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Long-time stabilization of solutionsto a phase-field
modd with memory

SERGIU AIZICOVICI AND EDUARD FEIREISL*

Abstact We prove tha any globd boundel solution of a pha field modé with memoy termstendsto asingle
equilibrium stae for large times Becaus of the memoy effects the enagy is not a Lyapurov function for the
problem ard the s of equilibriamay contan anontivial continuun of stationay states The methal we develop
isapplicabé to amore generaclass of equatios containirg memoy terms.

1. Introduction
Thetimeevolution of the phagvariabk x (¢, x) ard thetemperatug 9 (¢, x) inthe phase-
field modé propose by Caginap [5] is governal by the system of differentid equations:
dx —Ax + W) =200y (1.1)
(¥ +A(x)) +divg=0 (1.2)

wher W ard A are given functions and q denote the hed flux. Here we shal assune that
g isdetermine by the linearizad Coleman - Gurtin [6] constitutve relation:

q=—k; VO —k % Vo (1.3)
wher the constamk; > 0istheinstantaneosihed conducivity, k isasuitabk dissipaive
kernel and the symbd x denote the time convolution:

o
kxv(@) = / k(s)v(t —s) ds.
0
The materia occupies aboundel regular doman ¢ R® ard the systen (1.1)—(1.3 is
complemente by the homogeneasiNeumam bounday condition for the pha® variable

Vx.nlye = 0, with n the oute norma vecta, (1.4
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while 9 obeys the homogeneous Dirichlet condition
P = 0. (1.5)

Systems of the same or comparable type have been recently studied by many authors (see
Aizicovici and Barbu [1], Colli and Lauremt [7], Giorgi et al. [12], [13], etc). In particu-
lar, the long-time behavior of solutions seems to be well understood and the equilibrium
(stationary) solutions of the problem

—Axoo + W (Xoo) =0, Vxoo.Nlgo = 0andds, =0 (1.6)

have been identified as the only candidates to belong telmit set of each individual
trajectory (cf. [1, Theorems 3.3, 3.4] or [7, Theorem 2.6]). If the problem (1.6) admits
only a finite number of solutions, then any solutig(y), ¢ (¢) converges as — oco to a
single stationary state. Positive results in this direction in the one-dimensional case were
obtained, e.qg., by Aizicovici and Barbu [1], Elliott and Zheng [9] or Grinfeld and Novick-
Cohen [14]. However, the structure of the set of stationary solutions for a general domain
may be quite complicated, in particular, the set in question may contain a continuum of
nonradial solutions if2 is a ball or an annulus. If this is the case, it seems highly nontrivial
to decide whether or not the solutions converge to a single stationary state. In fact, it is
well-known that this might not be the case even for finite-dimensional dynamical systems
(cf. Aulbach [3]), and similar examples for semilinear parabolic equations were derived by
PoléCik and Rybakowski [19].

In 1983, Simon [21] developed a method to study the long-time behaviour of gradient-
like dynamical systems based on deep results from the theory of analytic functions of
several variables due to Lojasiewicz [18]. Roughly speaking, an analytic function behaves
like a polynomial (of a sufficiently high degree) in a neighbourhood of any point where
its gradient vanishes (critical points). More specifically, the following assertion holds (see
[18, Theorem 4, page 88]):

PROPOSITION 1.1LetG : U(a) — C be areal analytic function defined on an open
neighbourhood’ (a) of a pointa € R".
Then there exist € (0, ) ands > 0 such that

IVG(2)| > |G(z) — G(a)|* P forall z € R", |z —a| <.

Simon succeded in proving a generalized version of the above theorem applicable to
analytic functionals on Banach spaces. Later on, Jendoubi [17], and Haraux and Jendoubi
[15] simplified considerably Simon’s original approach making it accessible for application
to a broad class of semilinear problems with variational structure. Related results in this
direction were also obtained by Feireisl and d&kl1], Hoffmann and Rybka [16] etc.
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Last but not least, the same method has been successfully modified to deal with degenerate
parabolic equations of porous media type (see [10]).

In some cases, Simon’s approach can be used to deal with problems with only a partial
variational structure. A typical example could be the system (1.1)—(1.3) with the memory
term omitted in (1.3) (i.e., fok = 0). Indeed the “elliptic” part of (1.1) is the variational
derivative of the free energy functional with respecitavhile (1.2) is not. On the other
hand, since the temperature always tends to zero when time is large, it is possible to modify
Simon’s method to prove convergence of the phase varjalitea single stationary state
under fairly general conditions imposed band W (see [2, Theorem 2.1]). It is the aim
of the present paper to show that similar results can be obtained when the memory effects
are taken into account in (1.3). Specifically, our main result is the following:

THEOREM 1.2.Let Q2 c RS be a bounded domain of clag&™*, u > 0. Suppose,
moreover, that the nonlinearitigds W satisfy the following hypotheses:

The functionk is of classC*™(R), 1(0) =0, |)/(z)| < A forall z € R; (1.7)

The “free energy” functiorW is twice continuously differentiable am,

W'(z)z > Oforall z, |z| > 1, W(z) sgn(z)

(1.8)
> ulzl— Q, w>0, Q>0forall z € R,

and
W is real analytic on the open interval-1, 1). (1.9)

In addition, we assume that the instantaneous heat conductivity O is strictly positive
and the kernek satisfies:

k € LY(0, o), kis convex on0, co),
, , ] (1.10)
dk’(s) + 8k’ (s) ds > O for a certainé > O.

Then for any globally defined (classical) solutign ¢ of the problem(1.1)—(1.5), there
existsy~ - a solution of the stationary proble.6) such that

X (1) = Yoo, O(t) = 0in C(Q) ast — oo.

REMARK 1.3. Here a globally defined classical solution meansghat,, D2y, D?9
are continuous ofD, o©) x 2, Vx, Vi are continuous up to the bounda$, (1.1)—(1.3)
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hold on(0, co) x €2, and the boundary conditions (1.4), (1.5) are satisfied foral{0, co).
Moreover, the past values éfare given for € (—oo, 0], and?, V9, andez‘} are bounded
uniformly forz € (—o0, 0], x € Q.

REMARK 1.4. Atypical example of a kernklsatisfying (1.10)i%(s) = s %e=#%,0 <
a<1,8>0.

Note that the class of functioris W covers all the cases considered in the literature;
in particular, the polynomial nonlinearities investigated by Brochet et al. [4], and Elliott
and Zheng [9] are included. Moreover, in contrast to Simon’s original paper [21] as well
as its subsequent adaptations by Jendoubi [17] or Hoffmann and Rybka [16], we require
analyticity of W only on the interval containing all zeros 8f’. This allows for a much
broader class of nonlinearities to which our result applies. Finally noté.thaéds not be
analytic at all.

The assumption thag, ¢ is a classical solution of the problem is not restrictive. It will
be clear from the estimates presented in Section 2 that any weak solution emanating from
smooth initial data will be globally defined and regular on the intef@abo).

2. A priori estimates. Asymptotic compactness

We present some a priori estimates of solutions of the problem (1.1)—(1.5) based on
more or less standard arguments. Comparable results can be found in the existing literature
(cf. e.g., Dafermos [8], Giorgi et al. [12], etc.) As a consequence, we obtain useful
information on the structure of the-limit sets related to globally defined solutions. Before
we start, let us review some properties of the kekrteht follow from the hypothesis (1.10).

LEMMA 2.1. Letk satisfy(1.10)

Then

lim sk(s) = lim s%'(s) =0, (2.1)

s—0+ s—0+

lim s k(s) = lim s%'(s) =0, (2.2)

§—>00 §—>00
1

s k'(s) € LY(0, 1), / s2dk’ (s) < oo, (2.3)
0

and

s2k'(s) € L1(1, 00), / s2dk’(s) < oo. (2.4)
1
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Proof. The relations (2.1) and (2.3) are proved byu$¥ [20, Proposition 3.6].
Moreover, sincé € L1(0, o) is nonnegative and nonincreasing, we have

lim sk(s) = 0.
§—>00
Using

/Oo(—k)’(s)s ds = [—k(s)s]{Z5° + v/.ook(s) ds,
1 1

we see that—k)'(s)s € L1(0, 00), (—k)'(s)s > 0. Moreover, by virtue of (1.10), we have

(—k")(z1H)z1 — (=K (z2—) 22 = z2[(=Kk) (z1+) — (—K')(z2-)]
+ (=) (z2—)(z1 — 22) = Zl/ dk’(2) + (—k")(z2—)(z1 — z2)

(z1,22)
Z

2
>8z1 | (—k')(z) dz + (—k")(z2—)(z1 — 22)
21
> (—k")(z2—)(z2 — z1)(bz1 — D) for all 0 < z1 < z2.

Consequentlys(—k")(s) is nonincreasing for large values o&ind we have
lim s%k'(s) =0
§—>00

which completes the proof of (2.2).
Finally,

B
/ s2 dk’(s) = [szk/(s)]izg__F — 2[sk()]5=F + 2/ k(s) ds
(a.B) o
which, together with (2.1), (2.2), proves the second relation in (2.4); the first one then
follows immediately by (1.10). O

Now, we are ready to deduce the energy equality. Multiplying the equation (1,4, by
(1.2) by#, and integrating by parts, we obtain:

d (Tl _ , ,
ar o [z(lvxl +1721%) + W(X)] dx + 1% 1172
(2.5)
VD122 + /Q (k% V)V di = 0.

Following [8], [12] we introduce the quantity

t
n(t,s, x) :/ ¥(z,x)dz, s > 0.
t—s
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Accordingly, making use of Lemma 2.1, we can write
o0 a o0
kx VY = / k(s)—Vn(t,s) ds = —f k' (s)Vn(t, s) ds.
0 ds 0
Thus

o0 , 8
+ /0 (=0 (5) 5= IVt ) 2, ds} ;

whence, by virtue of Lemma 2.1,

/(k*wm dr — & ifoo<—k/><s>||w<t 91125, ds
o 2 | dr Jo LA@

o
2
+ fo IVa. 11250, dk%s)} :

Consequently, the relation (2.5) takes the form

i 1‘ 2 2
dt [/Q 2(|VX(I)| +[9()]%) + W(x(1))dx
1> | ,
+ 5/0 (=YY, )72 ds

(2.6)
+ 1 O12 gy + ki IVIOI 2

1> 2 ’
+5 /0 10, )12z, dK'(5) = 0.

We thereby arrive at:

LEMMA 2.2. Under the hypotheses of TheorérR, there existsy depending only on
the quantities

sup IV Ill2q)s IVXO)iL2) IXO) L~

te(—o00,0]

such that
supll? ()l 2y + SUpPIIVx @)l 2(q) < Eo, (2.7)
t>0 t>0

(0.¢]
2 2
/0 11O 2y + 19O 12, A < Eo. (2.8)

(
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Similarly, we can multiply (1.2) by-A¢ and integrate by parts to deduce

d

E”W”%m) + 2k,||Az9||§2(m + 2/9(k * AD)AY dx

(2.9)

= / NOOx: A dx.
Q

Now, using (2.8) and treating the convolution term in the same way as when passing
from (2.5) to (2.6), we obtain:

LEMMA 2.3. Under the hypotheses of Theorérg, there existgr1 depending only on
the quantities

sup [1F @ llwazq) IVX Oz, IxO)llL=)

te(—o00,0]

such that
* 2
Sug)”z?(t)”wé,z(m—f-/o 1AY (D112, dr < E1. (2.10)
1>

Moreover,

d o
E[nwniz@ + fo (=K ANE, )72, ds} +

(2.11)
oo
cl[uwniz(m + /0 (=K ANE, )72, ds} < A1l 2
for certain positive constants, cs.
As a straighforward consequence of (2.8) and (2.11), we get
9(t) — 0in Wa?(Q) ast — oo. (2.12)

With the hypotheses (1.7), (1.8) at hand, we can use the comparison principle to deduce
x(@) < S@)forallt >0
whereS solves the linear equation

S — AS+uS=AlP|+ Q, VS.n=0, SO = sup|x (0, x)|.

xeQ
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Now it is easy to see, by virtue of (2.12) and standard parabolic regularity estimates, that

lim supsup|S(r, x)| < S
>0 xeQ

whereS depends only op, Q, andA. This yields an upper bound on the solutipavhich

is independent of the initial data. Similarly, a lower bound can be obtained. Moreover, the
trajectory{ x (1)}, is precompact irC(€2) N W12(Q) and, by virtue of (2.8), (2.12) the
w-limit set

o(x) = {Xoo | Xoo = lim_x (1) in C(Q) N WL2(Q) for a certair, — oo}

is non-empty, compact i€ (2) N W12(Q) and contained in the set of solutions of the
problem (1.6). Finally, using a bootstrap argument, one can obtain uniform estimates on
higher order derivatives of, ¢, in particular, one can show that the convergence in (2.12)
takes place irC ().

Summing up the previous results we obtain the following auxiliary assertion:

PROPOSITION 2.4.Under the hypotheses of Theorér@ we have

®(t) — 0strongly inC(Q) ast — oo. (2.13)
Moreover, any sequence of timgs— oo contains a subsequence (not relabeled) such that

X (tn) = Xoo Strongly inC(Q) N WH2(Q) (2.14)

wherey is a solution of the stationary proble(t.6).

3. Thew-limit sets

As we have seen in Proposition 2.4, thdimit set w(x) of any global trajectory is
contained in the set of stationary solutions. Accordingly, we review some information on
the structure of this set.

LEMMA 3.1. AssuméV’ is locally Lipschitz continuous and satisfi@s8). Let x. be
a (classical) solution of the stationary problgm6).
Then either

Xoo = —1, Or xoo =1,
or

—1 < inf xoo(x) < SUPXco(x) < 1. (3.1)

xeQ xeQ
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Proof. By virtue of (1.8) and the maximum principle, any solution of (1.6) satisfies

=1<inf xoo(x) < SUPXco(x) < L.
xeQ xeQ

Consequently, the functiom = 1 — x, satisfies
—Aw+z(x)w >0, w>0, Vw.n|so=0
for a certain boundegl By virtue of the strong maximum principle, either= 0 or

inf wx) >0
xeQ

whichis theright-mostinequalityin (3.1). Now the rest ofthe proofis completely analogous,
by applying the same argumentio= y. + 1. O

The next assertion is an easy consequence of Lemma 3.1 and the topological properties
of thew-limit setw (x).

LEMMA 3.2. Under the hypotheses of Theordn2, the w-limit setw () is either a
singleton or there exists € [0, 1) such that

—1 < —r <Inf Yoo(x) < SUPYeo <r < Lforall xe € w(x). (3.2)
xe xeQ

Proof. Assume thaty(x) is not a singleton and (3.2) does not hold. Then, sin¢e)
is connected, there exists a sequence of functidns » (x) such that

Supxs, =r <landr, > 1 (3.3)
xeQ
or
inf x5 =—-r, > -1, andr, - —1.
xeQ

We concentrate on the former situation showing that it leads to a contradiction; the latter
case can be treated in a similar way.

It is easy to show that the set of solutions of (1.6) is compact(f2). Consequently,
we may assume

X2 — Xoo Uniformly onQ
where, sincev(x) is closed,x € w(x), and, by virtue of (3.3),

Sugxm(x) =1

xeQ
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In view of Lemma 3.1, we havg,, =1 € w(x).
Now, since 1e w(y), for anyn there exists a timg, such that

Xoo < X (ta);
whence, by the comparison principle,

x(@) = x5 forallz > 1,. (3.4)
Sincex, — 1 uniformly on, the relation (3.4) implieg (1) — 1 ast — oo, i.e.,@(x)

is a singleto - a contradiction. O

4. A generalized version of the Lojasiewicz theorem

In this section we collect some preparatory material for the proof of Theorem 1.2. To
begin with, it is important to observe that the conclusion of Theorem 1.2 holagyif is
a singleton. Consequently, from now on, we shall assumetltyal contains at least two
different functions. In particular, by virtue of Lemma 3«2y ) is contained in the interval
[—r, r]with » < 1. Accordingly, we are allowed to suppose, without loss of generality that
W’ has been modified outside of the intervall], 1] in such a way that

W'(z) = uz + y(z) whereu > 0,

y is real analytic on the interval-1, 1),

and|y’(z)|, |y (z)| are uniformly bounded oR. (4.1)

The main idea of the present paper is the same as that of SIMON [21]; specifically, we
derive an infinite dimensional analogue of the Lojasiewicz theorem (Proposition 1.1).
We introduce an elliptic operatot,

Az = —Az+uz+y(2), Vz.njpe =0
wherey is the function from (4.1). The following result is standard:

LEMMA 4.1. Lety satisfy(4.1). Then the operato is continuously Fechet differ-
entiable on the spaces:

A W2P(Q) = {v e W2P(Q) | Vu.nlye = 0} > LP(Q), p > 3
and

A Wh2(Q) > [WE*(Q).
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Its derivativeH = A’ has the representation

H(z)n = —An+ pun+ vy (@,

with H(z) € LIW>P(Q), LP($2)) in the first case, and
(M@, ¥) = /Q VIVY + pny +y'(@ny dx forall y € WH3(),
with H(z) € LWL2(Q), [W12]*(Q)) in the second case.
Now, we report the following auxiliary result:
LEMMA 4.2. Assume € W2"(Q), p > 3is such that
—1l<-r<zx) <r<1lforall x € Q. 4.2)
Then there exists a neighbourhobtdz) of z in W,,z”’(Q) such that
Aly — LP(Q)
is analytic.

REMARK 4.3. We consider here the standard definition of analyticity (see e.g. Zeidler
[22, Vol. 1, Definition 8.8]:

An operatorA4 acting between two Banach spacésY is analytic in a neighbourhood
of a pointz € X if it may be expressed as

o0
Az +h) — A@) =Y _Tu@I[h,....h]in Y foranyh € X,
n=1
lhllx < €, ¢ > 0small enough,
whereT, (z) is a symmetria:-linear form onX with values inY, and
o
Z 1T @l znx.ry IRy < oo forall [|A]lx < e.
n=1

The proof Lemma 4.2 can be done in exactly the same way as that of [2, Lemma 4.2]
and we omit it.
Now, we are in a position to state the main result of this section. Let us define a functional

1) = %/ V|2 4+ uv? + 2T (v) dx (4.3)
Q
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wherel (v) = fé’ y(s) ds. By virtue of Lemma 4.1, the functiondlsatisfies
I e C2(Wh2(Q) andl’(z) = A() € [WH2](<).

The following assertion represents a version of Proposition 1.1 for analytic functionals
on a Banach space:

PROPOSITION 4.4 Lety satisfy(4.1), in particular, y is real analytic on(—1, 1). Let
7€ W2P(Q), p > 3be afunction satisfying

—1l<-r<zlx) <r <1lforall x € Q.

Then for anyP > 0 there exist constants € (0, %) and&(P), ¢(P) > 0such that the
inequality

1) — 1@ < &) — Av+ pv + Y ) llpwrzp g (4.4)
holds for anyw € W12(Q) satisfying
lv—2zllp2 <& () —I1@)] < P. (4.5)

REMARK 4.5. Simon [21] obtained a similar result fBrreal analytic orR* and in the
framework of classical solutions. Jendoubi [17] proved the same resutt feal analytic
on R! and the norm of the spac#/[-2]* replaced by that of the spaé€ in (4.4) and with
the norm of W27 in (4.5) (cf. also Hoffmann and Rybka [16]). The present version can be
considered as a localized version of those results.

REMARK 4.6. Throughout the text, we are using the relation
Wh(Q) C L2(@) ~ [LX @] C [WH*(Q)

to identify functions fromw™-2 as functionals in 1-2]* whereL? is identified with its
dual by the standard Riesz isometry.

The Proof of Proposition 4.4, based on Lemma 4.2, is identical with [10, Section 6,
Proposition 6.1] and we omit it.

5. Proof of Theorem 1.2

With the results of the preceding section at hand, we can complete the proof of Theorem 1.2.
We start with the following observation proved in [10, Lemma 7.1]:
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LEMMA5.1. LetZ > 0be a measurable function @, co) such that
Z € L*0,00). 1 Zl12(000) < ¥

and there exist € (1, 2), & > 0and an open seM C (0, oo) such that
o o
(/ Z%(s) ds) <& Z%(t) fora.a.t € M.
t

ThenZ e L1(M) and there exists a constant= c(&, «, Y) independent of\f such
that

/ Z(s)ds <c.
M

Now, we shall make use of the energy equality (2.6). Denoting ltlye “total energy”,
E®) = = [ vy +2w dr + S92
0 = 5 [ 190+ 200wy de ot 51012,
1 [ ’ 2
+5 [ RO g ds
we have
E(t) > E ast — oo.
Moreover, by virtue of (2.12), one has
and
* 2
/!
/0 (=) (DN, )72 ds <
‘ 2 > 2
| ks sup 199z g, &+ [ 008 SUpIVI@IZs g o

t—t<z<t ZER

If ¢ > 0islarge enough, the second term on the right-hand side of the above inequality is
small sinces(—k)’(s) is integrable. On the other hand, the first term tends to zero for large

t for any fixedr. Consequently, the right-hand side of the above inequality tends to zero
whent — oo; whence

o0
/0 (=) @IV, )2, g, ds — 0 ast — oo. (5.2)
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Going back to (2.6) we see that

1
E(t) > Ex = > /Q |V)(oo|2 + 2W (xs0) dx for any xoo € ().

In particular, the energy of all solutiong, € w(x) equals the same constaty,, and, by
virtue of (4.1),

1
fQEIVX(I)IZ + Wx@®)dx =1(x(t)) = Eoo = I(xx0) @St — 00 (5.3)

for arbitrary xo € @ (x), wherel is the functional defined in (4.3).
Integrating (2.6) with respect toand making use of (1.10), one obtains

o0
/t 16120y + ki IV 172 ds +

8 o o ,
3| [ v ol ¢
1
< 1) = Eoo + 519072(q (5.4)

L[ k) ()|IV 2, .d
+§/0 (=) () [V1(2, ) 22,y s

Now, assume(,, € w(x) andw(y) is not a singleton since otherwise there is nothing
to prove. In accordance with Lemma 3,2, satisfies the hypotheses of Proposition 4.4.
We take

M =t €(0,00) | x(1) — xooll L2(2) < €}

wheree > 0 is the same as in Proposition 4.4. SinEg, = I(x.) We can use
Proposition 4.4 to obtain

1

6

= 1
100(®) = Ece = caldx (0 =¥ OO | iz 0 € (0, 5) :

which, combined with (5.4) and the Poinéanequality, yields the following conclusion:

o0
fl 1617 20y + ki IVO 72 ds +

L B ' ()|IV 2, ..d
3] | ROV o
2 2 21 2
S CS(HXI(Z)”LZ(Q) + ||l9(t)||L2(Q))2729 + §||19||L2(Q)
T 19 )12, ds
2 0 77 ’ LZ(Q)
providedr € M.
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Making use of (5.1), (5.2), we can take

o0 2
Z(1) = [nxt(t)niz(m +IVOD22q) + /0 (=K IV, )72, ds]
in Lemma 5.1 to conclude that

/ X (Dl 2 dt < 00
M

In particular, we have

Ix (1) — x @2l 2y < €/3

providedrs, t> are large enough and the whole intergal ) lies in M. Consequently,
there existy > 0 such tha{z, co) € M which implies the convergence @f(¢) in, say,
L%(Q) ast — oo.

This concludes the proof of Theorem 1.2.
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