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Time-dependent parabolic problems on non-cylindrical
domains with inhomogeneous boundary conditions

GUNTER LUMER AND ROLAND SCHNAUBELT

To the memory of Ralph Phillips, inspiring mathematician and human being, collaborator
and friend

Abstract. We study the relationship between the Dirichlet problem and the Cauchy problem with inhomogeneous
boundary conditions for local operators. Our results are applied to non-autonomous parabolic problems on non-
cylindrical domains.

1. Introduction

The results in this paper on the parabolic problems mentioned in the title are obtained by
interconnecting semigroup theory (such as the Lumer-Phillips theorem and the mean ergodic
theorem), local operator theory, and methods from potential theory (such as parabolic
maximum principles and barriers). The results of Section 2 on the relationship between
the Dirichlet and the Cauchy problem for a given operatowhich we apply in Section 3,
permit now to complete extensive earlier research in [17] and [22] where the solvability
of Cauchy problems with homogeneous boundary conditions was derived from a barrier
condition. Combining our present work with the previous one (and classical PDE results
such as in [15], [16]), we reach a quite general theory covering a wide class of parabolic
problems, which we give here in full extent (see Theorems 3.3, 3.4 and Propositions 3.5, 3.6).
Since what is needed from earlier work is just recalled, stated with references when and
where needed, we keep the present paper rather short and essentially self-contained. We treat
several applications in classical context, cf. (3.2) and (3.4), extending in particular a recent
result on autonomous problems by W. Arendt and &iBun from [4], see Theorem 3.9
(also in this connection Example 3.7 and Remark 3.8), and obtaining the regularity result
Theorem 3.10.

It may be useful to say that the generality of our approach allows to deal with parabolic
partial differential equations in non-divergence form on non-cylindrical domains with
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merely continuous coefficients, partial differential operators which may be singular or
degenerate at the boundary, and little regularity (in the PDE sense) for boundaries (compare
e.g. with [6], [9], [10], [15], and the more recent references [1], [5], [14], [16]). Also in
that context the (potential theoretic) regularity of the boundary (thus the solvability) is not
determined only by the geometry of the domain but also by the partial differential operator
involved. All this is covered by our barrier condition. (We discuss some of these points in
more detail, and give some relevant examples, in Section 4.)

To be more specific, let us recall two results for elliptic partial differential operators
on a bounded open subsgétof RY. First, Arendt and Bnilan showed that ifi is in
divergence form and uniformly elliptic, then the Dirichlet problem

Au=0 onV, u=¢ onav, (1.0

has a unique solutiom € D(A)NC (V) for eachy € C(3V) if and only if the partdg of A

in Co(V) generates a semigroup (i.e., the Cauchy problerfon V with zero boundary
conditions is well-posed), see [4, Thm.4.1] combined with [4, Thm.4.10]. Second, there
are degenerate elliptic operatotssuch thatdg is a generator but (1.1) cannot be solved
forallp € C(3V), see Example 2.8. For such (regular or degenerate) and other (elliptic or
parabolic) situations, we are thus looking for conditionsdoansuring that the generator
property ofAg is equivalent to the solvability of (1.1).

This is achieved in Section 2 in the following quite general setting.\Lbe a bounded
open subset of a locally compact metric sp@@ndA be a closed, dissipative, linear opera-
toronC (V). Following [18], we define o' (V) the operator 1 with Ventcel boundary con-
ditions, cf. (2.1). Then the Dirichlet problem (1.1) has a unique solutianD(A) N C(V)
for eachy € C(dV) provided thatAg is invertible onCo(V) and A1 is densely defined
on C(V), see Corollary 2.7. In fact, these properties characterize the solvability of (1.1)
(under a mild extra assumption) by Theorem 2.13. These results are formulated and proved
in the framework of semigroup theory. Different semigroup approaches to autonomous
inhomogeneous initial boundary value problem are developed in e.g. [3], [4], [12].

In Proposition 3.6 we give a simple sufficient condition for the densi® 41) in terms
of a regularity property ofA. This yields a new proof of the above mentioned characteriza-
tion from [4] for A = A (in fact, for uniformly elliptic operators in non-divergence form),
see Example 3.7. Another application to a problem of singular multiplicative perturbation
is exposed in Proposition 3.1.

In a next step, these results on the abstract Dirichlet problem (1.1) are applied in
Theorem 3.3 to the non-autonomous parabolic initial boundary value préblem

Lu=F on VYV, u=f on T'UV(0), (1.2)

10ne can consider (1.2) as a parabolic Dirichlet problem. Correspondingly our Cauchy barriers (CB) may be
regarded as parabolic barriers as opposed to the classical barriers for elliptic Dirichlet problems.
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on a non-cylindrical domaiify < (0, T'] x € with lateral boundary” and bottorm¥ (0). So
we can solve (1.2) for continuousand f if Lo is invertible (or, equivalently, a generator)
on Co(V) and L, is densely defined oﬁ‘(z_o) (whereL, are defined agl; above). In
Section 3 we describe the class of operatorsonsidered in (1.2), but here we note that
it contains parabolic partial differential operatdrainder the conditions mentioned in the
second paragraph above, whérean be an open subset®f or a network, see [22, §6].
Using Proposition 3.6, we finally show in the non-degenerate case that (1.2) is solvable if
and only if Lg is invertible, see Theorem 3.9 which extends [4].

In order to apply these theorems to concrete partial differential equations, one needs of
course a criterion for the invertibility of.g. Here we can rely on the theory developed
in [17], [19], and [22]. We remark thatg is a generator if and only if the homogeneous
problem (1.2) withF = 0 andf = 0 onT is ‘well-posed’, see [22, Thm.4.19] for a precise
statement. But more importantly, we can characterize the generator propégyogfthe
barrier condition (CB) forL andV, under some mild additional assumptions which are
easy to check in the applications, see Theorem 3.4. In Example 4.2 we construct Cauchy
barriers (CB) for several non-cylindrical domains.

2. Dirichlet and Cauchy problems

Let @ be a locally compact Hausdorff space having a countable Isziség its one-
point compactification, antf # ¢ be a fixed open subset &f. We denote the closure and
boundary of in Q* by V* andd V*, respectively. Le€ (V) be endowed with the topology
of uniform convergence on compact subset® ofWe also use the Banach spacev *)
equipped with the sup-normn- || and its closed subspa&& (V) of functions vanishing
on dV*. We identify C(V*) with a subspace of (V) by restriction. LetA : D(A) €
C(V) — C(V) be alinear operator. Our basic assumption reads as follows.

(H1) A is closed INC(V). If x € V andf € D(A) with |/ (0)] = |/l then
Rel(Af)(x) F(0)] <0,

This hypothesis will lead to closedness and dissipativity of the operators

D(Ag) = {f € D(ANCo(V): Af € Co(V)},  Aof =Af,
D(A1) = {f € D(A)NC(V¥) : Af € Co(V)}, Arf = Af. (2.1)

ThroughoutAg andA; are considered as operators@s(V) andC (V*), respectively.

LEMMA 2.1. Let(H1) hold. Thendg and A; are closed and dissipative i6ip(V) and
C(V*), respectively.

Proof. We only considerA1, the operatordg can be treated in the same way. Let
D(Ay) > f, — fandAif, — gin C(V¥). SinceA is closed inC(V), f belongs to
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D(A) andAf = g € Co(V) so thatA; is closed inC(V*). Given f € D(A1), there is
x € V¥ such that| f[| = | f (x)|. Set¢p = f(x) 8, € C(V¥). Then||¢]|? = || f|I* = ¢(f)
and the quantity

0 if edV™,
ReALf. ¢) = {Re[Af(x) F@)] ifxeV,
is negative due to (H1). Thu4; is dissipative. O

The resolvent set of a linear opera®is denoted by (B) and its resolvent bR (1, B).

LEMMA 2.2. Let(H1) hold and0 < A € p(A1). Theni € p(Ag) andR(\, A1) f =
R(L, Ag) f for f € Co(V).

Proof. Giveng € Co(V), setf = R(A, A1)g € D(A1). Thenrf = A1f + g € Co(V)
so thatf € D(Ap) and(: — Ag) f = g. Lemma 2.1 now yields the assertion. O

The above results allow to relate the generation propertiespadnd A;. Example 2.8
below shows that the density @f(A1) cannot be omitted in assertions (a) and (c) of the
next theorem, in general.

THEOREM 2.3. If (H1) holds, the following assertions are equivalent.

(@) (A — Ag)D(Ap) is dense inCo(V) for somer > 0 and D(A1) is dense irC(V*).
(b) A1 generates &g-semigroupl1(-) on C(V*).
(c) Ao generates ag-semigrouplo(-) on Co(V) and D(A1) is dense inC(V¥).

If this is the caseTp(r) and T1(¢) are contractionsTy(¢) f = To(t) f for f € Co(V) and
(T1() f)(x) = f(x)forx € dV*, f € C(V¥), andr > 0.

Proof. (a)=(b): If A7 were not a generator, then there would exist a finite Borel measure
w # 0 onV* with

| (Af—A1f)du=0 forall f € D(Ay)
V*

because of Lemma 2.1 and the Lumer-Phillips theorem. Using (a), we seg thast
vanish onV. Thus

0=/ (Af—A1f>du=/ A dp
oV* oV*

forall f € D(A1). The second condition in (a) now implies= 0 so that (b) is verified.
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(b)=(c): In view of Lemma 2.1 and 2.2 and the Lumer-Phillips theorem, one only has
to show thatD (Ap) is dense inCo(V). This fact follows from

AR(A, Ag)f = AR, AD)f — f

as\ — oo for f € Co(V).
The implication ‘(c}=(a)’ is clear. By Lemma 2.15(¢) and71(¢) are contractions, and
by Lemma 2.2 both coincide afig(V). The identity

t

T f — f = A1 / Tis)fds € Co(V).,  feC, 120,
0
establishes the last assertion. O

As an immediate consequence we can solve the Cauchy problemvidth inhomo-
geneous boundary conditions. In [3, Thm.6.5] the case of uniformly elliptic partial differ-
ential operatorst in divergence form was treated allowing for time depending boundary
values. Non-autonomous extensions of the next result are given in Theorem 3.3 and 3.9.

COROLLARY 2.4. Let(H1) hold andf € D(A1). If (a)-(c)of Theoren®.3 hold, then
there is a uniquer € CL(R., C(V*)) such thatu(r) € D(A1) forr > 0 and

Lu(t,) = Au(t,)), =0, onV,
ut,x) = f(x), t>0, x edV*,
u(0,x) = f(x), xevV. (2.2)

Proof. The functionu(z, x) = (T1(t) ) (x) onR . x V* solves (2.2) due to Theorem 2.3.
The solution is unique sincég is a generator. O

We strengthen (H1) in order to obtain positive solutions:

(H2) AisclosedinC(V)andreal(i.e.,iff € D(A),thenf € D(A)andAf = Af). If
x € Vandf € D(A) is real-valued with O< f(x) = sup, f, then(Af)(x) <O.

As in [22, Cor.2.10] one proves that (H2) implies (H1). The converse can be shewis if
given by a real local operator that satisfies (H1) on all open subs&tsssfe [22, Cor.2.10]

and the definitions given in the next section. The following result can easily be deduced
from R. S. Phillips’ characterization of generators of positive contraction semigroups [25,
Thm.2.1] (compare the proof of Lemma 2.1).

PROPOSITION 2.51f (H2) holds andA1 is a generator, ther1(-) is positive. Thus
the solution 0f2.2) is positive if f > 0.
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The results established so far are essentially stated in [18] without proof. In this work
as well as in [3] further results were derived assuming that the Dirichlet problem (1.1) is
solvable. Here we are looking for conditions ag and A; characterizing the solvability
of (1.1). Our main tool is the mean ergodic theorem which we apphy (0.

THEOREM 2.6. Assume thafH1) holds,Aq is invertible onCo(V), and A1 is densely
defined onC (V*). ThenTy(-) is mean ergodic with projectioR ontoker A1 = fix T1(-).
Moreover,|P|| < land Pf(x) = f(x) forx € d3V* and f € C(V*). If in addition (H2)
holds, thenP is positive and|T1(t) — P|| < Me*' for r > 0 and constantd/, ¢ > 0.

Proof. By Theorem 2.3 the operators; generate the contraction semigroufig-),
k=0,1. Forr > 0andf € D(A1), we obtain

AR(A, A1) f = RO, ADA1f + f = R, Ao)Arf + f
— —AgtALf 4 f (2.3)

as) — 0 dueto Lemma 2.2. The mean ergodicityZaf-) follows from (2.3) and [7,
Thm.5.1]. The other assertions except for the convergend (of are straightforward
consequences of Theorem 2.3 and Proposition 2.5. Let (H2) hold. Notdghatis
positive and thus uniformly exponentially stable by [23, Thm.B-1V.1.4]. We now deduce

ITv () f = PfIl = IITo()(f — PO < 2Ne™* | £l

from Ty (t)Pf = Pf,fort > 0, f € C(V*), and some constanig, ¢ > 0. O
Observe thaPf = f — Ay A1 f for f € D(A1) due to (2.3).

COROLLARY 2.7. Assume thafH1) holds,Ag is invertible, andA1 is densely defined.
Then for eacly € C(3V*) there exists a unique solutiene C(V*) N D(A) of

Au=0onV, u|dV* = ¢. (2.4)
If (H2) holds andp > 0, thenu > 0.

Proof. The functionu = Pf solves (2.4), where is given by Theorem 2.6 and is
any extension op to C(V¥). If u satisfies (2.4) fop = 0, thenu € ker Ag so thatu = 0.
O

We refer to [11] for a detailed account on the Dirichlet problem for elliptic operators. The
following two examples show that Theorem 2.6. and Corollary 2.7 are not valid if one only
assumes thaig is an invertible generator or thdt; is a generator andg is injective.
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EXAMPLE 2.8. ForV = (0, 1)2 andQ = R?, we define

Af(x, y) = 0ux f, ) 4+ ¥20yy F(x,y) — f(x,9)

with D(A) = {f e C(V)N Wlf’m(V) : Af € C(V)}forone (and hence alp) > 2. Itcan
be checked that (H2) holds, cf. [24]. Clearly is densely defined. Further, the function

h:V =Ry hx,y)=xL—x)1— Sy

is a Cauchy barrier in the sense of (CB) below. Therefégegenerates a contraction
semigroup onCo(V) due to [24, Thm.1] or Theorem 3.4. The operatgy is invertible
since Ag + 1 is a dissipative generator by the same reasons. However, following the
arguments of [11, §6.6, p. 116], one shows that the Dirichlet problem corresponding to
cannot be solved fap € C(dV) vanishing forx = 0, 1 but not fory = 0. Therefore the
operatorA; is not densely defined ofi(V) due to the above corollary.

EXAMPLE 2.9. LetQ = (0,00), V = (1, 00), andAf = f” with D(A) = C2(V).
Then (H2) holds andig is an injective generator ofip(V). Further,D(A;) is dense in
C([1, o0]). Hence A1 is a generator by Theorem 2.3. However, (2.4) has no solution for
with ¢(0) # ¢(o0), and sal1(-) is not mean ergodic in view of the proof of Corollary 2.7.

Concluding this section, we want to characterize the Dirichlet regulari¥y of terms
of Ag andA1. Here we use the following notion, cf. [17].

DEFINITION 2.10. The seV is calledweakly (@-)Dirichlet regularif (2.4) has a solu-
tion for eachy € C(aV*) and(A-)Dirichlet regularif, in addition, the solution is unique.

LEMMA 2.11. If V is weakly Dirichlet regular andD(Ag) is dense inCq(V), then
D(A1) is dense irC(V¥).

Proof. For f € C(V*), thereisv € C(V*) N D(A) such thatdv = 0onV andv = f
ondV*. By assumption, there exist, € D(Ap) converging tof — v in Co(V). Hence,
u, +v € D(Aq) tends tof in C(V*). O

LEMMA 2.12. If V is weakly Dirichlet regular ando(V) € A[D(A) N C(V¥)], then
Ap is surjective.

Proof. Forg € Co(V), there isu € D(A) N C(V*) with Au = g. By assumption, there
existsv € D(A) N C(V*) such thatdv = 0 andu = v ondV*. Thenf = u — v belongs
to D(Ag) andAf = Au = g. O

The range condition used above holdd iis a local operator o such thatA is invertible
on Co(R), cf. [22, Prop.3.4] and the next section.
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THEOREM 2.13. Assume thafH1) holds, D(Ap) is dense inCo(V), and Co(V) <
A[D(A) N C(V*)]. Then the following assertions are equivalent.

(a) V is A-Dirichlet regular.
(b) Agis invertible onCo(V) and D(A1) is dense inC(V*).
(c) A1 generates a mean ergodic semigroup@iV ).

Proof. Assertion (b) follows from (a) in view of Lemmas 2.1, 2.11, 2.12, and the unique-
ness of (2.4). The implication ‘(e}(c)’ was shown in Theorem 2.6. If (¢) holds, thérs
weakly Dirichlet regular due to the proof of Corollary 2.7. The operdipis thus surjective
by Lemma 2.12. This implies the injectivity dfy sinceTp(-) is also mean ergodic, cf. [7,
Thm.5.1]. Therefore solutions of (2.4) are unique. O

3. Parabolic problems on non-cylindrical domains

In this section we make use of the theory of local operators, see [17], [22], and the
references therein. focal operatorA is a collection of linear operatos¥ : D(A, V) C
C(V) — C(V) such that, forf € D(A,V)andW C V, one hasf|W € D(A, W)
and(AY f)|W = AV (f|W), whereW andV belong to the se®)(2) of non-empty open
subsets of2. Usually we omit the superscript. We introduce further notions which are
explained below in the context of partial differential operators.

(a) Aislocally closed u.cif, for f, g € C(V), the existence 0O(2) > V,, 1+ V and
fa € D(A, V) such thatf,, — f andAf, — g uniformly on compact subsets of
V implies thatf € D(A, V) andAY f = g.

(b) Aislocally dissipativef, for allcompactk C V andf € D(A, V) with sup,, ¢ | f1
< sup, | f|, there isxp € V such that|f(xo)|] = sup, |f| and Re[Af)(xo)
f(x0)] 0. _ o

(c) Aisrealif f € D(A, V) impliesthatf € D(A,V)andAf = Af onV.

HereV € O(Q2). If we assume that (a)—(c) hold and that
(S) forV contained in a base @¥(2) the partAy of AV in Co(V) is densely defined,

then Lemma 2.9 and 2.10 of [22] show that= A" satisfies (H2) (and (H1) it is not
supposed to be real). In view of Section 2 we define the operator

Avr={ol e DUV = I € CTINDALY) 2 AF € ColV)

onC(V*). We writeAg = Ay andA; = Ay if there is no danger of confusion.

2In [22] we used a somewhat weaker condition (S) instead of the present one.
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The results in the previous section allow to treat a problem of degenerate multiplicative
perturbation. For a local operatdrandp € C(€2) we define the local operatgpA) f =
pAjf with domainD(pA, V) = D(A, V), cf. [17, 86].

PROPOSITION 3.1 Assume thati is a locally dissipative, locally closed u.c., local
operator satisfyingS) on O(2). Letp € C(2) be bounded and non-negative akde
O() such that the seiV = V\{x € V : p(x) = 0} is dense inV. Further suppose that
Ay is densely defined ofi(V*). ThenD((pA)w) is dense irC(W*). Thus there exists a
unique solution of2.2) for pA on W if (pA)w is a generator orCo(W).

Proof. Note that(pA)"W satisfies (H1) orW. For f € C(W*) = C(V*) take f, €
D(Ay) converging tof in sup-norm. SincgAf, € Co(W), the functionsf, |W belong to
D((pA)w). Corollary 2.4 now implies the second assertion. O

The above result can be applied to the following situation. (One can deal with more general
examples in view of [17, Thm.6.4], see also [21].)

EXAMPLE 3.2. LetV = B;betheopenunitballiR”, W = B1\{0}, andp(x) = |x|2.
Let A = A be the local operator with domaii3(A,U) = {f € C{U) N Wﬁﬁloc(U) :
Af = Af € C(U)} for U € O(R") and one (and hence alf) > N. ThenA satisfies
the assumptions of Proposition 3.1, see [24], gmd)w is a generator o@o(W) by e.g.
the remarks after [17, Thm.6.10R(Ay) is dense irC(B1) because of standard existence
results for the Dirichlet problem for the Laplacian and Lemma 2.11. Thus we can solve
(2.2) for r2A on B1\{0}.

Turning to the parabolic case, we fet=[S, T] x  and, forV € O() andr € [S, T1],

Vit) = xeQ:@t,x)eV), VOy={t}xV@®), V,={s,x)eV s>t}
Vo=V Vi={s,x)eVis>th Iy={te[S,T]: V() # 0}

Further, V* and aV* designate the closure and boundaryloin Q* = [S, T] x
respectively. Observe that/'j, = aV* U V(S), [22, Prop.4.1]. We writee = (¢, x) for a
generic point ok2 or Q* and conside€ (V*) andC (V) as subspaces @6f(V).

A local operatoll. defined orO(2) is calledparabolicif, for F € D(L, V),V € O(Q),
andy € Cl(IK), we havepF € D(L,V)andL(¢pF) =¢LF — ¢'F.

Let V € O(Q) satisfyV(r) # ¢ for ¢ € [S, T] (to avoid trivial situations). Take
FeC(V", feCV(S¥),andg € C(OV*) with g(S, x) = f(x) for x € IV (S)*. We
are looking for solutions € C(V*) N D(L, V) of the problem

Lu = F on V,,
u =g onav*,
u(S) = f. (3.1)
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We first give our basic example for the above abstract setting: the parabolic differential
operator

N N

Lx.D)= Y au(t.x)du + Y bi(t, x)d + c(t, x) — & (3.2)
k=1 =1

on an open subse? of RV, whered, = 2 andd; = % The coefficientsy; b, and

¢ < 0 are supposed to be merely continuougmeal-valued, and to satisfy

N
Y aut, x)yiy >0 (3.3)
k=1

for y e RY and(r, x) € Q. The operator may be singular or degenerate at the boundary.
SetQy = (S, T) x QandWgy = W N Qqo for W € O(RQ). Asin [22, §6.1], we define

D(L, W) = {FeC(Wo)NW,7 (Wo): L(x, D)F =G a.e.

onWgofor G € C(Wy)},
LF = G onW,. (3.4)

Here,W € O(), p > N + 2 s fixed, andw 2 W) (W;'2 (W)) denotes the space of

p.loc Joc
functionsF such thatF'|U 5, belongs to the Sobolev space

W2(Uge) = (F € LP(Ugg) : %F, uF, F € L’ (Ugg), kil =1,..., N}

for all relatively compact open subséfsof W, (of W).

In[22, 86.1]itis shown thab (L, W) does not depend on the choicgof N + 2. Itis
rather obvious that is areal, parabolic, local operator satisfying (S). The local dissipativity
corresponds to the parabolic maximum principlewﬁ’z. The local closedness u.c. is
a straightforward consequence of the standard interior a priori estimates proved in [15,
8IV.10]. This property essentially says that we have chosen the ‘right’ donieihs W )
(otherwise one would have to replateby its ‘local closure’L, see [22, Thm.2.12]). We
point out that in this case (3.1) is just a parabolic partial differential equation whose solution
u € D(L, V) possesses in the interior the regularity one can expect in view of the classical
theory, cf. [15, 8IV.9] or [16, Chap.7]. See [22, §6] for all this and for analogous problems
on networks.

We come back to the general situation and state a straightforward consequence of the
theory developed in the previous section.

THEOREM 3.3.Let L be a locally dissipative, locally closed u.c., parabolic, local
operatordefine_d o (L2) and satisfyingS), letV e O(Q) satisfyV (¢) # @fort € [S, T1],
andletF € C(V*), f € C(V(S)*),andg € C(OV*)withg(S, x) = f(x)forx € aV(S)*.
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Assume thal v, is a generator orCo(V o) and thatD(Ly,) is dense irC (V). Then there
is a unique solutiom € C(f) ND(L,Vy of (3.1). If Lisrealand—F, g, f > 0, then
u > 0.

Proof. Uniqueness and positivity of solutions follow from the parabolic maximum prin-
ciple [22, Thm.2.29, 2.30]. By Theorem 2.B; generates a contraction semigroup on
C(V¥). Sinceel'o = 0 fort > T — S by [22, Thm.4.9], Theorem 2.6 provides us with a
prOJectmnP = Py mapplngC(V ) onto kerLj such thatPw(x) = w(x) for x € dVyg
andw € C(V*). SetF(t,x) = e ' F(t,x),? = (L1 — 1)"1F, andv(z, x) = ¢' d(, x) on
K*. Thenv e D(L, V) NCV* )and

Lv=—-—¢94+eLd=—bd+e D+ F)=

onV,sinceL is parabolic. Také& e C(V¥)WithG(S) = f—v(S)onV(S)andG = g—v
onadV*. The functioru = v + PG clearly solves (3.1). O

As observed in the above prodfy is invertible if it is a generator, and the converse holds
by virtue of the Lumer-Phillips theorem (under the assumptions of Theorem 3.3).

We can now involve our previous work in [17] and [22] on homogeneous initial boundary
value problems for real, locally dissipative, locally closed u.c., local operatatsfined
on O(R2) and satisfying (S). (Here parabolicity is not needed so that we writestead of
L andV C Qinstead ofV C Q.) We say that/ € O(2) possesses@auchy barriemwith
respect tA if

(CB) there exists a compact subgétf V and a functiom: € D(A, V\ K) such that
h > 0and(A — A)h < 0onV\K for somer > 0, and for alle > 0 there is a
compact seK, with K C K, C Vand0<h <eonV\K,.

Itis not difficult to see that admits a Cauchy barrier (witkh = @) if Ay is a generator on
Co(V), see [22, Prop.3.2] or [17, Thm.5.4]. Conversely, the existence of a Cauchy barrier
implies thatAy is a generator ifA satisfies additionally one of the following hypotheses.

() There arerelatively compad}, € O(R2),n € N, suchthav,, € V41,1, Va =V,
andAy, is a generator o@g(V,,). D(Ay) is dense irCo(V).

(O) Aq is agenerator op(2). LetW € O(R2) andu € D(A, W). If u has compact
support, theni* € D(A, Q) and A% = (AVw)?. If x € W andu > 0, then
there is 0< u1 € D(A, W) such thatu; has compact support amd= u; on a
neighbourhood of in W.

(Hereu” e Co(2) denotes the extension by 0 ofe Co(W).) The first condition is used

in [17, Thm.5.4] or [22, Thm.3.27] to approximatefrom inside by the regular domains
V,. The second one gives us the semigreifs on the larger domai2 and allows

us to localize it to the domail. This was done in [22] and required considerable efforts
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involving the theory of Feller semigroups, so-called space-time semigroups, and localization
methods from potential theory. In our application (3.2) and (3.4), assumption (O) can easily
be checked in the non-degenerate case (as formulated in Theorem 3.9 below) employing
[15, Thm.IV.9.1], see the discussion before [22, Thm.6.1]. Assumption (I) is useful for
degenerate problems, see [22, Prop.6.5-6.7]. For later reference here and elsewhere, we
state Theorems 3.25 and 3.27 of [22].

THEOREM 3.4.Let A be a real, locally dissipative, locally closed u.c., local operator
defined orO(£2) and satisfyindS), and letV € O(2). Assume that eith€f) or (O) holds.
ThenAy is a generator orCo(V) if and only if V admits a Cauchy barrier w.r.tA.

In Section 4 we further discuss Cauchy barriers and give examples. At this point we
recall [22, Cor.3.26] which says that under condition (O) the generator property of
persists under finite intersections of domains. In [19, Thm.3.3] one finds an analogous
result in the context of hypothesis (1).

PROPOSITION 3.5.Let A be areal, locally dissipative, locally closed u.c., local oper-
ator satisfying(S)and(O). LetV, V; € O(),k =1, ..., m. If eachV}; admits a Cauchy
barrier w.r.t. A andV = (] Vi, thenAy is a generator orCo(V).

Coming back to the main line of argument, we now present a sufficient condition for the
density of D(A1).

PROPOSITION 3.6.Letu > 0 be a finite regular Borel measure dhandV € O(2)
be relatively compact withe(dV) = 0. Let A be a local operator orf2 such thatAq is
densely defined and invertible 6ly(£2) and||A51f||co(Q) <clfllra,w for f € Co()
and some; € [1, c0). ThenAy is densely defined ofi(V).

Proof. Note that there are relatively compact sBts e O(Q2) such thabV c W, 11 C
Wai1 C W, andu(W,) < 1/n for n € N. We extend a giverf € C(V) to a function
f € Co(RQ). Fore > Othereisi € D(Ag) such thaluf—ﬁnoo < e¢. Letg = Au and take
continuous functions,, : 2 — [0, 1] vanishing onW,, ;.1 and being equal to 1 of#,,. Set
én = axg andv, = (Ag'g,)|V. Thenv, € D(Ay), §, — & in g-norm, and

IA

If —iillco) + 1AGHE — &)l co)
e+cllg —gnllLan < 2¢

If - Un”C(V)

IA

for largen. O

This simple criterion allows to reprove part of the characterizations givenin [4, Thm.2.4],
where we restrict ourselves to the Laplacian for simplicity (the same arguments apply to
the autonomous analogue of the setting of Theorem 3.9, cf. [24]).
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EXAMPLE 3.7. LetV be abounded open subseRdf having a boundary with Lebesgue
measure 0 and be the local operator induced by the LaplacionR”, see Example 3.2.
Taking a large open bafk containingV, we can check the conditions of Proposition 3.6
and Theorem 2.13. Thug, is A-Dirichlet regular if and only ifAg is invertible onCo (V).

REMARK 3.8. The equivalence stated in the previous example can also be verified using
classical potential theory and Cauchy barriers. Indeed, in view of Lemma 2.12, one only
has to show the sufficiency part of this characterizationAdfis a generator oi€g(V),
then A has a Cauchy barrier by [17, Thm.5.4] or [22, Prop.3.2]. But this already implies
the Dirichlet regularity ofv by the theorem of Bouligand, see [13, Thm.8.18, 8.22].

We extend the above results to non-degenerate parabolic problems in the classical context
(3.2) and (3.4).

THEOREM 3.9. Let L be given by3.2) and (3.4), where< is a bounded open subset
of RY with boundary of clas§? and the coefficients belong &, R), ¢ < 0, and(3.3)
holds onQ = [—1, T] x Q. Take a relatively compact subséte O([0, T] x ) such
that V(r) # @ for0 <t < T anddV has Lebesgue measure 0¢in Then the following
assertions are equivalent.

(@) Ly, is a generator inC(V).
(b) Ly, is a generator inCo(V).
(c) V4 has a Cauchy barrier foL.

In this case the conclusions of Theor818 are true.

Proof. Using [15, Thm. IV. 9.1] we see thdltg, is invertible (and densely defined) on
Co(£2p) and that its inverse mag€o(2), | - [I4) continuously intoW(Il:g(QO) — Co(Lp)
if g > N/2+ 1. So the theorem follows from Proposition 3.6, Theorem 2.3, Theorem 3.4
(see the remarks before [22, Thm.6.1]), and Theorem 3.3. O

We briefly indicate (expliciting only the casé = A) another method to verify the
density of D(L1) using L-harmonic functions. Considet = A, L = A — %, and
V =[0,T] x (0,1)2. Assume that 1 is not densely defined i6' (V). Then there is a

regular Borel measurg # 0 such that

/;udM:0 forall u € D(L1).
v

SinceLg is densely defined o60(V ), the support oft must be contained iV ,. The
function u(z, x,y) = (To(t) f)(x, y) belongs toCo(V) and to the kernel of., where
f € D(Ap) andTp(-) is the semigroup generated by the Dirichlet Laplacigron Co(V).
This implies that supp C [0, T] x dV. Further lex € ccl(o, 1), k € Np, andg(z, x, y) be
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equal toe X (x) for y = 1 and(z, x) € [0, T] x [0, 1] and be equal to 0 on the other faces
of the lateral boundary. Exterdto a periodic odd function oR with Fourier coefficients
a,. Define

m

—kt Aan
w0 = )
fort € [0,T], x,y € R, andm € N. ThenLu,, = 0, u,, = 0 on the facesx = 0,1
andy = 0, anduy,(t,x,1) — e B (x) uniformly for s andx. Thus [ gdu = 0. By
an approximation argument we now deduce fhaanishes on [0T] x (0, 1) x {1}. The
other faces can be treated in the same way sauthsssupported in the lateral edges. In a
last step one sees in a similar manner that this is impossible. Thegefer@ andD(L1)
is dense.

We finally want to study the regularity of the solutions to the homogeneous problem

sin(2rnx) sin(yvVk — 472n2)

Lu =20 onV,,
u=20 on aVi\ V(s),
u(s) = f, (3.5)

fors € (S, T), f € Co(V(s)), and the operatak given by (3.2) and (3.4) supposing that

Lo = Ly, is a generator oo(Vy). In [22, Thm.4.13, 6.1] we proved that the solution
u e Co(Vy)N ﬂp>1 W;:i)c(zs) of (3.5) is given byu(r, ) = U(t,s)f,t € [s, T], for a
variable space propagatdi(z, s) : Co(V(s)) = Co(V(2)), S <s <t < T. This means

that
U(s,s) = ICO(V(S))V Ui, rU(r,s) =Ul(t,s), and (3.6)
(t,s) — (U(t,s)F(s))* is continuous inCo(£2) (3.7)

forS <s <r <t <TandF € Co(Vy), cf. [22, Def.4.8]. Moreover/(t, s) is a positive
contraction.

In the following we consider initial functiong belonging locally to Slobodeckij spaces
W, (U), whereU is a bounded open subset®Y with a smooth boundary; € [0, 2], and
1 < p < oo. These spaces can be defined, e.g., bider estimates of.”-type, see [26,
§4.4]. Real interpolation oW (U) yields

(W U), WEWU))p.p = W) (U) (3.8)

if y=a(l—0)+ g6 ¢ Nandd € (0, 1) due to Theorem 4.3.1.1 and formula (2.4.2.16)
of [26]. Takinga = 0 andg = 2 in (3.8), [2, Thm.I11.4.10.2] leads to

Wy 2(a, b] x U) = LP([a, b], Wi(U)) N W;([a, b], L (U))

_2
< C(a.b]. W 7 (U)) (3.9)
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if p # 2. Finally, from [26, Thm.4.6.1, 4.6.2] we deduce

2 2

W2y s WET W) s We T (U) (3.10)

if1 < p <r <gq < oo. The following result yields in the interior df’, the regularity at
t = s which we can expect in view of [15, §IV.9].

THEOREM 3.10. Let L be given by3.2) and (3.4), where is an open subset &
and the coefficients belong (2, R), ¢ < 0, and (3.3) holds. Moreover, leV € O()
satisfyV(t) # @ for § <+ < T. Assume thaLy, is a generator onCo(V,). Given

2.2
Wp’,fc(V(s)), we setu(t, x) = (U(t, s) f)(x) for

12
Wp,lac (X/Y)

se(S,TYyandf € Co(V(s)) N
(t,x) € V... Thenu € Co(V%) NN

p>1

p>1

Proof. Fix2 < p <r < g < 00,8 > 0, and open, relatively compact subsgtsv, W’
of V (s) with smooth boundaries such tfiatc W € W € W’ and s —8, s+8] x W/ C V,,.
ChooseF € Co(Vg) With || Flloo < || fllcos F(s) = f, F(t,x) = f(x) forx € W’ and
|t —s| < 8. We proceed in two steps.

(1) Taker € (s — 8, s) and setW = [t, 7 + 8] x W andW' = [z, T + 8] x W'. Using
(3.8), (3.10), (3.9), and the interior apriori estimate [15, (IV.10.12)], we calculate

UG DF@ = fll 52
w

b T (W)

<cllUs, DF@) = flfm U DF@ = f1I°, ,
W, " (W)
<cll W DF@) = FOF G (If] .2 +IUGDF@I ,2 )
w, Tw) w, (W)
<clUEDF@) = FOILZ Ul .2 +IUCDF@ 02
Wq q(W) q

0
(E))
<clWesOF@) = FOMIL Al 52 +IUCGOF@l g’
w, Tw) -
<clUs, F @) — Fs)*|I57? (3.11)

wheref = (1 — %)(1 — 1)~1 and the constantsdo not depend o,
(2) Now letz, = s — 1 for largen, u, = U(-, ;) F(ty) on V., U = [s,s + 8] x U,

n

W = [s,s +8] x W, andW' = [s,s + 8] x W. By [22, Thm.4.13, 6.1] we have
u, € ﬂp>l W;:IZOC(ZQ) sinceu, solves (3.5) with initial valueF(z,) at timez,. Further,

u, — uin Co(V}) due to (3.7). An application of (3.6), [15, (IV.10.12)], and (3.11) yields
lun — umIIWI}z@ = UG, ) [UGs, t) F(y) — U, Tm)F(Tm)]IIW;z(Q)

< c(Jlun — um”c(ﬁ) + UG, t) F(Tn) — U, Tm)F(Tm)”Wz,%(W))

P
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< c(lun = tmlloo + (U s, w) F(m))* — F(s)#) 357
HIU (s, T) F () — F(s)*1559).

Thus(u,) is a Cauchy sequenceWij’z(g) by the strong continuity of/ (¢, s). As aresult,
U, — uin W,}’Z(Q), and the assertion follows. O

4. Notes, examples, and comments

In the first part of this section we give an example, 4.1, and recall facts from the
literature, showing that indeed in our context the solvability of the parabolic problem does
notin general depend solely on the geometry of the domain but also on the operator involved,
as covered by our barrier condition. Next, besides the applications given in the main text,
we treat in Example 4.2 several non-cylindrical parabolic problems which are reasonably
‘nasty’ in the sense that they present most of the irregular behaviour mentioned in the
second paragraph of our introductibrin Example 4.2 the construction of the parabolic
barriers is explicit and easy, illustrating the solution of a non-cylindrical problem with
little regularity in regard to coefficients, boundary and degeneracy, just using Theorem 3.4,
Proposition 3.5, Theorem 3.9, and the construction of a parabolic barrier ‘by hand’ without
any other classical investment (besides the elliptic result [11, p. 26]). In this example we
haveL = a(t, x) A — 9;. This type of a multiplicatively perturbed operator naturally arises
from problems with a probabilistic time change which can be quite irregular.

We point out that going to merely continuous coefficients for operators in non-divergence
form changes the properties of the problem significantly. This happens already for
autonomous problems on cylindrical domaifisT] x V. In this situationV is A-Dirichlet
regular if and only if it isA-Dirichlet regular provided tha is in divergence form or has
Dini-continuous coefficients. But this equivalence faild ifs in non-divergence form with
merely continuous coefficients. See the discussion and the references given in the notes of
[11, Chap.6]. These examples can be transferred into the context of (autonomous) parabolic
problems using that has a Cauchy barrier ov if and only if L = A — 9, has a Cauchy
barrieron [, T] x V, cf. Example 4.1.

For parabolic operators on non-cylindrical domains this equivalence even breaks down
forL = A—9;andL = oA — 9, a > 1, dueto[8, Thm.8.1]. Therefore, in our setting, the
Dirichlet regularity of a domain will depend on the operator involved, in general. This fact
is also reflected by Wiener type characterizations of boundary regularity which involve the
capacity of level sets of the heat kernel correspondinig, teee [9] forL = A — 9, and [5]
for operators in divergence form. Also most relevant to our context, the following example

3 We choose to treat in Example 4.2 the problems we do, among many other often more complicated ones that
can be handled by the same or similar ideas, for clarity and concision.
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shows the dependance of the (potential theoretic) boundary regularity on the operator in the
degenerate case.

EXAMPLE 4.1. We consider the situation of Example 3.2 and the local opefatoA
introduced there. Define the local operatdf® = |x|?A — 3; andL® = A — 3, on
Q2 =[0,T]xWasin(3.2)and (3.4). Asnoted in Example 3.2, there is a Cauchy bafder
Ix|2A onW. Clearly,H (z, x) = th(x) isthen a Cauchy barrier fa‘D. Onthe other hand, if
L@ has a Cauchy barrier, then there would exist a propadatars) : Co(W) — Co(W)
solving (3.5) forL® by [22, Thm.4.15]. It is easy to see thélr, s) = ¢"~95 for a
Co-semigroup orCo(W). Thus the semigrouf (-) on Co(£2y) generated b)Lf)z) is given
by (T (t)u)(t, ) = e'Bu(r —1, ) if t—1 € (0, T]and(T (1)u)(z, -) = 0 otherwise, see [22,
Thm.4.9]. This representation implies that the functign x) = «(¢) f (x) for f € D(B)
anda € C3((0, T]) belongs taD(LY) andL@u = a Bf — o' f. ConsequentlyB C Ag
so thatAg is a generator. But this contradicts Corollaire 6.7 of [17].

EXAMPLE 4.2. LetQ = [0, T] x R?, a € C(R) with a(x) > ag > 0 ong2, and define
L =aA —9;asin (3.2) and (3.4). We séf(r, x) = exp(—"‘fc—’)) forx >0and0<t < T,
¢(t,x) =0forx <0and0<t < T, wherex € C1([0, T]), « > 0, anda(0) = 1.

First, takeV, = {(t,x,y) € £ : x> + y? < r(t)} for somer e C%([0, T]) with
r(0) = 1/2 andr’ > 0. ThenH (t, x, y) = 1 (r(t) — x2 — y) is a Cauchy barrier fok. and
V1o

Second, leV, = {(t,x,y) € Q :x < 1, |y| < ¢(z, x)}. Clearly,V, is the intersection
ofthree bounded domains with smooth boundaries such that no tangent plane to the boundary
is of the forms = const. These regular domains have a Cauchy barrielfby e.g. [22,
Prop.6.4]. Thus there exists a Cauchy barrie(Bg)o for L by Proposition 3.5.

Third, we defineV, = [0, 7] x W for W = {(x,y) € R : x> +y%2 < 1, |y| >
¢ (0, x) if x > 0}. ThenW is A-Dirichlet regular by [11, p. 26] or [13] and thus possesses
a Cauchy barrieh (with K = ¢J) for A = A by Example 3.7 and Theorem 3.4. Clearly,
H(t, x,y) = th(x, y) is a Cauchy barrier o(V ) for L.

Hence Proposition 3.5 and Theorem 3.9. imply the solvability of (3.1Lfon all three
domains and their intersections. For instarnkeg,N V5 is a ‘funnel’ in space-time from
which one has removed a sharp inward pointing wedge. With respect to the space variables,
this lateral boundary is as bad as one can expect in view of classical potential theory.

If @ vanishes on the boundary of one of these domains, then the above Cauchy barriers
still work on vV, and V5 (see also [17, §6], [21, §7], [22, §6] for degeneracies in the
interior). One can check condition (1) in this case by means of the above arguments. Thus
Theorem 3.4 shows thdl is invertible onCo(W ) so that the functiom = LalF solves
(3.1)for f = g = 0andF e Co(W,), whereW = V;,V5(or W = V,; N V4 in view
of [19, Thm.3.3]). Using an approximation argument, it is also possible to treat non-zero
initial values f € Co(V (0)), see [22, Thm.4.14]. Further, consider two of above domains
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touching each other at a part of the boundary suchitkgtials 0 only at the boundary of one
subdomain. We can then solve (3.1) with non-zero boundary conditions on the subdomain
wherea does not degenerate.

The general theory presented in this paper opens promising perspectives of hew appli-
cations and new research, such as developing further results for easier and more flexible
construction of barriers (via infima of generalized parabolic subharmonic functions, local
barriers), approximation of very irregular domains by more regular ones having barriers
(possibly using recent or future improved knowledge of parabolic Harnack inequalities,
cf. [14], [16]), improved handling of degenerate problems, and extensions to semilinear
problems beyond earlier work in [22] (, relevant for instance to population models in time-
dependent habitats).
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