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Abstract. A global-in-time unique smooth solution is constructed for the Cauchy problem of the
Navier–Stokes equations in the plane when initial velocity field is merely bounded not necessary
square-integrable. The proof is based on a uniform bound for the vorticity which is only valid
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1. Introduction

We consider the nonstationary Navier–Stokes equations in the plane:

(NS)




ut −∆u + (u,∇)u +∇p = 0 in (0, T )× R2,

div u = 0 in (0, T )× R2,

u|t=0 = u0 (with div u0 = 0) in R2,

where u = u(t, x) = (u1(t, x), u2(t, x)) and p = p(t, x) stand for the unknown
velocity field of the fluid and its pressure field, while u0 = u0(x) = (u1

0(x), u2
0(x))

is a given initial velocity vector field; x = (x1, x2) denotes a point of the plane R2

and t(≥ 0) denotes the time.
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Our goal is to prove the unique existence of global-in-time smooth solution
of (NS) when initial data u0 is merely bounded uniformly continuous, i.e., u0 ∈
BUC = BUC(R2) or more generally u0 ∈ L∞(R2). (We do not distinguish spaces
of vector-valued and scalar functions.) For a Banach space X and an interval
I ⊂ R let C(I;X) denote the space of all continuous functions on I with values in
X. We are now in position to state our main result.

Theorem 1. Assume that u0 ∈ BUC satisfies divu0 = 0 in R2 (in the sense of
distribution). Then there exists a unique u ∈ C([0,∞); BUC) (∩C∞((0,∞)×R2))
satisfying (NS) with p =

∑2
i,j=1 RiRjuiuj, where Rj = (−∆)−1/2∂/∂xj is the

Riesz operator.

Remark. If u0 ∈ L∞(R2), it is known in [GIM] that there is a unique local-in-
time solution u of (NS) in a suitable sense and u(t) ∈ BUC(R2) for t > 0. Thus
by Theorem 1 it is extended to a global solution. We do not impose any smallness
assumptions on u0 in Theorem 1.

There is a large literature on local existence of smooth solutions of (NS) even
in a various domain of Rn(n ≥ 2). It is also well-known that the solution can
be extended globally in time provided that the initial velocity is small in various
scaling invariant spaces. However, most of results assume a decay at space infinity
for initial velocity. A recent paper of Amann [A] includes a nice survey of local
solvability for initial data which decays at space infinity. The reader is referred to
[A] for the state of arts. For nondecaying initial data there are only a few articles.
Cannon and Knightly [CK] constructed a local solution which is continuous up to
t = 0 for bounded continuous initial data u0 for Rn. The method is based on the
analysis developed by [K1]. Later it is extended in [K2] for bounded initial data.
Local solvability for u0 ∈ L∞ is also mentioned in [C]. The method is based on
Littlewood–Payley decomposition developed in [CM] and [C]. More recently, K.
Inui and the first two authors [GIM] constructed a local solution for u0 ∈ BUC(Rn)
or L∞(Rn). Their key estimate can be written as

sup
t>0

t1/2 · ||∇Et||L1(Rn) < ∞

which yields the crucial estimate

sup
0<t<1

t−1/2

∫ t

0

||∇Es||L1(Rn) ds < ∞

of [CK], where Et denotes the fundamental solution of the Stokes system ut −
∆u + ∇p = 0, divu = 0 in Rn. In [GIM] and [CK] the time T0 where solution
exists in (0, T0) is estimated by

T0 ≥ C/||u0||2∞ (1.1)

with C depending only on n. There are several novelty of [GIM] compared with
[CK] or [C]. It proves that u0 ∈ BUC(Rn) implies u(t, ·) → u0 in BUC as t → 0 for
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the solution u. It also clarifies relation of solutions for the integral equation and the
original equation (NS) and discusses the uniqueness of solutions. For nondecaying
initial data relation p =

∑
i,j RiRjuiuj is not automatically derived from the

Poisson equation −∆p = div((u,∇)u), so it is included in our main statement
so that the solution is unique. It is curious what condition of p guarantees p =∑

RiRjuiuj . For this direction the reader is referred to a recent paper by J. Kato
[Ka]; see also [GIKM]. It seems that there are no results on solvability for exterior
domains for nondecaying initial data u0 although there is a large literature when
u0 is asymptotically constant at the space infinity and n ≥ 3; see e.g. [BM, KO, S].

It is well-known since Leray’s pioneering work [L1] that there exists a global
smooth solution if the initial data u0 is in L2(R2), in other words, the initial
kinematic energy is finite. For a such initial data the global existence of solution
is proved by a priori estimate called an energy equality:

||u||2L2(t) + 2
∫ t

0

||∇u||2L2(s)ds = ||u0||2L2 , t > 0.

This is formally obtained by multiplying u with the first equation of (NS) and
integrating by parts. Such an estimate is not expected for u0 ∈ L∞(R2) so we
develop a different a priori estimate for the L∞ norm ||u||∞(t) of the solution u.

Let us briefly explain main ideas in proving Theorem 1.

(i) The local solution in [GIM] fulfills the integral equation

u(t) = et∆u0 −
∫ t

0

div (e(t−s)∆P(u(s)⊗ u(s)))ds, (1.2)

where et∆ denotes the heat semigroup and P denotes the Helmholtz projection
and its ij (1 ≤ j, j ≤ 2) component is of form δij + RjRj ; δij denotes Kronecker’s
delta and ⊗ denotes tensor product; divF for tensor F = (Fij)i,j=1,2 is defined
by a vector (

∑2
j=1 ∂Fij/∂xj)i=1,2.

(ii) As proved in [GIM] there is a regularizing effect so that ∇u(t) ∈ BUC for
t ∈ (0, T0). Thus we may assume that ∇u0 ∈ BUC to prove the global existence.

(iii) In the plane the vorticity ω = rotu = ∂u2/∂x1 − ∂u1/∂x2 is scalar and
fulfills

ωt −∆ω + (u,∇)ω = 0. (1.3)

(This equation is obtained by applying rot to the first equation of (NS).) The
maximum principle yields that ||ω||∞(t) ≤ ||ω0||∞, where ω0 = rotu0.

(iv) The crucial step is to establish

||div et∆P(f ⊗ f)||∞ ≤ C
(
1 + log R +

1√
t

)
||f ||∞||rot f ||∞ +

C

R
||f ||2∞ (1.4)

for all R > 1 and all t > 0, where C is a constant independent of t, f, R. Using
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(1.4) to estimate the integral of (1.2) with R = 1 + ||u||∞(s), we obtain

||u||∞(t) ≤ ||u0||∞ + C||ω0||∞
∫ t

0

(t− s)−1/2 · ||u||∞(s) ds+

+C(1 + ||ω0||∞)
∫ t

0

{1 + log(1 + ||u||∞(s))} · ||u||∞(s) ds

(1.5)

since ||ω||∞(t) ≤ ||ω0||∞.

(v) In the similar way to prove the Gronwall inequality it turns out that (1.5)
implies

||u||∞(t) ≤ K exp(KeKt) (1.6)

with K > 0 depending only on ||u0||∞ and ||ω0||∞. Although this estimate looks
weak, because of (1.1) this yields the global solvability of (NS). To prove the
inequality (1.4) we study the derivatives of the Newton potentials carefully but
the proof itself is not so complicated.

Since we do use the vorticity equation (1.3) it is not expected to generalize this
method to the Dirichlet problem on an exterior domain or the half space instead of
the whole space R2. If the boundary exists, the property ||ω||∞(t) ≤ ||ω0||∞ is not
expected since the vorticity is created near the boundary. The vorticity equation
for R3 is

ωt −∆ω + (u,∇)ω − (ω,∇)u = 0 (1.7)

instead of (1.3). It is not expected to have ||ω||∞(t) ≤ ||ω0||∞ because of the vor-
ticity stretching term (ω,∇)u in (1.7). Thus the present method is not expected
to apply the three-dimensional setting. (In R3 the global existence of smooth so-
lution for non small initial data is a famous open problem since Leray’s pioneering
work [L2] even for smooth u0 ∈ L2(R3).)

For u0 ∈ Lp(R2), p > 2 we also prove that the global existence of smooth
solutions. The proof is easier than that of BUC since P is bounded in Lq(R2)
for 1 < q < ∞ by the Calderón–Zygmund inequality. Since the local solution
constructed by Amann [A] belongs to Lq(R2)(q > 2) for t > 0, so his solution can
be extended globally in time by our Lp results. For L2(R2) initial data the global
existence result goes back to Leray [L1]. For the initial data in the Lorentz space
L2,∞(R2) there is a unique global existence result [KY]; their proof is based on a
kind of energy estimate.

The logarithmic type Gronwall inequality goes back to a work of Wolibner [W]
which starts mathematical analysis on the Euler equation in R2. It is also found
in a paper of Brezis and Gallouet [BG] for proving the global existence of solutions
for some semilinear Schrödinger equation. However, in these papers the singular
term (t− s)−1/2 in (1.5) does not exist so the derivation of (1.6) is much easy. A
similar argument to derive (1.5) from (1.4) by setting R = 1 + ||u||∞ is found in
[BG].
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This paper is organized as follows. In §2 we recall various properties of the Riesz
operators to establish (1.4). In §3 we prove (1.6) by establishing the Gronwall type
inequalities. We also prove Theorem 1. In §4 we prove the global existence for Lq

initial data (2 < q < ∞).
After this work was completed, we were learned of a recent work of Koch

and Tataru [KT] who study local well-posedness in the space BMO−1(Rn) of
derivatives of BMO and related localized space BMO−1

T . Local existence for L∞

data is proved as a special element of BMO−1
T for T ∈ (0,∞). However, for non-

small initial data they do not discuss the global solvability for R2. The authors
are grateful to Professor Herbert Koch for informing that [KT] is applicable for
L∞ initial data and for pointing out [W].

After this work was completed, we were learned of a recent work of J. C. Mat-
tingly and Ya G. Sinai [MS] who among other results give a different elementary
proof of global existence of smooth solutions for two dimensional Navier–Stokes
equations with periodic boundary condition. They use the vorticity equation (1.3)
instead of the energy estimate. However, their assumption does not include our
setting. The authors are also grateful to Professor Alice Chang for letting them
know a recent article [MS]. They are also grateful to Professor Tohru Ozawa for
letting them know [BG]. They are also grateful to Professor Hideo Kozono for
letting us know the state of arts on the exterior problems.

Before closing this introduction we prepare several notations. Let et∆ denote
the heat semigroup defined by

et∆f = Gt ∗ f, Gt(x) = (4πt)−1 exp(−|x|2/4t) for t > 0 and x ∈ R2,

where ∗ denotes convolution of functions defined in R2. Let S = S(R2) denote
the space of rapidly decreasing functions in the sense of L. Schwartz. The diver-
gence is denoted also by ∇·, for example, ∇ · F for a tensor F = (Fij)i,j=1,2 is
(
∑

j ∂jFij)i=1,2 where ∂j = ∂/∂xj .

2. Estimate of the quadratic term

Let Ri be the Riesz operator whose symbol is
√−1ξi/|ξ| ( i = 1, 2 ) i.e., Ri =

(−∆)−1/2∂i. Let K denote the fundamental solution of the minus Laplacian −∆
in R2, i.e., K(x) = (−1/2π) log |x|.

We first summarize some properties of the Riesz operator and the fundamental
solution of the Laplacian, which may be well-known.

Lemma 1. The following identities hold for all ϕ ∈ S(R2) and i, j, k = 1, 2.

(1) RiRjϕ = p.v.(∂i∂jK) ∗ ϕ− δij

2
ϕ.

(2) RiRjϕ = ∂iK ∗ ∂jϕ = ∂jK ∗ ∂iϕ.

(3) RiRj∂kϕ = RkRj∂iϕ = RiRk∂jϕ.
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(4)
(
R2

1 + R2
2

)
ϕ = −ϕ.

For an integer m ≥ 1 there exists a numerical constant Cm > 0 such that

(5) |DmK(x)| ≤ Cm

|x|m ,

where Dmf(x) denotes one of m-th derivatives of f(x).

Definition. Let χIN (x), χR
MID(x) and χR

OUT (x) be characteristic functions of
{0 ≤ |x| ≤ 1}, {1 ≤ |x| ≤ R} and {R ≤ |x|} respectively for R > 1. For the
fundamental solution K(x) = (−1/2π) log |x| and i = 1, 2 we put

J i
IN = χIN · ∂iK, J i

MID = χR
MID · ∂iK, J i

OUT = χR
OUT · ∂iK.

By definition ∂iK = J i
IN + J i

MID + J i
OUT . We also define a (vector valued) layer

potential Lr
i (ϕ) = (Lr

ij(ϕ))j by

Lr
ij(ϕ)(x) =

∫
|y|=r

∂iK(y)ϕ(x− y)
yj

|y|dSy.

We shall estimate L1-norms of these functions.

Lemma 2. There exists a numerical constant C > 0 such that following estimates
are valid.

(0) ||Lr
i (ϕ)||1 ≤ C||ϕ||1,

(1) ||J i
IN ∗ (∇ϕ)||1 ≤ C||∇ϕ||1,

(2) ||J i
MID ∗ (∇ϕ)||1 ≤ C(1 + log R)||ϕ||1,

(3) ||∇{
(χi

OUT ∂2
ijK) ∗ ϕ

} ||1 ≤ C

R
||ϕ||1

for all ϕ ∈ S, all R > 1, all r > 0 and i, j = 1, 2, where ∂2
ij = ∂i∂j.

Proof. The estimates (0) and (1) are obtained by the Young inequality since ∂iK
is integrable on any disk by Lemma 1–(5).

(2) Integrating by parts we have

J i
MID ∗ (∂jϕ)(x) =

∫
1≤|y|≤R

(∂iK)(y) · (−∂/∂yj){ϕ(x− y)}dy

= (χR
MID · ∂2

ijK) ∗ ϕ− LR
ij(ϕ) + L1

ij(ϕ).

Here we note that ||(χR
MID · ∂2

ijK) ∗ ϕ||1 ≤ ||χR
MID · ∂2

ijK||1 · ||ϕ||1. Hence (0) and
Lemma 1–(5) imply

||J i
MID ∗ (∇ϕ)||1 ≤ C(1 + log R)||ϕ||1.

This shows (2).
(3) Since ∂l

{
(χi

OUT ∂2
ijK) ∗ ϕ

}
= (χi

OUT ∂2
ijK) ∗ (∂lϕ) holds, we have

(χi
OUT ∂2

ijK) ∗ (∂lϕ) = (χi
OUT ∂3

ijlK) ∗ ϕ +
∫
|y|=R

∂2
ijK(y)ϕ(x− y)

yl

|y|dSy.
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By the Young inequality and Lemma 1–(5) L1 norm of the righthand side is es-
timated by (C/R)||ϕ||1 with a positive numerical constant C. The proof is now
complete. ¤

Lemma 3. There exists a numerical constant C such that

||∇ · et∆P(f ⊗ f)||∞ ≤ C

(
1 + log R +

1√
t

)
||f ||∞||rot f ||∞ +

C

R
||f ||2∞

for all R > 1, all t > 0 and all f ∈ C1(R2) with div f = 0 in R2.

Proof. By the duality L∞-norm for F ∈ S ′ is characterized by

||F ||∞ = sup{ |< F,ϕ >| ; ϕ ∈ S with ||ϕ||1 = 1},
where < ·, · > denotes the pairing of (vector-valued) distribution and test func-
tions. Thus to estimate ||F ||∞ for F ≡ ∇ · et∆P(f ⊗ f) ∈ S ′ we shall estimate
< F,ϕ > assuming that ϕ ∈ S satisfies ||ϕ||1 = 1.

If a vector field f satisfies divf = 0, then the identity ∇·f⊗f = (f,∇)f holds.
Furthermore we have

(f,∇)f = rot f × f +
1
2
∇|f |2,

when × denotes the exterior product in R3 and f = (f1, f2) is regarded as a vector
valued function (f1, f2, 0). This identity holds for vector fields in R3.

Since
〈∇|f |2, Pet∆ϕ

〉
= 0,

< F,ϕ >= (rot f × f, Pet∆ϕ),

where (·, ·) is L2(R2) inner product. Here, we put φ = et∆ϕ ∈ S for a fixed t,
which satisfies ||φ||1 ≤ 1 and ||∇φ||1 ≤ C/

√
t with a numerical constant C > 0.

Since P = [δij +RiRj ] i.e. the ij component equals δij +RiRj , by Lemma 1–(2)
we get

Pφ = Eφ + [∂iK ∗ ∂j ]ijφ

=
(
E + [J i

IN ∗ ∂j ] + [J i
MID ∗ ∂j ] + [J i

OUT ∗ ∂j ]
)
φ

with 2 × 2 identity matrix E. We now estimate each term. By Lemma 2 the
following estimates hold:

||Eφ||1 ≤ ||φ||1 ≤ 1,

||J i
IN ∗ ∂jφ||1 ≤ C||∇φ||1 ≤ C ′/

√
t,

||J i
MID ∗ ∂jφ||1 ≤ C(1 + log R)||φ||1 ≤ C(1 + log R).

Combining these estimates yields

|(rot f × f, (E + [J i
IN ∗ ∂j ] + [J i

MID ∗ ∂j ])φ)|

≤ C(1 + log R + 1/
√

t)||rot f ||∞||f ||∞
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for t > 0 and R > 1. Using the identity rot f × f = ∇ · (f ⊗ f − (1/2)|f |2E), we
have

(rot f × f, J i
OUT ∗ ∂jφ) = −

(
f ⊗ f − 1

2
|f2|E, ∇(J i

OUT ∗ ∂jφ)
)
.

Here by the integration by parts we obtain J i
OUT ∗∂jφ = (χR

OUT ∂2
ijK)∗φ+Lij(φ).

From this identity we now observe that

∇(J i
OUT ∗ ∂jφ) = ∇(χR

OUT ∂2
ijK) ∗ φ +∇Lij(φ) ≡ ∇Fij +∇Lij(φ).

Thus

(rot f × f, J i
OUT ∗ ∂jφ) = −(f ⊗ f − (|f2|/2)E, ∇Fij)

−(f ⊗ f − (|f2|/2)E, ∇Lij(φ))

= −(f ⊗ f − (|f2|/2)E, ∇Fij)

+(rot f × f, Lij(φ)).

Lemma 2–(0) and (3) imply ||∇Fij ||1 and ||Lij(φ)||1 are estimated by C/R and C
respectively. This proves our lemma. ¤

Since Lemmas 1 and 2 extend to Rn(n ≥ 3), Lemma 3 also extends for f ∈
C1(Rn)(n ≥ 3) by interpreting rot f in a suitable way.

3. Logarithmic Gronwall inequality and a priori bounds

In this section we derive a uniformly (in time) bound for a mild solution of (NS).
For this purpose we establish the following logarithmic Gronwall inequality.

Lemma 4. Let a nonnegative function a(t, s) be continuous in {(t, s)| 0 ≤ s <
t ≤ T} and satisfy a(t, ·) ∈ L1(0, t) for all t ∈ (0, T ] with some T > 0. Assume
that there exists a positive constant ε0 and A ∈ (0, 1) such that

sup
0≤t≤T

∫ t

t−ε0

a(t, s) ds ≤ 1−A. (3.1)

If positive constants α, β and a non negative function f ∈ C([0, T ]) satisfy

f(t) ≤ α +
∫ t

0

a(t, s)f(s) ds + β

∫ t

0

{1 + log(1 + f(s))} · f(s) ds, (3.2)
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for all t ∈ [0, T ]. Then we have

f(t) ≤




α

A
· eγt/A (β = 0, a(t, s) 6≡ 0),

−1 +
[(1 + α)e]exp(βt)

e
(β ≥ 0, a(t, s) ≡ 0),

−1 +
[(1 + α/A)e]exp(β+γ)t/A

e
(β > 0, a(t, s) 6≡ 0)

for all t ∈ [0, T ]. Here a positive constant γ is defined by

γ = sup
0≤t≤T

{ sup
0≤s≤t−ε0

a(t, s)}.

Remark. In the case of a(t, s) = B(t− s)−δ with 0 < δ < 1 and B > 0, it is easy
to show that for any A ∈ (0, 1) there exists ε0 of the form

ε0 =
(

(1− δ)(1−A)
B

)1/(1−δ)

so that γ = B

(
(1− δ)(1−A)

B

)−δ/(1−δ)

.

Proof. (i) The case a(t, s) ≡ 0:
Let F (t) be the right hand side of (3.2) with a(t, s) ≡ 0. Computing F ′(t) and

using (3.2), we have∫ t

0

F ′(s)
{1 + log(1 + F (s))}(1 + F (s))

ds ≤ βt

We change the variable of integration by y = 1 + log(1 + F (s)) and integrate

f(t) ≤ F (t) ≤ −1 +
[(1 + α)e]exp(βt)

e
(3.3)

for all t ∈ [0, T ].

(ii) The case a(t, s) 6≡ 0:
The inequality (3.2) implies that g(t) = sup0≤θ≤t f(θ) satisfies

g(t) ≤ α +
∫ t

t−ε0

a(t, s) ds · g(t) +
∫ t−ε0

0

a(t, s)g(s) ds+

+β

∫ t

0

{1 + log(1 + g(s))} · g(s) ds

≤ α + (1−A) · g(t) +
∫ t−ε0

0

γg(s) ds+

+β

∫ t

0

{1 + log(1 + g(s))} · g(s) ds

≤ α + (1−A) · g(t) +
∫ t

0

{(β + γ) + β log(1 + g(s))} · g(s) ds.
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That is,

g(t) ≤ α

A
+

1
A
·
∫ t

0

{(β + γ) + β log(1 + g(s))} · g(s) ds.

Applying (3.3) to this inequality with β 6= 0, we get our assertion because of
f(t) ≤ g(t). In the case of β = 0, it is easy to show our assertion by the standard
way. This proves our lemma. ¤

Now we state a priori estimate of solution for (NS). According to remarks
(Step (v), (vi)) in Introduction, the following estimate is enough to guarantee that
the unique local-in-times solution obtained in [GIM] can be extended to a global
solution. Thus we obtain Theorem 1.

Theorem 2. Let u(t) be a mild solution of (NS), that is, u(t) is a solution of the
integral equation (1.2). Assume that u and ∇u belong to C([t0, t0 + T ];BUC) for
T > 0 and t0 ≥ 0. Then there exists a positive constant K which depends only on
||u(t0)||∞ and ||rot u(t0)||∞, such that

||u||∞(t) ≤ K exp(KeKt)

for all t ∈ [t0, t0 + T ].

Proof. We may of course assume that t0 = 0 and u(t0) = u0.
By (1.2) we have

||u||∞(t) ≤ ||et∆u0||∞ +
∫ t

0

||∇ · (e(t−s)∆P(u(s)⊗ u(s)))||∞ds.

for t ∈ [0, T ]. Applying Lemma 3 with f = ||u||∞(s) and R = 1 + ||u||∞(s) to this
inequality, we have

||u||∞(t) ≤ ||u0||∞ +
∫ t

0

CM · (t− s)−1/2||u||∞(s) ds+

+C(1 + M) ·
∫ t

0

{1 + log(1 + ||u||∞(s))} · ||u||∞(s) ds,

where M = sup0≤t≤T ||rot u(t)||∞. On the other hand, ω(t) = rotu(t) is a classical
solution of the vorticity equation with the bounded coefficient u ∈ C([0, T ]×R2).


ωt −∆ω + (u,∇)ω = 0 in (0, T ]× R2,

ω(0) = rotu0 on R2

Since the maximum principle [PW] yields sup0≤t≤T ||ω||∞(t) ≤ ||rot u0||∞, the
constant M is estimated by ||rot u0||∞. (See also [KF].) Thus, Lemma 4 and
Remark after it imply our assertion. ¤
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The solution obtained in Theorem 1 is of course equal to a local-in-time solution
obtained in [GIM] for 0 ≤ t ≤ T0 for some T0 > 0. Furthermore by the arguments
in [GIM] ||rot u(t0)||∞ with 0 ≤ t0 ≤ T0 is estimated by a quantity depending only
on ||u0||∞ from above. Thus we have the following estimate.

Corollary 1. Let u(t) be the unique solution of (NS) obtained in Theorem 1.
Then there exists a positive constant K0 depending only on ||u0||∞ such that

||u||∞(t) ≤ K0 exp(K0e
K0t)

for all t ∈ [0,∞).

4. Lq global estimate

In this section we prove the following the global existence of (NS) for Lq initial
data with 2 ≤ q < ∞.

Theorem 3. Assume that u0 ∈ Lq
σ(R2) for 2 ≤ q < ∞, where Lq

σ(R2) is the
solenoidal closed subspace of Lq(R2). Then there exists a unique solution u(t) of
(NS), which belongs to C([0,∞);Lq

σ(R2)) as well as C∞((0,∞)× R2).

Remark. Since u(t) decays at space infinity in Lq-sense, the relation

p =
∑

i,j=1,2

RiRjuiuj

is automatically fulfilled if (u,∇p) is a solution of (NS).

For initial data u0 ∈ Lq
σ(R2) the first author [G] obtained a unique local-in-time

mild solution u(t) of (NS), which belongs to C([0, T0);Lq
σ(R2)) and C∞((0, T0)×

R2) with 2 ≤ q < ∞. Here T0 satisfies T0 ≥ C||u0||2/(2/q−1)
q with a constant C > 0

independent of u0, where we denote the Lq(R2) norm by || · ||q. This solution,
of course, is a classical solution of (NS) in (0,∞) × R2. Thus as in the proof of
Theorem 1, to prove Theorem 3 it is enough to show the following a priori estimate.

Theorem 4. Let u(t) be a mild solution of (NS). Assume that u and ∇u belong to
C([t0, t0 + T ];Lq

σ) for T > 0, t0 ≥ 0 and 2 ≤ q < ∞. Then there exists a positive
constant C which depends only on q, such that

||u||q(t) ≤ 2||u(t0)||q exp(C||rot u(t0)||qt)
for all t ∈ [t0, t0 + T ].

Proof. Without loss of generality, we may assume that t0 = 0 and u(t0) = u0.
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By (1.2) we have

||u||q(t) ≤ ||et∆u0||q +
∫ t

0

||∇ · (e(t−s)∆P(u(s)⊗ u(s)))||qds.

for t ∈ [0, T ]. It is well-known that the operator P is also a projection operator
of Lr

σ(R2) in Lr(R2) for any 1 < r < ∞. Thus, applying Young’s inequality and
div u = 0 yields

||∇ · (e(t−s)∆P(u(s)⊗ u(s)))||q = ||Pe(t−s)∆(u(s) · ∇)u(s)||q
≤ C||e(t−s)∆(u(s) · ∇)u(s)||q

≤ C

(4π(t− s))1/q
· ||(u(s) · ∇)u(s)||q/2

≤ C

(4π(t− s))1/q
· ||u(s)||q · ||∇u(s)||q

with some positive constant depending only on q. We now employ the Calderón–
Zygmund inequality ||∇f ||r ≤ C||rot f ||r with a constant C > 0 depending only
on 1 < r < ∞ to get

||u||q(t) ≤ ||u0||q +
∫ t

0

C

(t− s)1/q
· ||u(s)||q · ||rot u||qds.

On the other hand, it is easy to see that ||rot u||q(t) ≤ ||rot u0||q using the vorticity
equation (see, eg. [GMO]). Hence we have

||u||q(t) ≤ ||u0||q + C||rot u0||q ·
∫ t

0

1
(t− s)1/q

· ||u(s)||q ds.

By the Gronwall inequality (Lemma 4) we have the desired a priori estimate. ¤

Finally we give some remarks on the n dimensional Navier–Stokes equations
with n ≥ 3;

(NSn)




ut −∆u + (u,∇)u +∇p = 0 in (0, T )× Rn,

div u = 0 in (0, T )× Rn,

u|t=0 = u0 in Rn.

In this case, a unique local-in-time solution which belongs to C([0, T0];Lq(Rn))
with n < q ≤ ∞, has been obtained (see, eg. [GIM] and [G] ). Note that ∇u ∈
C((0, T0];Lq(Rn)) and T0 ≥ C||u0||2/(−1+n/q)

q with a positive constant depending
only on n and q. We state a criterion on a global solvability for the integral
equation (1.2), whose solution is called a mild solution.
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Theorem 5. Assume that n ≥ 3 and n < q ≤ ∞. Let u(t) be a mild solution
u ∈ C([0, T );Lq(Rn)) of (NS). If there exists a positive constant M such that

sup
0≤t<T

||rot u||q(t) ≤ M,

then u(t) can be extended beyond T as a smooth solution with u ∈ C([0, T ];Lq(Rn))
and ∇u ∈ C([0, T ];Lq(Rn))

Here in the case of n ≥ 4 we define a vorticity (matrix) rotu of a vector field
u = (ui)i↓ by

rotu ≡ ∇u− t∇u,

where ∇u = (∂jui)i↓, j→ is a Jacobi matrix and t∇u is its transposed matrix. Then
it is easy to see

(u,∇)u = (∇u)u = (rot u)u + (t∇u)u = (rot u)u +
1
2
∇|u|2.

The proof of this theorem is along in the line for the proofs of Theorems 1 and
3. So we safely omit the proof.

The result in Theorem 5 is by no means optimal but such a criterion on ex-
tendability is not completely included in the classical regularity criteria in the
literature (e.g. [G]).
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