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Abstract. This paper is concerned with the Navier–Stokes flows in the homogeneous spaces of
degree −1, the critical homogeneous spaces in the study of the existence of regular solutions for
the Navier–Stokes equations by means of linearization. In order to narrow the gap for the exis-
tence of small regular solutions in Ḃ−1

∞,∞(Rn)n, the biggest critical homogeneous space among
those embedded in the space of tempered distributions, we study small solutions in the ho-
mogeneous Besov space Ḃ−1+n/p

p,∞ (Rn)n and a homogeneous space defined by M̂n(Rn)n, which
contains the Morrey-type space of measures M̃n(Rn)n appeared in Giga and Miyakawa [20]. The
earlier investigations on the existence of small regular solutions in homogeneous Morrey spaces,
Morrey-type spaces of finite measures, and homogeneous Besov spaces are strengthened. These
results also imply the existence of small forward self-similar solutions to the Navier–Stokes equa-
tions. Finally, we show alternatively the uniqueness of solutions to the Navier–Stokes equations
in the critical homogeneous space C([0,∞);Ln(Rn)n) by applying Giga–Sohr’s Lp(Lq) estimates
on the Stokes problem.
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1. Introduction

Consider the incompressible viscous fluid motion governed by the Navier–Stokes
equations in Rn, n ≥ 2:

∂u/∂t−∆u+∇ · (u⊗ u) +∇π = 0,
∇·u = 0,
u(0) = a

(1)

with unknown velocity u = (u1(t, x), . . . , un(t, x)) and pressure π = π(t, x). Here
∇ = the gradient (∂x1 , . . . , ∂xn) with ∂xi = ∂/∂xi and ∆ = the Laplacian ∇ · ∇.

In order to understand the regular solutions of the Navier–Stokes equations
from the point of view of homogeneity, we will consider problem (1) in homoge-
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neous spaces. In this paper, a normed space Xα(Rn) of functions u(x) defined on
Rn is said to be homogeneous of degree α ∈ R if

‖u(λ·)‖Xα = λα‖u(·)‖Xα for λ > 0, u ∈ Xα(Rn),

and, a normed space Y α(R+ × Rn) of functions u(t, x) defined on the parabolic
domain R+ ×Rn is said to be homogeneous of degree α if

‖u(λ2·, λ·)‖Y α = λα‖u(·, ·)‖Y α for λ > 0, u ∈ Y α(R+ ×Rn).

Moreover, for a point (t, x) ∈ R+ ×Rn and a parabolic ball

Qr(t, x) = {(s, y) ∈ R×Rn| t− r2 < s ≤ t, |x− y| < r}
a local space Y α(Qr(t, x)) centered at (t, x) is said to be homogeneous of degree
α if

lim sup
r→0

‖u(λ2·, λ·)‖Y α(Qr(t,x)) = λα lim sup
r→0

‖u(·, ·)‖Y α(Qr(λ2t,λx)).

The typical homogeneous spaces are the Lebesgue spaces Lq(0,∞;Lp(Rn)) and
Lp(Rn), of which the degrees are −(n/p+ 2/q) and −n/p, respectively.

In this paper we are particularly interested in the homogeneous spaces of degree
−1, due to the scaling invariant property of the Navier–Stokes system. Indeed,
a function u(t, x) solves the Navier–Stokes equations in Eq. (1) for t > 0 if and
only if uλ(t, x) = λu(λ2t, λx) does so too for each given constant λ. Thus, if
u ∈ Y −1(R+ ×Rn), a homogeneous space of degree −1, then

‖u‖Y−1 = ‖uλ‖Y −1 for all λ > 0.

Additionally, since linearization is still one of the key techniques in the regular-
ity theory for the problem (1), it is convenient to establish a priori estimates in
homogeneous spaces for the Stokes equations in Rn, n ≥ 2:

∂u/∂t−∆u+∇π = ∇ · f (f = (fij(t, x))n×n),
∇·u = 0,
u(0) = a.

(2)

Thus for a homogeneous space of degree α, Xα(Rn), it is natural to look for the
homogeneous spaces Y α(R+ ×Rn) and Y α−1(R+×Rn) such that the following a
priori estimate on the Stokes flows holds true

‖u‖Y α ≤ C‖a‖Xα + C‖f‖Y α−1 .

If one shows
‖u⊗ u‖Y α−1 ≤ C‖u‖Y α‖u‖Y−1 ,

then the Navier–Stokes flows are subject to the following sharp estimate in the
homogeneous spaces of degree −1:

‖u‖Y−1 ≤ C‖a‖X−1 + C‖u‖2Y−1 . (3)

Taking the contraction mapping principle into account, we obtain the global ex-
istence and uniquness of solutions when the initial velocity is sufficiently small in
X−1.
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The motivation of this paper is the understanding of the question of know-
ing whether the Navier–Stokes equations are well-posed in Homogeneous Besov
space Ḃ−1

∞,∞(Rn)n. Eq. (3) will be obtained for X−1(Rn) chosen respectively as

the homogeneous Besov spaces Ḃ−1+n/p
p,∞ (Rn)n and a homogeneous space defined

as M̂n(Rn)n which seems “close” to Ḃ−1
∞,∞(Rn)n. In fact, with a slight modifi-

cation, the local regular solutions can be obtained when the initial data are in
homogeneous spaces of degree α with −1 < α ≤ 0. However, generally speaking,
it seems that neither the global existence of regular solutions for initial data in
a single homogeneous space of degree α 6= −1 nor the local existence of regular
solutions for the initial data in a single homogeneous space of degree α < −1
is established. This is, in fact, due to the fact that Eq. (3) with X−1 and Y −1

replaced respectively by Xα and Y α (α 6= 1) is not true. This also suggests that
homogeneous spaces of degree −1 are critical spaces in studying regular solutions
of Navier–Stokes equations.

The mathematical researches on the incompressible Navier–Stokes flows start
from the fundamental paper [27] in 1934, where Leray obtained the existence of
weak solutions of problem (1) satisfying the energy inequality

‖u‖2L∞(0,∞;L2) + ‖∇u‖2L2(0,∞;L2) ≤ ‖a‖2L2
. (4)

However, the homogeneous space involved in this estimate is of degree −n/2 ≤ −1,
where the equality holds only when n = 2. Thus this energy inequality may not
be enough to ensure the regularity of the weak solutions when n ≥ 3. Inspired
by the investigation of Prodi [31], Serrin [33, 34] provided an interior regularity
criterion showing the regularity of the weak solution u to problem (1) when u is
in the homogeneous space of degree −n/p− 2/q > −1:

u ∈ Lq(0,∞;Lp(Rn)n),
n

p
+

2
q
< 1, n < p ≤∞.

This interior regularity result was extended to the critical case −(n/p+2/q) = −1
with 2 < q by Struwe [39] and Takahashi [40, 41], and was extended as a global
regularity result by Fabes et al. [12] in the critical case

u ∈ Lq(0,∞;Lp(Rn)n),
n

p
+

2
q

= 1, n < p <∞.

The first existence result of regular solutions with small initial data in a ho-
mogeneous space of degree −1 is due to Fujita and Kato [15] on an initial bound-
ary value problem for Navier–Stokes equations. Weissler [47] gives a detailed
Lp(Rn+)n theory in Rn+ (half-space) for local solutions. Inspired by Weissler [47],
Kato [24] and Giga–Miyakawa [19] obtained independently the existence of small
Ln-solutions to Eq. (1) such that

‖u(t)‖Ln + t1/2‖u(t)‖L∞ ≤ const. (a ∈ Ln(Rn)n).

Although Giga and Miyakawa [19] dealt with the case of bounded domains, the
theory of [19] applies to whole-space problem in the space Ln(Rn)n and in the
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homogeneous space of Bessel potentials Ḣ−1+n/p
p (Rn)n with n < p <∞.

This result has now been extensively studied and there is a large literature on
the existence of global small regular solutions in some homogeneous spaces of de-
gree −1. In particular, Giga–Miyakawa [20] and Giga–Miyakawa–Osada [21] dealt
with the case that the initial vorticity ∇× a is in the Morrey-type space of mea-
sures M̃n/2(Rn)n. Kato [25] and Taylor [42] deal with the small initial velocity in
the Morrey space Mn(Rn)n and the Morrey–Campanato space Mn,q(Rn)n. Gen-
eralizing a result by Cannone [7], Planchon [30] obtains the existence of regular
solutions in the homogeneous Besov spaces Ḃ−1+n/p

p,∞ (Rn)n ∩ Ḃ−1+n/q
q,∞ (Rn)n with

(n ≤ p < q < ∞). This result is now improved by our Theorem 2.1, stated in
Section 2, which concerns the existence of regular solutions in Ḃ−1+n/p

p,∞ (Rn)n with
n ≤ p <∞. It should be pointed out that our approach to this theorem is different
from those used in ([30]). The existence results from [20, 25, 42] mentioned above
are now covered by the second main result, Theorem 2.2, stated in Section 2, which
gives the existence of a small regular solution when the initial velocity is in the
space M̂n(Rn)n (see Definition 2.2 in Section 2), a space containing M̃n(Rn)n and
Mn(Rn)n. One can also refer to Barraza [3, 4] for the existence of small regular
solutions in the Lorentz space Ln,∞(Rn)n, which is also contained in Mn(Rn)n.

For the local existence of regular solutions with initial velocities in supercritical
homogeneous spaces, we refer to Giga [17] in Lp(Rn)n (n ≤ p < ∞), Giga, Inui
and Matsui [18] in L∞(Rn)n, Federbush [13] in Mp,2(Rn)n (n < p < ∞), and
Cannone [7] and Cannone and Meyer [8] for a general algorithm with respect to
some supercritical homogeneous spaces.

As for the uniqueness of solutions in the critical homogeneous space
C([0,∞);L3(R3)3), one may refer to Furioli, Lemarié-Rieusset and Terraneo [16]
and Lions and Masmoudi [29].

Recently, Amann [1] provided a systematic study on the well-posedness of
Navier–Stokes equations over a domain Ω ⊂ Rn with n ≥ 3 in mainly answer-
ing the question that whether Cannone’s result could be proven for other domains
as well; for example, if Ω is a bounded or an exterior domain (see [1, page 16]). In
particular, he obtained that the Navier–Stokes equations has a unique regular so-
lution on an interval [0, T ) if the initial divergence free velocity is in H−1+n/q

q (Ω)n

and is small in the little Nikol’skii space n−1+n/r
r (Ω)n ( n/3 < q ≤ r < ∞ and

n < r), which denotes the closure of H−1+n/r
r (Ω)n in B

−1+n/r
r,∞ (Ω)n. Here T is

presupposed to be any positive number when Ω is an exterior domain and T =∞
when Ω is a bounded domain. However, the results of [1] do not seem to be
comparable to Theorem 2.2 on the well-posedness in the space M̂n(Rn)n.

On the other hand, the problem on the existence of regular solutions in the
critical homogeneous spaces is closely related to the theory of partial regularity
started by Scheffer in [32], and well developed in [6], where Caffarelli, Kohn and
Nirenberg proved that a suitable weak solution u is regular at the point (t, x) if
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the following local homogeneous norm of degree −1 at (t, x) is sufficiently small:

lim sup
r→0

(
1
r

∫ t+r2

t−r2

∫
|y−x|<r

|∇u|2dyds
)1/2

< ε. (5)

Recently, the proof of the main result of [6] has been simplified by Lin [28]. If u is
a suitable weak solution, Tian and Xin [43] obtain the local L∞ estimate for ∇u
under the assumption of Eq. (5) or any one among the following:

lim sup
r→0

(
1
r3

∫ t

t−r2

∫
|y−x|<r

|u|2dyds
)1/2

<ε and lim sup
r→0

(
1
r

∫
|y−x|<r

|u|2dy
)1/2

<∞,

lim sup
r→0

(
1
r

∫ t

t−r2

∫
|y−x|<r

|∇ × u|2dyds
)1/2

< ε,

lim sup
r→0

(
1
r2

∫ t

t−r2

∫
|y−x|<r

|u|3dyds
)1/3

< ε.

It should be noted that these local Morrey-type norms at the point (t, x) are also
homogeneous of degree −1. Since the linearization for the Navier–Stokes equations
around the point (t, x) is used in [6, 28, 43], similar estimates to Eq. (3) are , in
fact, implicitly obtained for the local homogeneous norms of degree −1 at (t, x) in
arriving the regularity at the point (t, x).

This paper is organized as follows: In Section 2, we state the main results,
Theorems 2.1 and 2.2, which yield respectively the global existence of small regu-
lar solutions to the problem (1) in Ḃ−1+n/p

p,∞ (Rn)n and M̂n(Rn)n respectively. Sec-
tion 3 gives the connections of our results and others by comparing Ḃ−1+n/p

p,∞ (Rn)n

and M̂n(Rn)n with other function spaces. Section 4 collects some basic lemmas.
Section 5 contains a priori estimates for the Stokes problem in homogeneous Besov
spaces, and a variant of the Lp(Lq) estimate for the Stokes problem due to Giga
and Sohr [22]. The main results Theorems 2.1 and 2.2 are proved respectively
in Sections 6 and 7. Section 8 describes the existence of regular small forward
self-similar solutions. The results contained in this section cover the earlier inves-
tigations on the existence of forward self-similar solutions deduced in [3, 20, 9].
Finally, in Section 9, we give a remark on the result due to Furioli, Lemarié-
Rieusset and Terraneo [16] and Lions and Masmoudi [29] on the uniqueness of
solutions of Eq. (1) in C([0,∞);L3(R3)3), a homogeneous space of degree −1. We
shall show that this uniqueness result is an easy consequence of the Giga–Sohr’s
Lp(Lq) estimates on the Stokes flows. For the connection with this problem, we
refer to the limit case of Serrin’s regularity criterion obtained by Sohr and von
Wahl [36] and von Wahl [46] on the uniqueness of solutions both in the critical
homogeneous space C([0,∞);L3(R3)3) and in the subcritical homogeneous spaces
L∞(0,∞;L2(Rn)n) ∩ L2(0,∞; Ḣ1

2 (Rn)n) involved in the energy inequality (4).
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2. Statement of main results

In order to state our main results, we introduce the following notations:

S(Rn) = the Schwartz space of scalar rapidly decreasing functions in C∞(Rn),
S′(Rn) = the space of all tempered distributions on Rn, i.e. the dual of S(Rn),

ht(x) = the heat kernel (4πt)−n/2e−|x|
2/(4t),

et∆ = the heat semigroup such that et∆u = the convolution ht ∗ u on Rn,

P(Rn) = the set of all scalar polynomials defined on Rn,
F = the Fourier transformation on Rn,

(−∆)α = F−1|ξ|2αF , the fractional power of the Laplacian,

P is the Leray projection operator defined by (Pu)i =
n∑
j=1

(δij−∂xi∂xj∆−1)uj ,

‖ · ‖Lp = the norm of the Lebesgue spaces Lp(Rn),
C = a generic constant independent of the quantities u, v, w, f , a, ε, T , τ

and t > 0.

By using the homogeneous counterpart of [45, Theorem 2.12.2] and the lifting
property [45, Theorem 5.2.3/1], one may define the homogeneous Besov spaces in
the following form.

Definition 2.1. For 1 ≤ p, q ≤ ∞ and −∞ < α < ∞, the homogeneous Besov
spaces are defined to be

Ḃαp,q(R
n) =

{
u ∈ S′(Rn)/P(Rn)

∣∣∣ ‖u‖Ḃαp,q <∞}
where

‖u‖Ḃαp,q =



(∫ ∞
0

t(1−α/2)q‖∆et∆u‖qLp
dt

t

)1/q

for 0 < α < 2 (q 6=∞),

sup
t>0

t1−α/2‖∆et∆u‖Lp for 0 < α < 2 (q =∞),

‖(−∆)(α−1)/2u‖Ḃ1
p,q

for others.

This definition ensures the following homogeneous property

‖u(λ·)‖Ḃαp,q = λα−n/p‖u(·)‖Ḃαp,q .

In particular, we have the homogeneous space of degree −1:

Ḃ−1
∞,∞(Rn)n =

{
u ∈ S′(Rn)n

∣∣∣∣ ‖u‖Ḃ−1
∞,∞

= sup
t>0

t1/2‖et∆u‖L∞ <∞
}
.
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It should be mentioned that not only is Ḃ−1
∞,∞(Rn) the biggest critical ho-

mogeneous space, but, as pointed out for instance in Auscher and Tchamitchian
[2] or, in a more general framework, in Frazier, Jawerth and Weiss [14] that any
critical homogeneous space continuously embedded in S′(Rn) is also continuously
embedded into Ḃ−1

∞,∞(Rn).
It is unknown whether there exists a global regular solution if the initial velocity

is in Ḃ−1
∞,∞(Rn) and small. To narrow the gap in the understanding of this problem,

we introduce the following homogeneous spaces of degree −n/p.

Definition 2.2. For 0 < p <∞,

M̂p(Rn)n =
{
u ∈ S′(Rn)n

∣∣∣∣ |u| ∈ S′(Rn), ‖u‖M̂p
= sup

t>0
tn/(2p)‖et∆|u| ‖L∞ <∞

}
.

Among them the homogeneous space of degree −1 is M̂n(Rn), which is contin-
uously imbedded in the space Ḃ−1

∞,∞(Rn).
With the use of the Leray projection operator P , we write Eq. (1) in the integral

form

u(t) = et∆Pa−
∫ t

0
e(t−s)∆P∇ · (u(s)⊗ u(s))ds. (6)

We are now in the position to state the main results of this paper.

Theorem 2.1. Let n ≥ 2, n ≤ p < ∞, 2 − n/p < α < 2, a ∈ Ḃ−1+n/p
p,∞ (Rn)n,

∇ · a = 0, and ‖a‖
Ḃ
−1+n/p
p,∞

≤ ε for some small constant ε = ε(n, p, α) > 0. Then
Eq. (6) admits a unique regular solution satisfying

‖u(t)‖
Ḃ
−1+n/p
p,∞

+ t1/2‖u(t)‖L∞ + tα/2‖u(t)‖
Ḃ
α−1+n/p
p,∞

≤ C‖a‖
Ḃ
−1+n/p
p,∞

.

Theorem 2.2. Let n ≥ 2, 1 < α < 2, a ∈ M̂n(Rn)n, ∇·a = 0 and ‖a‖M̂n
< ε for

some small constant ε = ε(α, n). Then Eq. (6) admits a unique regular solution u
satisfying

‖u(t)‖M̂n
+ t1/2‖u(t)‖L∞ + tα/2‖u(t)‖Ḃα−1

∞,∞
≤ C‖a‖M̂n

.

Remark 2.1. The proof of Theorem 2.2 is based on the following estimate

‖et∆P∇u‖M̂n
≤ Ct−1/2‖u‖M̂n

(u ∈ M̂n(Rn)n ∩ L∞(Rn)n),

which follows from the estimate

‖eτ∆|et∆P∇u| ‖L∞ ≤ Ct−1/2‖eτ∆|u| ‖L∞. (7)

This becomes, when τ = 0,

‖et∆P∇u‖L∞ ≤ Ct−1/2‖u‖L∞. (8)
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It should be mentioned that L∞(Rn)n is a “poor” space, in which the projection
operator P is not bounded, and thus Eqs. (7, 8) are not simple. In fact, Eqs. (7,
8) are based on the following bound shown in Carpio [10]:

‖P∇ht‖L1 ≤ Ct−1/2. (9)

We shall provide alternatively an approach to this bound by developing the tech-
nique of Chen [11] in obtaining the estimate

‖P∇u‖L1 ≤ C
(
‖∇u‖L1 + ‖u‖Ḃε1,∞ + ‖u‖Ḃ1−ε

1,∞

)
u ∈ S(Rn)n

for examining the strong Navier–Stokes solutions in another “poor” space L1(Rn)n.
Moreover, Eq. (8) has been proved in Giga, Inui and Matsui [18] based on Eq. (9)
in the study of the local existence of solutions of Eq. (1) with the initial velocity
in L∞(Rn)n. Shimizu [35] gives the estimates similar to Eq. (8) for the half-space
Stokes flows in L∞(Rn+) and the Hardy space H1(Rn+). One can also refer to
Cannone [7] and Cannone–Meyer [8] for the estimates of et∆P∇u in Lp(R3)3 with
3 < p ≤ ∞ and in the Hölder space Cα(R3)3 with α > 0.

Theorems 2.1 and 2.2 give the existence of small regular solutions of the Navier–
Stokes equations when the initial velocity is in Ḃ

−1+n/p
p,∞ (Rn)n and M̂n(Rn)n re-

spectively. As is mentioned in Section 1, the existence with respect to some other
homogeneous spaces of degree −1 has been studied by many authors, whereas our
results provide additionally the sharp estimates on the homogeneous spaces of de-
gree −1. In next section, we shall describe more precisely on the relations between
Theorems 2.1 and 2.2 and the results in other homogeneous spaces of degree −1.

3. Other function spaces

Let us now introduce some other homogeneous spaces, in which S(Rn) is not
dense, and give the connections of the above theorems and some other known
results concerning those spaces.
• The Lorentz space (1 ≤ p <∞)

Lp,∞(Rn) =
{
u ∈ L1,loc(Rn)

∣∣∣∣ ‖u‖Lp,∞ = sup
E
|E|−1+1/p

∫
E

|u(y)|dy <∞
}

where |E| denotes the Lebesgue measure of E, and the supremum is taken over
all Lebesgue measurable sets of Rn.
• The weak Lebesgue space (1 ≤ ∞)

L∗p(R
n)=

{
u
∣∣∣ u is a measurable function, and sup

r>0
r|{x ∈ Rn| |u(x)|>r}|1/p<∞

}
which equals the Lorentz space Lp,∞(Rn) (see [5]).
• The Morrey space (1 ≤ p <∞)
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Mp(Rn) =

{
u ∈ L1,loc(Rn)

∣∣∣∣∣ ‖u‖Mp = sup
x∈Rn, r>0

rn/p−n
∫
|x−y|<r

|u(y)|dy <∞
}
.

• The Morrey-type space of measures (1 ≤ p <∞)

M̃p(Rn) =
{
u ∈ S′(Rn)

∣∣∣u is a locally finite Radon measure , ‖u‖M̃p
<∞

}
with

‖u‖M̃p
= sup
x∈Rn, r>0

rn/p−n|u|[{y ∈ Rn | |x− y| < r}],

where |u| denotes the total variation of u.
• The Morrey–Campanato space (1 ≤ q < p <∞)

Mp,q(Rn) =
{
u ∈ Lq,loc(Rn)

∣∣ ‖u‖Mp,q <∞
}

with

‖u‖Mp,q = sup
x∈Rn, r>0

rn/p−n/q

(∫
|x−y|<r

|u(y)|qdy
)1/q

.

• The homogeneous Triebel–Lizorkin spaces (1 ≤ p <∞, 1 ≤ q ≤∞, 1 < s <∞,
−∞ < α <∞) (see [45, Section 5])

Ḟαp,q(R
n) =

u ∈ S′(Rn)/P(Rn)

∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
 ∞∑
j=−∞

2αjq|F−1φjFu|q
1/q

∥∥∥∥∥∥∥
Lp

<∞

 ,

Ḟα∞,s(R
n) = the dual space of Ḟ−α1,s/(s−1)(R

n),

where the system {φj}∞j=−∞ ⊂ S(Rn) satisfies the following properties:

suppφj ⊂ {x ∈ Rn| 2j−1 ≤ |x| ≤ 2j+1},
∞∑

j=−∞
φj = 1 in Rn \ {0},

and
2jk|∇kφj(x)| ≤ Ck for all integers j and k and x ∈ Rn.

Let us show that the following homogeneous spaces of degree −1

Ln(Rn), Ln,∞(Rn), Mn,q(Rn), Mn(Rn), M̃n(Rn),

Ḟ−1+n/p
p,∞ (Rn), Ḃ−1+n/p

p,∞ (Rn), M̂n(Rn)

are continuously imbedded in Ḃ−1
∞,∞(Rn).

If we denote by “⊂” the continuous imbedding, it then follows from the defini-
tion that

M̂n(Rn) ⊂ Ḃ−1
∞,∞(Rn).
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Additionally, we have the following inclusion relations.

Ln(Rn) ⊂ Ln,∞(Rn) ⊂Mn,q(Rn) ⊂Mn,1(Rn) = Mn(Rn) ⊂ M̃n(Rn) (1 ≤ q < n),
(10)

Ln,∞(Rn) ⊂ Ḃ−1+n/p
p,∞ (Rn) (n < p <∞), (11)

Ln(Rn) ⊂ Ḟ−1+n/p
p,∞ (Rn) ⊂ Ḃ−1+n/p

p,∞ (Rn) (n ≤ p <∞), (12)

M̃n(Rn) ⊂ M̂n(Rn). (13)

Equation (10) except the second inclusion follows from the definitions, while
Eq. (11) is shown in [30], and Eq. (12) follows from [45, Eq. (2.3.2/9) and Sub-
section 5.2.5], since Ln(Rn) = Ḟ 0

n,2(Rn) (see [45, Remark 2.3.5]). The relation
Ln,∞(Rn) ⊂Mn,q(Rn) is shown in the following.

‖u‖Mn,q ≤ sup
E
|E|1/n−1/q

(∫
E

|u(y)|qdy
)1/q

(u ∈ Ln,∞(Rn) )

=
(

sup
E
|E|q/n−1

∫
E

|u(y)|qdy
)1/q

∼=
(

sup
r>0

r|{x ∈ Rn | |u(x)|q > r}|q/n
)1/q

= sup
r>0

r|{x ∈ Rn | |u(x)| > r}|1/n

∼= ‖u‖Ln,∞.

Finally, Eq. (13) is given from the following.

Proposition 3.1. For 1 ≤ p <∞,

M̃p(Rn) = {u ∈ M̂p(Rn) | u is a locally finite Radon measure}.

Proof. Assuming u ∈ M̃p(Rn), we have, by Fubini’s theorem, that

et∆|u| =
∫
Rn

ht(x− y)|u|(dy)

= (4πt)−n/2
∫
Rn

∫ e−|x−y|
2/(4t)

0
ds|u|(dy)

= (4πt)−n/2
∫ 1

0
|u|[{y ∈ Rn| |x− y| < 2t1/2| ln s|1/2}]ds

≤ Ct−n/(2p)‖u‖M̃p

∫ 1

0
| ln s|(n−n/p)/2ds

≤ Ct−n/(2p)‖u‖M̃p
.
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This gives
‖u‖M̂p

≤ C‖u‖M̃p
.

On the other hand, if u ∈ M̂p(Rn) is a locally finite Radon measure, then

|u|[{y ∈ Rn
∣∣∣ |x− y| < t1/2 }] =

∫
|x−y|<t1/2

|u|(dy)

≤ e1/4(4πt)n/2
∫
|x−y|<t1/2

ht(x− y)|u|(dy)

≤ Ctn/2et∆|u|
≤ Ct(n−n/p)/2‖u‖M̂p

,

which gives the desired estimate. The proof is complete.

Note that Planchon [30] has obtained the existence of small regular solutions
when the initial data

a ∈ Ḃ−1+n/p
p,∞ (R3)3 ∩ Ḃ−1+n/q

q,∞ (R3)3, ‖a‖
Ḃ
−1+3/q
q,∞

< ε (3 ≤ p < q <∞). (14)

As is pointed in [30] that this result covers those concerning the homogeneous
Besov spaces in Cannone [7]. It is clear that Eq. (14) implies the initial condition
imposed in Theorem 2.1. Furthermore, our approach is different from that used
in [30]. As far as Theorem 2.2 is concerned, it should be noted that the global
existence of small regular solutions has been obtained by Kato [25] and Taylor [42]
when the intial velocity a ∈ Mn(Rn)n, and by Giga–Miyakawa–Osada [21] and
Giga–Miyakawa [20] for the initial voticity ∇ × a ∈ M̃n/2(Rn)n. [21] deals with
large solutions in dimension two. It follows from Eqs. (10,13) that these results
in [20, 25, 42] have now been strengthened by Theorem 2.2, since a variant of the
Sobolev imbedding theorem (see [20]) gives

‖a‖M̃n
= ‖∆−1∇× (∇× a)‖M̃n

≤ C‖∇× a‖M̃n/2
,

that is,

{a ∈ S′(Rn)n| ∇ · a = 0, ∇× a ∈ M̃n/2(Rn)n} ⊂ {a ∈ M̃n(Rn)n| ∇ · a = 0}.
It should be mentioned that [20, 21] provide the global existence of regular solutions
with Radon measures as initial vorticity, whereas Theorem 2.2 shows the global
existence of small regular solutions with Radon measures as initial velocity. We
remark that it follows from Eq. (12) and the proof of Theorem 2.1 in Section 6
that instead of the homogeneous Besov space Ḃ−1+n/p

p,∞ (Rn)n, the result parallel to
Theorem 2.1 holds true in the homogeneous Triebel–Lizorkin spaces Ḟ−1+n/p

p,∞ (Rn)n

with n ≤ p <∞. One can also refer to Barraza [3, 4] for global small solutions in
Ln,∞(Rn)n.

We note also that the following divergence free vector fields from [20](
0, − x3

|x|2 ,
x2

|x|2
)
,

(
x3

|x|2 , 0, − x1

|x|2
)

and
(
x2

|x|2 ,
x1

|x|2 , 0
)
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are in the space

L∗3(R3)3 = L3,∞(R3)3 ⊂ B−1+3/p
p,∞ (R3)3 ∩ M̂3(R3)3 (3 < p <∞).

As is well known, a solution u is regular as long as u ∈ L∞(0,∞;L∞(Rn)n), a
homogeneous space of degree 0. Compared with the homogeneous spaces of degree
−1, the homogeneous spaces of degree α with −1 < α ≤ 0 is more “close” to
L∞(0,∞;L∞(Rn)n). One thus may apply the similar approach to show the local
existence result on the homogeneous Besov spaces of degree α with −1 < α ≤ 0,
although from the criterion of linearization, it seems impossible to give a global
existence result when the initial data are only in a homogeneous space of degree
α with −1 < α ≤ 0, no matter how small the initial data are.

Remark 3.1. After the previous version of this paper was submitted for publica-
tion, we learned from a referee that Auscher and Tchamitchian [2] has presented
a general algorithm, developed from [7, 8], on the well-posedness of the Cauchy
problem in homogeneous spaces of degree −1. The theory of [2] seems applicable
to the existence of regular solutions when the initial data are small in the space
Ḃ
−1+n/p
p,∞ (Rn)n (n ≤ p <∞) or M̃n(Rn)n. What is more, we learned from the ref-

eree that Koch and Tataru [26] have obtained the global existence of small regular
solutions with the initial velocities in BMO−1(Rn)n, which equals Ḟ−1

∞,2(Rn)n and
so (see [45])

BMO−1(Rn) ⊂ Ḃ−1
∞,∞(Rn).

Moreover (see [26])

BMO−1(Rn)n ⊃ Ḃ−1+n/p
p,∞ (Rn)n for n ≤ p <∞

and
BMO−1(Rn)n ⊃Mn,q(Rn)n for 1 < q ≤ n.

Thus Theorem 2.1 is strengthened by [26]. However, the spaces M̂n(Rn)n and
BMO−1(Rn)n are different and no inclusion relation between them.

4. Preliminary lemmas

For the reader’s convenience, we state the following known results with respect to
homogeneous Besov spaces.

Lemma 4.1 (see [45, Theorem 5.2.3/1 (i)]). Let −∞ < α, β <∞ and 1 ≤ p, q ≤
∞. Then the operator (−∆)α/2 = F−1|ξ|αF maps Ḃβp,q(R

n) isomorphically onto
Ḃβ+α
p,q (Rn).

Lemma 4.2 (see [45, Theorems 2.4.2, 2.4.7 and Subsection 5.2.5]). Let 0 < θ < 1,
1 ≤ p, q ≤ ∞, −∞ < α < β <∞, and

γ = (1− θ)α + θβ.



164 Z. M. Chen and Z. Xin JMFM

Then (
Ḃαp,∞(Rn), Ḃβp,∞(Rn)

)
θ,q

= Ḃγp,q(R
n)

where and in what follows (·, ·)θ,q denotes the real interpolation functor (see [5,
45]).

It follows from the definition of the Besov spaces, the Sobolev imbedding the-
orem in Lebesgue spaces and the elementary estimate

‖∆et∆u‖L∞ ≤ Ct−n/(2p)‖∆et∆/2u‖Lp
that the following variant of Sobolev’s imbedding theorem holds true.

Lemma 4.3 (see [45, Theorem 2.7.1 and Subsection 5.2.5]). If 1 ≤ p ≤ q ≤ ∞,
1 ≤ s ≤ ∞, −∞ < α ≤ β <∞, and β − n/p = α− n/q, then

‖ · ‖Ḃαq,s ≤ C‖ · ‖Ḃβp,s . (15)

Following result is concerned with a characterization of the norms for the ho-
mogeneous Besov spaces.

Lemma 4.4 (see [45, Theorem 5.2.3]). For 0 < α < 1 and 1 ≤ p ≤ ∞, then

‖u‖Ḃαp,∞
∼= sup

y 6=0

‖u(·+ y)− u(·)‖Lp
|y|α in Ḃαp,∞(Rn).

Next, we state a variant of Mikhlin theorem on Fourier multipliers.

Lemma 4.5 (see [45, Theorem 5.2.2]). Let −∞ < α < ∞, and let φ(x) be a
complex-valued infinitely differentiable function on Rn \ {0} so that

sup
j≤k

sup
x∈Rn

|x|j |∇jφ(x)| <∞

for a sufficiently large positive integer k. Then

‖F−1φFu‖Ḃαp,q ≤ C‖u‖Ḃαp,q (u ∈ Ḃαp,q(Rn), 1 ≤ p, q ≤ ∞).

Finally, we give a variant of the well-known Lp-Lq estimates for the heat semi-
group.

Lemma 4.6. Let 1 ≤ p ≤ q ≤ ∞, 1 ≤ r, s ≤ ∞, −∞ < α ≤ β <∞, and r = s if
n/p− n/q + β − α = 0. Then

‖et∆a‖Ḃβq,s ≤ Ct
−(n/p−n/q+β−α)/2‖a‖Ḃαp,r (a ∈ Ḃαp,r(Rn)). (16)
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Proof. Let γ = β − α+ n/p− n/q. It follows from Lemma 4.3 that

‖et∆a‖Ḃβq,s = ‖et∆a‖
Ḃ
α−n/p+n/q+γ
q,s

≤ C‖e−t∆a‖Ḃα+γ
p,s

.

When γ = 0, this is obviously bounded by C‖a‖Ḃαp,r . When γ 6= 0, we see that,
by Lemma 4.2,

(Ḃαp,r(R
n), Ḃα+γ+1

p,r (Rn))γ/(γ+1),s = Ḃα+γ
p,s (Rn).

Thus the interpolation property (see [45, Proposition 2.4.1]) yields

‖et∆a‖Ḃα+γ
q,s
≤ C‖et∆a‖1−γ/(γ+1)

Ḃαp,r
‖et∆a‖γ/(γ+1)

Ḃα+γ+1
p,r

≤ Ct−γ/2‖a‖Ḃαp,r ,

where one has used the following elementary estimate

‖(−∆)(γ+1)/2et∆a‖Lp ≤ Ct−(γ+1)/2‖a‖Lp.
The proof is complete.

5. Estimates for the Stokes problem

In order to prove the main results, it is convenient to give a priori estimate in
homogeneous Besov spaces for the Stokes equations.

Lemma 5.1. Let 0 < α < 2, 2 ≤ n ≤ p ≤∞, 1 ≤ q ≤ ∞, and

a ∈ S′(Rn)n, f(t) ∈ Ḃα−2+n/p
p,∞ (Rn)n×n.

Then the solution of Eq. (2) in the following integral formulation

u(t) = et∆Pa+
∫ t

0
e(t−s)∆P∇ · f(s)ds

satisfies the estimates

‖u(t)‖
Ḃ
−1+n/p
p,q

≤ C‖a‖
Ḃ
−1+n/p
p,q

+ C sup
0<s<t

sα/2‖f(s)‖
Ḃ
α−2+n/p
p,∞

,

tα/2‖u(t)‖
Ḃ
α−1+n/p
p,∞

≤ C‖a‖
Ḃ
−1+n/p
p,∞

+ C sup
0<s<t

sα/2‖f(s)‖
Ḃ
α−2+n/p
p,∞

,

provided that the right-hand sides of the above inequalities are finite respectively.

Proof. Note that Lemma 4.5 gives

‖Pv‖Ḃαp,q + ‖∇(−∆)−1/2v‖Ḃαp,q ≤ C‖v‖Ḃαp,q (17)

and there holds the following elementary estimate

‖∇ket∆v‖Lp ≤ Ct−k/2‖v‖Lp (k ≥ 0). (18)
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Thus, by Lemma 4.1, we have

‖u(t)− e−tAPa‖
Ḃ
α−1+n/p
p,∞

= sup
τ>0

τ1−(α−1+n/p)/2‖∆eτ∆
∫ t

0
e(t−s)∆P∇ · f(s)ds‖Lp

≤ C sup
τ>0

τ1−(α−1+n/p)/2
∫ t

0
‖∆2e(t−s+τ)∆∆−1P∇ · f(s)‖Lpds

≤ C sup
τ>0

τ1−(α−1+n/p)/2
∫ t

0
(t+ τ − s)−1‖∆e(t+τ−s)∆/2∆−1P∇ · f(s)‖Lpds

≤ C sup
τ>0

τ1−(α−1+n/p)/2
∫ t

0
(t+τ−s)−2+(α−1+n/p)/2‖∆−1P∇·f(s)‖

Ḃ
α−1+n/p
p,∞

ds

≤ C sup
τ>0

τ1−(α−1+n/p)/2
∫ t

0
(t+ τ − s)−2+(α−1+n/p)/2

×‖P (−∆)−1/2∇ · f(s)‖
Ḃ
α−2+n/p
p,∞

ds

≤ C sup
τ>0

τ1−(α−1+n/p)/2
∫ t

0
(t+ τ − s)−2+(α−1+n/p)/2‖f(s)‖

Ḃ
α−2+n/p
p,∞

ds

≤ C sup
τ>0

τ1−(α−1+n/p)/2
(∫ t

t/2
+
∫ t/2

0

)
(t+ τ − s)−2+(α−1+n/p)/2s−α/2ds

× sup
0<s<t

sα/2‖f(s)‖
Ḃ
α−2+n/p
p,∞

≤ C sup
τ>0

τ1−(α−1+n/p)/2t−α/2
∫ t

0
(t+ τ − s)−2+(α−1+n/p)/2ds

× sup
0<s<t

sα/2‖f(s)‖
Ḃ
α−2+n/p
p,∞

+C sup
τ>0

τ1−(α−1+n/p)/2(t+ τ)−2+(α−1+n/p)/2
∫ t

0
s−α/2ds

× sup
0<s<t

sα/2‖f(s)‖
Ḃ
α−2+n/p
p,∞

≤ Ct−α/2 sup
τ>0

∫ t/τ

0
(1 + s)−2+(α−1+n/p)/2ds sup

0<s<t
sα/2‖f(s)‖

Ḃ
α−2+n/p
p,∞

+Ct−α/2 sup
0<s<t

sα/2‖f(s)‖
Ḃ
α−2+n/p
p,∞

≤ Ct−α/2 sup
0<s<t

sα/2‖f(s)‖
Ḃ
α−2+n/p
p,∞

.
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By Eqs. (17, 18) and Lemmas 4.1, 4.6,

‖u(t)− e−tAPa‖
Ḃ
−1+n/p
p,q

≤ C

∫ t

0
‖e(t−s)∆∇ · f(s)‖

Ḃ
−1+n/p
p,q

ds

≤ C

∫ t

0
‖e(t−s)∆f(s)‖

Ḃ
n/p
p,q
ds

≤ C

∫ t

0
(t− s)−1+α/2‖f(s)‖

Ḃ
α−2+n/p
p,∞

ds

≤ C

∫ t

0
(t− s)−1+α/2s−α/2ds sup

0<s<t
sα/2‖f(s)‖

Ḃ
α−2+n/p
p,∞

≤ C sup
0<s<t

sα/2‖f(s)‖
Ḃ
α−2+n/p
r,∞

.

Collecting terms, we arrive at

tα/2‖u(t)‖
Ḃ
α−1+n/p
p,∞

≤ tα/2‖et∆Pa‖
Ḃ
α−1+n/p
p,∞

+ C sup
0<s<t

sα/2‖f(s)‖
Ḃ
α−2+n/p
p,∞

,

‖u(t)‖
Ḃ
−1+n/p
p,q

≤ ‖et∆Pa‖
Ḃ
−1+n/p
p,q

+ C sup
0<s<t

sα/2‖f(s)‖
Ḃ
α−2+n/p
p,∞

.

Consequently, by Lemma 4.6 and Eq. (17), we obtain the desired estimates and
complete the proof.

It should be noted that the estimates in Lemma 5.1 are convenient to be applied
to the existence of regular solutions of Eq. (1) in the class where t1/2‖u(t)‖L∞ is
bounded, but not suitable in the study of uniqueness for the solutions in the class
C([0, T ];Ln(Rn)n). To provide an alternative approach to this problem, we will
give an Lp(Lq) estimate for the Stokes problem, a variant of the estimate from
Giga and Sohr [22], which goes back to the Lp estimate from Solonnikov [37, 38].

Let us recall the estimate of [22].

Lemma 5.2 ([22, Theorem 2.7]). Let 1 < p, q < ∞, T > 0, and f ∈
Lq(0, T ;Lp(Rn)n). Then there exists a unique solution u of the Stokes problem

∂tu−∆u = Pf in Lp(Rn)n for a.e. t ∈ (0, T ),
u(0) = 0 (19)

satisfying the property∫ T

0
‖∆u(s)‖qLpds ≤ C

∫ T

0
‖f(s)‖qLpds.

Applying the operator (−∆)−1/2 to Eq. (19), and using Calderón–Zygmund’s
estimate and Sobolev’s imbedding estimate, we obtain immediately the following
lemma, which will be used in Section 9.
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Lemma 5.3. Let 1 < p, q < ∞, T > 0. The for every f ∈ Lq(0, T ;Lp(Rn)n×n)
there exist a unique solution v = (−∆)−1/2u of the problem

∂tv −∆v = P (−∆)−1/2∇ · f in Lp(Rn)n for a.e. t ∈ (0, T ),
v(0) = 0

satisfying the properties∫ T

0
‖∇u(s)‖qLpds ≤ C

∫ T

0
‖f(s)‖qLpds

and ∫ T

0
‖u(s)‖qLnp/(n−p)

ds ≤ C
∫ T

0
‖f(s)‖qLpds (1 < p < n).

6. Proof of Theorem 2.1

Set

U =
{
u ∈ L∞(0,∞; Ḃ−1+n/p

p,∞ (Rn)n) | ∇ · u = 0, ‖u‖U <∞
}

with
‖u‖U = sup

t>0

(
‖u(t)‖

Ḃ
−1+n/p
p,∞

+ tα/2‖u(t)‖
Ḃ
α−1+n/p
p,∞

)
and

Mu(t) = et∆a−
∫ t

0
e(t−s)∆P∇ · (u(s)⊗ u(s))ds.

It will be shown that M is a contraction operator mapping a ball of U into itself.
Note that, by Lemmas 4.2 and 4.3 and [45, Proposition 2.5.7],

Ḃα−2
p,∞ (Rn)n = (Ḃ−1

p,∞(Rn)n, Ḃα−1
p,∞ (Rn)n)(α−1)/α,∞,

Ḃ0
∞,∞(Rn)n ⊃ L∞(Rn)n ⊃ Ḃ0

∞,1(Rn)n = (Ḃ−1
∞,∞(Rn)n, Ḃα−1

∞,∞(Rn)n)1/α,1,

which contains the space

(Ḃ−1+n/p
p,∞ (Rn)n, Ḃα−1+n/p

p,∞ (Rn)n)1/α,1.

Thus
‖u(t, t1/2·)‖L∞ + ‖u(t, t1/2·)‖

Ḃ
α−2+n/p
p,∞

≤ C(‖u(t, t1/2·)‖
Ḃ
−1+n/p
p,∞

+ ‖u(t, t1/2·)‖
Ḃ
α−1+n/p
p,∞

),

which becomes, after a variable transformation,

t1/2‖u(t)‖L∞ + t(α−1)/2‖u(t)‖
Ḃ
α−2+n/p
p,∞

≤ C(‖u(t)‖
Ḃ
−1+n/p
p,∞

+ tα/2‖u(t)‖
Ḃ
α−1+n/p
p,∞

).
(20)



Vol. 3 (2001) Homogeneity Criterion for the Navier–Stokes Equations 169

Thus with the use of Lemmas 4.4 and 5.1, we have, for u ∈ U ,

‖Mu(t)‖
Ḃ
−1+n/p
p,∞

+ tα/2‖Mu(t)‖
Ḃ
α−1+n/p
p,∞

≤ C‖a‖
Ḃ
−1+n/p
p,∞

+ C sup
0<s<t

sα/2‖u(s)⊗ u(s)‖
Ḃ
α−2+n/p
p,∞

≤ C‖a‖
Ḃ
−1+n/p
p,∞

+ C sup
0<s<t

sα/2‖u(s)‖L∞‖u(s)‖
Ḃ
α−2+n/p
p,∞

≤ C‖a‖
Ḃ
−1+n/p
p,∞

+ C‖u‖2U ,

since 0 < α− 2 + n/p < 1 and n ≤ p <∞.
Likewise, we have

‖Mu−Mv‖U ≤ C(‖u‖U + ‖v‖U)‖u− v‖U for u, v ∈ U.

Since PMu(t) = Mu(t), we have ∇ ·Mu(t) = 0.
Define a complete metric space by

Uε = {u ∈ U | ‖u‖U ≤ ε}.

Then the previous analysis shows that

‖Mu‖U ≤ C‖a‖Ḃ−1+n/p
p,∞

+ Cε‖u‖U for u ∈ Uε,

‖Mu−Mv‖U ≤ Cε‖u− v‖U for u, v ∈ Uε.

As a consequence of the contraction mapping principle, Eq. (6) admits a unique
solution u ∈ Uε, provided that C‖a‖

Ḃ
−1+n/p
p,∞

≤ ε/2 and ε > 0 is sufficiently small.
Obviously u(t) is regular for all t > 0.

The proof of Theorem 2.1 is complete.

7. Proof of Theorem 2.2

Let us begin with the derivation of a crucial estimate by developing a technique
from [11]. However, the estimate in L∞(Rn)n rather than in the space M̂n(Rn)n

has been verified in [18].

Lemma 7.1. For u, v ∈ L∞(Rn)n ∩ M̂n(Rn)n, there holds

‖et∆P∇ · (u⊗ v)‖M̂n
≤ Ct−1/2‖u‖L∞‖v‖M̂n

.

Proof. First, we prove the known estimate, shown in [10],

‖∂xi∂xj∆−1∂xkht‖L1 ≤ Ct−1/2 (i, j, k = 1, . . . , n)

with ht the heat kernel defined in Section 2.
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This can be done alternatively by following the proof of [11, Lemma 2.7]. Set
νi(x) = xi/|x|, ωn = |{x ∈ Rn| |x| ≤ 1}| and

Γ(x− y) =


1

n(2− n)ωn
|x− y|2−n, n > 2,

1
2π

log |x− y|, n = 2,

which is the fundamental solution of the Laplacian equation in the following form:

−∆−1u(x) =
∫
Rn

Γ(x− y)u(y)dy.

Standard potential estimates, see [23, Lemma 4.1], imply that

∂xi∂xj∆
−1∂xkht(x) = ∂xi∂xj

∫
Rn

Γ(x− y)∂ykht(y)dy

= ∂xi

∫
Rn

∂xjΓ(x− y)∂ykht(y)dy.

Moreover, taking a cut off function η ∈ C1(Rn) so that 0 ≤ η ≤ 1, 0 ≤ η′ ≤ 2, and

η(s) =
{

0, for s ≤ 1,
1, for s ≥ 2,

and setting, for ε > 0,

vε =
∫
Rn

η (|x− y|/ε)∂xjΓ(x− y)∂ykht(y)dy,

we have, for λ > 2ε,

∂xivε =
∫
Rn

∂xi
(
η (|x− y|/ε)∂xjΓ(x− y)

)
∂ykht(y)dy

=
∫
|x−y|<λ

∂xi
(
η (|x− y|/ε)∂xjΓ(x− y)

)
∂ykht(y)dy

+
∫
|x−y|>λ

∂xi∂xjΓ(x− y)∂ykht(y)dy

=
∫
|x−y|<λ

∂xi
(
η (|x− y|/ε)∂xjΓ(x− y)

)
(∂ykht(y)− ∂xkht(x))dy

−∂xkht(x)
∫
|x−y|<λ

∂yi
(
η (|x− y|/ε)∂xjΓ(x− y)

)
dy

+
∫
|x−y|>λ

∂xk∂xi∂xjΓ(x− y)ht(y)dy

−
∫
|x−y|=λ

∂xi∂xjΓ(x− y) νk(x− y)ht(y)dy
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=
∫
|x−y|<λ

∂xi
(
η (|x− y|/ε)∂xjΓ(x− y)

)
(∂ykht(y)− ∂xkht(x))dy

−∂xkht(x)
∫
|x−y|=λ

∂xjΓ(x− y)νi(x− y)dy

+
∫
|x−y|>λ

∂xk∂xi∂xjΓ(x− y)(ht(y)− ht(x))dy

−
∫
|x−y|=λ

∂xi∂xjΓ(x− y) νk(x− y)(ht(y)− ht(x))dy.

Passing to the limit as ε→ 0 yields

∂xi∂xj∆
−1∂xkht(x) =

∫
|x−y|>λ

∂xk∂xi∂xjΓ(x− y) (ht(y)− ht(x))dy

+
∫
|x−y|<λ

∂xi∂xjΓ(x− y) (∂xkht(y)− ∂xkht(x))dy

−
∫
|x−y|=λ

∂xi∂xjΓ(x− y) νk(x− y)(ht(y)− ht(x))dy

−∂xkht(x)
∫
|x−y|=λ

∂xjΓ(x− y) νi(x− y)dy.

This together with the simple estimate

|x|2|∇3Γ(x)|+ |x| |∇2Γ(x)| + |∇Γ(x)| ≤ C|x|−n+1

implies, for λ = t1/2,

‖∂xi∂xj∆−1∂xkht‖L1 ≤ C

∫
|y|>t1/2

|y|−n−1‖ht(· − y)− ht(·)‖L1dy

+C
∫
|y|<t1/2

|y|−n‖∇ht(· − y)−∇ht(·)‖L1dy

+C
∫
|y|=t1/2

|y|−n‖ht(· − y)− ht(·)‖L1dy + C‖∇ht‖L1

≤ C

∫
|y|>t1/2

|y|−n−1‖h1(· − t−1/2y)− h1(·)‖L1dy

+Ct−1/2
∫
|y|<t1/2

|y|−n‖∇h1(· − t−1/2y)−∇h1(·)‖L1dy

+Ct−1/2‖h1‖L1 + Ct−1/2‖∇h1‖L1
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≤ Ct−1/4
∫
|y|>t1/2

|y|−n−1/2dy‖h1‖Ḃ1/2
1,∞

+ Ct−1/2‖h1‖L1

+Ct−3/4
∫
|y|<t1/2

|y|−n+1/2dy‖h1‖Ḃ3/2
1,∞

+ Ct−1/2‖∇h1‖L1

≤ Ct−1/2.

Next, observing that the operation with respect to the convolution is commu-
tative, on setting

Gijk,t(x) = (δij − ∂xi∂xj∆−1)∂xkht(x),

one can estimate as, for s > 0,

‖e−s∆|et∆P∇ · (u⊗ v)| ‖L∞

≤
n∑
i=1

n∑
j=1

n∑
k=1

‖hs ∗ |Gijk,t ∗ (ukvj)| ‖L∞

≤
n∑
i=1

n∑
j=1

n∑
k=1

‖hs ∗ |Gijk,t| ∗ |ukvj | ‖L∞

=
n∑
i=1

n∑
j=1

n∑
k=1

‖ |Gijk,t| ∗ hs ∗ |ukvj | ‖L∞

≤
n∑
i=1

n∑
j=1

n∑
k=1

‖Gijk,t‖L1‖hs ∗ |ukvj | ‖L∞

≤

‖∇ht‖L1 +
n∑
i=1

n∑
j=1

n∑
k=1

‖∂xi∂xj∆−1∂xkht‖L1

 ‖es∆|ukvj | ‖L∞
≤ Ct−1/2‖u‖L∞‖es∆|v| ‖L∞ .

This gives

sup
s>0

s1/2‖es∆|et∆P∇ · (u⊗ v)| ‖L∞ ≤ Ct−1/2‖u‖L∞ sup
s>0

s1/2‖es∆|v| ‖L∞ ,

and hence completes the proof.

Proof of Theorem 2.2. Similar to the proof of Theorem 2.1, we set

W =
{
u : [0,∞) 7→ M̂n(Rn)n| ∇ · u = 0, ‖u‖W <∞

}
with

‖u‖W = sup
t>0

(
‖u(t)‖M̂n

+ tα/2‖u(t)‖Ḃα−1
∞,∞

)
.
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Recall that

Mu(t) = et∆a−
∫ t

0
e(t−s)∆P∇ · (u(s)⊗ u(s))ds.

The goal is to show that M is a contraction operator mapping a ball of W into
itself.

Similar argument as for Eq. (20) gives

t(α−1)/2‖v(t)‖Ḃα−2
∞,∞

+ t1/2‖v(t)‖L∞ ≤ C‖v(t)‖Ḃ−1
∞,∞

+ Ctα/2‖v(t)‖Ḃα−1
∞,∞

.

With this observation in mind, we obtain from Lemma 5.1 that

tα/2‖Mu(t)‖Ḃα−1
∞,∞

≤ C‖a‖Ḃ−1
∞,∞

+ C sup
0<s<t

sα/2‖u(s)⊗ u(s)‖Ḃα−2
∞,∞

≤ C‖a‖Ḃ−1
∞,∞

+C sup
0<s<t

s1/2‖u(s)⊗u(s)‖Ḃ−1
∞,∞

+C sup
0<s<t

s(α+1)/2‖u(s)⊗u(s)‖Ḃα−1
∞,∞

≤ C‖a‖M̂n
+ C sup

0<s<t
s1/2‖u(s)⊗u(s)‖M̂n

+C sup
0<s<t

s(α+1)/2‖u(s)⊗ u(s)‖Ḃα−1
∞,∞

≤ C‖a‖M̂n
+C sup

0<s<t
s1/2‖u(s)‖L∞‖u(s)‖M̂n

+C sup
0<s<t

s(α+1)/2‖u(s)‖L∞‖u(s)‖Ḃα−1
∞,∞

≤ C‖a‖M̂n
+ C‖u‖2W .

Moreover, Lemma 7.1 leads to

‖Mu(t)‖M̂n
≤ sup

s>0
s1/2‖et∆es∆|a| ‖L∞ +

∫ t

0
‖e(t−s)∆P∇ · (u(s)⊗ u(s))‖M̂n

ds

≤ C‖a‖M̂n
+ C

∫ t

0
(t− s)−1/2‖u(s)‖M̂n

‖u(s)‖L∞ds

≤ C‖a‖M̂n
+ C‖u‖2W .

Thus
‖Mu‖W ≤ C‖a‖M̂n

+ C‖u‖2W (u ∈W )

and, similarly,

‖Mu−Mv‖W ≤ C(‖u‖W + ‖v‖W )‖u− v‖W (u, v ∈W ).

Obviously, PMu(t) = Mu(t). By the contraction mapping principle, Eq. (6)
admits a unique regular solution in the ball Wε = {u ∈ W | ‖u‖W ≤ ε}, provided
that C‖a‖M̂n

≤ ε/2 for some small constant ε > 0.
The proof of Theorem 2.2 is complete.

From the proof of Theorems 2.1 and 2.2, we obtain the following existence
result of the Navier–Stokes flows with the initial velocities in an abstract critical
homogeneous space.
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Corollary 7.1. Assume 1 < α < 2 and n ≤ p ≤ ∞ such that α + n/p > 2
whenever p 6=∞. Let X and Y be the critical homogeneous spaces such that

X ⊂ Ḃ−1+n/p
p,∞ (Rn)n,

Y = {u ∈ L∞(0,∞;X) | ‖u‖Y <∞}

with

‖u‖Y = sup
t>0
‖u(t)‖X + sup

t>0
t1/2‖u(t)‖L∞ + sup

t>0
tα/2‖u(t)‖

Ḃ
α−1+n/p
p,∞

such that
‖et∆a‖Y ≤ C‖a‖X (a ∈ X), (21)

and, for u, v ∈ Y,∥∥∥∥∫ t

0
e(t−s)∆P∇ · (u⊗ v)ds

∥∥∥∥
X

≤ C(‖u‖Y + ‖v‖Y ) sup
0<s<t

s1/2(‖u(s)‖L∞ + ‖v(s)‖L∞).
(22)

Then for every a ∈ X with ∇ · a = 0, Eq. (6) admits a unique regular solution u
satisfying the persistence property

‖u(t)‖X + tα/2‖u(t)‖
Ḃ
α−1+n/p
p,∞

≤ C‖a‖X

provided ‖a‖X ≤ ε for some small ε.

In particular, we may specify the existence results on the the critical homoge-
neous spaces given by Eqs. (10)–(13) in the following.

Corollary 7.2. Let X be any one of the critical homogeneous spaces

Ln(Rn)n, Ln,∞(Rn)n, Ḟ−1+n/p
p,∞ (Rn)n, Mn(Rn)n, M̃n(Rn)n (2 ≤ n ≤ p <∞).

Then for every a ∈ X with ∇ · a = 0 and ‖a‖X ≤ ε for some small ε, Eq. (6)
admits a unique regular solution u such that

sup
t>0

(
‖u(t)‖X + t1/2‖u(t)‖L∞ + tα/2‖u(t)‖

Ḃ
α−1+n/q
q,∞

)
≤ C‖a‖X

where q = n when X = Ln(Rn)n or Ln,∞(Rn)n, q = p when X = Ḟ
−1+n/p
p,∞ (Rn)n,

and q =∞ for X = Mn(Rn)n or M̃n(Rn)n.

Proof. By Corollary 7.1, it remains to verify the validity of Eqs. (21, 22). Note
that the theory of homogeneous Triebel–Lizorkin spaces is parallel to those of
homogeneous Besov spaces (see [45]). Thus by the proof of Lemma 4.6 and Eq.
(12), one has

‖et∆a‖X + t1/2‖et∆a‖L∞ + tα/2‖et∆a‖
Ḃ
α−1+n/p
p,∞

≤ C‖a‖X
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with X = Ḟ
−1+n/p
p,∞ (Rn)n. For the remaining choice of X , this inequality is well

known. Thus Eq. (21) is valid.
To verify Eq. (22), we apply Eqs. (10–12, 20), Lemmas 4.4, 5.1 and the obser-

vation (see [45, Eqs. (2.3.2/9), (2.3.5/6) and Subsection 5.2.5])

Ln(Rn)n = Ḟ 0
n,2(Rn)n ⊃ Ḃ0

n,2(Rn)n

to obtain, for X = Ln(Rn)n or Ln,∞(Rn)n,∥∥∥∥∫ t

0
e(t−s)∆P∇ · (u(s)⊗ v(s))ds

∥∥∥∥
X

≤
∥∥∥∥∫ t

0
e(t−s)∆P∇ · (u(s)⊗ v(s))ds

∥∥∥∥
Ln

≤ C‖
∫ t

0
e(t−s)∆P∇ · (u(s)⊗ v(s))ds‖Ḃ0

n,2

≤ C sup
t>0

tα/2‖u(t)⊗ v(t)‖Ḃα−1
n,∞

≤ C sup
t>0

tα/2(‖u(t)‖L∞ + ‖v(t)‖L∞)(‖u(t)‖Ḃα−1
n,∞

+ ‖v(t)‖Ḃα−1
n,∞

)

≤ C sup
t>0

t1/2(‖u(t)‖L∞ + ‖v(t)‖L∞)(‖u‖Y + ‖v‖Y ),

for X = Ḟ
−1+n/p
p,∞ (Rn)n,∥∥∥∥∫ t

0
e(t−s)∆P∇ · (u(s)⊗ v(s))ds

∥∥∥∥
X

≤ C

∥∥∥∥∫ t

0
e(t−s)∆P∇ · (u(s)⊗ v(s))ds

∥∥∥∥
Ḃ
−1+n/p
p,p

≤ C sup
t>0

tα/2‖u(t)⊗ v(t)‖
Ḃ
α−2+n/p
p,∞

≤ C sup
t>0

tα/2(‖u(t)‖L∞ + ‖v(t)‖L∞)(‖u(t)‖
Ḃ
α−2+n/p
p,∞

+ ‖v(t)‖
Ḃ
α−2+n/p
p,∞

)

≤ C sup
t>0

t1/2(‖u(t)‖L∞ + ‖v(t)‖L∞)(‖u‖Y + ‖v‖Y ),

and for X = Mn(Rn)n or M̂n(Rn)n, by the proofs of Proposition 3.1 and Lemma
7.1,∥∥∥∥∫ t

0
e(t−s)∆P∇ · (u(s)⊗ v(s))ds

∥∥∥∥
X

≤
∫ t

0
‖e(t−s)∆P∇ · (u(s)⊗ v(s))‖Xds

≤ C

∫ t

0
(t− s)−1/2‖u(s)⊗ v(s)‖Xds

≤ C sup
s>0

s1/2‖u(s)‖L∞‖v(s)‖X

≤ C sup
s>0

s1/2‖u(s)‖L∞‖v‖Y .
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We thus obtain Eq. (22).
The proof is complete.

8. Self-similar solutions

As an easy application of Theorems 2.1 and 2.2, we may give the existence of small
forward self-similar solutions of Eq. (1).

Definition 8.1. u is said to be a forward self-similar solution of Eq. (6) if u solves
Eq. (6) in the sense of distribution and has the scaling invariance:

λu(λ2t, λx) = u(t, x) (x ∈ Rn, t > 0, λ > 0).

This implies u(t, x) =
√
s/t u(s,

√
s/t x) and v(x) = u(s, x) with s > 0 a

constant satisfies, for some pressure π, the steady-state equations

−∆v − 1
2s

(v + (x · ∇)v) +∇ · (v ⊗ v) +∇π = 0,

∇ · v = 0.

Let us formulate a simple result which is implicitly given in [20].

Lemma 8.1. Let X be a metric space of functions defined on Rn, and Y be a
ball centered at the origin of a critical homogeneous space of functions defined on
R+ × Rn. Suppose that for every initial velocity a ∈ X Eq. (6) admits a unique
and global solution u ∈ Y . Then for every initial velocity a ∈ X satisfying the
scaling invariance

λa(λx) = a(x) for all x ∈ Rn, λ > 0, (23)

Eq. (6) admits a unique forward self-similar solution u ∈ Y .

Proof. Let u ∈ Y be the solution of Eq. (6) with the initial velocity a ∈ X satisfying
Eq. (23). By the scaling invariance of Eq. (1), we see that uλ(t, x) = λu(λ2t, λx)
solves Eq. (6) as well. By the assumption on the space Y , we have ‖uλ‖Y = ‖u‖Y ,
and so uλ ∈ Y for all λ > 0. Thus Eq. (23) and the uniqueness assumption imply
uλ = u for all λ > 0.

The proof is complete.

As immediate consequences of this lemma and Theorems 2.1, 2.2, we have the
following results on the existence of self-similar solutions.

Corollary 8.1. Let 2 ≤ n ≤ p <∞, max{1, 2− n/p} < α < 2, and ε > 0 be the
small constant specified by Theorem 2.1. Assume that the initial velocity a is in
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the metric space

X =
{
a ∈ Ḃ−1+n/p

p,∞ (Rn)n| ∇ · a = 0, ‖a‖
Ḃ
−1+n/p
p,∞

≤ ε, a satisfies Eq. (23)
}
.

Then Eq. (6) admits a unique regular forward self-similar solution u in the metric
space

Y =
{
u ∈ L∞(0,∞; Ḃ−1+n/p

p,∞ (Rn)n)
∣∣∣ sup
t>0
‖u(t)‖

Ḃ
−1+n/p
p,∞

+ sup
t>0

tα/2‖u(t)‖
Ḃ
α−1+n/p
p,∞

≤ Cε
}
.

Corollary 8.2. For 1 < α < 2 ≤ n and ε > 0 the small constant specified by
Theorem 2.2, assume the initial velocity

a ∈ X =
{
a ∈ M̂n(Rn)n| ∇ · a = 0, ‖a‖M̂n

≤ ε
}

satisfying Eq. (23). Then Eq. (6) admits a unique regular forward self-similar
solution u ∈ Y defined as{

u ∈ L∞(0,∞; M̂n(Rn)n)
∣∣∣ ‖u(t)‖M̂n

+ tα/2‖u(t)‖Ḃα−1
∞,∞
≤ Cε

}
.

The existence of a small regular forward self-similar solution initiated from
a divergence vector field a satisfying Eq. (23) has been obtained respectively by
Giga and Miyakawa [20] when ∇× a ∈ M̃3/2(R3)3, by Cannone and Planchon [9]
when a ∈ Ḃ0

3,∞(R3)3, and by Barraza [4] when a ∈ L3,∞(R3)3. With the use of
the observations in Section 3, Corollaries 8.1 and 8.2 strengthen those existence
results.

Finally, let us mention that the backward self-similar solutions of Eq. (1) in
the form

u(t, x) =
√

s

T − t v
(√

s

T − t x
)
, 0 < t < T, s > 0

with v subject to the steady-state equations, for some pressure π,

−∆v +
1
2s

(v + (x · ∇)v) +∇ · (v ⊗ v) +∇π = 0,

∇ · v = 0.

The problem on the existence of backward self-similar solutions arises from seeking
a Navier–Stokes flow with a smooth initial velocity developing singularity in a finite
time.

We remark that Tian and Xin [44] obtained that

u(t, x) =
√

s

T − t u0

(√
s

T − t x
)
, (24)
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with

u0(x) =
1
|x|

(
2|x|2 − |x|x1 + 2x2

1

(2|x| − x1)2 ,
x1(2x1 − |x|)
(2|x| − x1)2 ,

x3(2x1 − |x|)
(2|x| − x1)2

)
,

is an exact solution of Eq. (1). This solution is independent of t and is singular
at the point (0, t) for all t. Moreover u ∈ C([0,∞);L3,∞(R3)3), a homogeneous
space of degree −1.

9. A remark on the uniqueness of solutions

In this section we will provide a simple proof for a uniqueness result from Furioli,
Lemarié-Rieusset and Terraneo [16] and Lions and Masmoundi [29].

Theorem 9.1 ([16, 29]). For n ≥ 3, assume that u, v ∈ C([0,∞);Ln(Rn)n) solve
Eq. (6) such that

u(t)− v(t) = −
∫ t

0
e(t−s)∆P∇ · (u(s)⊗ u(s))ds+

∫ t

0
e(t−s)∆P∇ · (v(s)⊗ v(s))ds.

Then u = v.

Proof. As in [29], we use the decomposition u = u1 +u2 and v = v1 +v2 such that,
for a constant T > 0,

‖u1‖C([0,T ];Ln(Rn)n) + ‖v1‖C([0,T ];Ln(Rn)n) < ε,

and
‖u2‖L∞((0,T )×Rn) + ‖v2‖L∞((0,T )×Rn) < Cε.

Let w = u− v,

w1(t) = −
∫ t

0
e(t−s)∆P∇ · (w(s) ⊗ u1(s) + v1(s)⊗ w(s))ds,

and

w2(t) = −
∫ t

0
e(t−s)∆P∇ · (w(s) ⊗ u2(s) + v2(s)⊗ w(s))ds.

This gives, by elementary calculations,

‖w2(t)‖Ln = C

∫ t

0
(t− s)−1/2‖w(s)⊗ u2(s) + v2(s)⊗ w(s)‖Lnds

≤ C

∫ t

0
(t− s)−1/2‖w(s)‖Ln(‖u2(s)‖L∞ + ‖v2(s)‖L∞)ds

≤ Cε

∫ t

0
(t− s)−1/2‖w(s)‖Lnds

≤ Cεt
1/4
(∫ t

0
‖w(s)‖4Lnds

)1/4

,



Vol. 3 (2001) Homogeneity Criterion for the Navier–Stokes Equations 179

and hence, ∫ T

0
‖w2(s)‖4Lnds ≤ CεT

∫ T

0

∫ s

0
‖w(τ)‖4Lndτds. (25)

On the other hand, by Lemma 5.3,∫ T

0
‖w1(s)‖4Lnds ≤ C

∫ T

0
‖w(s)⊗ u1(s) + v1(s)⊗ w(s)‖4Ln/2

ds

≤ C
(
‖u1‖C([0,T ];Ln(Rn)n) + ‖v1‖C([0,T ];Ln(Rn)n)

) ∫ T

0
‖w(s)‖4Lnds

≤ Cε

∫ T

0
‖w(s)‖4Lnds.

This together with Eq. (25) implies,∫ T

0
‖w(s)‖4Lnds ≤ CεT

∫ T

0

∫ s

0
‖w(τ)‖4Lndτds,

provided that ε is sufficiently small. By Gronwall’s inequality we have∫ T

0
‖w(s)‖4Lnds = 0

and so u = v. The proof is complete.

As is known, one may consider the uniqueness of solutions in a larger critical
homogeneous space, for example, C([0,∞);L3,∞(R3)3), which, however, contains
the singular solution u defined by Eq. (24). Thus this space is too large to consider
regular solutions.
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[23] D. Gilbarg, D. and N. S. Trüdinger, Elliptic Partial Differential Equations of Second
Order, Springer, Berlin, 1983.

[24] T. Kato, Strong Lp-solutions of the Navier–Stokes equations in Rn, with applications to
weak solutions, Math. Z. 187 (1984), 471–480.

[25] T. Kato, Strong solutions of the Navier–Stokes equations in Morrey spaces, Bill. Soc.
Brasil. Mat. (N.S.) 22 (1992), 127–155.

[26] H. Koch and D. Tataru, Well posedness of the Navier–Stokes equations, preprint.
[27] J. Leray, Sur le mouvement d’un liquide visquex emplissant l’espace, Acta. Math. 63

(1934), 193–248.
[28] F. Lin, A new proof of the Caffarelli–Kohn–Nirenberg theorem, Comm. Pure Appl. Math.

LI (1998), 241–257.
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Note added to the proof. When this paper was in print, the authors were
notified by a referee that the Cauchy problem with initial data in the homoge-
neous Bessel potentials Ḣ−1+n/p

p (Rn)n is treated by Kato and Ponce [48], and
the Cauchy problem with the initial data in the spaces strictly larger than the
Morrey-type spaces of measures and generalizing the homogeneous Besov spaces
is treated alternatively by Kozono and Yamazaki [49]. Moreover, for completeness,
it is better to provide an example function, in M̂p(Rn) but not in M̃p(Rn), in
showing the former strictly larger than the latter.
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