s,m = ηmϑ̃s,1. Thus, it is
convenient to introduce ϑs = ϑ̃s,1, and study the sequences

ηs = hs−1 +
Cr

s

s−1∑
j=1

jηjh
s−j−1 +

1
s

s−1∑
j=1

jηjϑs−j

ϑs =
Cr

s

s∑
j=1

jηjϑs−j ,

(74)

starting with η1 = ϑ0 = 1. Multiplying the first one by Cr and subtracting it from
the second we get

ϑs = 2Crηs − Crh
s−1 − C2

r

s

s−1∑
j=1

jηjh
s−j−1 .

Furthermore, in view of the fact that the last sum is clearly positive, we also get

ϑs < 2Crηs − Crh
s−1 .

Replacing this inequality in the first of (74) we finally get

ηs < hs−1 +
C2

r

s

s−1∑
j=1

jηjηs−j = hs−1 + Cr

s−1∑
j=1

ηjηs−j .

We conclude
ηs ≤ (Cr + h)s−1µs , (75)

where

µ1 = 1 , µs =
s−1∑
j=1

µjµs−j ,
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as it is easily proven by induction. We claim

µs =
2s−1(2s − 3)!!

s!
≤ 4s−1 , (76)

where the standard notation (2n+1)!! = 1 ·3 · . . . · (2n+1) has been used. In order
to prove this claim, let the function g(z) be defined as g(z) =

∑
s≥1 µsz

s, so that
µs = g(s)(0)/s!. Then it is immediate to check that the recursive definition above
is equivalent to the equation g = z + g2. By repeated differentiation one readily
finds

g′ =
1

1 − 2g
, . . . , g(s) =

2s−1(2s − 3)!!
(1 − 2g)2s−1

(check by induction), and this proves (76).
Finally, collecting (76), (75), (73) and (71) the statement immediately follows.

�

We now come back to the proof of propositions 1 and 2. First, we produce
estimates for the coordinate transformation p = T −1

χ p′, q = T −1
χ q′ and for the

remainder R(r). By the hypothesis (a) and by the expansion (25) with the estimate
(26) we evaluate the constants h and E in lemma 3 as

h = e−Kσ/4 , E = ε

(
1 + e−σ/4

1 − e−σ/4

)n

. (77)

However, we remark that in view of the hypotheses of propositions 2 and 3 the
estimate (26) applies to ‖Hs‖(2δ,σ/2), so that in lemma 3 we must put % = 2δ

and ξ = σ/2. We also set d = 1/8. By lemma 3 we conclude that the generating
sequence χ(r) satisfies ‖χs‖(3δ/2,σ/8) ≤ βs−1G/s, namely (29), with

β =
210(r − 1)E

eαδσ
+ 4e−Kσ/4 , G =

E
α

, (78)

E being given by (77). The condition (30) for convergence of the canonical trans-
formation generated by Tχ (or by T −1

χ ) becomes

(
27e +

210(r − 1)
e

)
E

αδσ
+ 4e−Kσ/4 ≤ 1

2
, (79)

which is satisfied in view of (35). Thus, by the general estimates (31), and recalling
that δ and σ must be replaced by 2δ and σ/2, respectively, we get the estimate

|p − p′| <
δ

4
, |q − q′| <

σ

16
. (80)
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Concerning the remainder R(r), in view of H(r) = T −1
χ (H0 + H1 + . . . ), with easy

calculations we get

R(r) =
∑
s>r


s−1∑

j=0

DjHs−j + DsH0


 .

On the other hand, in view of the definition (28) of Ds and of (67) we also have

DsH0 = −
s∑

j=1

j

s
Ds−jLχj H0 = −

s∑
j=1

j

s
Ds−j(Ψj − Zj) .

We conclude

R(r) =
∑
s>r


s−1∑

j=0

DjHs−j −
s∑

j=1

j

s
Ds−j(Ψj − Zj)


 .

Using (32), recalling that ‖Hs‖(2δ,σ/2) ≤ hs−1E by hypothesis in lemma 3, and
also that in view of the form of the solution of (67) and of lemma 3 one has
‖Ψs − Zs‖(1−2d)(2δ,σ/2) ≤ ‖Ψs‖(1−2d)(2δ,σ/2) ≤ βs−1E/s, we estimate the remain-
der as

∥∥∥R(r)
∥∥∥
(1−2d)(2δ,σ/2)

≤
∑
s>r


s−1∑

j=0

(
2eG

d2δσ
+β

)j

hs−j−1+
s∑

j=1

j

s2

(
2eG

d2δσ
+β

)s−j
βj−1

j
E




≤ 2E
∑
s>r

(
2eG

d2δσ
+ β

)s−1
≤ 4E

(
2eG

d2δσ
+ β

)r

.

Proceeding as for the estimate (79) we finally get

‖R(r)‖3(2δ,σ/2)/4 ≤ 4Eµr (81)

We can now complete the proof of proposition 2. Using the elementary inequal-
ity

|p(t) − p(0)| ≤ |p(t) − p′(t)| + |p′(t) − p′(0)| + |p′(0) − p(0)|

and recalling (80) we get

|p(t) − p′(t)| <
δ

4
, |p(0) − p′(0)| <

δ

4
(82)

Thus, recalling that |v| ≤ ‖v‖, it is enough to prove that

‖∆p′‖ := ‖p′(t) − p′(0)‖ <
δ

2
.
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Since the proof is rather cumbersome, let us explain in a few words the idea. In
the new action variables p′ consider the so–called “plane of fast drift” ΠM(p′(0))
passing through p′(0) and parallel to the resonant module M. The dynamics in
the neighbourhood of a resonance can be described as a composition of a fast
drift along the plane ΠM(p′(0)) and a very slow motion transversal to that plane.
On the other hand, the conservation of energy together with the convexity of
the unperturbed hamiltonian h(p) force the orbit to move along a curved surface
which compels the point to go away from the plane of fast drift. Thus, if we ask
‖p′(t) − p′(0)‖ > δ/2 with δ large enough, then p′(t) must be far from the plane
of fast drift, which is possible only after a very long time.

We give now the formal proof. Considering the subspace span(M) and
(span(M))⊥ in Rn we define the corresponding projection operators ΠM and
Π⊥

M. Let λ ⊥ M, with |λ| = 1, and let Iλ = λ ·p′. Since H(r)(p′, q′)−R(r)(p′, q′) =
H0(p′)+Z1(p′, q′)+ . . .+Zr(p′, q′) is in normal form with respect to M, we readily
get that the time derivative of Iλ is

İλ = −λ · ∂R
∂q

.

By Cauchy’s inequality (22) and by (81) we get the estimate

|İλ| <
8|λ|
3eσ

‖R(r)‖(3δ/2,3σ/8)/4 ≤ 4E
σ

µr

for all (p′, q′) ∈ G3δ/2 × Tn. Since λ ⊥ M is arbitrary, we conclude

∥∥Π⊥
M∆p′∥∥ < |t|4E

σ
µr (83)

which is valid until the orbit escapes the domain G3δ/2, if ever.
We now use conservation of energy and convexity. By the mean value theorem,

if p′(t) ∈ Bδ/2(p′(0)) we have

∆h := h(p′(t)) − h(p′(0)) = ω(p′(0)) · ∆p′ +
1
2
A(p)∆p′ · ∆p′ ,

where p belongs to the segment (p′(t) − p′(0)), which is contained in Bδ/2(p′(0)).
By the convexity condition the second term is estimated by

∣∣∣∣12A(p)∆p′ · ∆p′
∣∣∣∣ ≥ 1

2
m‖∆p′‖2

so that we get
1
2
m‖∆p′‖2 ≤ |∆h| + |ω(p′(0)) · ∆p′| . (84)
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By conservation of energy and using hypothesis (a), we get

|∆h| ≤ 2ε .

In order to estimate the second term on the r.h.s., we recall that by assumption
there is ω∗ ⊥ M with ‖ω(p′(0)) − ω∗‖ ≤ δM. Thus, we compute

|ω(p′(0)) · ∆p′| ≤ |ω(p′(0)) · ΠM∆p′| + |ω(p′(0)) · Π⊥
M∆p′|

≤ |ω(p′(0) − ω∗) · ΠM∆p′| + Ω‖Π⊥
M∆p′‖

≤ δM‖∆p′‖ + Ω‖Π⊥
M∆p′‖ .

By substitution in (84) we get

1
2
m‖∆p′‖2 ≤ 2ε + δM‖∆p′‖ + Ω‖Π⊥

M∆p′‖ .

Let us now denote by T the escape time of the orbit from Bδ/2(p′(0)), i.e.

T = sup{t > 0 : ‖p′(s) − p′(0)‖ < δ/2 for 0 ≤ s ≤ t}

Thus, for t = T we have |∆p′| = δ/2, and so also

m

8
δ2 − 2ε − 1

2
δMδ ≤ Ω‖Π⊥

M∆p′‖ .

For negative t the same argument applies, of course.
In view of condition (34) the l.h.s. is bigger than ε, and we have

‖Π⊥
M∆p′‖ ≥ 1

Ω

(
m

8
δ2 − 2ε − 1

2
δMδ

)
≥ ε

Ω
.

By (83), the statement of proposition 2 follows.
We finally come to the proof of proposition 3. The estimate (39) has already

been proved, being just (80). The form of the transformed hamiltonian is readily
obtained putting

h′ = H0 + Z1 + . . . + Zr , f ′ = R(r)

so that h′ = h′(p′) because M = {0}. The estimate (39) is nothing but (81). In
order to check (40) and (41) we first compute

A′(p′) =
∂2h′

∂p′∂p′ = A(p) +
r∑

s=1

∂2Zs

∂p∂p
.

On the other hand, by Cauchy’s estimates we have∣∣∣∣ ∂2Zs

∂pj∂pk
(p′)
∣∣∣∣ ≤ 2

(3δ/4)2
|Zs|7δ/4 ≤ 4

δ2
βs−1

s
E for all p′ ∈ Gδ ,
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where lemma 3 has been used. Being β < 1/2 in view of (78) and (79) one has

|Aj,k − A′
j,k| ≤ 23

δ2 E .

From this, it is easy to prove that

‖A′v‖ ≤ ‖Av‖ + ‖(A′ − A)v‖ ≤
(

M +
23nE
δ2

)
‖v‖ ,

which gives (40).
Similarly, one has

|A′v · v| ≥ |Av · v| − |(A′ − A)v · v| ≥ m‖v‖2 − 23nE
δ2 ‖v‖2

which in view of (37) gives (41). In view of condition (37) we also have m′ > m/2.
In order to check (42) compute

ω′
j(p

′) =
∂h′

∂p′
j

= ωj(p) +
r∑

s=1

∂Zs

∂pj
.

By Cauchy’s estimate we have

∣∣∣∣∂Zs

∂p
(p′)
∣∣∣∣ ≤ 4

3δ
|Zs|7δ/4 ≤ 4

3δ
· βs−1

s
E

for all p′ ∈ W%/4. Using again β < 1/2 one has

|ω′
j(p

′) − ωj(p)| ≤ 8
3δ

E ,

from which (42) immediately follows.
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