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Long-timestabilization of solutions to aphase-field
model with memory

Sergiu Aizicovici and Eduard Feireisl
∗

Abstract. Weprovethat any global bounded solution of a phasefield model with memory termstends to asingle
equilibrium state for large times. Because of the memory effects, the energy is not a Lyapunov function for the
problem and theset of equilibriamay contain anontrivial continuum of stationary states. Themethod wedevelop
is applicable to amoregeneral class of equations containing memory terms.

1. Int roduction

Thetimeevolutionof thephasevariableχ(t, x) andthetemperatureϑ(t, x) in thephase-
field model proposed by Caginalp [5] is governed by thesystem of differential equations:

∂tχ −1χ +W ′(χ) = λ′(χ)ϑ,ψ (1.1)

∂t (ϑ + λ(χ))+ div q = 0 (1.2)

whereW and λ aregiven functionsand q denotes theheat flux. Hereweshall assumethat
q is determined by the linearized Coleman - Gurtin [6] constitutive relation:

q = −kI∇ϑ − k ∗ ∇ϑψ (1.3)

where theconstant kI > 0 is the instantaneousheat conductivity, k isasuitabledissipative
kernel, and thesymbol ∗ denotes the timeconvolution:

k ∗ v(t) =
∫ ∞

0
k(s)v(t − s) ds.

The material occupies abounded regular domain � ⊂ R3 and the system (1.1)–(1.3) is
complemented by thehomogeneous Neumann boundary condition for thephasevariable

∇χ.n|∂� = 0, with n theouter normal vector, (1.4)
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while ϑ obeys the homogeneous Dirichlet condition

ϑ |∂� = 0. (1.5)

Systems of the same or comparable type have been recently studied by many authors (see
Aizicovici and Barbu [1], Colli and Laurenc¸ot [7], Giorgi et al. [12], [13], etc). In particu-
lar, the long-time behavior of solutions seems to be well understood and the equilibrium
(stationary) solutions of the problem

−1χ∞ +W ′(χ∞) = 0, ∇χ∞.n|∂� = 0 andϑ∞ ≡ 0 (1.6)

have been identified as the only candidates to belong to theω-limit set of each individual
trajectory (cf. [1, Theorems 3.3, 3.4] or [7, Theorem 2.6]). If the problem (1.6) admits
only a finite number of solutions, then any solutionχ(t), ϑ(t) converges ast → ∞ to a
single stationary state. Positive results in this direction in the one-dimensional case were
obtained, e.g., by Aizicovici and Barbu [1], Elliott and Zheng [9] or Grinfeld and Novick-
Cohen [14]. However, the structure of the set of stationary solutions for a general domain
may be quite complicated, in particular, the set in question may contain a continuum of
nonradial solutions if� is a ball or an annulus. If this is the case, it seems highly nontrivial
to decide whether or not the solutions converge to a single stationary state. In fact, it is
well-known that this might not be the case even for finite-dimensional dynamical systems
(cf. Aulbach [3]), and similar examples for semilinear parabolic equations were derived by
Poĺačik and Rybakowski [19].

In 1983, Simon [21] developed a method to study the long-time behaviour of gradient-
like dynamical systems based on deep results from the theory of analytic functions of
several variables due to Lojasiewicz [18]. Roughly speaking, an analytic function behaves
like a polynomial (of a sufficiently high degree) in a neighbourhood of any point where
its gradient vanishes (critical points). More specifically, the following assertion holds (see
[18, Theorem 4, page 88]):

PROPOSITION 1.1.LetG : U(a) → C be a real analytic function defined on an open
neighbourhoodU(a) of a pointa ∈ Rn.

Then there existθ ∈ (0, 1
2) andδ > 0 such that

|∇G(z)| ≥ |G(z)−G(a)|1−θ for all z ∈ Rn, |z− a| < δ.

Simon succeded in proving a generalized version of the above theorem applicable to
analytic functionals on Banach spaces. Later on, Jendoubi [17], and Haraux and Jendoubi
[15] simplified considerably Simon’s original approach making it accessible for application
to a broad class of semilinear problems with variational structure. Related results in this
direction were also obtained by Feireisl and Takáč [11], Hoffmann and Rybka [16] etc.
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Last but not least, the same method has been successfully modified to deal with degenerate
parabolic equations of porous media type (see [10]).

In some cases, Simon’s approach can be used to deal with problems with only a partial
variational structure. A typical example could be the system (1.1)–(1.3) with the memory
term omitted in (1.3) (i.e., fork = 0). Indeed the “elliptic” part of (1.1) is the variational
derivative of the free energy functional with respect toχ while (1.2) is not. On the other
hand, since the temperature always tends to zero when time is large, it is possible to modify
Simon’s method to prove convergence of the phase variableχ to a single stationary state
under fairly general conditions imposed onλ andW (see [2, Theorem 2.1]). It is the aim
of the present paper to show that similar results can be obtained when the memory effects
are taken into account in (1.3). Specifically, our main result is the following:

THEOREM 1.2. Let� ⊂ R3 be a bounded domain of classC2+µ, µ > 0. Suppose,
moreover, that the nonlinearitiesλ,W satisfy the following hypotheses:

The functionλ is of classC1+µ(R), λ(0) = 0, |λ′(z)| ≤ 3 for all z ∈ R; (1.7)

The “free energy” functionW is twice continuously differentiable onR,

W ′(z)z > 0 for all z, |z| > 1,W ′(z) sgn(z)

(1.8)
≥ µ|z| −Q, µ > 0, Q ≥ 0 for all z ∈ R,

and

W is real analytic on the open interval(−1,1). (1.9)

In addition, we assume that the instantaneous heat conductivitykI > 0 is strictly positive
and the kernelk satisfies:

k ∈ L1(0,∞), k is convex on(0,∞),

(1.10)
dk′(s)+ δk′(s) ds ≥ 0 for a certainδ > 0.

Then for any globally defined (classical) solutionχ , ϑ of the problem(1.1)–(1.5), there
existsχ∞ - a solution of the stationary problem(1.6) such that

χ(t) → χ∞, ϑ(t) → 0 in C(�) ast → ∞.

REMARK 1.3. Here a globally defined classical solution means thatχt , ϑt ,D2
xχ ,D2

xϑ

are continuous on(0,∞)×�, ∇χ , ∇ϑ are continuous up to the boundary∂�, (1.1)–(1.3)
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hold on(0,∞)×�, and the boundary conditions (1.4), (1.5) are satisfied for allt ∈ (0,∞).
Moreover, the past values ofϑ are given fort ∈ (−∞,0], andϑ , ∇ϑ , andD2

xϑ are bounded
uniformly for t ∈ (−∞,0], x ∈ �.

REMARK 1.4. A typical example of a kernelk satisfying (1.10) isk(s) = s−αe−βs,0 ≤
α < 1,β > 0.

Note that the class of functionsλ, W covers all the cases considered in the literature;
in particular, the polynomial nonlinearities investigated by Brochet et al. [4], and Elliott
and Zheng [9] are included. Moreover, in contrast to Simon’s original paper [21] as well
as its subsequent adaptations by Jendoubi [17] or Hoffmann and Rybka [16], we require
analyticity ofW only on the interval containing all zeros ofW ′. This allows for a much
broader class of nonlinearities to which our result applies. Finally note thatλ needs not be
analytic at all.

The assumption thatχ , ϑ is a classical solution of the problem is not restrictive. It will
be clear from the estimates presented in Section 2 that any weak solution emanating from
smooth initial data will be globally defined and regular on the interval(0,∞).

2. A priori estimates. Asymptotic compactness

We present some a priori estimates of solutions of the problem (1.1)–(1.5) based on
more or less standard arguments. Comparable results can be found in the existing literature
(cf. e.g., Dafermos [8], Giorgi et al. [12], etc.) As a consequence, we obtain useful
information on the structure of theω-limit sets related to globally defined solutions. Before
we start, let us review some properties of the kernelk that follow from the hypothesis (1.10).

LEMMA 2.1. Letk satisfy(1.10).
Then

lim
s→0+ s k(s) = lim

s→0+ s
2k′(s) = 0, (2.1)

lim
s→∞ s k(s) = lim

s→∞ s
2k′(s) = 0, (2.2)

s k′(s) ∈ L1(0,1),
∫ 1

0
s2dk′(s) < ∞, (2.3)

and

s2k′(s) ∈ L1(1,∞),

∫ ∞

1
s2dk′(s) < ∞. (2.4)
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Proof. The relations (2.1) and (2.3) are proved by Prüss [20, Proposition 3.6].
Moreover, sincek ∈ L1(0,∞) is nonnegative and nonincreasing, we have

lim
s→∞ sk(s) = 0.

Using∫ ∞

1
(−k)′(s)s ds = [−k(s)s]s=∞

s=1 +
∫ ∞

1
k(s) ds,

we see that(−k)′(s)s ∈ L1(0,∞), (−k)′(s)s ≥ 0. Moreover, by virtue of (1.10), we have

(−k′)(z1+)z1 − (−k′)(z2−)z2 = z1[(−k′)(z1+)− (−k′)(z2−)]
+ (−k′)(z2−)(z1 − z2) = z1

∫
(z1,z2)

dk′(z)+ (−k′)(z2−)(z1 − z2)

≥ δz1

∫ z2

z1

(−k′)(z) dz+ (−k′)(z2−)(z1 − z2)

≥ (−k′)(z2−)(z2 − z1)(δz1 − 1) for all 0< z1 < z2.

Consequently,s(−k′)(s) is nonincreasing for large values ofs and we have

lim
s→∞ s

2k′(s) = 0

which completes the proof of (2.2).
Finally,

∫
(α,β)

s2 dk′(s) = [s2k′(s)]s=β−
s=α+ − 2[sk(s)]s=βs=α + 2

∫ β

α

k(s) ds

which, together with (2.1), (2.2), proves the second relation in (2.4); the first one then
follows immediately by (1.10). ¨

Now, we are ready to deduce the energy equality. Multiplying the equation (1.1) byχt ,
(1.2) byϑ , and integrating by parts, we obtain:

d

dt

∫
�

[
1

2
(|∇χ |2 + |ϑ |2)+W(χ)

]
dx + ‖χt‖2

L2(�)

(2.5)
+ kI‖∇ϑ‖2

L2(�)
+

∫
�

(k ∗ ∇ϑ)∇ϑ dx = 0.

Following [8], [12] we introduce the quantity

η(t, s, x) =
∫ t

t−s
ϑ(z, x) dz, s ≥ 0.
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Accordingly, making use of Lemma 2.1, we can write

k ∗ ∇ϑ =
∫ ∞

0
k(s)

∂

∂s
∇η(t, s) ds = −

∫ ∞

0
k′(s)∇η(t, s) ds.

Thus∫
�

(k ∗ ∇ϑ)∇ϑ dx = 1

2

[
d

dt

∫ ∞

0
(−k′)(s)‖∇η(t, s)‖2

L2(�)
ds

+
∫ ∞

0
(−k)′(s) ∂

∂s
‖∇η(t, s)‖2

L2(�)
ds

]
;

whence, by virtue of Lemma 2.1,∫
�

(k ∗ ∇ϑ)∇ϑ dx = 1

2

[
d

dt

∫ ∞

0
(−k′)(s)‖∇η(t, s)‖2

L2(�)
ds

+
∫ ∞

0
‖∇η(t, s)‖2

L2(�)
dk′(s)

]
.

Consequently, the relation (2.5) takes the form

d

dt

[∫
�

1

2
(|∇χ(t)|2 + |ϑ(t)|2)+W(χ(t))dx

+ 1

2

∫ ∞

0
(−k′)(s)‖∇η(t, s)‖2

L2(�)
ds

]
(2.6)

+ ‖χt (t)‖2
L2(�)

+ kI‖∇ϑ(t)‖2
L2(�)

+ 1

2

∫ ∞

0
‖∇η(t, s)‖2

L2(�)
dk′(s) = 0.

We thereby arrive at:

LEMMA 2.2. Under the hypotheses of Theorem1.2, there existsE0 depending only on
the quantities

sup
t∈(−∞,0]

‖∇ϑ(t)‖L2(�), ‖∇χ(0)‖L2(�), ‖χ(0)‖L∞(�)

such that

sup
t>0

‖ϑ(t)‖L2(�) + sup
t>0

‖∇χ(t)‖L2(�) ≤ E0, (2.7)

∫ ∞

0
‖χt (t)‖2

L2(�)
+ ‖ϑ(t)‖2

W
1,2
0 (�)

dt < E0. (2.8)
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Similarly, we can multiply (1.2) by−1ϑ and integrate by parts to deduce

d

dt
‖∇ϑ‖2

L2(�)
+ 2kI‖1ϑ‖2

L2(�)
+ 2

∫
�

(k ∗1ϑ)1ϑ dx

(2.9)
=

∫
�

λ′(χ)χt1ϑ dx.

Now, using (2.8) and treating the convolution term in the same way as when passing
from (2.5) to (2.6), we obtain:

LEMMA 2.3. Under the hypotheses of Theorem1.2, there existsE1 depending only on
the quantities

sup
t∈(−∞,0]

‖ϑ(t)‖W2,2(�), ‖∇χ(0)‖L2(�), ‖χ(0)‖L∞(�)

such that

sup
t>0

‖ϑ(t)‖
W

1,2
0 (�)

+
∫ ∞

0
‖1ϑ(t)‖2

L2(�)
dt < E1. (2.10)

Moreover,

d

dt

[
‖∇ϑ‖2

L2(�)
+

∫ ∞

0
(−k′)(s)‖1η(t, s)‖2

L2(�)
ds

]
+

(2.11)

c1

[
‖∇ϑ‖2

L2(�)
+

∫ ∞

0
(−k′)(s)‖1η(t, s)‖2

L2(�)
ds

]
≤ c23‖χt‖2

L2(�)

for certain positive constantsc1, c2.

As a straighforward consequence of (2.8) and (2.11), we get

ϑ(t) → 0 inW1,2
0 (�) ast → ∞. (2.12)

With the hypotheses (1.7), (1.8) at hand, we can use the comparison principle to deduce

χ(t) ≤ S(t) for all t ≥ 0

whereS solves the linear equation

St −1S + µS = 3|ϑ | +Q, ∇S.n = 0, S(0) = sup
x∈�

|χ(0, x)|.
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Now it is easy to see, by virtue of (2.12) and standard parabolic regularity estimates, that

lim sup
t→∞

sup
x∈�

|S(t, x)| ≤ S

whereS depends only onµ,Q, and3. This yields an upper bound on the solutionχ which
is independent of the initial data. Similarly, a lower bound can be obtained. Moreover, the
trajectory{χ(t)}t>T is precompact inC(�) ∩W1,2(�) and, by virtue of (2.8), (2.12) the
ω-limit set

ω(χ) =
{
χ∞ | χ∞ = lim

tn→∞χ(tn) in C(�) ∩W1,2(�) for a certaintn → ∞
}

is non-empty, compact inC(�) ∩ W1,2(�) and contained in the set of solutions of the
problem (1.6). Finally, using a bootstrap argument, one can obtain uniform estimates on
higher order derivatives ofχ , ϑ , in particular, one can show that the convergence in (2.12)
takes place inC(�).

Summing up the previous results we obtain the following auxiliary assertion:

PROPOSITION 2.4.Under the hypotheses of Theorem1.2we have

ϑ(t) → 0 strongly inC(�) ast → ∞. (2.13)

Moreover, any sequence of timestn → ∞ contains a subsequence (not relabeled) such that

χ(tn) → χ∞ strongly inC(�) ∩W1,2(�) (2.14)

whereχ∞ is a solution of the stationary problem(1.6).

3. Theω-limit sets

As we have seen in Proposition 2.4, theω-limit set ω(χ) of any global trajectory is
contained in the set of stationary solutions. Accordingly, we review some information on
the structure of this set.

LEMMA 3.1. AssumeW ′ is locally Lipschitz continuous and satisfies(1.8). Letχ∞ be
a (classical) solution of the stationary problem(1.6).

Then either

χ∞ ≡ −1, or χ∞ ≡ 1,

or

−1< inf
x∈�

χ∞(x) ≤ sup
x∈�

χ∞(x) < 1. (3.1)
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Proof. By virtue of (1.8) and the maximum principle, any solution of (1.6) satisfies

−1 ≤ inf
x∈�

χ∞(x) ≤ sup
x∈�

χ∞(x) ≤ 1.

Consequently, the functionw = 1 − χ∞ satisfies

−1w + z(x)w ≥ 0, w ≥ 0, ∇w.n|∂� = 0

for a certain boundedz. By virtue of the strong maximum principle, eitherw ≡ 0 or

inf
x∈�

w(x) > 0

which is the right-most inequality in (3.1). Now the rest of the proof is completely analogous,
by applying the same argument tow = χ∞ + 1. ¨

The next assertion is an easy consequence of Lemma 3.1 and the topological properties
of theω-limit setω(χ).

LEMMA 3.2. Under the hypotheses of Theorem1.2, theω-limit setω(χ) is either a
singleton or there existsr ∈ [0,1) such that

−1< −r ≤ inf
x∈�

χ∞(x) ≤ sup
x∈�

χ∞ ≤ r < 1 for all χ∞ ∈ ω(χ). (3.2)

Proof. Assume thatω(χ) is not a singleton and (3.2) does not hold. Then, sinceω(χ)

is connected, there exists a sequence of functionsχn∞ ∈ ω(χ) such that

sup
x∈�

χn∞ = rn < 1 andrn → 1 (3.3)

or

inf
x∈�

χn∞ = −rn > −1, andrn → −1.

We concentrate on the former situation showing that it leads to a contradiction; the latter
case can be treated in a similar way.

It is easy to show that the set of solutions of (1.6) is compact inC(�). Consequently,
we may assume

χn∞ → χ∞ uniformly on�

where, sinceω(χ) is closed,χ∞ ∈ ω(χ), and, by virtue of (3.3),

sup
x∈�

χ∞(x) = 1.
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In view of Lemma 3.1, we haveχ∞ ≡ 1 ∈ ω(χ).
Now, since 1∈ ω(χ), for anyn there exists a timetn such that

χn∞ ≤ χ(tn);
whence, by the comparison principle,

χ(t) ≥ χn∞ for all t ≥ tn. (3.4)

Sinceχn∞ → 1 uniformly on�, the relation (3.4) impliesχ(t) → 1 ast → ∞, i.e.,ω(χ)
is a singleton - a contradiction. ¨

4. A generalized version of the Lojasiewicz theorem

In this section we collect some preparatory material for the proof of Theorem 1.2. To
begin with, it is important to observe that the conclusion of Theorem 1.2 holds ifω(χ) is
a singleton. Consequently, from now on, we shall assume thatω(χ) contains at least two
different functions. In particular, by virtue of Lemma 3.2,ω(χ) is contained in the interval
[−r, r] with r < 1. Accordingly, we are allowed to suppose, without loss of generality that
W ′ has been modified outside of the interval [−1,1] in such a way that

W ′(z) = µz+ γ (z) whereµ > 0,

γ is real analytic on the interval(−1,1),
(4.1)

and|γ ′(z)|, |γ (z)| are uniformly bounded onR.

The main idea of the present paper is the same as that of SIMON [21]; specifically, we
derive an infinite dimensional analogue of the Lojasiewicz theorem (Proposition 1.1).

We introduce an elliptic operatorA,

Az = −1z+ µz+ γ (z), ∇z.n|∂� = 0

whereγ is the function from (4.1). The following result is standard:

LEMMA 4.1. Let γ satisfy(4.1). Then the operatorA is continuously Fŕechet differ-
entiable on the spaces:

A : W2,p
n (�) = {v ∈ W2,p(�) | ∇v.n|∂� = 0} 7→ Lp(�), p > 3

and

A : W1,2(�) 7→ [W1,2]∗(�).
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Its derivativeH = A′ has the representation

H(z)η = −1η + µη + γ ′(z)η,

with H(z) ∈ L(W2,p
n (�), Lp(�)) in the first case, and

〈H(z)η, ψ〉 =
∫
�

∇η∇ψ + µηψ + γ ′(z)ηψ dx for all ψ ∈ W1,2(�),

with H(z) ∈ L(W1,2(�), [W1,2]∗(�)) in the second case.

Now, we report the following auxiliary result:

LEMMA 4.2. Assumez ∈ W2,p
n (�), p > 3 is such that

−1< −r < z(x) < r < 1 for all x ∈ �. (4.2)

Then there exists a neighbourhoodU(z) of z in W2,p
n (�) such that

A|U(z) 7→ Lp(�)

is analytic.

REMARK 4.3. We consider here the standard definition of analyticity (see e.g. Zeidler
[22, Vol. I, Definition 8.8]:

An operatorA acting between two Banach spacesX, Y is analytic in a neighbourhood
of a pointz ∈ X if it may be expressed as

A(z+ h)− A(z) =
∞∑
n=1

Tn(z)[h, . . . , h] in Y for anyh ∈ X,

‖h‖X < ε, ε > 0 small enough,

whereTn(z) is a symmetricn-linear form onX with values inY , and

∞∑
n=1

‖Tn(z)‖Ln(X,Y )‖h‖nX < ∞ for all ‖h‖X < ε.

The proof Lemma 4.2 can be done in exactly the same way as that of [2, Lemma 4.2]
and we omit it.

Now, we are in a position to state the main result of this section. Let us define a functional

I (v) = 1

2

∫
�

|∇v|2 + µv2 + 20(v) dx (4.3)
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where0(v) = ∫ v
0 γ (s) ds. By virtue of Lemma 4.1, the functionalI satisfies

I ∈ C2(W1,2(�)) andI ′(z) = A(z) ∈ [W1,2]∗(�).

The following assertion represents a version of Proposition 1.1 for analytic functionals
on a Banach space:

PROPOSITION 4.4.Letγ satisfy(4.1); in particular, γ is real analytic on(−1,1). Let
z ∈ W2,p

n (�), p > 3 be a function satisfying

−1< −r < z(x) < r < 1 for all x ∈ �.

Then for anyP > 0 there exist constantsθ ∈ (0, 1
2) andξ(P ), ε(P ) > 0 such that the

inequality

|I (v)− I (z)|1−θ ≤ ξ‖ −1v + µv + γ (v)‖[W1,2]∗(�) (4.4)

holds for anyv ∈ W1,2(�) satisfying

‖v − z‖L2(�) < ε, |I (v)− I (z)| < P. (4.5)

REMARK 4.5. Simon [21] obtained a similar result forF real analytic onR1 and in the
framework of classical solutions. Jendoubi [17] proved the same result forF real analytic
onR1 and the norm of the space [W1,2]∗ replaced by that of the spaceL2 in (4.4) and with
the norm ofW2,p in (4.5) (cf. also Hoffmann and Rybka [16]). The present version can be
considered as a localized version of those results.

REMARK 4.6. Throughout the text, we are using the relation

W1,2(�) ⊂ L2(�) ≈ [L2(�)]∗ ⊂ [W1,2]∗(�)

to identify functions fromW1,2 as functionals in [W1,2]∗ whereL2 is identified with its
dual by the standard Riesz isometry.

The Proof of Proposition 4.4, based on Lemma 4.2, is identical with [10, Section 6,
Proposition 6.1] and we omit it.

5. Proof of Theorem 1.2

With the results of the preceding section at hand, we can complete the proof of Theorem 1.2.
We start with the following observation proved in [10, Lemma 7.1]:
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LEMMA 5.1. LetZ ≥ 0 be a measurable function on(0,∞) such that

Z ∈ L2(0,∞), ‖Z‖L2(0,∞) ≤ Y

and there existα ∈ (1, 2), ξ > 0 and an open setM ⊂ (0,∞) such that

(∫ ∞

t

Z2(s) ds

)α
≤ ξ Z2(t) for a.a.t ∈ M.

ThenZ ∈ L1(M) and there exists a constantc = c(ξ, α, Y ) independent ofM such
that∫

M
Z(s) ds ≤ c.

Now, we shall make use of the energy equality (2.6). Denoting byE the “total energy”,

E(t) = 1

2

∫
�

|∇χ(t)|2 + 2W(χ(t)) dx + 1

2
‖ϑ‖2

L2(�)

+ 1

2

∫ ∞

0
(−k′)(s)‖∇η(t, s)‖2

L2(�)
ds,

we have

E(t) → E∞ ast → ∞.

Moreover, by virtue of (2.12), one has

‖ϑ(t)‖L2(�) → 0 ast → ∞, (5.1)

and ∫ ∞

0
(−k)′(s)‖∇η(t, s)‖2

L2(�)
ds ≤∫ τ

0
(−k)′(s)s sup

t−τ≤z≤t
‖∇ϑ(z)‖2

L2(�)
ds +

∫ ∞

τ

(−k)′(s)s sup
z∈R

‖∇ϑ(z)‖2
L2(�)

ds

If τ > 0 is large enough, the second term on the right-hand side of the above inequality is
small sinces(−k)′(s) is integrable. On the other hand, the first term tends to zero for large
t for any fixedτ . Consequently, the right-hand side of the above inequality tends to zero
whent → ∞; whence∫ ∞

0
(−k)′(s)‖∇η(t, s)‖2

L2(�)
ds → 0 ast → ∞. (5.2)
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Going back to (2.6) we see that

E(t) → E∞ = 1

2

∫
�

|∇χ∞|2 + 2W(χ∞) dx for anyχ∞ ∈ ω(χ).

In particular, the energy of all solutionsχ∞ ∈ ω(χ) equals the same constantE∞, and, by
virtue of (4.1),∫

�

1

2
|∇χ(t)|2 +W(χ(t)) dx = I (χ(t)) → E∞ = I (χ∞) ast → ∞ (5.3)

for arbitraryχ∞ ∈ ω(χ), whereI is the functional defined in (4.3).
Integrating (2.6) with respect tot and making use of (1.10), one obtains∫ ∞

t

‖χt‖2
L2(�)

+ kI‖∇ϑ‖2
L2(�)

ds +
δ

2

∫ ∞

t

∫ ∞

0
(−k)′(s)‖∇η(t, s)‖2

L2(�)
ds

≤ I (χ(t))− E∞ + 1

2
‖ϑ(t)‖2

L2(�)
(5.4)

+ 1

2

∫ ∞

0
(−k)′(s)‖∇η(t, s)‖2

L2(�)
ds

Now, assumeχ∞ ∈ ω(χ) andω(χ) is not a singleton since otherwise there is nothing
to prove. In accordance with Lemma 3.2,χ∞ satisfies the hypotheses of Proposition 4.4.
We take

M = {t ∈ (0,∞) | ‖χ(t)− χ∞‖L2(�) < ε}
where ε > 0 is the same as in Proposition 4.4. SinceE∞ = I (χ∞) we can use
Proposition 4.4 to obtain

I (χ(t))− E∞ ≤ c4‖∂tχ(t)− λ′(χ(t))ϑ(t) ‖
1

1−θ
[W1,2]∗(�), θ ∈

(
0,

1

2

)
.

which, combined with (5.4) and the Poincaré inequality, yields the following conclusion:∫ ∞

t

‖χt‖2
L2(�)

+ kI‖∇ϑ‖2
L2(�)

ds +
δ

2

∫ ∞

t

∫ ∞

0
(−k)′(s)‖∇η(t, s)‖2

L2(�)
ds

≤ c5(‖χt (t)‖2
L2(�)

+ ‖ϑ(t)‖2
L2(�)

)
1

2−2θ + 1

2
‖ϑ‖2

L2(�)

+ 1

2

∫ ∞

0
(−k′)(s)‖∇η(t, s)‖2

L2(�)
ds

providedt ∈ M.
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Making use of (5.1), (5.2), we can take

Z(t) =
[
‖χt (t)‖2

L2(�)
+ ‖∇ϑ(t)‖2

L2(�)
+

∫ ∞

0
(−k)′(s)‖∇η(t, s)‖2

L2(�)
ds

] 1
2

in Lemma 5.1 to conclude that∫
M

‖χt (t)‖L2(�) dt < ∞

In particular, we have

‖χ(t1)− χ(t2)‖L2(�) < ε/3

providedt1, t2 are large enough and the whole interval(t1, t2) lies in M. Consequently,
there existsτ > 0 such that(τ,∞) ⊂ M which implies the convergence ofχ(t) in, say,
L2(�) ast → ∞.

This concludes the proof of Theorem 1.2.
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