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Spontaneous Rupture Propagation on a Non-planar Fault in 3-D
Elastic Medium

HIDEO AOCHI,1,* EIICHI FUKUYAMA2 and MITSUHIRO MATSU’URA1

Abstract—We constructed a new calculation scheme of spontaneous rupture propagation on
non-planar faults in a 3-D elastic medium using a boundary integral equation method (BIEM) in time
domain. We removed all singularities in boundary integral equations (BIEs) following the method
proposed by FUKUYAMA and MADARIAGA (1995, 1998) for a planar fault in a 3-D elastic medium, and
analytically evaluated all BIEs for a basic box-like discrete source. As an application of the new
calculation scheme, we simulated rupture propagation on a bending fault subjected to uniform triaxial
compression and examined the effect of fault bend upon the dynamic rupture propagation. From the
numerical results, we found that rupture propagation is decelerated or arrested for some combination of
inclined angle of the bending fault and absolute value of the fault strength. The most significant effect
of bending is the nonuniform distribution of pre-loaded shear stress due to different orientation of the
fault plane under a uniform tectonic stress regime. Our results also indicate that low absolute shear stress
level is required to progress the rupture propagation ahead of the inclined fault.
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Introduction

Large earthquakes generally occur on a complex interacting fault system rather
than a simple planar fault, as inferred from the observations of hypocenter
distribution of aftershocks and surface fault traces. In order to explain observed
strong ground motion and local crustal deformation near the source, one planar
fault model cannot often be a good approximation. For example, the 1992 Landers
earthquake, California, has been investigated very well from various points of view.
AYDIN and DU (1995) observed the surface fault traces of this earthquake and
examined the relation between static stress field and local crustal deformation
caused by many fault bends. WALD and HEATON (1995) also supplied a fault model
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of three planar faults which rotated gradually and intersect with each other, and
analyzed the dynamic process of rupture propagation from one fault to another by
inverting seismic waveform data. BOUCHON et al. (1998a) estimated a dynamic
stress change on the bending fault from the slip history determined by seismic
waveform inversion. They reported that stress concentration due to dynamic
rupture propagation reached the order of 20 to 30 MPa on the 30-km-long
northernmost segment of the fault before rupture started there, and concluded that
unfavorable orientation of the fault might have caused the high stress concentration
and led to the arrest of rupture.

In the case of the 1995 Kobe earthquake, Japan, rupture seems to start at the
discontinuous point of fault segments and propagates bilaterally. YOSHIDA et al.
(1996) gave a source model consisting of 2 or several subfaults to explain geodetic
and seismic data and SEKIGUCHI et al. (1996) and IRIKURA et al. (1996) also gave
a source model of 3 to 5 subfaults for inversion of strong motion data. Based upon
the result from seismic inversion analysis, BOUCHON et al. (1998b) have investigated
dynamic stress change during the earthquake. Their results show that distribution
of shear stress is highly heterogeneous and that its average value is about 3.3 MPa.

The importance of the complex geometrical structure of faults has been long
recognized, and several seismologists have tried modeling spontaneous dynamic
rupture propagations on non-planar faults. Using finite difference methods (FDM),
for example, HARRIS and DAY (1993) and KASE and KUGE (1998) simulated
parallel or perpendicular strike-slip faults in 2-D medium, and subsequently HAR-

RIS and DAY (1999) and MAGISTRALE and DAY (1999) investigated them in 3-D
medium. However these approaches are limited in fault geometry due to the spatial
grid. On the other hand, the boundary integral equation method (BIEM) enables us
to handle complicated fault geometries such as bending and branching. However,
since this kind of computation requires complex and advanced techniques with high
performances to estimate stress field accurately, as well as to treat numerous
freedoms, modeling of dynamic rupture process on complex non-planar faults in
3-D medium is not well established. KOLLER et al. (1992), TADA and YAMASHITA

(1996, 1997), KAME and YAMASHITA (1997), BOUCHON and STREIFF (1997) and
SEELIG and GROSS (1997) have simulated spontaneous dynamic rupture propaga-
tion on preexisting non-planar faults with different boundary integral equations
(BIEs) in a 2-D framework. KAME and YAMASHITA (1999a,b) and SEELIG and
GROSS (1999a,b) have applied their methods to the problem that rupture proceeds
along unknown paths in 2-D. Further, TADA et al. (2000) have formulated a BIE
for arbitrary 3-D non-planar faults, removing any singularities in time domain.

One of our aims in this paper is to construct a numerical simulation scheme of
spontaneous dynamic rupture propagation for non-planar faults in 3-D elastic
medium. The mathematical method developed here is based on a stress BIEM in
time domain which rises from COCHARD and MADARIAGA (1994) and FUKUYAMA

and MADARIAGA (1995). Since they have formulated BIEs directly for stress
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components instead of displacement field removing any strong singularities, their
methods enable one to estimate stress field accurately on the fault to simulate
spontaneous rupture propagation successfully. First, we extend the on-plane BIEs
for a 3-D planar fault, derived by FUKUYAMA and MADARIAGA (1995, 1998), to
estimate stress field at an arbitrary point in 3-D medium. Next, we discretize the
BIEs and analytically evaluate them for a box-like source element. Finally, using
the numerical computation scheme constructed here, we simulate spontaneous
rupture propagation on a bending fault in 3-D medium, and discuss the dynamic
effects of the geometry such as a fault bend.

Mathematical Formulation Based on 3-D BIEM

Regularization of Boundary Integral Equation

In this section, we give a theoretical framework of numerical computation using
BIEM. In order to describe a non-planar fault in 3-D medium, we may take two
methodologies. The first one, which is shown in Figure 1(a), is to describe the fault
shape exactly by introducing a curved local coordinate system (TADA et al., 2000).
This, however, will lead to a very complicated formulation in discretized form,
which looks very difficult to compute numerically. Another way that we use here is
to approximate a curved fault surface with a combination of small planar patches
as shown in Figure 1(b). In this case, the stress on a planar patch (thick line) can
be attributed to the slip on the same patch (thick line) through the on-plane kernel,
which is already derived by FUKUYAMA and MADARIAGA (1995, 1998), and to
those on the other patches (thin lines) through off-plane kernels. TADA and
YAMASHITA (1996) pointed out that in the case of a 2-D in-plane shear fault, a
smoothly curved crack (Fig. 1(a)) and its approximate expression with a series of
small line patches (Fig. 1(b)) produce different normal traction distributions on the

Figure 1
Two representations of a curved fault S. (a) Description of a fault by introducing curved local axis (s)
along the fault. (b) Approximation of a curved fault with a series of small planar fault elements (Ds). In

this case, off-plane stress expression for a flat source is required with the geometry in Figure 2.
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Figure 2
Geometry of the coordinate system with a fault plane x3=0 and its slip discontinuity Duz(jb , t).

fault. Thus we should treat the paradox very carefully in 3-D BIEM, too. In this
study, we use a simple slip-weakening law as a fracture criterion, which has no
explicit dependence on normal traction.

Now, we derive the expressions of off-plane stress components for a planar fault
and then obtain the analytical discrete off-plane kernel suitable for numerical
simulation. It usually begins with a representation theorem such as equation (3.2)
in AKI and RICHARDS (1980). The displacement field ui(x� , t) in a (x1, x2, x3)-coordi-
nate system is written by a spatio-temporal convolution of slip discontinuity
Duj(jb , t) over the fault S

ui(x� , t)=
& t

−�

dt
&

S
Duj(jb , t)cjkpqnk(jb ) (Gip(x� −jb , t−t)

(jq

dS (1)

where x� and t denote position and time at a point in the medium, and jb and t are
position and time at a point on the fault S. Gip(r� , t−t) is a Green’s function, nk is
normal vector of S, and cijkl are elastic coefficients. We define hereafter that Latin
and Greek subscripts vary from 1 to 3 and 1 to 2, respectively, r=
r� 


x� −jb 
,
gi
 (xi−ji)/r, a comma between subscripts denotes spatial derivatives (/(ji, and
an overdot indicates time derivative (/(t. We also use the summation convention
rule.

We assume that a planar fault is embedded on the x3=0 plane in a 3-D
homogeneous, isotropic and infinite elastic medium as shown in Figure 2. Slip
discontinuity occurs only on the fault without tensile element (Du3
0) after t=0.
As long as we consider shear rupture on the fault-like earthquakes, the mathemat-
ical formulation under these assumptions is enough to model any fault with
arbitrary structure and shape in 3-D. The Green’s function in equation (1) is called
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‘‘Stokes tensor,’’ the concrete expression of which is given by equation (A-1) in
Appendix A. For the stress representation obtained by spatial derivatives of
equation (1)

tpq(x� , t)= −
& t

0

&
S

Duz(jb , t)cz3stcpqin

(2

(xn (xt

Gis(r� , t−t) dS dt, (2)

we use a regularization method similar to that used by COCHARD and MADARIAGA

(1994) and FUKUYAMA and MADARIAGA (1995, 1998) for removing very strong
singularities due to the second derivatives of Green’s function in equation (2).
Applying the techniques of Laplace transforms in time and the integration by parts,
we obtain the regularized expression of stress in the form of convolutions of some
derivatives of slip with weak singularities. In Appendix A, we briefly explain the
derivation for the 3h element and list the final expressions for other components.
All the expressions derived here are consistent with the special case of the general
formulation for arbitrary shaped fault in 3-D medium derived by TADA et al.
(2000), although they were independently formulated. Our equations are suitable
for further numerical computations.

Discretization

For numerical simulations we discretize the slip velocity field on the fault with
the box-like constant functions. We assume constant slip velocity within a spatio-
temporal grid (spatial grid size=Ds×Ds and temporal interval=Dt)

Du; z(jb , t)= %
l,m,n

Vz
mnd(j1, j2, t ; j1

l , j2
m, tn), (3)

where function d(·) consists of 8 Heaviside functions H(·)

1 for j1
l −Ds/25j1Bj1

l +Ds/2

d(j1, j2, t ; j1
l , j2

m, tn)=
and j2

m−Ds/25j2Bj2
m+Ds/2

(4)

and tn−etDt5tBtn+ (1−et)Dt

0 otherwise

where et (05et51) is the time collocation coefficient appeared in COCHARD and
MADARIAGA (1994) and discussed in detail by TADA and MADARIAGA (2000).
Therefore we have to obtain discrete kernels of regularized BIEs, equations (A-4),
(A-5), (A-6) and (A-7), for a basic Heaviside function in slip velocity field;

Du; z(jb , t)=VzH(j1, j2, t). (5)
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We analytically evaluate all the integrals, and the details of expressions are
summarized in Appendix B.

Finally, we can write the discrete boundary integral equations in the following
form

tpq(x� , t)=
m

4pb
%
2

z= l

%
l,m,n

Ppq/z(r� , t−tn)Vz
lmn (6)

where (l, m, n) represents the discrete position (l, m) in (j1, j2)-coordinate and time
n of a source grid, and Ppq/z is a discrete kernel depending on the position vector
(r� = (x1−j1

l , x2−j2
m, x3)T), the time lag (t−tn), the slip velocity direction (z), and

the stress component (pq). Stress components on the left-hand side of equation (6)
are usually estimated at the center of the spatial grid on the fault, and can be freely
estimated for time t as we will discuss below.

Discretization Parameters

As for this discretization method in equation (4), it is well known that there
exist two parameters for discretization: the Courant-Friedrichs-Lewy (CFL) ratio
wc and the time collocation coefficient et. The CFL ratio wc is defined by
wc
cDt/Dx, where c is the velocity of P-wave (a) or S-wave (b). It controls the
length of time step Dt relative to a given spatial grid size Ds. The time collocation
coefficient et defines the relative location of the time (t= tk) within a time step Dt.
For example, the time to evaluate stress corresponds to the beginning of the current
time step (tk, tk+Dt) for et=0, and is collocated at the end between (tk−Dt, tk)
for et=1. COCHARD and MADARIAGA (1994) used wb=0.5 and et=1 for 2-D
anti-plane problems, and KAME and YAMASHITA (1997) used wa=0.5 and et=1
for 2-D in-plane problems. In those situations, the current slip velocity on a grid
(Vz

ijk) effects the stress value on its own grid within its own time step (tpq
ijk), by

expressing the point and time (x� ; t) as a discrete form (x1
i , x2

j , x3; tk) in the similar
expression for the discretized source (j1

l , j2
m, 0; tn). Thus we can extract the

instantaneous term explicitly out of equation (6) as

tpq
ijk=

m

4pb
%
2

z= l

�
Ppq/z

000 Vz
ijk+ %

l,m,n

Ppq/z
(i− l)(j−m)(k−n)Vz

lmnn, (7)

where the instantaneous kernel Ppq/z
000 exists only in the 3z component for shear

source Vz, and Ppq/z
(i− l)(j−m)(k−n) is the discrete kernel of Ppq/z(r� ,t−tn). Consequently

we can solve the above equation on each spatial grid independently, i.e., using an
explicit scheme. FUKUYAMA and MADARIAGA (1998) also examined the stability of
numerical computations depending upon the CFL ratio, and reported that the
value of wa should be less than 0.5 for the numerical computations of 3-D planar
faults using the explicit schemes. TADA and MADARIAGA (2000) investigated the
stability of numerical computations which depend on both the CFL ratio wa and



Spontaneous Rupture Propagation 2009Vol. 157, 2000

the time collocation coefficient et for all modes in 2-D problems, and reported that
the best combination of the two parameters is localized. With the explicit discrete
BIE (7), we will evaluate the stress at the end of one time step, assuming et=1 and
wa=0.5.

Fault Constituti6e Relation and Normalization

Since the stress is a function of the current slip velocity in the explicit BIE (7),
we can mathematically give various types of the fault constitutive relation, e.g.,
slip-dependent friction law or velocity-dependent friction law, as a fracture criterion
on the fault. In this paper we introduce a slip-weakening law defined by

s(w)=tr+Dtb(1−w/Dc)H(Dc−w), (8)

where s is shear strength, w is net slip on the fault, tr is residual stress level, and
Dtb and Dc are the constitutive parameters called the breakdown strength drop and
the critical weakening displacement, respectively. When shear rupture occurs on the
fault, some fraction of the total stress stored there is released with the progress of
fault obeying equation (8). This type of the constitutive relation during shear
fracture was originally proposed by IDA (1972) and PALMER and RICE (1973),
observed in laboratory experiments by OKUBO and DIETERICH (1984) and
OHNAKA et al. (1987), theoretically modeled by MATSU’URA et al. (1992) and also
inferred in the field by IDE and TAKEO (1997) and Bouchon et al. (1998b) through
seismological data analysis.

Based on the slip-weakening law, we normalize the equations by the critical slip
displacement Dc, the breakdown strength drop Dtb, and initial crack size L, and
then introduce a normalization constant Y

Y=
a

4pb

m

Dtb

Dc

L
. (9)

Furthermore we normalize time with travel time of P wave over an initial crack,
Ta=L/a, and then slip velocity Vz is normalized with Va=Dc/Ta. For example,
taking Dc=10 cm, Dtb=10 MPa, L=400 m and shear modulus m=20 GPa, then
Y:0.07 which has almost the same value as that proposed by MATSU’URA et al.
(1992), ELLSWORTH and BEROZA (1995), and OHNAKA (1996). When we approxi-
mate the initial grid size L with 5 grids, Ds becomes 80 m and Dt is 0.01 s (Ta=0.1
s) for an assumed P-wave velocity a=4 km/s. As a result, the normalized slip
velocity Va=1 m/s.

Explicit Time Stepping Scheme

We explain the method of numerical computation based on the BIE in equa-
tions (7) and (8). For simplicity, we restrict the direction of slip vector to one
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direction on the fault. If slip occurs in the j1 direction, we have only to consider
Du %1 and t %31. Here we use a prime (%) to denote the quantities in the local coordinate
(j1, j2, j3) fixed on the non-planar fault (j3
0).

Hereafter we use the normalized form of BIE and apply the same symbol Vz to
denote the normalized slip velocity instead of equation (7). At a time step k, we
have known all past slip velocities V %1lmn (n5k−1). On some fault patch (i, j ) in
the local coordinate (j1, j2), the BIE and the general fracture criterion are written
in the normalized form

T %31
ijk=T31

0 %+Y
�

P31/1
000 V %1ijk+ %

k−1

n=0

%
l,m

P %ijk:lmn
31/1 V %lmn

1
n

(10)

Sij=Tr+ (1−W %ijk1 )H(1−W %ijk1 ). (11)

Here we express all the normalized stresses, strength and slip as T, S and W instead
of t, s and w, respectively, and T31

0% is a pre-loaded initial shear stress on the fault.
Note that P31/1%

ijk:lmn is no longer the same as P31/1
(i− l)( j−m)(k−n) in equation (7) since we

consider it on the non-planar faults. For the above equations, in general, there are
two different states which depend on current slip velocity V1%

ijk. When the fault is
stuck (V %1ijk
0), shear strength is required to be larger than applied shear stress
(Sij\T31%

ijk). On the other hand, during fracturing (V1%
ijk"0), shear strength and

applied shear stress must be equal (Sij=T31%
ijk). Since the unknown parameter is only

the current slip velocity V1%
ijk at the time k, we can solve the equation one by one

for every fault patch (i, j ). Then we continue this procedure at the next time step
(k+1).

Later we provide 61×61 grids on the fault and continue calculating until the
rupture front reaches the end of the computation region. We used Origin 2000 (R
10000, 250 MHz) at Earthquake Information Center of Earthquake Research
Institute, University of Tokyo, Japan, and it takes more than 4 hours CPU time to
calculate 120 time steps directly. It takes a much longer time than that for a 3-D
planar fault, because of the anti-symmetry of the kernels. We have to calculate the
kernels between each two points on the non-planar fault, so that more memory is
required at the same time. We are able to shorten the computation time to about
30 minutes for the same problem shown in later sections by using FFT technique
for convolution, regarding one spatial axis along which the fault structure is
univariable (i.e., j2-direction), though it requires about 2 GB memory which is
generally twice as many as that without the FFT technique.

Model Setting

Fault Geometry and Initial Stress Field

We consider a simple physical situation in which a bending fault is embedded in
the uniform triaxial compression field produced by principal deviatoric stress Ds1,
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Ds2 and Ds3 with Ds1\Ds2\Ds3. Here we take compression to be positive.
The fault consists of a primary planar part on the x1x2 plane, where the applied
shear stress has a maximum value, and a secondary bending part off the x1x2

plane. Both the direction in which the fault bends and the maximum shear stress
loads are taken to be parallel to the x1 axis, and the fault shape is invariant
toward the x2-axis.

Now we introduce a local coordinate system (j1, j2, j3) fixed on the bending
fault, taking the j1 axis along the direction of bending, the j3 axis normal to the
local fault, and the j2 axis perpendicular to them, namely, parallel to the x2

axis. For simplicity, the direction of fault slip is presumed to be parallel to the
local j1 axis, that is, the bending direction of the fault. Then the shear stress
driving the fault slip is the t %31 component defined in the local coordinate system.
In the present situation (uniform triaxial compression), the applied t31

0 % compo-
nent on the fault can be written as

t31
0%=

1
2

(Ds1−Ds3) cos 2u (12)

where u is the angle of inclined fault measured from the primary planar fault
(x1x2 plane) counter-clockwise. Equation(12) gives the initial stress condition for
numerical simulation of dynamic rupture propagation.

We introduce a parameter S that relates the slip-weakening features and
applied shear stress. S is defined by (tp−t31

0 %)/(t31
0 %−tr) following DAS and AKI

(1977) and DAY (1982), where the peak strength is defined by tp
tr+Dtb. This
parameter can vary on the fault and controls the velocity of rupture propaga-
tion. In this paper we take S=1/3 on the primary plane (u=0). This value of S
is slightly larger than the critical value for which rupture propagation is initiated
under the circumstances we gave.

For each simulation, we assume that the values of tr and tp are constant
over the fault except for the region of a given initial crack. Then only the
applied shear stress t31

0 % varies along the curved j1 axis following equation (12).
We indicate the relation between the absolute stress level tr and the applied
shear stress t31

0 % in Figure 3 for three different cases of residual stress, (a)
tr=5Dtb, (b) 2Dtb and (c) 0. t31

0 % decreases as the inclined angle u through
equation (12). In the case of tr=2Dtb, the applied shear stress (thick curved
line) given by equation (12) crosses the residual stress level (dotted straight line).
On the primary plane (u=0) including an initial crack, the initial stress is
certainly loaded at a level between tr and tp, that is, 05S51. However, as the
angle of inclined fault u increases, the applied shear stress decreases below the
residual stress level. In such a region, the shear stress would not be released but
be stored, if rupture occurred. In the case of tr=0, which corresponds to the
case of tensile rupture or sliding without friction, the applied shear stress is
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Figure 3
Relation between the absolute residual stress level tr and the applied shear stress t31

0 % as a function of
the angle of the inclined fault u. The vertical axis is normalized by the breakdown strength drop Dtb.
Thick lines are applied shear stress t %31

0 from equation (12) and dotted lines are assumed residual stresses
(a) tr=5Dtb, (b) 2Dtb and (c) 0, respectively. In all cases, we take S=1/3 on the plane of u=0°.

always above the residual stress level unless �u �]p/4, and therefore a positive stress
drop occurs to accelerate rupture propagation. When the residual stress level
increases, the positive stress drop region becomes narrow, consequently it is
expected to become more difficult for the rupture to propagate beyond the fault
bend. This suggests that the absolute stress level would be a strong constraint for
dynamic rupture propagation on a bending fault.

Furthermore, we should consider the effect of dynamic stress change due to the
propagation of elastic waves, which is one of the most important purposes of this
study. Perturbation of stress is carried by the P wave first and by the following S
wave, and stress remains at static level after the dynamic disturbance finishes. This
effect will be examined in detail through numerical simulations in the following
section.

In Figure 4, we show an example of a bending fault model in which the left
panel represents the applied shear stress field t31

0 % and the right panel is the strength
distribution tp at the beginning of the simulation (t=0). Both are normalized by
the breakdown strength drop Dtb. Annotations on the spatial axes are normalized
by grid size Ds, and their origin are located at the center of the initial crack. The
initial crack diameter is taken to be 5 grids, that is, L=5Ds. Inside the initial crack,
the peak strength is lower than the applied initial stress and the breakdown strength
drop is half of that outside. The fault bend starts at the 11th grid along the j1 axis
and is approximated with an arc whose radius is about 20Ds, though we also
approximate it with a series of small planar patches, that is, 10 grids for u=p/6,
for example. We also consider a kinked fault which abruptly bends at 11th grid
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Figure 4
An example of a bending fault. The fault bends around x1=10.5 and the bending direction finally
changes (u=p/18) from the primary plane. Coordinate is normalized by grid size Ds. The left figure is
applied shear stress t31

0 % and the right one is assumed peak strength distribution s for residual stress level
tr=2Dtb. We assume a circular crack, weak zone, at the center, to initiate rupture propagation. This is

the initial condition of the simulation shown in Figure 5(a).

instead of the curved fault. Its final direction of the inclined fault (u) is changed
from p/18 to p/2.

Results of Numerical Simulation

Snapshots of Rupture Propagation

A series of snapshots in Figure 5 shows the evolution of slip velocity V1% (the
first row of each group) and shear stress t %31 (the second row) for two bending fault
models with different final angles of the inclined secondary fault (a) u=p/18,
corresponding to the model as shown in Figures 4, and (b) u=p/6, respectively.
The numbers along both axes represent the grid number on the j1j2 plane and fault
starts bending at j1=10.5. Ruptures propagate symmetrically on the primary
planar fault until the rupture front reaches the bending portion. In the case of a
small angle of bending (u=p/18), the rupture continues expanding beyond the
bending portion, although expansion of the rupture area in the j2 direction is
decelerated by the bend, compared to that on the primary planar fault. When the
angle of bending is large, on the other hand, the rupture is nearly arrested at the
bending portion. At time step t�100, the rupture front reaches the left edge of the
computation region. However, its disturbance does not arrive at the opposite side
of the crack tip during the calculation.

Figure 6 shows the slip velocities as a function of time step at 3 points,
(j1, j2)= (5, 5), (15, 0) and (12, 12), on the fault models of (a) u=p/18 and (b) p/6,
corresponding to Figures 5(a) and (b), respectively. (j1, j2)= (5, 5) is on the
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Figure 5
Two computations with different angles of the inclined fault (a) u=p/18 and (b) p/6. Upper and lower

columns of each panel show slip velocity and shear stress, respectively.

primary fault plane near the initial crack, (15, 0) and (12, 12) are on the curved
portion. We observe that the slip velocities are disturbed for each points. However,
the magnitude of the disturbance is relatively small compared to the maximum slip
velocity which appears just after the passages of the rupture front. That is why the
disturbance may not affect the rupture propagation. When the disturbance becomes
too large to further continue calculation with BIEM, we should re-scale the
slip-weakening distance (Dc) in order to make Dc large enough comparing to spatial
grid interval (FUKUYAMA and MADARIAGA, 2000; LAPUSTA et al., 2000). More-
over a numerical experiment using a twice-higher resolution for both space and
time leads to the same results as those presented here. This indicates that the
numerical solution converges adequately and the numerical oscillations do no affect
the ultimate results.
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Figure 6
Slip velocities as a function of time step on various points on the curved fault. Cases (a) and (b) have

the inclined angle u=p/18 and (b) p/6, which correspond to Figures 5(a) and (b), respectively.

Simulations of Kinked Fault

In order to examine the geometrical effect of the bend on dynamic rupture
propagation, we show the difference of rupture propagation for various final angles
of the secondary inclined fault u, i.e., assuming, contrary to the previous case, that
a uniform shear stress t31%

0 applies upon the whole fault. In other words, the value
of S is constant everywhere on the fault (S=1/3). In Figure 7, we display snapshots
of slip velocity on the fault at time step t=80 (left four panels) and the total
amount of slip at that time (right panel). The fault bends abruptly at j1=10.5 with
the angle (a) u=p/18 (b) p/6 (c) p/3 and (d) p/2, respectively. The numerical
results show that rupture continues to propagate beyond the kinked portion with
the same rupture velocity even though the fault bends perpendicularly. The effect of
bending is more apparent on the slip distribution as shown in Figure 7. As the
angle of bend becomes steeper, a lower slip region appears around the bending
portion. This indicates that the bending portion acts as a kind of barrier in the
rupture process. However, the results depend on the position of fault bending.
When the bending is located near the initial crack, for example j1=5.5, rupture
does not propagate across the bend for the case of u=p/2, because of insufficient
stress accumulation on the secondary bending fault.

TADA and YAMASHITA (1996) have pointed out the paradox that the opposite
sign of normal stress appears on the fault for the analytical expression of the
smooth bending fault and its numerical approximation with many small planar
patches because of artificial kinks. However, our result shows that an artificial
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Figure 7
Difference in rupture propagation due to various final angles of the inclined fault. The fault bends
abruptly at j1=10.5 with the angle (a) u=p/18, (b) p/6, (c) p/3 and (d) p/2, respectively. The left
figures show snapshots of slip velocity on the fault at time step t=80, and the right one is the
distribution of total amount of slip at the same time. Each rupture velocity of the crack front is only
slightly different, although slip velocity around the bend is decelerated by the steep angle of the bend.

structure in which two planar grids connect with a finite angle produces no opposite
polarity of stress field ahead of it, since rupture continues propagating without
decreasing its rupture velocity for any angle of bend within 05uBp/2. Here we
must notice that the rupture growth is perfectly determined by the shear stress field
on the fault in our simulations. Thus a series of planar small patches would be a
proper approximation of a curved fault in the shear rupture model as long as we
consider the fracture criterion which depends not on the normal traction but on the
shear stress. We shall compare the models with different way of bending later.

Effect of Fault Angle

Now we return to the case of rupture propagation under the triaxial compres-
sion field. Figure 8 shows rupture fronts propagating in the direction of both the
positive and negative j1 directions at the cross section j2=0 on various bending
faults at the same residual stress level tr=0. Each geometry is shown at the top of
the figure and the relation between the initial shear stress and the angle of the
inclined fault is also shown in the case (c) of Figure 3. In the hypothetical situation
where t31

0 % is assumed to be constant everywhere as shown in Figure 7, we see no
difference of rupture velocities for the angle of the secondary inclined fault, since
energy balance between stored shear stress and consumed fracture energy around
the crack tip is invariant, regardless of the bending angle. In the uniform triaxial
compression field, however, we can find significant differences in rupture velocity
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Figure 8
Rupture propagation for various final angles of the inclined fault in the case of tr=0. At the top we
show each geometry of the faults with the inclined angle (a) u=p/4, (b) p/6 and (c) p/18, respectively.

Rupture velocity decreases with the initial stress level on the inclined fault.

between the three fault models, because the value of S depends on the final angle
of the inclined fault u. Rupture propagates with super-shear velocity for the case of
u=p/18 which leads to S=0.42, while rupture velocity remains below shear wave
speed for above u=p/6 which corresponds to S=1.67. Our result is consistent
with DAS and AKI (1977) who reported that sub-shear velocity of rupture propaga-
tion requires S larger than 1.6 for 2-D in-plane problems.

Absolute Le6el of Residual Stress

Next we examine the effects of absolute level of residual stress on rupture
propagation. We fix the final angle of the inclined fault u to p/6 and change the
residual stress level (a) tr=5Dtb, (b) tr=2Dtb and (c) tr=0 as shown in Figure 9.
For case (b) we have presented snapshots of rupture propagation in Figure 5(b). As
absolute stress level increases, we observe that the rupture propagation beyond the
fault bend becomes more difficult. In the case of tr"0, the rupture almost stops
around the bending portion, while opposite side of the rupture front propagates
further at a super-shear wave velocity. In fact, Figure 3 indicates that the initial
shear stress becomes less than the residual stress level for an angle larger than about
15° in case (a), and 22° in case (b), respectively. These angles correspond to
distances of about 15 and 18 from the center of the crack. For both cases, rupture
proceeds slightly in the region where negative stress drop is brought about and then
is arrested.
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Figure 9
Rupture propagation for absolute stress level on the same bending fault, with final angle of the bending
fault u=p/6 as shown at the top. Each case corresponds to (a) tr=5Dtb, (b) tr=2Dtb and (c) tr=0,

respectively. Rupture is nearly arrested around the bending for high residual stress level.

Kinked Fault and Smooth Cur6ed Fault

Finally, we investigate the difference caused by the shape of bending. Figure 7
enables us to estimate that an artificial abrupt kink would produce no different
result concerning rupture propagation, since the rupture velocity does not change
significantly with the angle of the inclined fault. We consider a kinked fault which
consists of two plane faults and a curved bending fault which we approximate with
many small planar patches in order to understand its role. Figure 10 exhibits the
difference in rupture propagation between two models for the case of tr=5Dtb (a,
c) and tr=0 (b, d). Comparing (b) and (d), we can see that the terminal rupture
velocities are almost the same in both cases, though the rupture propagates faster
on the smooth curved fault (d), around the bending portion, than on the kinked
fault (b). This phenomena can be interpreted in terms of the value of S. In the case
of (d), the value of S increases gradually from 0.33 to 1.67. Conversely, it changes
abruptly on the kinked fault (b). Similarly, the rupture propagates more smoothly
for the curved fault (c) than for the kinked fault (a), which is considered to be
caused by the pre-applied shear stress. For the inclined fault with angle p/6, the
rupture necessarily produces a negative stress drop, as shown in Figure 3. Thus the
rupture stops suddenly at the bending in case (a). We do not think that neither the
effect of discretization nor approximation in modeling with many small planar
patches produces any artificial result.
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Figure 10
Difference of rupture propagation between (a, b) kinked fault and (c, d) curved fault. Their geometries
are drawn at the top of the figure and they have the same final angle of the bending fault u=p/6. We
put tr=5Dtb for cases (a) and (c), and tr=0 for (b) and (d). The pre-loaded shear stress on the inclined
fault produces the difference of the rupture propagation between that on the kinked and that on the

smooth curved faults.

Discussion and Conclusion

In this paper we have constructed a new simulation scheme of spontaneous
dynamic rupture propagation on non-planar faults in 3-D elastic medium. We
removed all hyper-singularities in BIEs following the regularization method pro-
posed by FUKUYAMA and MADARIAGA (1995, 1998), and also analytically evalu-
ated all the BIEs for a basic box-like discrete source. This enables one to evaluate
stress fields accurately and to simulate dynamic rupture propagation stably. This
method is also applicable to rupture propagation on unknown paths in intact
material, as KAME and YAMASHITA (1999a,b) simulated growths of a crack
bending spontaneously in 2-D medium. Our BIE agrees with special case of the
general formulation derived by TADA et al. (2000), and our scheme of simulation
becomes the same as those proposed by FUKUYAMA and MADARIAGA (1995, 1998)
for the case of a planar fault in 3-D.

As an example of numerical simulations, we considered a simple physical
situation in which a bending fault is embedded in a 3-D elastic medium subjected
to a uniform triaxial compression field. The simulation results demonstrate that
rupture propagation is decelerated or arrested for some inclined angle of the
bending fault and absolute value of the fault strength. We also observed that the
effect of dynamic stress change caused by rupture propagation itself was not strong
enough to stop the rupture propagation. The decrease of rupture velocity due to
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bending also has been reported by BOUCHON and STREIFF (1997) in 2-D in-plane
simulations. The velocity of rupture front depends mainly upon the pre-loaded
initial stress on the fault with various directions of the inclined fault, that is, the
parameter S. DAS and AKI (1977) and DAY (1982) examined the effect of S in 2-D
anti- and in-plane cases and for a 3-D planar fault, respectively. Our results are
consistent with theirs. For the special case of SB0 in which negative stress drop
occurs, we note that bending plays the role of a barrier strong enough to stop
rupture propagation as naturally expected. In the field observation, the inversion
result by WALD and HEATON (1995) shows that rupture velocity clearly changes
with the strike direction of the fault, for example. From our results, we surmise that
it is probably caused by the variation of pre-loaded shear stress on the faults.

We discussed the role of absolute value of shear stress level on rupture
propagation. As it increases, it becomes more difficult for rupture to proceed on an
inclined fault. The rupture propagation beyond the bend requires a low absolute
level compared to breakdown strength drop Dtb. From the inversion analysis by
BOUCHON et al. (1998a) of the 1992 Landers earthquake, there exists a portion in
which stress accumulation before rupture exceeds 20 MPa, although static stress
does not change at all before and after earthquake on the fault with unfavorable
strike. Assuming Dtb=20 MPa in the simulations we presented, for example, it
would be difficult for the rupture to grow on a 30° inclined fault in the case of an
absolute residual stress tr larger than 40 MPa (see Fig. 9). At the depth of 10 km,
continuing pressure reaches 300 MPa, which leads to a frictional coefficient mf of
0.1–0.2, considerably smaller than that observed in the laboratory. This discussion,
however, is constructed under the assumption that the fault system is embedded in
such a homogeneous triaxial compression field as that in the simulations we
demonstrated, and that the constitutive parameters are also homogeneous over the
fault. The Landers earthquake might not be in such a simple state. AOCHI (1999)
simulated the rupture propagation on the non-planar faults for that earthquake,
considering a tectonic loading system, and discussed the physical background in
detail.

In order to understand the physical process of earthquake generation, a forward
modeling of dynamic rupture propagation on off-plane faults must be very efficient
to reveal characteristics of the realistic field in which earthquakes occur. For this
purpose we should model a more realistic condition using the scheme we have just
constructed, and discussed in detail the effect of the complex geometrical structure
of faults on earthquake generation.
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Appendix A. Regularized Boundary Integral Equation

A Green’s function in 3-D homogeneous, isotropic, infinite elastic medium (the
Stokes tensor) is

Gij(r� , t)=
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where l and m are Lamé’s constants, a and b are P- and S-wave velocities,
respectively, p=b/a, and d(·) is the delta function. The Laplace form of the
integration appearing in equation (A-1)
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is useful for rewriting equation (2). For example, to obtain the off-plane expression
(x3"0) of the 3h component, we continue with equation (C8) in FUKUYAMA and
MADARIAGA (1998), referred to as FM98 hereafter, without taking the limit x3�0.
We rewrite equation (C9) and (C11) in FM98 for x3"0, and then obtain the final
expression instead of equation (C20) in FM98
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where I( we defined here is (C10) in FM98 multiplied by (−1). When we take the
limit x3�0, we can extract the instantaneous term from the third term in equation
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(A-3) using (C17) in FM98, and then the above expression agrees with on-plane
expression (C20) in FM98. Finally we derive the expression in time domain
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in which the slip functions Dui(
a
) are only evaluated for positive values of a. In
the limit x3�0 on equation (A-4), the instantaneous term (Du; ) is extracted from
the 2nd term and the 5th off-plane term disappears.

Similarly we can derive the other components,
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and
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where we define z( =3−z.

Appendix B. Discretized Kernel for a Semi-infinite Slip Velocity Field

We obtain the discretized kernels for the basic shear source given by equation
(5). In this case, we can analytically evaluate all the integrals in equations
(A-4)–(A-6) and (A-7), for discrete BIE without using any numerical calculation.
We will introduce notations before summarizing discrete kernels,
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and define three cases which depend on the observation point x� and time t
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With the above notations and definitions, we create the final expressions of the
discretized kernels
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where we use the following 4 terms for the basic Heaviside function:
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Here EII(b) includes the instantaneous term.
All the discrete kernels derived in this appendix are the functions of the distance

from the origin to an observation point. Substituting (x1−j1
l +Ds/2, x2−j2

m+Ds/
2; t−t+etDt) for (x1, x2; t) etc. we finally obtain the discrete kernels Ppq/z(r� ) for a
piecewise source Du; z=S(j1, j2, t ; j1

l , j2
m, tn) that appears in equation (6).
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