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Tsunami Excitation by Submarine Slides in Shallow-water
Approximation
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Abstract — Landslide-induced tsunamis are receiving increased attention since there is evidence that
recent large devastating events have been caused by underwater mass failures. Normally, numerical models
are used to simulate tsunami excitation, most of which are based on shallow water, known also as long
wave, approximation to the full equations of hydrodynamics. Analytical studies may handle only
simplified problems, but help understand the basic features of physical processes. This paper is an
analytical investigation of long-water waves excited by rigid bodies sliding on the sea bottom, based on the
shallow-water approximation, which is here derived by properly scaling Euler equations for an inviscid,
incompressible and irrotational ocean. In one-dimensional (1-D) cases (where motion depends only on one
horizontal coordinate), under the further assumptions of small-height slide, which permits the recourse to
linear theory, and of flat ocean floor, a solution for arbitrary body shape and velocity is deduced by
applying the Duhamel theorem. It is also shown that this theorem can be advantageously used to obtain a
general solution in case of a non-flat ocean floor, when the sea bottom follows a special power law, that can
be adapted to study reasonable bottom profiles. The characteristics of the excited tsunamis are then
evaluated by computing solutions in numerous examples, with special focus on wave pattern and wave
evolution. The energy of the wave system is shown to depend on time: it grows expectedly in the initial
phase of tsunami generation, when the moving body transfers energy to the water, but it may also diminish
later, implying that a certain amount of energy may pass back from water waves to the slide.

Key words: Duhamel solution, Froude number, shallow-water approximation, tsunami, underwater
landslides.

Introduction

According to most tsunami catalogues, tsunamis are mostly generated by
submarine earthquakes, and only a small fraction is due to slides or rockfalls.
However, there is an increasing recognition that the tsunami potential of landslides
may have been underestimated, and tsunamis essentially or mainly due to landslides
may have been erroneously attributed to other causes. Difficulty in identifying parent
mass failures in tsunami generation is understandable for historical events, whose
description relies exclusively upon accounts of eyewitnesses: for example, if an
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earthquake sets in motion a submarine slump that in turn produces a tsunami that
attacks a nearby coastline, the coastal population may tend to relate the tsunami to
the seismic shock, since in general underwater slumps pass unobserved. But there may
be difficulties even for recent occurrences, as demonstrated by the case of the
catastrophic tsunami that struck the north coast of Papua New Guinea on the evening
of 17 July 1998, causing more than 2200 fatalities (DAVIES, 1999; KAWATA et al.,
1999). Intensive research and data analysis have not yet provided a definite answer on
the origin of the tsunami (was it due directly to a submarine earthquake that produced
a dislocation at the sea bottom or to a submarine slump triggered by the seismic
sequence?), though a slump seems the favourite candidate (TAPPIN et al., 1999).

Landslides in coastal areas and in the sea are known to have a large tsunami
potential, depending mostly on the size of involved mass and on the slope of the sea
bottom. They may originate by pure gravitational loading and instability, or they
may be triggered by earthquake vibrations, or they may be associated with volcanic
eruptions, mostly of the explosive type (MURTY, 1977; HAMPTON et al., 1996; see also
CALVARI and THANNER, 1999 for the recent onshore and offshore geological evidence
for a large 10-ka seaward flank collapse of Etna volcano, with possible generation of
a large tsunami). They may produce incredibly large waves that climb coastal slopes
with astonishing runup of several hundred meters: very famous is the case of Lituya
Bay, Alaska, where in 1958 the splashing of a huge volume of rocks generated a wave
in the inlet that attacked the opposite coast and destroyed all vegetation up to the
height of 500 m (MILLER, 1960; MURTY, 1977). Studies of landslide-induced
tsunamis generally are based on numerical simulations. Most make use of the two-
dimensional nonlinear shallow-water approximation with variables independent of
the vertical coordinate z (RANEY and BUTLER, 1975; HARBITZ, 1992; JIANG and
LEBLOND, 1993; IMAMURA and GICA, 1996; JOHNSGARD and PEDERSEN, 1996; FINE
et al., 1999; TINTI et al., 1999a and 1999b), or of the 2-D linear potential theory with
variables computed on vertical cross sections and uniform along one horizontal
coordinate, say y (GRILLI and WATTS, 1999). Full 3-D models are rarely used because
they are computationally intensive (ASSIER RZADKIEWICZ ef al., 1997), and when
used for simulations of real tsunamis, they are mostly limited to the generation
phase, with propagation computed through more economic shallow-water models
(HEINRICH ef al., 1999). Analytical studies cannot address realistic cases with
complications that derive from the geometrical complexity of the ocean basin and of
the landslide, and from complex interaction between the sliding body and fluid, such
as turbulence, chaotic vorticity, fluid incorporation in the sliding material, etc. These
studies, however, serve to elucidate basic features of the phenomenon and to gain an
understanding of physical processes, and have often been used in conjunction with
laboratory experiments in hydraulic tanks with waves excited under controlled
conditions (TAKAHASHI, 1943, 1948; WIEGEL, 1955; SELLS, 1965; KAJIURA, 1970;
Noba, 1970, 1971; IwAsAKl, 1982; SABATIER, 1983; PELINOVSKY and POPLAVSKY,
1996; WATTS, 1998).
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In this paper we use analytical means to study tsunami generation by submerged
sliding masses, using the approximation of shallow water or long waves. First,
shallow-water equations in the case of the elevation of the ocean bottom changing
with time (which is the assumption needed to describe a moving mass) will be
rigorously deduced by applying a scaling method based on power expansions, that
was successfully applied by FRIEDRICHS (1948) and by STOKER (1957). Scaling, which
is a technique that enables the assessment of the appropriate weight of any term in a
set of differential equations, has been often applied to Euler or to Navier-Stokes
equations that govern the motion of a fluid to work out meaningful approximations
(see PEREGRINE, 1972; HAMMACK, 1973; ICHIYE, 1983; VILLENEUVE and SAVAGE,
1993; WATTS, 1998). With our approach we highlight the conditions under which the
shallow-water approximation holds in case of landslide-induced tsunamis. We study
the shallow-water approximation for 1-D linear problems in an ocean of constant
depth, and use the Duhamel theorem to deduce an explicit form of the solution that
describes water waves excited by bodies of any shape and arbitrary velocity, which
generalises formulas and results obtained in previous investigations on slides that
move with constant velocity (HARBITZ and ELVERH@I, 1999; TINTI and BORTOLUCCI,
2000a). Furthermore, we also study tsunami generation in the case of a non-flat
ocean bottom, since it will be shown that, when depth follows a special power law,
the problem may be reduced to a corresponding flat-bottom case through an
appropriate coordinate transformation and admits therefore an explicit solution in
view of the Duhamel theorem. The main characteristics of the engendered tsunamis
are examined and discussed by numerous cases. Special attention is given to the
shape, amplitude and celerity of the waves and to the energy that is exchanged
between the body and the water. It will be seen that tsunami generation requires a net
transfer of energy from the body to the sea, since the former is the source of the water
waves, although there may be phases of the interaction process during which energy
transfer takes place in the other way, and waves tend to loose energy with time.

Formulation of the Problem

Tsunami generation and evolution may be studied by means of the equations that
govern the motion of a fluid. Under the assumptions that the water is incompressible
and inviscid, and if it is further required that no turbulent nor chaotic motions can
take place within the fluid, the classical Euler equations of hydrodynamics can be
used. In a Cartesian reference frame, let us take the plane x, y to be the horizontal free
surface of the water in still conditions, that is the mean-sea-level (msl) surface, and the
z axis be vertically upward, with the origin placed on the msl surface. The sea surface
and the basin bottom at any time ¢ are respectively described by the equations:

zg = E(x, 1), (1)
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Zp = 7h*(x7yv t)v (2)

where &(x, y, ) is the instantaneous water elevation measured from the msl. In dealing
with water waves excited by an underwater mass, it is convenient to assume that the
instantaneous basin depth 4*(x,y, ) has the form:

h*(xvyat) :h(xay) _hs(x’yat)v (3)

where hg(x,y,t) is the submarine sliding mass with height depending on space and
time, and %(x, y) is the basin depth in still conditions, with no dependence on time.
With these assumptions positive values of 4, are adequate to describe uplift of the
ocean floor or a submarine mass sliding along the sea floor, whereas negative values
would depict subsidence (see sketch of Fig. 1).

If the velocity components of the water particles along the axes x,y and z are
designated respectively by u, v, w, and if water pressure is denoted by p, the full set of
nonlinear hydrodynamic equations can be written as follows (STOKER, 1957):

ue + vy, +w, =0, (4.1

|
e it - vty -tz = = (4.2)

1
U[ + uvx + va + sz = — Ep}u (43)

1

W w0+ 0wy W = —pe = g, (4.4)
Wy =0, U =Wy Uy =1l (4.5)

Here p and ¢ respectively denote water density and vertical component of
gravitational acceleration, and are taken to be constant in this analysis. Notice also

h(x) h*(x,9)

Figure 1
Schematic drawing of the landslide with notation used in the paper.
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that use is made of subscripts to denote partial differentiation with respect to the
subscripted variable. Condition (4.1) stating that the fluid divergence is identically
zero is the expression of the continuity equation in case of constant-density fluids.
Equations (4.2)—(4.4) are the momentum equations, and finally the set of egs. (4.5)
express the condition of irrotational flow, that is adequate for fluids that are
supposed to be initially at rest, and consequently to possess no initial vorticity, due to
vorticity conservation. The above system of equations must be fulfilled within the
volume Q(x, y,z,¢) which is defined by:

X,y € Qh(xvyazat) (51)
zp <z <z, le. —h'(x,pt) <z<E(x,p1) (5.2)

where Qy(x,,z,1) is the projection of Q on the horizontal plane x, y. This definition
of Qp covers cases where the basin is limited by vertical walls, as well as cases where
boundaries are slopes with complex profile. It is worth noticing that in general the
domain Q changes dynamically with the water motion, both along the vertical axis z,
as well as on the horizontal plane x, y. If Q is a domain of finite extension, this implies
that Qy, is a finite plane surface. Its boundary may be either artificial lines delimiting
the basin at the open sea or the instantaneous basin shoreline, and may change with
time in consequence of flows and ebbs associated with water waves. The unknowns of
the system formed by eqs. (4) within the domain Q given by relationships (5) are the
velocity components u, v and w, the pressure field p and the water elevation &. The
system must be complemented by initial conditions and by boundary conditions. If
the fluid is initially at rest with null velocity and null elevation, then hydrostatic
equilibrium holds, and initial conditions assume the form:

u('x)y7z7 0) = U(x’y7Z’ 0) = W(x7y7z7 0) = é(x7y7 0) = O (6'1)

p(x,¥,2,0) = —pgz + po (6.2)

where py is the pressure initially exerted by the atmosphere on the sea surface, and is
a constant value. The conditions on the upper and bottom surfaces of the fluid can be
imposed by assuming that they are material surfaces, viz. formed by the same

particles of fluid at any time, and in addition, by specifying the atmospheric pressure
forcing. The consequent equations are:

€t+u€x+véy_wzo atz:zszé(xay7t)a (71)
p=plxy1) atz=z =<x 1), (7.2)
uhy + vhy +w =0, atz=z, =—h"(x,y,1). (7.3)

Notice that, to avoid confusion, partial differentiation of the function 4, with respect
to time is denoted by the symbol O, in place of the subscript z. Compatibility between
egs. (6) and (7) implies that atmospheric pressure be initially constant over the basin,
namely p(x,y,0) = py = constant. Owing to the purposes of the present study which



764 Stefano Tinti et al. Pure appl. geophys.,

is focussed on waves produced not through sea-surface forcing but by underwater
sources, we will impose the even more drastic requirement that atmospheric pressure
is negligibly small, that is:

plx,y,t) =py=0. (7.4)

Notwithstanding the simplifications implied by the assumptions we made in the
formulation, which rule out important phenomena such as wave excitation by
atmospheric wind stresses at the sea surface, the problem mathematically described
by the above equations (1)—(7) covers a large variety of processes, such as generation
of waves forced by moving portions of basin boundaries (which is the most common
way to produce water waves in laboratory experiments where sectors of boundaries —
upper, lower or lateral — are mechanically moved with prescribed time histories),
tsunamis induced by earthquakes and by landslides, and propagation of waves that
enter the basin through lateral open boundaries. Nevertheless, this system of
equations presents mathematical difficulties and cannot be solved analytically unless
further approximations are introduced. One of the most relevant approximations
concentrates on waves with typical horizontal scale large compared to the typical
water depth, and is known as long-wave theory or, equivalently, as shallow-water
approximation.

Shallow-water Approximation

Shallow-water theory will be derived here from the full set of Euler equations, by
applying a modified version of the method used by STOKER (1957) who took into
account the particular case of a basin with a steady sea floor, viz. with bottom surface
not dependent on time (z; = —A*(x,y)), and who therefore excluded the case of
landslide generation that is of most interest in this paper. The method is based on
expanding all quantities in series of powers of a small parameter, ¢ < 1, and on
obtaining new sets of equations by equating all terms corresponding to the same
powers of ¢. This procedure provides one system of equations for any one power of
the parameter, and in order to be workable in practice, it requires truncation to a
certain order. Shallow-water theory is the approximation resulting from truncating
the process at the lowest possible order.

The first step is to provide the nondimensional version of the governing system of
equations (1)—(7). This will be performed in an abbreviated way here below, while full
details are given in Appendix A. Let us now introduce dimensionless variables by
using three lengths, D, d and k, representing respectively the typical water depth, the
typical amplitude of the bottom disturbance, namely the landslide thickness, as well
as of the water elevation, and the typical horizontal distance for the water motion.
This last, in our case, may represent the characteristic length of the waves as well as
the characteristic length of the bottom perturbation, such as the landslide length.
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From the above three lengths, two important ratios may be derived, namely the
aspect ratio 6 and the expansion parameter ¢, according to the following definitions:

3=d/D &=DJk (8)

The former, being the ratio between the amplitude of the water waves and the typical
ocean depth, cannot be larger than unity, whereas the latter in principle may assume
any values from very small to very large. Here, however, it will be taken as a very
small quantity, and on the basic hypothesis of ¢ < 1, the entire construction of the
shallow-water theory will be built up. A characteristic speed ¢ also may be
introduced, enabling us to scale the time ¢ through a characteristic time ¢, defined as:

te =k/c with ¢=/¢gD. 9)

From the above, ¢. is the time taken by a disturbance to travel the horizontal distance
k at the speed c. The reason for this choice for ¢ will be clarified a posteriori when ¢
will be shown to be the celerity of free waves in shallow water.

The new independent space-time coordinates in dimensionless form are:

X =x/k y=y/k Z=z/D (=t/t,. (10.1)
Furthermore, dimensionless velocities can be obtained as follows:
W =u/(6c) vV =uv/(dc) W =w/(edc). (10.2)

Finally, the remaining dimensionless unknowns p’ and &', and the dimensionless
known functions involved in the bottom-surface description, 4’ and /., can be written
as:

P =p/lpgD) & =¢/d W =h/D h; =h/d. (10.3)

Observe that horizontal quantities have been scaled differently from vertical ones,
and that the pressure scale is the hydrostatic pressure value pgD.

After introducing the new dimensionless variables in the set of equations and
definitions (1)—(7), the following relationships are obtained, that for the sake of
simplicity are written more conveniently by dropping the primes:

Uy + vy, +w, =0, (11.1)

Oluy + 0(uuy + vuy, + wu,)] +pe =0, (11.2)
olve + o(uvy + vvy, +wr.)] + p, =0, (11.3)
3wy + S(uwy, + vw, +ww,) +p. +1=0, (11.4)
szwy =0, U, =W, U = Uy, (11.5)

with the conditions on the boundaries given by:

& oul, +ové, =w atz=0(x,y,1), (11.6)
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p=0 atz=05x,y,1), (11.7)
uhy + vh, +w =0,h, atz= —h"(x,y,t) = —h(x,y) + ohy(x,y,1). (11.8)

This is the basic system of dimensionless equations that is also derived in Appendix
A. The following step consists of expanding all variables, including the aspect ratio 9,
in series of powers of ¢. Assuming that the expansion of a generic function, say f, has
the form:

o0

ezt =Y &P, y,z10). (12)

0

After substituting expansions such as (12) in eqgs. (11), the system of equations
obtained at the lowest order, that is at zeroth order, is:

w400 w0 =0, (13.1)

50 (u;w + 500,04 5<0>U<o>u£o>) +p0 =0, (13.2)

00 (" + 60w + 60 Ou0) 4 p o, (13.3)

Ugo) =0 l/lgo) =0 U)<c0> = u;0)7 (135)

&0 4+ 00U 4 50O =3 at z = 60O (x, y,1), (13.6)

p(0> :0 at2:5(0>§(0>(xayvt)7 (137)

u@p© 4 U(O)hﬁo) +w® =04 atz=—nO(x,y) + 5(0)h§0) (x,,1). (13.8)

Since the analysis will be limited to this order of truncation, it is convenient to drop
the symbol ¥ in all following elaborations. The most important results that can be
straightforwardly deduced from the above zeroth-order system, are that horizontal
velocities # and v do not depend upon the vertical coordinate z, whereas pressure p
has a simple linear dependence. On taking into account the condition (13.7) at the
upper surface, from eq. (13.4) it is easy to obtain that:

plx,y,z,t) = 6E(x,y,t) —z  — h+ Ohy <z < d&E(x, 1) (14.1)

which is a modified version of the hydrostatic condition, since it states that pressure
at a given depth is determined by the height of the overlying water column, and
entails that the horizontal pressure gradient is proportional to the gradient of the
water surface elevation:

Px()@y% t) = 5éx(x’y7 t)7 (142)
po(x,p,2,1) = 6&,(x, »,1). (14.3)
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In virtue of egs. (13.5), the horizontal divergence of the fluid field is independent of z,
implying that the vertical velocity w grows linearly with z. From eq. (13.1) it can be
deduced that:

w(x,y,z,t) = —[uy(x,y, 1) + 0,(x,y, 1)z + F(x,y,t) —h+0hy <z < ¢é(x,p,t), (15)

where F is an arbitrary function that can be determined by either one of the
boundary conditions (13.6) or (13.8). By making use of eq. (13.6), the expression for
F results to be:

F(x,y,t) = &(x,3,8) + 0[u(x, y, ) E(x, p, 1), + 0[v(x, y,)¢(x, 3, 1)), (16)
This enables us to replace the vertical velocity w in eq. (13.8) to obtain:
&+ [u(h — 0hy + 6E)], + [v(h — Ohs + 6E)], = O,hs, (17.1)

where it is meant that none of the involved variables depend on z, but they depend
only on the horizontal space coordinates and on time.

After substituting expressions (14.1) and (14.2) in the respective eqgs. (13.2) and
(13.3), the following equations can be obtained:

u; + Suuy + dvuy, + &, =0, (17.2)
v; 4 ouv, + ovv, + &, = 0. (17.3)

Altogether, egs. (17) form a closed system of three differential equations in the
unknowns u, v and &, that must be complemented by the initial conditions of still
water:

u(x,y,()) = U(x,y,O) = 6()6,)/,0) =0 (18)

easily derivable from the corresponding conditions (6.1). This system is known as the
shallow-water approximation of the full Euler equations. It must be completed also
by proper conditions on the boundary Q. For example, it may be required that
waves are allowed to pass across sectors of open boundaries with no back reflections,
whereas boundaries representing vertical coastlines may be presumed to cause perfect
wave reflection, etc. In this study we will restrict to initial-value problems, with no
interest in phenomena taking place at the basin boundaries, and therefore we will not
detail this issue any further. Once the system has been solved, the remaining
unknowns, viz. vertical velocity w and pressure p, can be determined univocally by
means of the corresponding explicit expressions (15)—(16) and (14.1). The explicit
expression for the vertical velocity may be written as:

w=—(ux +vy)z+ &+ 6(uc), +6(v¢), —h+0oh; <z <4< (17.4)
The system (17) is strongly nonlinear, since all equations include terms involving

cross products of the unknown functions and their first derivatives, and through the
term O;4; in eq. (17.1) it is adequate to describe excitation of water waves by
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disturbances affecting local sea depth, such as those produced by submarine
earthquake dislocations or by underwater slumps or debris avalanches. It is stressed
that it was derived also by Tuck and HWANG (1972) who used it to study 1-D
tsunami generation by impulsive dislocations involving the ocean floor on sloping
beaches by means of an analytical approach.

All nonlinear terms of the equations of the shallow-water approximation include
the aspect ratio §. If 0 is assumed to be small, or more precisely, to be at least as small
as the expansion parameter &, then expression (12) implies that the first-order term of
the expansion of , that is 89, is zero, and, consequently, the set of equations (17.1)—
(17.3) simplifies to the linear form:

&+ (uh), + (vh), = Ohy, (19.1)
u+ & =0, (19.2)
Ut‘i'éy :07 (193)

which is adequate to study wave generation in case of small-amplitude large-scale
sea-bottom perturbations. Linearization of the explicit expressions for the vertical
velocity (17.4) and the pressure engenders the further equations:

w=—(u+uv)z+& —h<z<0, (19.4)
p=—z —h<z<O.

The former implies that at the sea surface the vertical velocity of fluid particles
identifies with the rate of change of the wave elevation, whereas the latter is the pure
hydrostatic condition, stating that pressure is not affected by wave generation and
propagation, and preserves its initial value at any time. In this paper we will focus
our attention on linear system (19), and more specifically, on the 1-D version of it,
after assuming that all quantities are independent of one of the horizontal co-
ordinates, say y, which also implies that the corresponding velocity component v is
identically zero. Returning to the original dimensional variables, this system may be
written as:

&+ (uh), = Oihy, (20.1)
u+gé, =0, (20.2)

v=0, (20.3)
w=—-uz+¢ —h<z<0, (20.4)
p=-—pgz —h<z<O. (20.5)

Despite the drastic simplifications that enabled us to transform the full system of
Euler equations to the above set (20), the analysis of the solution of such system has
not been exhausted in the literature and, as we will see, it may lead to interesting
results in the ambit of tsunami generation by underwater masses.
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Linear Slide-induced Tsunamis in a Flat-bottom Sea

In case of a basin with constant depth A4(x,y) = H, the linear system (20) reduces
to a set of differential equations with constant coefficients:

&, + Huy = O,hs, (21.1)
U+ gé, =0, (21.2)

with the remaining eqs. (20.3)—(20.5) left unchanged. Since these provide explicit
expressions for the related unknowns, they no longer will be taken into account in the
following analysis. The corresponding initial conditions are:

u(x,0) = &(x,0) = 0. (21.3)

Reverting to nondimensional variables according to the procedure of the previous
section, the above system becomes:

&+ ux = Ohy, (22.1)
u+ & =0, (22.2)
u(x,0) = &(x,0) =0, (22.3)

in terms of the new unknowns, that here are designated with the same notation, in
agreement with our prior convention. System (22) may be studied in several ways.
One approach consists in differentiating eq. (22.1) with respect to time ¢, and
eq. (22.2) with respect to space x, and then in subtracting the latter equation from the
former member by member. Through this elementary manipulation, the following
equation is obtained for water elevation &:

étt - gyxx = atth57 (231)

where symbol 0, has the obvious meaning of double differentiation with respect to
time. Equation (23.1) is a classical inhomogeneous hyperbolic equation governing
linear waves. In its homogeneous form it is fulfilled by constant-amplitude waves
travelling with unit constant celerity, which converts to constant speed ¢ = \/gH in
dimensional space. Therefore, this property provides the a posteriori justification for
the scaling factor used in (9) to define the typical shallow-water time scale z.. Once
eq. (23.1) is solved, velocity u may be computed by integrating eq. (22.2), which in
light of condition (22.3) yields:

t

u= ffaxﬁ(x,r) dr. (23.2)
0
Notice that in passing from the original formulation (22), involving two unknown

functions # and &, to problem (23), with the only unknown &, the system
transforms from first- to second-order of differentiation. Therefore, in order to
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ensure that it has a unique solution, initial conditions for both & and & must be
provided. From conditions (22.3) it is easy to infer that u, must be identically zero
at the initial time, and thus with the aid of eq. (22.1) the following conditions may
be deduced:

¢(x,0) =0, (23.3)
&(x,0) = 0hy(x, 0). (23.4)

Due to the linearity of the system, its solution may be calculated as the sum of the
solutions of two related problems, that is:

g(xv [) = él(xa t) =+ éZ(xv t): (24)

where &, satisfies the homogeneous differential equation with inhomogeneous initial
conditions, whereas &, satisfies the inhomogeneous differential equation with
homogeneous initial conditions. The former system is of the type:

Cu— =0, (25.1)
E(x,0) = a(x)  &(x,0) = B(x). (25.2)

This initial-value problem describes a free wave propagating from an initial
configuration o(x) with a prescribed initial surface vertical velocity f(x). In
applications concerning tsunamis induced by earthquakes, wave evolution is often
computed by means of this problem, where a(x) is the sea-surface displacement
caused by the earthquake, taken to be similar to the ocean bottom dislocation, and
p(x) is identically zero (see e.g., AIDA, 1969; SKLARZ et al., 1979; CHUBAROV et al.,
1984; TINTI et al., 1994; TINTI and PIATANESI, A., 1996; YAMASHITA et al., 1997,
PIATANESI and TINTI, 1998). The general solution to the Cauchy problem (25) may be
expressed in the form (ZWILLINGER, 1989):

x+t
1 1
) =5l +atr o]+ 5 [ (25.3)
x—t
and, accordingly, & results to be:
1 x+t
G =5 [ hG0)dr (26)
x—t
The second problem is:
itt - fxx = (P(x7 t)7 (271)
é(xv O) = ét(xa O) =0, (272)

and its solution may be found in virtue of the Duhamel theorem, by exploiting the
general solution to the Cauchy problem (25). The Duhamel theorem (FOLLAND,
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1995) states that, given problem (27), if the function y(x,¢,¢), depending on the
dummy parameter ¢ in addition to the space and time variables, is the solution of the
associated Cauchy problem defined by:

Tt = Pxx = 07 (273)
7(x,0,9) =0, (27.4)
Vt(xﬂ 0, q) = QD(X7 Q)7 (27‘5)

then the searched solution to (27) is provided by the following integral:

t

¢(x, 1) =/V(x7t—q7q) dg. (27.6)

0

Bearing in mind that in our case ¢@(x,q) = Oyghs(x,q), after combining (25.3) and
(27.6), the explicit form for the solution is:

| t x+(i—q)
awn =3 [d [ dahio. 28)
0 x—(t—q)

To be applied, the Duhamel theorem requires that both ¢(x,q) and ¢,(x,q) be
continuous functions of the space coordinate x, which imposes equivalent
continuity restrictions on Ogghs(x,q) and on Ouuhs(x,q). In expression (28) the
integrand function 0,,/,(y,q) may be viewed as the source of the perturbation, the
integrand variables y and q are respectively the space and time variables associated
with the source, while x and ¢ are the independent coordinates that may be
interpreted here as the coordinates of the observation point. In conclusion, the final
solution to the original problem (23) is found by combining expressions (24), (26)
and (28), that is:

| X+t . t x+(i=q)
=5 [onGod+s [dg [ ddhia. @)
x—t 0 x—(t=q)

In this paper most of the attention is focussed on tsunami generation by
submarine slides. Therefore A,(x, ) represents a mobile mass of material sliding on
the stationary sea-bottom surface. If the slide undergoes negligible deformation
during its motion, which is often a good first-order approximation for underwater
slumps, or if it moves as a perfectly rigid body, then its motion may be univocally
specified by means of the instantaneous slide velocity V(¢), and of its corresponding
dimensionless counterpart Fr(f), which, consistent with our previous scaling
procedure, is obtained as the numeric ratio of V(¢) to the wave celerity ¢. This
ratio is known as slide Froude number and plays an important role in determining
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the tsunami potential of the slide. The above considerations imply that A, is a
function of a unique argument, that is:

hy(x,t) = hy(a) with o=x 7/ Fr(z)dr, (30.1)
0

where the integral represents the dimensionless distance run by the slide since the
initial time. Notice that continuity conditions of the Duhamel theorem require that
hy € C3, namely that A, be continuous together with all derivatives up to the third
order. In case of a slide moving with constant speed, and consequently with constant
Froude number in a constant-depth ocean, the argument of ki, simplifies to
o =x — Fr t, and the solution (29) may be written as:

: X+t : t x+(1=q)
=5 [ Ahle-Frol, odr+s [do [ drdghl-Fro. (02)
x—t 0 x—(t—q)

The integrals in expression (30.2) may be calculated easily and lead to the water
elevation:

E(x 1) = Cp(x, 1) + &y (x, 1) + & (x,0), (3L.1)
where
2
fp(x,t)z%hs(x—lsr t) Fr#1, (31.2)
Eo(n) = —%%hs(x—t) Fr 1, (31.3)
5,(x,t):—%%hs(x+t) Fr# 1. (31.4)

The water elevation functions (31.2)—(31.4) are in order: 1) the forced wave travelling
together with the slide at the same velocity Fr, 2) a free wave propagating toward
positive x, and 3) a free wave moving in the opposite direction. What is remarkable in
this solution is that the excited tsunami is composed of three distinct waves that are
initially superimposed to match the initial conditions, and that separate progressively
as time elapses. These waves have the same shape as the landslide body, but with
different amplitude and polarity, due to their different dependence on the Fr number.
For example, ¢_ is a trough irrespective of the value of Fr, whereas &, is a trough for
Froude numbers larger than 1 and a crest for Froude numbers smaller than 1.
Furthermore, the forced wave &g always has sign opposite to £,. An alternative
derivation of this solution based on the theory of characteristics may be found in the
paper by TINTI and BorToLucct (2000a), where the solution for the associated
velocities also is provided, together with the solution in the special case of critical
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regime (Fr = 1), for which expressions (31) do not hold. In general, for arbitrary
time histories of the sliding body, viz. with Froude number depending on time, water
elevation in expression (29) cannot be calculated analytically, but must be evaluated
numerically, which implies a numerical computation also of the time integral of
expression (23.2) to determine the velocity field. Practically, these integrals may be
evaluated accurately, but computation time increases along with time coordinate ¢,
and with the time difference t — ¢ between the observation time and the source time,
governing the amplitude of the integration intervals of eq. (29). For slides with
variable velocities, resulting water waves do not possess the simple form of egs. (31),
but albeit a clear distinction between forced wave and free waves might be more
problematic, waves given by (31) constitute a reference solution whereby more
general cases may be interpreted usefully and meaningfully, as will be seen in due
time.

Linear Tsunami Generation by Landslides in a Sea with Variable Depth
If the sea bottom A(x) has an arbitrary profile depending on x, wave evolution

is governed by the set of equations (20) that in nondimensional form may be written
as:

& + (uh), = Ohy, (32.1)
u+& =0, (32.2)
u(x,0) = &(x,0) = 0. (32.3)
It can be reduced then to the second-order differential hyperbolic equation:
& — (hEy), = Ouhs, (33.1)
¢(x,0) =0, (33.2)
&i(x,0) = 0hg(x,0), (33.3)

that is an extension of the corresponding eq. (23.1) that is valid for basins with
constant depth. In general, the solution to this problem cannot be found in an
explicit form, such as expressions (26) or (28), however there is one remarkable
exception that is relevant because it is unique and that we will explore extensively in
this paper. Let us assume that the ocean depth is defined by the following
dimensional law:

e —x) + 1 = )]

X2 — X1

h(x) = (34.1)

There is no loss of generality in presuming x; > x; and A, > k. This law specifies that
water depth increases together with x according to a power that is not much greater
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than unity, which means that the bottom profile has a slope that increases mildly with
x and that may be considered constant over distances that are not too large (see
Fig. 2a). The above expression transforms to the non-dimensional one-parameter
counterpart law:

hx)=(ax+ 1) —al<x<oo (34.2)

entailing that 4(0) = 1, and that A(1) = (a + 1)*°, which means that the parameter
may be determined as a = h(1)3/ t by specifying for instance the water depth at
the scaled unit distance from the origin x = 1. If we further define a new water
elevation 5 by means of:

n(x, 1) = c(x)"?E(x, 1), (35.1)
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Figure 2
a) Sea-bottom profile /i(x) used in the computations. It satisfies the law (34.1) with A, = 50, Ay = 200,
x; =0 and x; = 10 km. Slope is almost constant over the considered interval of the x axis, with slightly
downward curvature. b) Initial profile of the slide. It is a 1 km long body, initially placed between 3 and 4
km, and symmetric with respect to its central axis (x = 3.5 km). The profile is a curve following the
expression given in the Appendix, going very smoothly to zero, to fulfill the continuity conditions required
by the Duhamel theorem. Maximum slide height is 1 m, which makes the aspect ratio ¢ very small and fully
respects the condition for linear waves.
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c(x) = h(x)"/?, (35.2)

where, consistent with prior section, c(x) is the nondimensional local water wave
celerity, the differential equation (33.1) becomes in terms of the new unknown:

Ny — C(C’?x)x = Cl/zatthS' (36)

Finally, let us introduce a new independent variable r according to the definition:

X

r(x) = /c(gg)f1 dy = 2 [(aer 1)1/371} —a'<x< o0 (37.1)
0

which implies the associated inverse transformation:

1]/a 3 -
x(r)a{(gidrl) 1] —3a <r<oo. (37.2)
Notice that, if ¢(x) is viewed as the local celerity function, coherently it follows that
r(x) may be interpreted as the nondimensional time taken by a free wave to travel the
distance x from the origin, though formally it plays the role of a space variable. It is
now easy to deduce that the unknown #, seen as a function of r and ¢, viz. (r,1),
satisfies the differential problem:

e = 1y = €26y (x(1), 1), (38.1)
n(r,0) = 0 (38.2)
n,(r,0) = cl/z(x(r))ﬁ,hs(x(r), 0), (38.3)

that in space (7, ¢) has the same form as problem (23) in the ordinary space (x, ¢), and
may be solved as well by applying the Duhamel theorem. Hence, the explicit solving
expression for n(r,t) is:

r+t +(t—q)
1

) =5 [ et Pon), 00 +5 [dg [ elar) o x07).0)
r—t 0 r—(t—q)
(39.1)

by means of which it is simple to obtain water elevation, on making use of (37.1) and
on inverting (35.1), that is:

Ex, 1) = c(x)"Pn(r(x), 1). (39.2)

Observe that in space (r,t) both forcing functions, the one in the second-order
differential equation (38.1) as well as the one in the initial condition (38.3), are
affected by the static factor ¢!/?(r) that increases with r and is independent from time.
In general this factor prevents any simplifications of the formula (39.1) of the type
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used for non-deformable landslides that yielded the simple three-wave solution given
in eqs. (31). Consequently, the final solution (39) is to be computed by means of the
numerical evaluation of the involved integrals.

Computation of Tsunami and Discussion

The theory elucidated in previous sections is applied here to explore the main
characteristics of the waves engendered by a submarine body advancing with a
prescribed motion along the sea bottom. In the following, use of dimensional
quantities will be more convenient to discuss the results. Ocean depth passes from
50 m up to 200 m within the interval of interest here, viz. x € [0, 10 km], according to
the law (34.1). Its slope increases slightly with the position x, but may be considered
approximately constant, as may be appreciated from plot of Figure 2a. The slide is
released from its initial position that is comprised between x; = 3 km and x; = 4 km,
has a constant horizontal length Ls = 1 km, and for the sake of simplicity it has
supposedly a symmetric profile as depicted in Figure 2b. This is a continuous
function of its argument ¢ = x — V¢ up to the third order of differentiation, to match
the requirement of the Duhamel theorem (see Appendix B for further details). The
body moves at constant horizontal speed V. Figures 3-5 show the results of
experiments carried out for bodies moving at different speeds. In graphs of Figure 3
the body moves at V = 15 m/s, corresponding to a subcritical forcing, namely with
Froude number, Fr, smaller than unity (see last panel of Fig. 6). Remembering that
Fr is defined as the ratio V/c with ¢ = (gh(x))"/?, increasing as depth increases, a
subcritical regime entails that the slide is slower than free waves travelling at the
speed c. Figure 3 depicts wave elevation profiles at different times. It shows that three
waves gradually form as the effect of body motion: one negative wave travelling
backward, and a system of two advancing waves. The former is positive and quicker,
while the following is negative and proceeds together with the slide. It is important to
emphasize that this wave pattern very much resembles that one produced by a slide in
a constant-bottom sea (TINTI and BorToLuUCCI, 2000a), and the above three waves
correspond respectively to ¢_, &,, and &g, given in expressions (31). Therefore,
analogously to &, the leading crest here may be interpreted as the free wave
travelling forward. Here it has velocity increasing with depth, and its separation from
the following forced wave, going with the slide and analogous to &g, increases with
time. This similarity is relevant and indeed is expected from a physical point of view,
though it cannot be easily seen from mathematical expressions providing the general
integral solution (39). There is however an important difference between flat and
non-flat ocean cases. In Figure 3, after separation between the leading crest and the
following forced trough has taken place, there appears a depression connecting the
two impulses that becomes increasingly longer as separation distance increases. At
greater times, its amplitude diminishes gradually, though it does not vanish. This
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Water wave elevation computed at various times by means of formulas (39). Slide proceeds at subcritical
constant horizontal speed. Water surface profile (solid) and slide profile (dashed) are plotted superimposed
at the same scale.

connecting depression is absent in waves developed by constant-speed rigid bodies in
a flat ocean, and is mostly the effect of Froude number diminishing with time, as will
be better seen later. Figures 4 and 5 delineate water elevations produced at various
times by bodies moving with respective speeds of 30 m/s and 50 m/s. These speed
values are high, however realistic, since similar values have been estimated for
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Same as Figure 3. Slide constant velocity of 30 m/s gives rise to subcritical regime, but closer to critical
point than the case of Figure 3. Excited waves are larger.

avalanches entering the sea and producing tsunamis (HEINRICH et al., 1999; TINTI
et al., 1999b). The former velocity corresponds to a subcritical regime, with Fr closer
to critical value than for the first case, whereas the latter coincides with the
supercritical condition for the slide, at least within the range of distances used for
computations (see also right bottom panels of Figs. 7 and 8, respectively). Wave
patterns of Figures 3 and 4 are similar. Since in the second case, the slide is faster and
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Same as Figure 3. Slide is supercritical and governs progression of the leading crest.
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closer to the free wave velocity, separation between the advancing forced and free
waves is not yet complete at 150s, and the intermediate depression is not yet
observable at this evolution time. The most relevant difference between the two cases
concerns wave amplitude. The slide corresponding to Fr closer to unity excites much
larger waves. This is still a feature common to the flat bottom case, as is immediately
derivable from formulas (31), where all wave amplification coefficients have
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Water wave evolution for variable as well as for equivalent flat bottom (4 = 125 m). Slide moves
underwater with Froude-number time-law shown in the right bottom panel. The left bottom panel displays
the energy of the tsunami per unit ocean width. Solid curves are the same as shown in prior Figure 3 and
are replicated here to facilitate comparison.

denominators tending to zero as Fr approaches 1. The case of a supercritical slide
confirms our previous results, as regards the general wave pattern. It should be
noticed that now the leading positive wave may be associated with the forced wave
progressing together with the slide, while the free advancing wave is following at a
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Same as Figure 6. Now Fr time history corresponds to the case exhibited in Figure 4.
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distance that increases with time. The connecting depression is large and well visible
yet on the 70 s graph.

The strong similarity between linear waves in flat and non-flat seas encourages us
to see if the intermediate depression, thus far computed in variable depth, but not in
constant depth, may be obtained even in this latter case. For this purpose, we will
replicate the three experiments illustrated above in a flat ocean according to the
following correspondence rule. A constant-speed slide in variable depth ocean is
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associated with a Froude number that changes with time according to a time history
Fr(7) that may be simply computed. We will use the same time history Fr(7) in a flat
ocean, which implies consideration of a body moving at variable speed. The solution
is calculated by means of the solving formula (29). Notice that one remarkable
difference between integral expressions (29) and (39.1), holding for a flat and non-flat

bottom respectively, resides in the weighing factor ¢(x)

1/

2. whose action in (39.1) is
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counteracted by the factor c¢(x)~'/? in the inverse formula (39.2). In the first
experiment, Fr is surmised to depend on time according to the law depicted in Figure
6, last panel. It corresponds to the same time history as the slide travelling with a
constant speed of 15 m/s in variable depth ocean. An intermediate depth of 125 m
has been used for the flat bottom sea. Water elevations in both cases are very similar,
though timing is slightly different due to the diverse propagation velocity of free
waves in the two oceans. The left bottom panel of Figure 6 shows the energy of the
tsunamis which changes with time. Leaving other considerations on energy growth
and decrease to the next section, we only outline here that even energy histories are
very close one another. Figures 7 and 8 correspond to cases previously illustrated by
means of Figures 4 and 5, respectively. Close resemblance between curves calculated
for flat and non-flat bottoms under the assumption of equal Froude number time-
dependence is strongly confirmed, which demonstrates the essential role of Fr in
determining the most important characteristics of the generated waves, such as wave
pattern, amplitude, waveform and energy.

Energy of the Tsunami

Energy of the tsunami induced by a bottom disturbance in the shallow-water
approximation may be easily shown to satisfy the following dimensional equation in
a 1-D ocean with bottom A(x) (TinTI and BorTOLUCCI, 2000a):

Vi + pg (héu), = pgldihs. (40.1)

Here  is the density of the total tsunami energy per unit width and unit length of the
ocean. The term in the right-hand member of this equation plays the role of an
energy source or sink according to its sign being positive or negative. In case of an
ocean of constant depth the above expression simplifies to:

¥+ pgh (Su), = pgé ihy. (40.2)

If we designate the total tsunami energy per unit width as E, i.c., if:

E(t) = / W(x, 1) dx. (41)
from (40.2) it descends that:
+00
E(t) = pyg / E(x, 1) Oshg(x, ) dx. (42)

The total energy per unit width transferred to the water by the sliding body is at any
time obtained by integrating expression (42), that is:
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! !

E(t) = /E,(‘E) dr = pg/dr &(x, 7)0:hg(x, T) dx. (43)

0 0 —00

Observe that, though the space integral is extended over the entire x axis, its
integrand differs from zero only over a limited interval, since the body has a finite
extension. This makes this formula suitable for numerical computations. It has been
used to calculate tsunami energy graphs shown in the left bottom panels of Figures
6-8. As far as the product & 0,4, is positive, energy cumulates in the water, but when
it is negative water energy diminishes, and since it is not dissipated within the sea, due
to the assumption of inviscid fluid, energy decrease must be associated with energy
flow from the water to the body. We will try to better understand the time
dependence of tsunami energy by analysing more illustrative examples.

Typically, landslide motion may be considered as characterised by a Froude
number time history that is defined over a finite duration interval 7p of hundreds of
seconds, with Fr initially increasing rapidly, reaching a peak value and then
gradually decreasing and vanishing at time 7p. For example, this is the case of the
simulated tsunamigenic flank collapse at Stromboli volcano in the Tyrrhenian Sea,
Italy, which presumably occurred in Holocene time and is responsible for the scar
known as Sciara del Fuoco (TINTI ef al., 1999b). Moreover, generally the regime is
subcritical with Froude numbers not exceeding unity even at their peak value, due to
the action of water resistance that is effective in slowing down the moving body. Thus
there is no loss of generality if we take into account a typical Froude number curve as
shown in Figure 9a, that we will designate as Stromboli-like or more simply with
code ST in the course of this discussion. In a flat ocean of 100 m depth, the slide first
accelerates, reaching a maximum Fr value of about 0.77 at the time 7j; = 44 s , and
then progressively decelerates coming to a stop at the end of the duration interval
Tp = 247 s. The corresponding energy curve calculated by the aid of eq. (43) is shown
in Figure 9b. The energy of the excited water waves increases slowly, attaining the
maximum value at about 110 s, and then decreases steadily, but with a diminishing
rate until 7p, whereas for later times it remains constant. In order to better
understand the characteristics of the initial energy rise, we have considered some
other cases illustrated in Figures 9a and 9b, all characterised by the same peak value
of Fr. Initially, let us examine the limiting case of a box curve, here named as case
Box, with Fr being constant over the entire interval Tp. This simple case, in which the
body is virtually subject to infinite acceleration and deceleration at times ¢t = 0 s and
t = Tp respectively, admits an analytical expression for the water energy E(f) (TINTI
and BorToLuccl, 2000a). The corresponding energy curve displayed in Figure 9b has
a different shape exhibiting a stable plateau, which indicates that the physical system
formed by the landslide and the water waves has reached a stationary state, with no
further exchange of energy between body and waves. The energy saturation level is
attained at the time when the forced wave and the progressing free wave, travelling
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a) Froude number vs. time for cases ST and C1-C3 of subcritical regimes in a flat 100 m deep ocean. Curve

denoted by ST is similar to the one associated with the tsunamigenic collapse of the NW flank of

Stromboli. b) Corresponding wave energy computed by means of formula (43). Curve coded Box

corresponds to a box-like Fr curve, with Fr constant over the interval 0-250 s, not plotted in Figure a), for
the sake of readability.

with different velocity, separate from each other. It will be denoted by 7g and called
separation time. It is approximately equal to 100 s for our case Box. Additionally it is
easy to demonstrate that for box-like excitations a separation time T shorter than T
always implies that the physical system landslide-water has time to reach energy
saturation (TINTI and BorTOLUCCI, 2000a). Furthermore, it is worthwhile observing
that the curve increases monotonically until the time T with a more rapid rise than
the case ST. All remaining cases plotted in Figures 9a and 9b and denoted by codes
C1-C3 are cases in which the assumed Fr time history is equal to curve ST until Tj,,
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after which they depart: one remains constant with no Fr decay (C1), whereas the
others have faster decreases, and accordingly, shorter duration times (C2 and C3).
What can be learned from the associated energy curves portrayed in Figure 9b is that
all share the same energy rise, but achieve various energy levels. It is interesting to
consider the energy curve of case C1. Energy grows as in case ST and exhibits a well-
defined plateau later than 150 s, suggestive of energy saturation, similar to the case-
Box curve. However, it attains a smaller energy level because the average Froude
number is smaller, and, consequently more distant from critical unitary value. The
remaining two cases, characterised by faster Fr drop, correspond to energy curves
that do not saturate. Note that for times larger than Tp, energy remains obviously
constant because energy rate E, of expression (42) is identically zero. To summarise,
the main findings resulting from all the above experiments can be expressed as
follows: given a peak value for Fr, tsunami energy tends to be the larger, 1) the faster
is the rise of Fr, or equivalently, the largest is the body acceleration, and 2) the longer
is the duration interval Tp, but if saturation condition occurs, increasing 7 produces
no further change in tsunami energy level.

To clarify the energy decrease apparent in the energy graphs of Figures 6 and 7 as
well as in some of the curves examined above, let us consider further variants, coded
C4-C7, of case ST, as proposed in Figure 10a. Here Fr curves are taken to be equal
to that of ST until 7, then to be constant until the time 7}, = 150 s, and then to
drop with different rates until 7p, with diverse values of T for various cases. Time T},
is taken large enough to ensure that saturation takes place, and therefore that the
drop of Fr for times later than 7, has no influence on the initial growing part of
the energy curves. These are plotted in Figure 10b and are perfectly superimposed in
the rising phase and in part of the plateau. Subsequently they depart from each other,
showing a continuous decrease enduring until the end of the duration interval, after
which energy is constant. The energy drop takes longer and is more relevant for Fr
number time histories with longer and smoother falls. Notice further that in the
limiting case of Fr suddenly dropping to zero (C4), no water energy decrease can take
place, and saturation level is maintained. Interestingly, a tsunami with the same
saturation energy would be produced by a slide corresponding to a curve with no
drop of Fr (case Cl): that is, a curve with Fr constant for all times exceeding 7j;.

Let us consider the case Cl1, yielding saturation, and compute the corresponding
waveforms, and let us then compare them with water elevation profiles computed for
one of the non-saturated cases analysed above, such as the ST case. Figure 11 shows
snapshots of water waves taken at different times. Expectedly, bearing in mind that
Fr curves for the two cases under comparison are identical until 7), = 44 s, wave
profiles are similar in the first snapshot (7' = 50 s), but they are also similar until
tsunami maximum energy is reached at about 100 s. Next energy curves depart
substantially (they are plotted in Figure 9b), and, correspondingly, wavefields are
significantly different. The saturation case C1 shows that the advancing wave system
is formed by two separated waves, namely the leading free wave and the following
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a) Froude number vs. time for cases C4-C7 of subcritical regimes in a flat 100 m deep ocean. b)
Corresponding wave energy computed by means of formula (43). Energy curve related to box-like Fr is
repeated here from Figure 9b for reference.

forced wave, and that slide and forced wave travelling with the same speed are in
nearly perfect opposition, which ensures that energy integral (43) has a net zero value
and no energy variation is consequently allowed. Conversely, ST wave profiles
illustrate that the leading wave is similar to the leading wave of case Cl, but it is
followed by a depression connecting it to the slide body and inclined to become
longer as time passes. In the slide region the perfect phase opposition between slide
and forced wave is lost. The negative wave signal is strongly asymmetrical, and it is
precisely its lack of correlation with the slide shape that is responsible for energy
subtraction from the water. On the other hand, this trough tends to become
increasingly smaller, and therefore energy decrease reduces with time. It is important
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Wave profiles calculated at various times for two different cases: Froude-number time-history of case ST

(solid) and a variant of it, case C1, yielding energy saturation (dotted). The two Fr curves are identical until

time 7, (44 s), thereafter the latter remains constant. Corresponding positions of the sliding body are also

plotted (solid line) and indicated by arrows: after time 7, the slide of the former case is slower. In the first

snapshot (¢ = 50 s) landslides and waves of the two cases are almost perfectly overlapping, which, as
regards landslide, is also true for the second snapshot (¢ = 100 s).



Vol. 158, 2001 Tsunami Excitation by Submarine Slides 789

to stress that, given the subcritical regime considered in all these examples, these
energy variations are mostly associated with the negative trough following the
leading wave, and hence the first arriving signal at positions distant from the source
region (forward or backward) are not significantly affected by the way in which the
Froude number, or equivalently the slide velocity, falls to zero.

Conclusions

A shallow-water approximation has been derived and used to study landslide-
generated water waves. Linear theory for flat and non-flat 1-D sea floors has been
applied, and analytical expressions for water elevation and water particle velocity in
the form of explicit integrals have been found by means of the Duhamel theorem
valid for rigid sliding bodies of arbitrary shape and of arbitrary velocity. The case of
an ocean depth profile that depends on x according to law (34) has been shown to be
amenable to the constant-depth case through a convenient redefinition of unknowns
(35) and coordinate transformation (37). Comparison of water waves computed for a
flat sea floor as well as for a variable-depth sea has established that slides moving
with the same Froude number time histories produce similar waves, as regards wave
pattern, wave amplitude and wave energy, which identifies the Froude number as a
key parameter to understand wave generation and evolution. Due to this finding,
slides on a flat sea floor have been used to study the main characteristics of waves
also generated in oceans with variable depth. The system of the produced waves
comprises three main pulses: one moves backward (in the opposite direction of slide
motion) as a free wave, and two move forward. Of these two, one travels as a free
wave, while the other moves together with the slide as a forced wave. The leading
front is the forced wave in the supercritical regime and the free wave in subcritical
flow. The leading front is always positive and is followed by a trough. In the case of
the Froude number changing with time, the advancing pulses are connected by a
depression that becomes longer and smaller as time progresses. Total energy of the
water waves can be computed by means of formula (43), and forcing by slides
moving with different time histories has been used to investigate energy time
evolution. Normally, in real events the maximum Fr number is smaller than 1 since
water resistance prevents the slide from attaining high velocities, and hence energy
analysis has been confined to subcritical regimes. Typical Fr functions are rapidly
increasing until a time 7j; when they have a maximum, and then decrease slowly,
vanishing at time 7p. In the analysis the two phases (Fr rise and Fr drop) can be
conveniently distinguished and separated. The ideal case in which forcing occurs
through a box-like Fr function can be interpreted as a special curve with 7); = 0. A
case, called case ST since its Fr curve is close to the one computed for a Holocene
tsunamigenic landslide at Stromboli volcano, is used as a typical reference case.
Comparing the box-like curve with curve ST, it has been found that box-like forcing
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is more effective in transferring energy to the water, suggesting that initial strong Fr
rise (corresponding to short 7), and to strong initial acceleration) favours formation
of energetic tsunamis. Furthermore, the former gives rise to energy saturation,
however the latter does not. By energy saturation it is meant that tsunami energy
reaches its maximum possible value, which depends on Fr, and that further forcing
cannot result in a further increase of wave amplitude. Energy saturation occurs if
box-like forcing endures for a sufficiently long time (duration interval 7p longer than
separation interval Ts). Considering Fr functions equal to ST until 7), and then
decreasing with different slope (see cases C2 and C3) demonstrates that the total
tsunami energy is smaller for cases with smaller duration time. If Fr functions are
equal to ST until 7),, then they are constant until T},, after which they fall to zero
over different intervals of time (cases C4—C7), consequently two interesting results
are obtained. It is found that all energy curves saturate, provided that T, is
sufficiently large, and it also is found that tsunami energy decrease takes place, which
is slower, but larger, for slower Fr falls. Analysis of waveforms has revealed that
water energy diminution is related to the water depression connecting the leading
wave with the following trough, which is typical of variable Froude number curves,
and that it mostly involves the trough associated with the slide motion. On the
contrary, the leading wave as well as the backward propagating wave are practically
unaffected by this process, tending to preserve their own energy. This observation is
important since it regards first tsunami arrivals that are generally the most dangerous
waves and reveals that their waveform and energy, and, accordingly, their damaging
potential, are mostly determined by the first phases of body motion (Fr rise) rather
than by its later dynamics.

In conclusion, it is worthwhile stressing the main hypotheses that are the basis of
the shallow-water approximation derived in this paper. These are related to the
scaling parameters given in equations (8)—(10) of the main text as well as in the
corresponding equations (A2) and (A4) of the Appendix A. Essentially, the present
theory is appropriate for problems where a unique horizontal scale k and a unique
time scale (T or ¢.) can be considered for the moving body and for the excited water
waves. In all the examples, the body length Lg and the wavelength have the same
order of magnitude, as well the body velocity V and the free wave celerity ¢. An
analogous assumption is made for the amplitude of the wave and of the height of the
body: their respective scales d and d, are thought to be equal (see e.g., the position
(A4.1)). On the other hand, different scales are taken for the horizontal component U
and the vertical component W of the fluid-particle velocity, and for the horizontal
length & and vertical length D of the motion, with e=D/k =W /U <« 1. The
nonlinear shallow-water theory is a consequence of the above set of assumptions and
can be further simplified to a set of linear equations if the ratio 6 = d/D is postulated
to be at least of order &. Notwithstanding the restrictions listed here, the theory we
have worked out can be used to explore water wave generation by underwater
moving bodies in practical cases. The nonlinear approach is appropriate when the
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size of the moving body is very large, with a horizontal dimension considerably larger
than the local water depth, whereas the linear approach requires the further
limitation that the slide thickness be substantially smaller than the local water depth.
For example, failures of slopes involving huge sediment bodies with lengths and
widths of several kilometres and thickness of several meters or tens of meters, are
rare but not exceptional events in ocean depths of 1-2 km relative to the continental
shelf margins (HARBITZ, 1992; HAMPTON et al., 1996). Furthermore, the theory can
also be applied to smaller mass failures in shallower coastal waters, where the water
depth is about several tens or some hundreds of meters, and the requirement of the
theory on the body size results in being modified accordingly: about 1 km in width
and in length, and about 10 m in height.

Finally, it is worth mentioning that the investigation presented in this paper has
been continued in another paper (TINTI and BorTOLUCCI, 2000b), where the solving
equation (29) has been further elaborated to place in evidence the dependence of the
wave elevation & on the acceleration of the moving body. Furthermore, Froude time
histories that are typical of bodies sliding along constant slopes have been considered
(see WATTS, 1998), and it has been shown that useful estimates of the amplitude of
the leading waves propagating forward (in the direction of the body) and backward
can be based on the average values of the Froude number taken over suitable initial
time intervals.

Appendix A

The system of equations (1)—(7) can be made dimensionless by introducing the
appropriate scale for all variables. Let us introduce the scales k, D and T, respectively
for the horizontal coordinates x, y, for the vertical coordinate z and for the time ¢.
Let us further introduce the scales U and W for the horizontal components of the
fluid particle velocity u, v and for the vertical component w. The pressure scale of the
ratio p/p is denoted by P. Finally, the scales for the water wave elevation ¢, the ocean
depth # and the slide height &g are designated by d, H and d;, respectively.
Dimensionless variables may be defined to be the ratio of the corresponding variable
to the proper scale. For example, the nondimensional ocean depth 4’ is given by h/H.
Upon substituting the dimensionless variables in the equations (1)—(7), it is then easy
to derive the corresponding version of the equations:

U w

;(ux—i—vy)—i—BwZ:O, (A1.1)
U U? wU P
?u[+7 (uux+vuy)+7 Wuer;px:O, (A12)
U U? wu P
T +7 (uvy + vuy) +7 wu, +%py =0, (A1.3)
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/4 uw w? P
7W,—|—T(uwx—i-va)—l-?wwz—&—l—)pz—!-g:(), (A1.4)
w U U w U U
?W,V_BUZ BMZ—?WX ;uy—?l)x, (A15)
d Ud
? ét +7 (Mf,c + Uéy) =Ww atDz= dé, (A16)
Pp=0 at Dz=dé (A1.7)
H ds
T (uh+ vhy) + Ww =2 Q)b at Dz = —Hh+dh, (A1.8)

where the prime denoting dimensionless variables has been dropped for convenience.
The nine scale factors that are associated with the above problem are lengths
(d,d,,H,k,D), velocities (U, W), pressure per unit density (P) and time (7), whose
dimensions involve only 2 independent reference quantities: length and time, or
alternatively, length and velocity. In virtue of the Buckingham’s Pi theorem (see Fox
and McCDONALD, 1985), it is then possible to introduce 9 —2 = 7 independent
dimensionless parameters IT; (i = 1,2,...,7), that can be used to describe completely
the physical problem. Here, it is convenient to consider the reference length k& and the
reference velocity ¢ = P'/2, whereby it is possible to define the following set of
dimensionless parameters:

I, = d/k, (A2.1)
L, = d, /k, (A2.2)
Il = H /k, (A2.3)
L = D/k, (A2.4)
Is = U/e, (A2.5)
I, = W /e, (A2.6)
I, = Te/k. (A2.7)

It is then straightforward to rewrite the equations (A1) in terms of the parameters
Hl‘:

T1,4I1
;I 5(ux+vy)+wZ:O, (A3.1)
6
I1 I151T,
—Sut + Hg (uuy + vuy) + —28 o, +p. =0, (A3.2)
I1; Iy
I1 I1511
H—Sv, + Hg (uvy + vv,) + 20y, +p, =0, (A3.3)
;
T1,IT
2220 3y, 4 T4TIsTTg (uwy + vwy) + T2 wwz +p. + 1 =0, (A3.4)

I,



Vol. 158, 2001 Tsunami Excitation by Submarine Slides 793

Hﬂl?6 y =0y U; = HPII;IG Wx Uy = Ux, (A3-5)
ki AR R L
p=0 at zzﬁ—;f, (A3.7)

The system of equations (A3) is perfectly equivalent to the set of equations (1)—(7)
as well as to the system of equations (A1). No physical hypothesis has been made to
date on the values of the scales and of the parameters Il;. The use of the
Buckinghams Pi theorem serves to eclucidate that the full problem depends upon
seven parameters that can be chosen freely. In general different choices of the
parameters lead to different solutions and are useful to describe different classes of
phenomena and waves. In this paper the main focus centers on the generation of
shallow-water waves by underwater landslides. With this objective in mind, the set
of equations (A3) can be simplified by making proper assumptions on the parameters
I1;. In fact, after introducing the following hypotheses:

I, = I, = 15 = 5, (A4.1)
I =114 = ¢, (A4.2)
Il = &9, (A4.3)
=1, (A4.4)

where 0 and ¢ are two parameters defined by equations (8) in the main text, the space
of the parameters I; is reduced from 7 to 2 independent dimensions, and can be
handled in an easier way. By making use of the positions (A4), the set of equations
(A3) can be transformed into the equations (11.1)—(11.8), from which the nonlinear
shallow-water approximation can be deduced through the series-expansion method
explained in the text under the assumption that ¢ is much smaller than unity.
Postulating further that 6 = ¢ leads to the linear shallow-water approximation that is
thoroughly discussed in this paper.

We remark that the features of the solutions depend both on the set of options
(A4), that form a set of a priori established constraints, and on the resulting
governing equations that impose dynamical constraints. To this latter category
belongs the property that the water pressure is hydrostatic. Indeed equation (11.4),
that entails equation (13.4) in the zeroth-order expansion, implies that the scale P is
equal to gD. As a consequence, the reference velocity ¢ has the value (gD)l/ % (see eq.
(9)), which is the travelling velocity of the free shallow-water waves. On the other
hand, some important characteristics of the solution belong to the former class. For
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example, assuming I1; = I1, has the meaning that we seek for solutions in which the
water waves excited by the moving body have amplitude with the same order of
magnitude as the landslide thickness. Moreover, the ratio I1s/ITs = ¢ means that the
vertical velocity is considerably smaller than the horizontal velocity of the fluid
particles. It is most interesting to observe that postulating that I1; equals 1 entails
that the relevant time scale considered in the study is that of the free waves rather
than that of the landslide motion. This could sound unreasonable since the cause of
the waves is the motion of the landslide itself, and the landslide velocity V(¢) is
expected to be a key-quantity of the water generation process. Indeed, both velocities
¢ and V(¢) influence the features of the excited water waves, and correspondingly two
time scales could be identified for the process. In this paper we are particularly
interested in the waves that are excited when these velocities, though distinct, have
the same order of magnitude, making possible the adoption of a unique time scale.
Indeed, we will study the waves produced when the ratio V(¢)/c, that is called Froude
number in the text, is of order unity, discussing wave features in the cases of
subcritical (V(¢) < ¢), critical (V(¢) = ¢) and supercritical (V(¢) > ¢) regimes.

Appendix B

The slide profile used in computing all solutions presented in this paper is a
function hy(o) of argument ¢ and is continuous up to the third order of
differentiation with respect to ¢. The slide moves with constant horizontal speed
V, has length Lg, and its initial position is comprised between the extremes x; and x
= x; + Lg. Its mathematical expression is given by:

o =x—Vi, (B1)
hs(a) =0 o€ [Xi,Xf}, (B2)
hy(o) = % {%(D(a,xi)z + cos[®@(a, x;)] — 1}, o € [xi,x; + Ls /4], (B3)
A 1 P 2
hy(o) = s —E(I)(a,x,-) + cos[®@(a,x;)] + 4nD(g,x;) + 1 +4n° ¢,
6 € [x;+ Ls/4,x; + 3Ls /4], (B4)
hy(o) = A ld)(a,x,»)z + cos[®(a,x;)] — 8nD(a,x;) — 1 + 327% ¢,
4n2 |2
o € [x; + 3Ls/4,x7], (B5)
where
8n
®(o,x;) =— (0 —x;), (B6)
Lg
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and 4 is the maximum height of the slide. In the experiments carried out in the paper,
the slide is supposed to have the amplitude of 1 m and the length of 1 km. Since in
linear theory the amplitude of the excited waves is proportional to the body height
(see e.g., the solving expressions (29) and (39)), the above choice of unitary slide
height is not restrictive. The results shown in the paper can be straightforwardly
applied to a body of arbitrary thickness, provided however that the limitations
required by the linear shallow-water approximation are respected
(D/k <« 1,ds/D < 1).
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