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Time-dependent parabolic problems on non-cylindrical
domains with inhomogeneous boundary conditions

Günter Lumer and Roland Schnaubelt

To the memory of Ralph Phillips, inspiring mathematician and human being, collaborator
and friend

Abstract. We study the relationship between the Dirichlet problem and the Cauchy problem with inhomogeneous
boundary conditions for local operators. Our results are applied to non-autonomous parabolic problems on non-
cylindrical domains.

1. Introduction

The results in this paper on the parabolic problems mentioned in the title are obtained by
interconnecting semigroup theory (such as the Lumer-Phillips theorem and the mean ergodic
theorem), local operator theory, and methods from potential theory (such as parabolic
maximum principles and barriers). The results of Section 2 on the relationship between
the Dirichlet and the Cauchy problem for a given operatorA, which we apply in Section 3,
permit now to complete extensive earlier research in [17] and [22] where the solvability
of Cauchy problems with homogeneous boundary conditions was derived from a barrier
condition. Combining our present work with the previous one (and classical PDE results
such as in [15], [16]), we reach a quite general theory covering a wide class of parabolic
problems, which we give here in full extent (see Theorems 3.3, 3.4 and Propositions 3.5, 3.6).
Since what is needed from earlier work is just recalled, stated with references when and
where needed, we keep the present paper rather short and essentially self-contained. We treat
several applications in classical context, cf. (3.2) and (3.4), extending in particular a recent
result on autonomous problems by W. Arendt and P. Bénilan from [4], see Theorem 3.9
(also in this connection Example 3.7 and Remark 3.8), and obtaining the regularity result
Theorem 3.10.

It may be useful to say that the generality of our approach allows to deal with parabolic
partial differential equations in non-divergence form on non-cylindrical domains with
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merely continuous coefficients, partial differential operators which may be singular or
degenerate at the boundary, and little regularity (in the PDE sense) for boundaries (compare
e.g. with [6], [9], [10], [15], and the more recent references [1], [5], [14], [16]). Also in
that context the (potential theoretic) regularity of the boundary (thus the solvability) is not
determined only by the geometry of the domain but also by the partial differential operator
involved. All this is covered by our barrier condition. (We discuss some of these points in
more detail, and give some relevant examples, in Section 4.)

To be more specific, let us recall two results for elliptic partial differential operatorsA

on a bounded open subsetV of R
N . First, Arendt and B́enilan showed that ifA is in

divergence form and uniformly elliptic, then the Dirichlet problem

Au = 0 on V, u = ϕ on ∂V, (1.1)

has a unique solutionu ∈ D(A)∩C(V ) for eachϕ ∈ C(∂V ) if and only if the partA0 of A

in C0(V ) generates a semigroup (i.e., the Cauchy problem forA onV with zero boundary
conditions is well-posed), see [4, Thm.4.1] combined with [4, Thm.4.10]. Second, there
are degenerate elliptic operatorsA such thatA0 is a generator but (1.1) cannot be solved
for all ϕ ∈ C(∂V ), see Example 2.8. For such (regular or degenerate) and other (elliptic or
parabolic) situations, we are thus looking for conditions onA ensuring that the generator
property ofA0 is equivalent to the solvability of (1.1).

This is achieved in Section 2 in the following quite general setting. LetV be a bounded
open subset of a locally compact metric space� andA be a closed, dissipative, linear opera-
tor onC(V ). Following [18], we define onC(V ) the operatorA1 with Ventcel boundary con-
ditions, cf. (2.1). Then the Dirichlet problem (1.1) has a unique solutionu ∈ D(A) ∩ C(V )

for eachϕ ∈ C(∂V ) provided thatA0 is invertible onC0(V ) andA1 is densely defined
on C(V ), see Corollary 2.7. In fact, these properties characterize the solvability of (1.1)
(under a mild extra assumption) by Theorem 2.13. These results are formulated and proved
in the framework of semigroup theory. Different semigroup approaches to autonomous
inhomogeneous initial boundary value problem are developed in e.g. [3], [4], [12].

In Proposition 3.6 we give a simple sufficient condition for the density ofD(A1) in terms
of a regularity property ofA. This yields a new proof of the above mentioned characteriza-
tion from [4] for A = 1 (in fact, for uniformly elliptic operators in non-divergence form),
see Example 3.7. Another application to a problem of singular multiplicative perturbation
is exposed in Proposition 3.1.

In a next step, these results on the abstract Dirichlet problem (1.1) are applied in
Theorem 3.3 to the non-autonomous parabolic initial boundary value problem1

Lu = F on V 0, u = f on 0 ∪ V (0), (1.2)

1One can consider (1.2) as a parabolic Dirichlet problem. Correspondingly our Cauchy barriers (CB) may be
regarded as parabolic barriers as opposed to the classical barriers for elliptic Dirichlet problems.
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on a non-cylindrical domainV 0 ⊆ (0, T ]×� with lateral boundary0 and bottomV (0). So
we can solve (1.2) for continuousF andf if L0 is invertible (or, equivalently, a generator)
on C0(V 0) andL1 is densely defined onC(V 0) (whereLk are defined asAk above). In
Section 3 we describe the class of operatorsL considered in (1.2), but here we note that
it contains parabolic partial differential operatorsL under the conditions mentioned in the
second paragraph above, where� can be an open subset ofR

N or a network, see [22, §6].
Using Proposition 3.6, we finally show in the non-degenerate case that (1.2) is solvable if
and only ifL0 is invertible, see Theorem 3.9 which extends [4].

In order to apply these theorems to concrete partial differential equations, one needs of
course a criterion for the invertibility ofL0. Here we can rely on the theory developed
in [17], [19], and [22]. We remark thatL0 is a generator if and only if the homogeneous
problem (1.2) withF = 0 andf = 0 on0 is ‘well-posed’, see [22, Thm.4.19] for a precise
statement. But more importantly, we can characterize the generator property ofL0 by the
barrier condition (CB) forL andV 0 under some mild additional assumptions which are
easy to check in the applications, see Theorem 3.4. In Example 4.2 we construct Cauchy
barriers (CB) for several non-cylindrical domains.

2. Dirichlet and Cauchy problems

Let � be a locally compact Hausdorff space having a countable base,�∗ be its one-
point compactification, andV 6= ∅ be a fixed open subset of�. We denote the closure and
boundary ofV in �∗ byV ∗ and∂V ∗, respectively. LetC(V ) be endowed with the topology
of uniform convergence on compact subsets ofV . We also use the Banach spaceC(V ∗)
equipped with the sup-norm‖ · ‖ and its closed subspaceC0(V ) of functions vanishing
on ∂V ∗. We identifyC(V ∗) with a subspace ofC(V ) by restriction. LetA : D(A) ⊆
C(V ) → C(V ) be a linear operator. Our basic assumption reads as follows.

(H1) A is closed inC(V ). If x ∈ V and f ∈ D(A) with |f (x)| = ‖f ‖, then
Re[(Af )(x) f (x)] ≤ 0.

This hypothesis will lead to closedness and dissipativity of the operators

D(A0) = {f ∈ D(A) ∩ C0(V ) : Af ∈ C0(V )}, A0f = Af,

D(A1) = {f ∈ D(A) ∩ C(V ∗) : Af ∈ C0(V )}, A1f = Af. (2.1)

ThroughoutA0 andA1 are considered as operators onC0(V ) andC(V ∗), respectively.

LEMMA 2.1. Let (H1) hold. ThenA0 andA1 are closed and dissipative inC0(V ) and
C(V ∗), respectively.

Proof. We only considerA1, the operatorA0 can be treated in the same way. Let
D(A1) 3 fn → f andA1fn → g in C(V ∗). SinceA is closed inC(V ), f belongs to
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D(A) andAf = g ∈ C0(V ) so thatA1 is closed inC(V ∗). Givenf ∈ D(A1), there is
x ∈ V ∗ such that‖f ‖ = |f (x)|. Setφ = f (x) δx ∈ C(V ∗)′. Then‖φ‖2 = ‖f ‖2 = φ(f )

and the quantity

Re〈A1f, φ〉 =
{

0 if ∈ ∂V ∗,
Re[Af (x) f (x)] if x ∈ V,

is negative due to (H1). ThusA1 is dissipative. ¨

The resolvent set of a linear operatorB is denoted byρ(B) and its resolvent byR(λ, B).

LEMMA 2.2. Let (H1) hold and0 < λ ∈ ρ(A1). Thenλ ∈ ρ(A0) andR(λ, A1)f =
R(λ, A0)f for f ∈ C0(V ).

Proof. Giveng ∈ C0(V ), setf = R(λ, A1)g ∈ D(A1). Thenλf = A1f + g ∈ C0(V )

so thatf ∈ D(A0) and(λ − A0)f = g. Lemma 2.1 now yields the assertion. ¨

The above results allow to relate the generation properties ofA0 andA1. Example 2.8
below shows that the density ofD(A1) cannot be omitted in assertions (a) and (c) of the
next theorem, in general.

THEOREM 2.3. If (H1) holds, the following assertions are equivalent.

(a) (λ − A0)D(A0) is dense inC0(V ) for someλ > 0 andD(A1) is dense inC(V ∗).
(b) A1 generates aC0-semigroupT1(·) onC(V ∗).
(c) A0 generates aC0-semigroupT0(·) onC0(V ) andD(A1) is dense inC(V ∗).

If this is the case,T0(t) andT1(t) are contractions,T1(t)f = T0(t)f for f ∈ C0(V ) and
(T1(t)f )(x) = f (x) for x ∈ ∂V ∗, f ∈ C(V ∗), andt ≥ 0.

Proof. (a)⇒(b): If A1 were not a generator, then there would exist a finite Borel measure
µ 6= 0 onV ∗ with∫

V ∗
(λf − A1f ) dµ = 0 for all f ∈ D(A1)

because of Lemma 2.1 and the Lumer-Phillips theorem. Using (a), we see thatµ must
vanish onV . Thus

0 =
∫

∂V ∗
(λf − A1f ) dµ =

∫
∂V ∗

λf dµ

for all f ∈ D(A1). The second condition in (a) now impliesµ = 0 so that (b) is verified.
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(b)⇒(c): In view of Lemma 2.1 and 2.2 and the Lumer-Phillips theorem, one only has
to show thatD(A0) is dense inC0(V ). This fact follows from

λR(λ, A0)f = λR(λ, A1)f → f

asλ → ∞ for f ∈ C0(V ).
The implication ‘(c)⇒(a)’ is clear. By Lemma 2.1,T0(t) andT1(t) are contractions, and

by Lemma 2.2 both coincide onC0(V ). The identity

T1(t)f − f = A1

∫ t

0
T1(s)f ds ∈ C0(V ), f ∈ C(V ∗), t ≥ 0,

establishes the last assertion. ¨

As an immediate consequence we can solve the Cauchy problem forA with inhomo-
geneous boundary conditions. In [3, Thm.6.5] the case of uniformly elliptic partial differ-
ential operatorsA in divergence form was treated allowing for time depending boundary
values. Non-autonomous extensions of the next result are given in Theorem 3.3 and 3.9.

COROLLARY 2.4. Let (H1) hold andf ∈ D(A1). If (a)-(c)of Theorem2.3 hold, then
there is a uniqueu ∈ C1(R+, C(V ∗)) such thatu(t) ∈ D(A1) for t ≥ 0 and

d
dt

u(t, ·) = Au(t, ·), t ≥ 0, onV,

u(t, x) = f (x), t ≥ 0, x ∈ ∂V ∗,
u(0, x) = f (x), x ∈ V. (2.2)

Proof. The functionu(t, x) = (T1(t)f )(x) onR+ ×V ∗ solves (2.2) due to Theorem 2.3.
The solution is unique sinceA0 is a generator. ¨

We strengthen (H1) in order to obtain positive solutions:

(H2) A is closed inC(V ) and real (i.e., iff ∈ D(A), thenf̄ ∈ D(A) andAf̄ = Af ). If
x ∈ V andf ∈ D(A) is real-valued with 0< f (x) = supV f , then(Af )(x) ≤ 0.

As in [22, Cor.2.10] one proves that (H2) implies (H1). The converse can be shown ifA is
given by a real local operator that satisfies (H1) on all open subsets ofV , see [22, Cor.2.10]
and the definitions given in the next section. The following result can easily be deduced
from R. S. Phillips’ characterization of generators of positive contraction semigroups [25,
Thm.2.1] (compare the proof of Lemma 2.1).

PROPOSITION 2.5.If (H2) holds andA1 is a generator, thenT1(·) is positive. Thus
the solution of(2.2) is positive iff ≥ 0.
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The results established so far are essentially stated in [18] without proof. In this work
as well as in [3] further results were derived assuming that the Dirichlet problem (1.1) is
solvable. Here we are looking for conditions onA0 andA1 characterizing the solvability
of (1.1). Our main tool is the mean ergodic theorem which we apply toT1(·).

THEOREM 2.6. Assume that(H1) holds,A0 is invertible onC0(V ), andA1 is densely
defined onC(V ∗). ThenT1(·) is mean ergodic with projectionP ontokerA1 = fix T1(·).
Moreover,‖P ‖ ≤ 1 andPf (x) = f (x) for x ∈ ∂V ∗ andf ∈ C(V ∗). If in addition (H2)
holds, thenP is positive and‖T1(t) − P ‖ ≤ Me−εt for t ≥ 0 and constantsM, ε > 0.

Proof. By Theorem 2.3 the operatorsAk generate the contraction semigroupsTk(·),
k = 0, 1. Forλ > 0 andf ∈ D(A1), we obtain

λR(λ, A1)f = R(λ, A1)A1f + f = R(λ, A0)A1f + f

→ −A−1
0 A1f + f (2.3)

asλ → 0 due to Lemma 2.2. The mean ergodicity ofT1(·) follows from (2.3) and [7,
Thm.5.1]. The other assertions except for the convergence ofT1(·) are straightforward
consequences of Theorem 2.3 and Proposition 2.5. Let (H2) hold. Note thatT0(·) is
positive and thus uniformly exponentially stable by [23, Thm.B-IV.1.4]. We now deduce

‖T1(t)f − Pf ‖ = ‖T0(t)(f − Pf )‖ ≤ 2Ne−εt ‖f ‖
from T1(t)Pf = Pf , for t ≥ 0, f ∈ C(V ∗), and some constantsN, ε > 0. ¨

Observe thatPf = f − A−1
0 A1f for f ∈ D(A1) due to (2.3).

COROLLARY 2.7. Assume that(H1) holds,A0 is invertible, andA1 is densely defined.
Then for eachϕ ∈ C(∂V ∗) there exists a unique solutionu ∈ C(V ∗) ∩ D(A) of

Au = 0 onV, u|∂V ∗ = ϕ. (2.4)

If (H2) holds andϕ ≥ 0, thenu ≥ 0.

Proof. The functionu = Pf solves (2.4), whereP is given by Theorem 2.6 andf is
any extension ofϕ to C(V ∗). If u satisfies (2.4) forϕ = 0, thenu ∈ kerA0 so thatu = 0.

¨

We refer to [11] for a detailed account on the Dirichlet problem for elliptic operators. The
following two examples show that Theorem 2.6. and Corollary 2.7 are not valid if one only
assumes thatA0 is an invertible generator or thatA1 is a generator andA0 is injective.
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EXAMPLE 2.8. ForV = (0, 1)2 and� = R
2, we define

Af (x, y) = ∂xx f (x, y) + y2 ∂yy f (x, y) − f (x, y)

with D(A) = {f ∈ C(V )∩W2
p,loc(V ) : Af ∈ C(V )} for one (and hence all)p > 2. It can

be checked that (H2) holds, cf. [24]. Clearly,A0 is densely defined. Further, the function

h : V → R+; h(x, y) = x(1 − x)(1 − y)
√

y

is a Cauchy barrier in the sense of (CB) below. ThereforeA0 generates a contraction
semigroup onC0(V ) due to [24, Thm.1] or Theorem 3.4. The operatorA0 is invertible
sinceA0 + 1 is a dissipative generator by the same reasons. However, following the
arguments of [11, §6.6, p. 116], one shows that the Dirichlet problem corresponding toA

cannot be solved forϕ ∈ C(∂V ) vanishing forx = 0, 1 but not fory = 0. Therefore the
operatorA1 is not densely defined onC(V ) due to the above corollary.

EXAMPLE 2.9. Let� = (0, ∞), V = (1, ∞), andAf = f ′′ with D(A) = C2(V ).
Then (H2) holds andA0 is an injective generator onC0(V ). Further,D(A1) is dense in
C([1, ∞]). Hence,A1 is a generator by Theorem 2.3. However, (2.4) has no solution forϕ

with ϕ(0) 6= ϕ(∞), and soT1(·) is not mean ergodic in view of the proof of Corollary 2.7.

Concluding this section, we want to characterize the Dirichlet regularity ofV in terms
of A0 andA1. Here we use the following notion, cf. [17].

DEFINITION 2.10. The setV is calledweakly (A-)Dirichlet regular if (2.4) has a solu-
tion for eachϕ ∈ C(∂V ∗) and(A-)Dirichlet regular if, in addition, the solution is unique.

LEMMA 2.11. If V is weakly Dirichlet regular andD(A0) is dense inC0(V ), then
D(A1) is dense inC(V ∗).

Proof. Forf ∈ C(V ∗), there isv ∈ C(V ∗) ∩ D(A) such thatAv = 0 onV andv = f

on ∂V ∗. By assumption, there existun ∈ D(A0) converging tof − v in C0(V ). Hence,
un + v ∈ D(A1) tends tof in C(V ∗). ¨

LEMMA 2.12. If V is weakly Dirichlet regular andC0(V ) ⊆ A[D(A) ∩ C(V ∗)], then
A0 is surjective.

Proof. Forg ∈ C0(V ), there isu ∈ D(A) ∩ C(V ∗) with Au = g. By assumption, there
existsv ∈ D(A) ∩ C(V ∗) such thatAv = 0 andu = v on ∂V ∗. Thenf = u − v belongs
to D(A0) andAf = Au = g. ¨

The range condition used above holds ifA is a local operator on� such thatA is invertible
onC0(�), cf. [22, Prop.3.4] and the next section.



298 günter lumer and roland schnaubelt J.evol.equ.

THEOREM 2.13.Assume that(H1) holds,D(A0) is dense inC0(V ), andC0(V ) ⊆
A[D(A) ∩ C(V ∗)]. Then the following assertions are equivalent.

(a) V is A-Dirichlet regular.
(b) A0 is invertible onC0(V ) andD(A1) is dense inC(V ∗).
(c) A1 generates a mean ergodic semigroup onC(V ∗).

Proof. Assertion (b) follows from (a) in view of Lemmas 2.1, 2.11, 2.12, and the unique-
ness of (2.4). The implication ‘(b)⇒(c)’ was shown in Theorem 2.6. If (c) holds, thenV is
weakly Dirichlet regular due to the proof of Corollary 2.7. The operatorA0 is thus surjective
by Lemma 2.12. This implies the injectivity ofA0 sinceT0(·) is also mean ergodic, cf. [7,
Thm.5.1]. Therefore solutions of (2.4) are unique. ¨

3. Parabolic problems on non-cylindrical domains

In this section we make use of the theory of local operators, see [17], [22], and the
references therein. Alocal operatorA is a collection of linear operatorsAV : D(A, V ) ⊆
C(V ) → C(V ) such that, forf ∈ D(A, V ) andW ⊆ V , one hasf |W ∈ D(A, W)

and(AV f )|W = AW(f |W), whereW andV belong to the setO(�) of non-empty open
subsets of�. Usually we omit the superscriptV . We introduce further notions which are
explained below in the context of partial differential operators.

(a) A is locally closed u.c.if, for f, g ∈ C(V ), the existence ofO(�) 3 Vn ↑ V and
fn ∈ D(A, Vn) such thatfn → f andAfn → g uniformly on compact subsets of
V implies thatf ∈ D(A, V ) andAV f = g.

(b) A is locally dissipativeif, for all compactK ⊂ V andf ∈ D(A, V ) with supV \K |f |
< supV |f |, there isx0 ∈ V such that|f (x0)| = supV |f | and Re[(Af )(x0)

f (x0)] ≤ 0 .
(c) A is real if f ∈ D(A, V ) implies thatf ∈ D(A, V ) andAf = Af onV .

HereV ∈ O(�). If we assume that (a)–(c) hold and that

(S) forV contained in a base ofO(�) the partAV of AV in C0(V ) is densely defined,2

then Lemma 2.9 and 2.10 of [22] show thatA = AV satisfies (H2) (and (H1) ifA is not
supposed to be real). In view of Section 2 we define the operator

ÃV f =
{

Af on V ,
0 on ∂V ∗,

D(ÃV ) = {f ∈ C(V ∗) ∩ D(A, V ) : Af ∈ C0(V0)},

onC(V ∗). We writeA0 = AV andA1 = ÃV if there is no danger of confusion.

2In [22] we used a somewhat weaker condition (S) instead of the present one.
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The results in the previous section allow to treat a problem of degenerate multiplicative
perturbation. For a local operatorA andp ∈ C(�) we define the local operator(pA)f =
pAf with domainD(pA, V ) = D(A, V ), cf. [17, §6].

PROPOSITION 3.1.Assume thatA is a locally dissipative, locally closed u.c., local
operator satisfying(S) on O(�). Let p ∈ C(�) be bounded and non-negative andV ∈
O(�) such that the setW = V \{x ∈ V : p(x) = 0} is dense inV . Further suppose that
ÃV is densely defined onC(V ∗). ThenD((p̃A)W ) is dense inC(W ∗). Thus there exists a
unique solution of(2.2) for pA onW if (pA)W is a generator onC0(W).

Proof. Note that(pA)W satisfies (H1) onW . For f ∈ C(W ∗) = C(V ∗) takefn ∈
D(ÃV ) converging tof in sup-norm. SincepAfn ∈ C0(W), the functionsfn|W belong to
D((p̃A)W ). Corollary 2.4 now implies the second assertion. ¨

The above result can be applied to the following situation. (One can deal with more general
examples in view of [17, Thm.6.4], see also [21].)

EXAMPLE 3.2. LetV = B1 be the open unit ball inRN ,W = B1\{0}, andp(x) = |x|2.
Let A = 1 be the local operator with domainsD(A, U) = {f ∈ C(U) ∩ W2

p,loc(U) :

Af = 1f ∈ C(U)} for U ∈ O(RN) and one (and hence all)p > N . ThenA satisfies
the assumptions of Proposition 3.1, see [24], and(pA)W is a generator onC0(W) by e.g.
the remarks after [17, Thm.6.10].D(ÃV ) is dense inC(B1) because of standard existence
results for the Dirichlet problem for the Laplacian and Lemma 2.11. Thus we can solve
(2.2) for r21 onB1\{0}.

Turning to the parabolic case, we let� = [S, T ] ×� and, forV ∈ O(�) andt ∈ [S, T ],

V (t) = {x ∈ � : (t, x) ∈ V }, V (t) = {t} × V (t), V t = {(s, x) ∈ V : s > t},
V 0 = V S, V ′

t = {(s, x) ∈ V : s ≥ t}, IV = {t ∈ [S, T ] : V (t) 6= ∅}.
Further,V ∗ and ∂V ∗ designate the closure and boundary ofV in �∗ = [S, T ] × �∗,
respectively. Observe that∂V ∗

0 = ∂V ∗ ∪ V (S), [22, Prop.4.1]. We writex = (t, x) for a
generic point of� or �∗ and considerC(V ∗) andC(V 0) as subspaces ofC(V ).

A local operatorL defined onO(�) is calledparabolicif, for F ∈ D(L, V ), V ∈ O(�),
andϕ ∈ C1(IV ), we haveϕF ∈ D(L, V ) andL(ϕF) = ϕ LF − ϕ′F .

Let V ∈ O(�) satisfy V (t) 6= ∅ for t ∈ [S, T ] (to avoid trivial situations). Take
F ∈ C(V ∗), f ∈ C(V (S)∗), andg ∈ C(∂V ∗) with g(S, x) = f (x) for x ∈ ∂V (S)∗. We
are looking for solutionsu ∈ C(V ∗) ∩ D(L, V 0) of the problem

Lu = F on V 0,

u = g on ∂V ∗,
u(S) = f. (3.1)
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We first give our basic example for the above abstract setting: the parabolic differential
operator

L(x, D) =
N∑

k,l=1

akl(t, x)∂kl +
N∑

k=1

bk(t, x)∂k + c(t, x) − ∂t (3.2)

on an open subset� of R
N , where∂t = ∂

∂t
and∂k = ∂

∂xk
. The coefficientsakl ,bk, and

c ≤ 0 are supposed to be merely continuous on�, real-valued, and to satisfy

N∑
k,l=1

akl(t, x) yk yl > 0 (3.3)

for y ∈ R
N and(t, x) ∈ �. The operator may be singular or degenerate at the boundary.

Set�00 = (S, T ) × � andW00 = W ∩ �00 for W ∈ O(�). As in [22, §6.1], we define

D(L, W0) = {F ∈ C(W0) ∩ W
1,2
p,loc(W0) : L(x, D)F = G a.e.

onW00 for G ∈ C(W0)},
LF = G onW0. (3.4)

Here,W ∈ O(�), p > N + 2 is fixed, andW1,2
p,loc(W0) (W1,2

p,loc(W)) denotes the space of
functionsF such thatF |U00 belongs to the Sobolev space

W1,2
p (U00) = {F ∈ Lp(U00) : ∂kF, ∂klF, ∂tF ∈ Lp(U00), k, l = 1, . . . , N}

for all relatively compact open subsetsU of W0 (of W ).
In [22, §6.1] it is shown thatD(L, W0) does not depend on the choice ofp > N +2. It is

rather obvious thatL is a real, parabolic, local operator satisfying (S). The local dissipativity
corresponds to the parabolic maximum principle onW

1,2
p . The local closedness u.c. is

a straightforward consequence of the standard interior a priori estimates proved in [15,
§IV.10]. This property essentially says that we have chosen the ‘right’ domainsD(L, W0)

(otherwise one would have to replaceL by its ‘local closure’L, see [22, Thm.2.12]). We
point out that in this case (3.1) is just a parabolic partial differential equation whose solution
u ∈ D(L, V 0) possesses in the interior the regularity one can expect in view of the classical
theory, cf. [15, §IV.9] or [16, Chap.7]. See [22, §6] for all this and for analogous problems
on networks.

We come back to the general situation and state a straightforward consequence of the
theory developed in the previous section.

THEOREM 3.3. Let L be a locally dissipative, locally closed u.c., parabolic, local
operator defined onO(�0) and satisfying(S), letV ∈ O(�) satisfyV (t) 6= ∅ for t ∈ [S, T ],
and letF ∈ C(V ∗), f ∈ C(V (S)∗), andg ∈ C(∂V ∗) withg(S, x) = f (x) for x ∈ ∂V (S)∗.
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Assume thatLV 0
is a generator onC0(V 0) and thatD(L̃V 0

) is dense inC(V ∗). Then there

is a unique solutionu ∈ C(V ∗) ∩ D(L, V 0) of (3.1). If L is real and−F, g, f ≥ 0, then
u ≥ 0.

Proof. Uniqueness and positivity of solutions follow from the parabolic maximum prin-
ciple [22, Thm.2.29, 2.30]. By Theorem 2.3,L1 generates a contraction semigroup on
C(V ∗). SinceetL0 = 0 for t ≥ T − S by [22, Thm.4.9], Theorem 2.6 provides us with a
projectionP = PV mappingC(V ∗) onto kerL1 such thatPw(x) = w(x) for x ∈ ∂V ∗

0
andw ∈ C(V ∗). SetF̂ (t, x) = e−t F (t, x), v̂ = (L1 − 1)−1F̂ , andv(t, x) = et v̂(t, x) on
V ∗. Thenv ∈ D(L, V 0) ∩ C(V ∗) and

Lv = −et v̂ + et Lv̂ = −et v̂ + et (v̂ + F̂ ) = F

onV 0 sinceL is parabolic. TakeG ∈ C(V ∗) with G(S) = f −v(S) onV (S) andG = g−v

on ∂V ∗. The functionu = v + PG clearly solves (3.1). ¨

As observed in the above proof,L0 is invertible if it is a generator, and the converse holds
by virtue of the Lumer-Phillips theorem (under the assumptions of Theorem 3.3).

We can now involve our previous work in [17] and [22] on homogeneous initial boundary
value problems for real, locally dissipative, locally closed u.c., local operatorsA defined
onO(�) and satisfying (S). (Here parabolicity is not needed so that we writeA instead of
L andV ⊆ � instead ofV ⊆ �.) We say thatV ∈ O(�) possesses aCauchy barrierwith
respect toA if

(CB) there exists a compact subsetK of V and a functionh ∈ D(A, V \K) such that
h > 0 and(A − λ)h ≤ 0 onV \K for someλ ≥ 0, and for allε > 0 there is a
compact setKε with K ⊆ Kε ⊆ V and 0≤ h ≤ ε onV \Kε.

It is not difficult to see thatV admits a Cauchy barrier (withK = ∅) if AV is a generator on
C0(V ), see [22, Prop.3.2] or [17, Thm.5.4]. Conversely, the existence of a Cauchy barrier
implies thatAV is a generator ifA satisfies additionally one of the following hypotheses.

(I) There are relatively compactVn ∈ O(�),n ∈ N, such thatVn ⊆ Vn+1,
⋃

n Vn = V ,
andAVn is a generator onC0(Vn). D(AV ) is dense inC0(V ).

(O) A� is a generator onC0(�). Let W ∈ O(�) andu ∈ D(A, W). If u has compact
support, thenu# ∈ D(A, �) andA�u# = (AWu)#. If x ∈ W andu ≥ 0, then
there is 0≤ u1 ∈ D(A, W) such thatu1 has compact support andu = u1 on a
neighbourhood ofx in W .

(Hereu# ∈ C0(�) denotes the extension by 0 ofu ∈ C0(W).) The first condition is used
in [17, Thm.5.4] or [22, Thm.3.27] to approximateV from inside by the regular domains
Vn. The second one gives us the semigroupetA� on the larger domain� and allows
us to localize it to the domainV . This was done in [22] and required considerable efforts
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involving the theory of Feller semigroups, so-called space-time semigroups, and localization
methods from potential theory. In our application (3.2) and (3.4), assumption (O) can easily
be checked in the non-degenerate case (as formulated in Theorem 3.9 below) employing
[15, Thm.IV.9.1], see the discussion before [22, Thm.6.1]. Assumption (I) is useful for
degenerate problems, see [22, Prop.6.5–6.7]. For later reference here and elsewhere, we
state Theorems 3.25 and 3.27 of [22].

THEOREM 3.4. LetA be a real, locally dissipative, locally closed u.c., local operator
defined onO(�) and satisfying(S), and letV ∈ O(�). Assume that either(I) or (O) holds.
ThenAV is a generator onC0(V ) if and only ifV admits a Cauchy barrier w.r.t.A.

In Section 4 we further discuss Cauchy barriers and give examples. At this point we
recall [22, Cor.3.26] which says that under condition (O) the generator property ofAV

persists under finite intersections of domains. In [19, Thm.3.3] one finds an analogous
result in the context of hypothesis (I).

PROPOSITION 3.5.LetA be a real, locally dissipative, locally closed u.c., local oper-
ator satisfying(S) and(O). LetV, Vk ∈ O(�), k = 1, . . . , m. If eachVk admits a Cauchy
barrier w.r.t. A andV = ⋂

Vk, thenAV is a generator onC0(V ).

Coming back to the main line of argument, we now present a sufficient condition for the
density ofD(A1).

PROPOSITION 3.6.Letµ ≥ 0 be a finite regular Borel measure on� andV ∈ O(�)

be relatively compact withµ(∂V ) = 0. Let A be a local operator on� such thatA� is
densely defined and invertible onC0(�) and‖A−1

� f ‖C0(�) ≤ c‖f ‖Lq(�,µ) for f ∈ C0(�)

and someq ∈ [1, ∞). ThenÃV is densely defined onC(V ).

Proof. Note that there are relatively compact setsWn ∈ O(�) such that∂V ⊂ Wn+1 ⊂
Wn+1 ⊂ Wn andµ(Wn) ≤ 1/n for n ∈ N. We extend a givenf ∈ C(V ) to a function
f̃ ∈ C0(�). Forε > 0 there isũ ∈ D(A�) such that‖f̃ − ũ‖∞ ≤ ε. Let g̃ = Aũ and take
continuous functionsαn : � → [0, 1] vanishing onWn+1 and being equal to 1 offWn. Set
g̃n = αng̃ andvn = (A−1

� g̃n)|V . Thenvn ∈ D(ÃV ), g̃n → g̃ in q-norm, and

‖f − vn‖C(V ) ≤ ‖f̃ − ũ‖C0(�) + ‖A−1
� (g̃ − g̃n)‖C0(�)

≤ ε + c ‖g̃ − g̃n‖Lq(�,µ) ≤ 2ε

for largen. ¨

This simple criterion allows to reprove part of the characterizations given in [4, Thm.2.4],
where we restrict ourselves to the Laplacian for simplicity (the same arguments apply to
the autonomous analogue of the setting of Theorem 3.9, cf. [24]).
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EXAMPLE 3.7. LetV be a bounded open subset ofR
N having a boundary with Lebesgue

measure 0 andA be the local operator induced by the Laplacian1 onR
N , see Example 3.2.

Taking a large open ball� containingV , we can check the conditions of Proposition 3.6
and Theorem 2.13. Thus,V is 1-Dirichlet regular if and only ifA0 is invertible onC0(V ).

REMARK 3.8. The equivalence stated in the previous example can also be verified using
classical potential theory and Cauchy barriers. Indeed, in view of Lemma 2.12, one only
has to show the sufficiency part of this characterization. IfA0 is a generator onC0(V ),
thenA has a Cauchy barrier by [17, Thm.5.4] or [22, Prop.3.2]. But this already implies
the Dirichlet regularity ofV by the theorem of Bouligand, see [13, Thm.8.18, 8.22].

We extend the above results to non-degenerate parabolic problems in the classical context
(3.2) and (3.4).

THEOREM 3.9. LetL be given by(3.2) and(3.4), where� is a bounded open subset
of R

N with boundary of classC2 and the coefficients belong toC(�, R), c ≤ 0, and(3.3)

holds on� = [−1, T ] × �. Take a relatively compact subsetV ∈ O([0, T ] × �) such
that V (t) 6= ∅ for 0 ≤ t ≤ T and∂V has Lebesgue measure 0 in�. Then the following
assertions are equivalent.

(a) L̃V 0
is a generator inC(V ).

(b) LV 0
is a generator inC0(V 0).

(c) V 0 has a Cauchy barrier forL.

In this case the conclusions of Theorem3.3 are true.

Proof. Using [15, Thm. IV. 9.1] we see thatL�0
is invertible (and densely defined) on

C0(�0) and that its inverse maps(C0(�0), ‖ · ‖q) continuously intoW1,2
q,0(�0) ↪→ C0(�0)

if q > N/2 + 1. So the theorem follows from Proposition 3.6, Theorem 2.3, Theorem 3.4
(see the remarks before [22, Thm.6.1]), and Theorem 3.3. ¨

We briefly indicate (expliciting only the caseA = 1) another method to verify the
density ofD(L1) using L-harmonic functions. ConsiderA = 1, L = 1 − d

dt
, and

V = [0, T ] × (0, 1)2. Assume thatL1 is not densely defined inC(V ). Then there is a
regular Borel measureµ 6= 0 such that∫

V

u dµ = 0 for all u ∈ D(L1).

SinceL0 is densely defined onC0(V 0), the support ofµ must be contained in∂V 0. The
function u(t, x, y) = (T0(t)f )(x, y) belongs toC0(V ) and to the kernel ofL, where
f ∈ D(A0) andT0(·) is the semigroup generated by the Dirichlet LaplacianA0 onC0(V ).
This implies that suppµ ⊂ [0, T ] ×∂V . Further letα ∈ C1

c (0, 1), k ∈ N0, andg(t, x, y) be
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equal toe−ktα(x) for y = 1 and(t, x) ∈ [0, T ] × [0, 1] and be equal to 0 on the other faces
of the lateral boundary. Extendα to a periodic odd function onR with Fourier coefficients
an. Define

um(t, x, y) = e−kt
m∑

n=1

an

sin
√

k − 4π2n2
sin(2πnx) sin(y

√
k − 4π2n2)

for t ∈ [0, T ], x, y ∈ R, andm ∈ N. ThenLum = 0, um = 0 on the facesx = 0, 1
andy = 0, andum(t, x, 1) → e−ktβ(x) uniformly for t andx. Thus

∫
g dµ = 0. By

an approximation argument we now deduce thatµ vanishes on [0, T ] × (0, 1) × {1}. The
other faces can be treated in the same way so thatµ is supported in the lateral edges. In a
last step one sees in a similar manner that this is impossible. Thereforeµ = 0 andD(L1)

is dense.
We finally want to study the regularity of the solutions to the homogeneous problem

Lu = 0 on V s,

u = 0 on ∂V ∗
s \ V (s),

u(s) = f, (3.5)

for s ∈ (S, T ), f ∈ C0(V (s)), and the operatorL given by (3.2) and (3.4) supposing that
L0 = LV 0

is a generator onC0(V 0). In [22, Thm.4.13, 6.1] we proved that the solution

u ∈ C0(V
′
s) ∩ ⋂

p>1 W
1,2
p,loc(V s) of (3.5) is given byu(t, ·) = U(t, s)f , t ∈ [s, T ], for a

variable space propagatorU(t, s) : C0(V (s)) → C0(V (t)), S < s ≤ t ≤ T . This means
that

U(s, s) = IC0(V (s)), U(t, r)U(r, s) = U(t, s), and (3.6)

(t, s) 7→ (U(t, s)F (s))# is continuous inC0(�) (3.7)

for S < s ≤ r ≤ t ≤ T andF ∈ C0(V 0), cf. [22, Def.4.8]. Moreover,U(t, s) is a positive
contraction.

In the following we consider initial functionsf belonging locally to Slobodeckij spaces
Wα

p (U), whereU is a bounded open subset ofR
N with a smooth boundary,α ∈ [0, 2], and

1 < p < ∞. These spaces can be defined, e.g., by Hölder estimates ofLp-type, see [26,
§4.4]. Real interpolation ofWα

p (U) yields

(Wα
p (U), Wβ

p (U))θ,p = W
γ
p (U) (3.8)

if γ = α(1 − θ) + βθ /∈ N andθ ∈ (0, 1) due to Theorem 4.3.1.1 and formula (2.4.2.16)
of [26]. Takingα = 0 andβ = 2 in (3.8), [2, Thm.III.4.10.2] leads to

W1,2
p ([a, b] × U) = Lp([a, b], W2

p(U)) ∩ W1
p([a, b], Lp(U))

↪→ C([a, b], W
2− 2

p
p (U)) (3.9)
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if p 6= 2. Finally, from [26, Thm.4.6.1, 4.6.2] we deduce

W
2− 2

q
q (U) ↪→ W

2− 2
r

p (U) ↪→ W
2− 2

p
p (U) (3.10)

if 1 < p < r < q < ∞. The following result yields in the interior ofV ′
s the regularity at

t = s which we can expect in view of [15, §IV.9].

THEOREM 3.10.LetL be given by(3.2) and(3.4), where� is an open subset ofRN

and the coefficients belong toC(�, R), c ≤ 0, and(3.3) holds. Moreover, letV ∈ O(�)

satisfyV (t) 6= ∅ for S ≤ t ≤ T . Assume thatLV 0
is a generator onC0(V 0). Given

s ∈ (S, T ) andf ∈ C0(V (s)) ∩ ⋂
p>1 W

2− 2
p

p,loc(V (s)), we setu(t, x) = (U(t, s)f )(x) for

(t, x) ∈ V ′
s . Thenu ∈ C0(V

′
s) ∩ ⋂

p>1 W
1,2
p,loc(V

′
s).

Proof. Fix 2 < p < r < q < ∞, δ > 0, and open, relatively compact subsetsU, W, W ′
of V (s) with smooth boundaries such thatU ⊆ W ⊆ W ⊆ W ′ and [s−δ, s+δ]×W ′ ⊆ V 0.
ChooseF ∈ C0(V 0) with ‖F‖∞ ≤ ‖f ‖∞, F(s) = f , F(t, x) = f (x) for x ∈ W ′ and
|t − s| ≤ δ. We proceed in two steps.

(1) Takeτ ∈ (s − δ, s) and setW = [τ, τ + δ] × W andW ′ = [τ, τ + δ] × W ′. Using
(3.8), (3.10), (3.9), and the interior apriori estimate [15, (IV.10.12)], we calculate

‖U(s, τ )F (τ) − f ‖
W

2− 2
p

p (W)

≤ c ‖U(s, τ )F (τ) − f ‖1−θ
Lp(W) ‖U(s, τ )F (τ) − f ‖θ

W
2− 2

r
p (W)

≤ c ‖(U(s, τ )F (τ))# − F(s)#‖1−θ
C0(�) (‖f ‖

W
2− 2

q
q (W)

+ ‖U(s, τ )F (τ)‖
W

2− 2
q

q (W)

)θ

≤ c ‖(U(s, τ )F (τ))# − F(s)#‖1−θ∞ (‖f ‖
W

2− 2
q

q (W)

+ ‖U(·, τ )F (τ)‖
W

1,2
q (W)

)θ

≤ c ‖(U(s, τ )F (τ))# − F(s)#‖1−θ∞ (‖f ‖
W

2− 2
q

q (W ′)
+ ‖U(·, τ )F (τ)‖

C(W ′))
θ

≤ c ‖(U(s, τ )F (τ))# − F(s)#‖1−θ∞ (3.11)

whereθ = (1 − 1
p
)(1 − 1

r
)−1 and the constantsc do not depend onτ ,

(2) Now letτn = s − 1
n

for largen, un = U(·, τn)F (τn) on V ′
s , U = [s, s + δ] × U ,

W = [s, s + δ] × W , andW ′ = [s, s + δ] × W ′. By [22, Thm.4.13, 6.1] we have
un ∈ ⋂

p>1 W
1,2
p,loc(V

′
s) sinceun solves (3.5) with initial valueF(τn) at timeτn. Further,

un → u in C0(V
′
s) due to (3.7). An application of (3.6), [15, (IV.10.12)], and (3.11) yields

‖un − um‖
W

1,2
p (U)

= ‖U(·, s) [U(s, τn)F (τn) − U(s, τm)F (τm)]‖
W

1,2
p (U)

≤ c (‖un − um‖C(W) + ‖U(s, τn)F (τn) − U(s, τm)F (τm)‖
W

2− 2
p

p (W)

)
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≤ c (‖un − um‖∞ + ‖(U(s, τn)F (τn))
# − F(s)#‖1−θ∞

+‖(U(s, τm)F (τm))# − F(s)#‖1−θ∞ ).

Thus(un) is a Cauchy sequence inW1,2
p (U) by the strong continuity ofU(t, s). As a result,

un → u in W
1,2
p (U), and the assertion follows. ¨

4. Notes, examples, and comments

In the first part of this section we give an example, 4.1, and recall facts from the
literature, showing that indeed in our context the solvability of the parabolic problem does
not in general depend solely on the geometry of the domain but also on the operator involved,
as covered by our barrier condition. Next, besides the applications given in the main text,
we treat in Example 4.2 several non-cylindrical parabolic problems which are reasonably
‘nasty’ in the sense that they present most of the irregular behaviour mentioned in the
second paragraph of our introduction.3 In Example 4.2 the construction of the parabolic
barriers is explicit and easy, illustrating the solution of a non-cylindrical problem with
little regularity in regard to coefficients, boundary and degeneracy, just using Theorem 3.4,
Proposition 3.5, Theorem 3.9, and the construction of a parabolic barrier ‘by hand’ without
any other classical investment (besides the elliptic result [11, p. 26]). In this example we
haveL = a(t, x)1 − ∂t . This type of a multiplicatively perturbed operator naturally arises
from problems with a probabilistic time change which can be quite irregular.

We point out that going to merely continuous coefficients for operators in non-divergence
form changes the properties of the problem significantly. This happens already for
autonomous problems on cylindrical domains [S, T ] ×V . In this situationV is1-Dirichlet
regular if and only if it isA-Dirichlet regular provided thatA is in divergence form or has
Dini-continuous coefficients. But this equivalence fails ifA is in non-divergence form with
merely continuous coefficients. See the discussion and the references given in the notes of
[11, Chap.6]. These examples can be transferred into the context of (autonomous) parabolic
problems using thatA has a Cauchy barrier onV if and only if L = A − ∂t has a Cauchy
barrier on [S, T ] × V , cf. Example 4.1.

For parabolic operators on non-cylindrical domains this equivalence even breaks down
for L = 1−∂t andL = α1−∂t , α > 1, due to [8, Thm.8.1]. Therefore, in our setting, the
Dirichlet regularity of a domain will depend on the operator involved, in general. This fact
is also reflected by Wiener type characterizations of boundary regularity which involve the
capacity of level sets of the heat kernel corresponding toL, see [9] forL = 1 − ∂t and [5]
for operators in divergence form. Also most relevant to our context, the following example

3 We choose to treat in Example 4.2 the problems we do, among many other often more complicated ones that
can be handled by the same or similar ideas, for clarity and concision.
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shows the dependance of the (potential theoretic) boundary regularity on the operator in the
degenerate case.

EXAMPLE 4.1. We consider the situation of Example 3.2 and the local operatorA = 1

introduced there. Define the local operatorsL(1) = |x|21 − ∂t andL(2) = 1 − ∂t on
� = [0, T ]×W as in (3.2) and (3.4). As noted in Example 3.2, there is a Cauchy barrierh for
|x|21onW . Clearly,H(t, x) = th(x) is then a Cauchy barrier forL(1). On the other hand, if
L(2) has a Cauchy barrier, then there would exist a propagatorU(t, s) : C0(W) → C0(W)

solving (3.5) forL(2) by [22, Thm.4.15]. It is easy to see thatU(t, s) = e(t−s)B for a
C0-semigroup onC0(W). Thus the semigroupT (·) onC0(�0) generated byL(2)

0 is given
by (T (t)u)(τ, ·) = etBu(τ − t, ·) if τ − t ∈ (0, T ] and(T (t)u)(τ, ·) = 0 otherwise, see [22,
Thm.4.9]. This representation implies that the functionu(t, x) = α(t)f (x) for f ∈ D(B)

andα ∈ C1
0((0, T ]) belongs toD(L

(2)
0 ) andL(2)u = αBf − α′f . Consequently,B ⊆ A0

so thatA0 is a generator. But this contradicts Corollaire 6.7 of [17].

EXAMPLE 4.2. Let� = [0, T ] × R
2, a ∈ C(�) with a(x) ≥ a0 > 0 on�, and define

L = a1 − ∂t as in (3.2) and (3.4). We setφ(t, x) = exp(−α(t)
x

) for x > 0 and 0≤ t ≤ T ,
φ(t, x) = 0 for x ≤ 0 and 0≤ t ≤ T , whereα ∈ C1([0, T ]), α > 0, andα(0) = 1.

First, takeV 1 = {(t, x, y) ∈ � : x2 + y2 < r(t)} for somer ∈ C1([0, T ]) with
r(0) = 1/2 andr ′ ≥ 0. ThenH(t, x, y) = t (r(t) − x2 − y2) is a Cauchy barrier forL and
(V 1)0.

Second, letV 2 = {(t, x, y) ∈ � : x < 1, |y| < φ(t, x)}. Clearly,V 2 is the intersection
of three bounded domains with smooth boundaries such that no tangent plane to the boundary
is of the formt = const. These regular domains have a Cauchy barrier forL by e.g. [22,
Prop.6.4]. Thus there exists a Cauchy barrier on(V 2)0 for L by Proposition 3.5.

Third, we defineV 3 = [0, T ] × W for W = {(x, y) ∈ R
2 : x2 + y2 < 1, |y| >

φ(0, x) if x ≥ 0}. ThenW is 1-Dirichlet regular by [11, p. 26] or [13] and thus possesses
a Cauchy barrierh (with K = ∅) for A = 1 by Example 3.7 and Theorem 3.4. Clearly,
H(t, x, y) = th(x, y) is a Cauchy barrier on(V 3)0 for L.

Hence Proposition 3.5 and Theorem 3.9. imply the solvability of (3.1) forL on all three
domains and their intersections. For instance,V 1 ∩ V 3 is a ‘funnel’ in space-time from
which one has removed a sharp inward pointing wedge. With respect to the space variables,
this lateral boundary is as bad as one can expect in view of classical potential theory.

If a vanishes on the boundary of one of these domains, then the above Cauchy barriers
still work on V 1 and V 3 (see also [17, §6], [21, §7], [22, §6] for degeneracies in the
interior). One can check condition (I) in this case by means of the above arguments. Thus
Theorem 3.4 shows thatL0 is invertible onC0(W0) so that the functionu = L−1

0 F solves
(3.1) for f = g = 0 andF ∈ C0(W0), whereW = V 1 , V 3 (or W = V 1 ∩ V 3 in view
of [19, Thm.3.3]). Using an approximation argument, it is also possible to treat non-zero
initial valuesf ∈ C0(V (0)), see [22, Thm.4.14]. Further, consider two of above domains
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touching each other at a part of the boundary such thata equals 0 only at the boundary of one
subdomain. We can then solve (3.1) with non-zero boundary conditions on the subdomain
wherea does not degenerate.

The general theory presented in this paper opens promising perspectives of new appli-
cations and new research, such as developing further results for easier and more flexible
construction of barriers (via infima of generalized parabolic subharmonic functions, local
barriers), approximation of very irregular domains by more regular ones having barriers
(possibly using recent or future improved knowledge of parabolic Harnack inequalities,
cf. [14], [16]), improved handling of degenerate problems, and extensions to semilinear
problems beyond earlier work in [22] (, relevant for instance to population models in time-
dependent habitats).
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