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Abstract. We show that if v is an axially symmetric suitable weak solution to the Navier–
Stokes equations (in the sense of L. Caffarelli, R. Kohn & L. Nirenberg – see [2]) such that either
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1. Introduction

We suppose that Ω is either R3 or an axially symmetric (about the z axis) bounded
domain in R3 with its boundary ∂Ω of the class C2+µ for some µ > 0. Further,
we suppose that T is a positive number. We denote QT = Ω× ]0, T [ .

We will deal with the Navier–Stokes initial-boundary value problem for a vis-
cous incompressible fluid with the homogeneous Dirichlet-type boundary condi-
tion, which is defined by the Navier–Stokes equation

∂v
∂t

+ (v · ∇)v = f −∇p+ ν∆v in QT , (1)

by the equation of continuity

div v = 0 in QT , (2)

by the boundary condition

v = 0 on ∂Ω× ]0, T [ (3)

and by the initial condition
v|t=0 = v0 (4)
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where v and p denote the unknown velocity and pressure, f is an external body
force and ν > 0 is the viscosity coefficient. We will further suppose for simplicity
that f = 0.

There exist many results on existence, uniqueness and regularity of solutions to
the problem (1)–(4). However, the most important question of existence of strong
solutions (provided that the input data of the problem are sufficiently smooth) is
still open. The existence of a strong solution of the problem (1)–(4) has up to now
been proved only locally in time (see K. K. Kiselev & O. A. Ladyzhenskaya [10],
V. A. Solonnikov [25]) or under the assumption that v0 and f are “small enough”
(see O. A. Ladyzhenskaya [14], J. G. Heywood [8]).

The existence of a weak solution of the problem (1)–(4) was proved by J. Leray
[17] and E. Hopf [9]). Its uniqueness has up to now been proved only in the class
Lr,s(QT )3 with 2/r + 3/s ≤ 1, r ∈ [2,+∞], s ∈ [3,+∞] (see G. Prodi [22], H.
Sohr & W. von Wahl [24], H. Kozono & H. Sohr [11], H. Kozono [12], G. P. Galdi
[6]). Moreover, if the weak solution finds itself in Lr,s(QT )3 with 2/r + 3/s ≤ 1,
r ∈ [2,+∞], s ∈ ]3,+∞] and the input data are “smooth enough” then it is
already a strong solution. (See Y. Giga [7], G. P. Galdi [6].) The question whether
the weak solution which finds itself in L∞,3(QT )3 is a strong solution is still open.

The situation is much simpler in the case of planar (i.e. two-dimensional) flows
where the existence of strong solutions and their uniqueness is known. (See e.g.
J. Leray [17] and O. A. Ladyzhenskaya [13].) There arises a natural question
whether the same also holds for axially symmetric flows. A positive answer is
known if Ω = R3, the external force f as well as the initial velocity v0 are axially
symmetric and the tangential components fθ and v0θ are equal to zero (see O.
A. Ladyzhenskaya [15], M. R. Uchovskii & B. I. Yudovich [26] and S. Leonardi,
J. Málek, J. Nečas & M. Pokorný [16]). The same result can also be proved for
general axially symmetric flows in the case that the axis of symmetry is outside Ω
with a positive distance from Ω (see the note in O. A. Ladyzhenskaya [13]).

The question whether the components of velocity are coupled in such a way
that some information about a higher regularity of one of them already implies the
higher regularity of all of them was studied in the papers of J. Neustupa & P. Penel
[19] and J. Neustupa, A. Novotný & P. Penel [20]. In [19], the authors proved that
if v is a so called suitable weak solution then the essential boundedness of the
cartesian velocity component v3 on a sub-domain D of QT implies the regularity
of all components in D. This result was improved in [20] where the assumption
about the essential boundedness of v3 was replaced by a weaker assumption that
v3 belongs to Lr,s(D) with 2/r + 3/s ≤ 1

2 , r ∈ [4,+∞], s ∈ ]6,+∞].

This paper deals with a similar problem as the mentioned papers [19] and [20],
however we study an axially symmetric flow. We use the Navier–Stokes equations
written in the cylindrical coordinates ρ, θ, z and we show that a higher regularity
of one of the velocity components vρ, vθ implies the regularity of all components.
The main theorems, proved in this paper, say:
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Theorem 1. Let v be an axially symmetric suitable weak solution to the problem
(1)–(4) with f = 0. Suppose that there exists a sub-domain D of QT such that the
radial component vρ of v has its negative part v−ρ in Lr,s(D) for some r ∈ [2,+∞],
s ∈ ]3,+∞], 2/r + 3/s ≤ 1. Then v has no singular points in D.

(The negative part of vρ is defined: v−ρ = max {−vρ; 0}. A function which is
defined a.e. in QT belongs to Lr,s(D) if its product with the characteristic function
of set D belongs to Lr(0, T ; Ls(Ω)).)

Theorem 2. Let v be an axially symmetric suitable weak solution to the problem
(1)–(4) with f = 0. Suppose that there exists a sub-domain D of QT such that the
tangential component vθ of v belongs to Lr,s(D) where

1. either s ∈ [6,+∞], r ∈ [20/7, +∞] and 2/r + 3/s ≤ 7/10
2. or s ∈ ]24/5, 6[ , r ∈ ]10,+∞] and 2/r + 3/s ≤ 1− 9/(5s).

Then v has no singular points in D.

2. Auxiliary results

A point (x, t) ∈ QT is called a regular point of the weak solution v if there exists
a neighbourhood U of (x, t) in QT such that v ∈ L∞(U)3. Points of QT which
are not regular are called singular. Let us denote by S(v) the set of all singular
points of v. It is obvious that S(v) is closed in QT .

The notion of a suitable weak solution was introduced by L. Caffarelli, R. Kohn
& L. Nirenberg in [2]. A weak solution v of the problem (1)–(4) (with f = 0) is
called a suitable weak solution if an associated pressure p belongs to L5/4(QT ) and
if the pair (v; p) satisfies the so called generalized energy inequality

2ν
∫ T

0

∫
Ω
|∇v|2 φ dxdt ≤

∫ T

0

∫
Ω

[
|v|2

(
∂φ

∂t
+ ν∆φ

)
+ (|v|2 + 2p) v · ∇φ

]
dx dt

for every infinitely differentiable function φ on QT with a compact support in QT .
L. Caffarelli, R. Kohn & L. Nirenberg [2] proved the existence of a suitable weak
solution of the problem (1)–(4) (with f = 0) under the assumption that the initial
velocity v0 is in L2

σ(Ω)3 and if Ω is bounded, then it is also in W 2/5,5/4(Ω)3 (the
space of vector functions whose components have fractional derivatives up to the
order 2

5 in L5/4(Ω)3). Moreover, it is also proved in [2] that if v is a suitable weak
solution of the problem (1)–(4) then its singular set S(v) has the 1-dimensional
parabolic measure equal to zero. The parabolic measure dominates the Hausdorff
measure and so this result implies that the 1-dimensional Hausdorff measure of
S(v) equals zero. A new proof of the same result was later published by F. Lin
in [18] and the result was recently improved by L. H. Choe & J. Lewis, who have
shown that the Hausdorff dimension of S(v) is strictly less than one. (See [3].)
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Suppose that v is an axially symmetric suitable weak solution of the problem
(1)–(4) with f = 0 and p is an associated pressure. It means that neither v nor p
depend on the angular cylindrical coordinate θ. It also implies that domain Ω is a
circular domain whose axis is the z-axis. Suppose that D is a sub-domain of QT
where one of the components vρ or vθ of v has a higher regularity – see Theorem 1
or Theorem 2. Particularly, D can be equal to the whole time-space cylinder QT .
Due to the axial symmetry of v, we can assume without loss of generality that D
is also axially symmetric about the z-axis.

It follows e.g. from the works of J. Heywood [8] and C. Foias & R. Temam
[4] that the weak solution v can be redefined on a set of measure zero in QT so
that it can have singular points in D only in a set G of instants of time in the
interval ]0, T [ such that the 1

2 -dimensional Hausdorff measure of G is finite and
the complement of G in ]0, T [ is a set of at most countably many disjoint open
intervals ]aγ , bγ [ ; γ ∈ Γ. Functions v and p are (after a suitable redefinition on a
set of measure zero in QT ) infinitely differentiable and satisfy equations (1) and
(2) in a classical sense on each of the time intervals ]aγ , bγ [ . We suppose that
the suitable weak solution v we deal with has already been redefined on a set of
measure zero so that it has the properties mentioned above. We will call the time
instants bγ such that v has a singularity in D at time bγ D-epochs of irregularity.

We will further suppose that t0 is a D-epoch of irregularity (i.e. t0 = bγ for
some γ ∈ Γ) and (x0, t0) is a singular point of v in D. We will show that this
assumption is in contradiction with the assumptions of Theorem 1 (respectively
Theorem 2) in Section 3 (respectively in Section 4).

Due to the axial symmetry of v about the z-axis, x0 lays on the z-axis. Oth-
erwise the singular set S(v) would contain a circle consisting of all points (x, t)
such that t = t0 and x is any point on the circle which arises if x0 revolves about
the z-axis. However, it would be a contradiction with the results of L. Caffarelli,
R. Kohn & L. Nirenberg [2], F. Lin [18] and L. H. Choe & J. Lewis [3] about the
1-dimensional Hausdorff measure of S(v).

Lemma 1. There exist positive numbers τ , R1, R2 such that R1 < R2 and
1. τ is so small that aγ < bγ − τ = t0 − τ ,
2. BR2(x0)× [t0 − τ, t0 + τ ] ⊂ D,
3.
{(
BR2(x0)− BR1(x0)

)
× [t0 − τ, t0 + τ ]

}
∩ S(v) = ∅,

4. v, ∂v/∂t and p are, together with all their space derivatives, continuous on(
BR2(x0)−BR1(x0)

)
× [t0 − τ, t0 + τ ].

BR1(x0) and BR2(x0) denote open balls in R3 with the center x0 and radii R1,
R2. The proof of Lemma 1 can be found in [19]. It uses essentially the fact that
the 1-dimensional Hausdorff measure of S(v) is equal to zero. Since this result is
not generally known for any weak solution of the problem (1)–(4) and is known
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to hold only for a suitable weak solution, we deal with a suitable weak solution in
this paper.

Let us further denote for simplicity B1 = BR1(x0) and B2 = BR2(x0). Let us
remind that x0 lays on the z-axis. Put R3 = (2R1 + R2)/3, R4 = (R1 + 2R2)/3
and B3 = BR3(x0), B4 = BR4(x0). Suppose that η is an infinitely differentiable
axially symmetric function on R3 such that its values are in the interval [0, 1],
η = 0 on R3 −B4 and η = 1 on B3.

We will also denote by ‖ . ‖k the norm in Lk(B2) (or in Lk(B2)n for some n ∈ N)
and by ||| . |||l,k the norm in Ll(t0 − τ, t0; Lk(B2)) (or in Ll(t0 − τ, t0; Lk(B2)n)).

The restrictions of functions defined a.e. in QT to subsets of QT will be denoted
by the same letters. Thus, for example, v ∈ L∞(t0 − τ, t0; W 1,2(B2)3) is the
statement about the restriction of v to B2 × ]t0 − τ, t0 [ .

Further, if w is a vector function then we will denote by w1, w2, w3 its cartesian
components and by wρ, wθ and wz its cylindrical components. The relations
between these components are well known:

wρ = w1 cos θ + w2 sin θ (5)
wθ = −w1 sin θ + w2 cos θ (6)
wz = w3 . (7)

We will also denote by Dw the tensor
(
∂wi
∂xj

)
i, j=1,2,3

.

Lemma 2. To each q ∈]1,+∞[ there exists c1(q) > 0 such that

‖Dw‖q ≤ c1(q)
(
‖curl w‖q + ‖div w‖q

)
(8)

for every vector function w ∈W 1,q
0 (B2)3.

Proof. We can extend w by zero to the vector function in R3 and then we can use
the Fourier transform and the Marcinkiewicz multiplier theorem. �

Lemma 3. To each q ∈ ]1,+∞[ there exists c2(q) > 0 such that

‖∇wρ‖q +
∥∥∥∥wρρ

∥∥∥∥
q

≤ c2(q) ‖(curl w)θ‖q (9)

for every axially symmetric divergence-free vector function w ∈W 1,q
0 (B2)3.

Proof. Since wθ does not appear in estimate (9), we can assume without loss of
generality that wθ = 0. Differentiating equation (6) with respect to ρ and z and
using the formula

∂

∂ρ
= cos θ

∂

∂x1
+ sin θ

∂

∂x2
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which follows from the relation between the cylindrical coordinates ρ, θ, z and the
cartesian coordinates x1, x2, x3, we obtain:

∂wρ
∂ρ

=
∂w1

∂x1
cos2 θ +

(
∂w1

∂x2
+
∂w2

∂x1

)
cos θ sin θ +

∂w2

∂x2
sin2 θ (10)

∂wρ
∂z

=
∂w1

∂x3
cos θ +

∂w2

∂x3
sin θ . (11)

The equation of continuity div w = 0 in the cylindrical coordinates has the form

∂wρ
∂ρ

+
wρ
ρ

+
∂wz
∂z

= 0. (12)

Thus, we also have:

wρ
ρ

= − ∂wρ
∂ρ
− ∂wz

∂z
= − ∂wρ

∂ρ
+
∂w1

∂x1
+
∂w2

∂x2

=
∂w1

∂x1
sin2 θ −

(
∂w1

∂x2
+
∂w2

∂x1

)
cos θ sin θ +

∂w2

∂x2
cos2 θ . (13)

Estimate (9) now easily follows from (10), (11), (13), Lemma 2 and the fact that
all components of curl w except for the component (curl w)θ are equal to zero. �

We will now localize equations (1) and (2) to the ball B2 in the space variables.
We put u = ηv −V where V is an axially symmetric function whose divergence
is the same as the divergence of ηv. Then we will have div u = 0. The existence
of an appropriate function V is given by the following lemma:

Lemma 4. There exists a linear operator R from L2(B2) into W 1,2
0 (B2)3 with the

properties:
1. divRf = f for all f ∈ L2(B2) such that

∫
B2
f dx = 0

2. To each m ∈ N ∪ {0} there exists c3 > 0 such that ‖∇m+1Rf‖2 ≤ c3 ‖∇mf‖2
for all f ∈Wm,2

0 (B2).
3. If f is axially symmetric then Rf is also axially symmetric.
4. If f has a compact support in B2 −B1 then Rf has also a compact support in
B2 −B1.

Items 1 and 2 of Lemma 4 follow from G. P. Galdi [5], Theorem 3.2, Chap. III.3
and from W. Borchers & H. Sohr [1], Theorem 2.4. Item 3 is an easy consequence
of the fact that domain B2 is axially symmetric. Item 4 follows from the way how
Rf can be constructed – see W. Borchers & H. Sohr [1], pp. 73–76, for details.
(In fact, we use the construction from [1] on B2 −B1 and we extend the obtained
function by zero to B1.) We put V(. , t) = R(v(. , t) · ∇η). Since∫

B2

v · ∇η dx =
∫
B2

div (ηv) dx =
∫
∂B2

ηv · n dS = 0
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(where n is an outer normal vector to ∂B2), we have div V = v · ∇η in B2 × [t0 −
τ, t0 + τ ]. It follows also from item 2 of Lemma 4 and the smoothness of v on
supp (∇η)× [t0−τ, t0+τ ] (see item 4 of Lemma 1) that V and ∂V/∂t are, together
with all their space derivatives, continuous on B2× [t0− τ, t0 + τ ]. Moreover, since
v(. , t) · ∇η has a compact support in B2 − B1, V(. , t) has a compact support in
B2 −B1, too.

It can be verified that u satisfies in a classical sense the equations

∂u
∂t

+ (u · ∇)u = h−∇(η p) + ν∆u (14)

div u = 0 (15)

where
h = − ∂V

∂t
− (ηv · ∇)V − (V · ∇)(ηv) + (V · ∇)V + (ηv · ∇η)v

− η (1− η) (v · ∇)v − 2ν (∇η · ∇)v − ν v ∆η + ν∆V + p∇η

on B2 × ]t0 − τ, t0 [ . It also satisfies the boundary condition

u = 0 (16)

on ∂B2 × ]t0 − τ, t0 [ . Since η v(. , t) and V(. , t) have a compact support in B2
for all t ∈ ]t0 − τ, t0 [ , u has all derivatives equal to zero on ∂B2 × ]t0 − τ, t0 [ .
Function h and all its space derivatives are continuous on B2 × [t0 − τ, t0 + τ ].

The cylindrical components of u will be denoted by uρ, uθ and uz. It is obvious
that u−ρ ∈ Lr,s(B2) for r ∈ [2,+∞], s ∈ ]3,+∞], 2/r + 3/s ≤ 1 in the situation
assumed in Theorem 1 and uθ satisfies the same assumptions as vθ in the case of
Theorem 2.

3. Proof of Theorem 1

Equation (14) can be written as a system of the following three equations in the
cylindrical coordinates ρ, θ, z:

∂uρ
∂t

+uρ
∂uρ
∂ρ

+uz
∂uρ
∂z
− 1
ρ
u2
θ+

∂(ηp)
∂ρ

= hρ+ν
[

1
ρ

∂

∂ρ

(
ρ
∂uρ
∂ρ

)
+
∂2uρ
∂z2 −

uρ
ρ2

]
(17)

∂uθ
∂t

+uρ
∂uθ
∂ρ

+uz
∂uθ
∂z

+
1
ρ
uθuρ = hθ+ν

[
1
ρ

∂

∂ρ

(
ρ
∂uθ
∂ρ

)
+
∂2uθ
∂z2 −

uθ
ρ2

]
(18)

∂uz
∂t

+uρ
∂uz
∂ρ

+uz
∂uz
∂z

+
∂(ηp)
∂z

= hz+ν
[

1
ρ

∂

∂ρ

(
ρ
∂uz
∂ρ

)
+
∂2uz
∂z2

]
. (19)

We remind that the equation of continuity in the cylindrical coordinates is

∂uρ
∂ρ

+
uρ
ρ

+
∂uz
∂z

= 0. (20)
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Put ωω = curl u and g = curl h. The cylindrical components of ωω (respectively g)
will be denoted ωρ, ωθ and ωz (respectively gρ, gθ and gz). Thus,

ωρ = −∂uθ
∂z

, ωθ =
∂uρ
∂z
− ∂uz

∂ρ
, ωz =

1
ρ

∂(ρuθ)
∂ρ

. (21)

Applying operator curl to equation (14), we obtain a vector equation for ωω. It is
equivalent to the system

∂ωρ
∂t

+ uρ
∂ωρ
∂ρ

+ uz
∂ωρ
∂z
− ∂uρ

∂ρ
ωρ −

∂uρ
∂z

ωz

= gρ + ν

[
1
ρ

∂

∂ρ

(
ρ
∂ωρ
∂ρ

)
+
∂2ωρ
∂z2 −

ωρ
ρ2

]
(22)

∂ωθ
∂t

+ uρ
∂ωθ
∂ρ

+ uz
∂ωθ
∂z
− uρ

ρ
ωθ − 2

uθ
ρ
ωρ

= gθ + ν

[
1
ρ

∂

∂ρ

(
ρ
∂ωθ
∂ρ

)
+
∂2ωθ
∂z2 −

ωθ
ρ2

]
(23)

∂ωz
∂t

+ uρ
∂ωz
∂ρ

+ uz
∂ωz
∂z
− ∂uz

∂ρ
ωρ −

∂uz
∂z

ωz

= gz + ν

[
1
ρ

∂

∂ρ

(
ρ
∂ωz
∂ρ

)
+
∂2ωz
∂z2

]
(24)

Step 1. Assume that q is an even natural number and t ∈ ]t0 − τ, t0 [ . Let us
multiply equation (18) by uq−1

θ and integrate over B2. In order to keep a simple
notation, we will shortly write∫

B2

. . . instead of
∫
B2

. . . ρ dρ dθ dz.

If we also apply the integration by parts with respect to ρ and z and use equation
(20), we obtain:

d

dt

1
q

∫
B2

uqθ +
∫
B2

uρ
1
q

∂uqθ
∂ρ

+
∫
B2

uz
1
q

∂uqθ
∂z

+
∫
B2

uρ
ρ
uqθ

+ ν

∫
B2

(q − 1)
[(

∂uθ
∂ρ

)2

+
(
∂uθ
∂z

)2]
uq−2
θ + ν

∫
B2

uqθ
ρ2 =

∫
B2

hθ u
q−1
θ ,

d

dt

1
q
‖uθ‖qq +

∫
B2

uρ
ρ
uqθ + ν

∫
B2

q − 1
(q/2)2

[(
∂u

q/2
θ

∂ρ

)2

+
(
∂u

q/2
θ

∂z

)2]
+ ν

∫
B2

uqθ
ρ2

≤
∫
B2

uqθ +
(
q − 1
q

)q−1 1
q

∫
B2

hqθ,
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d

dt
‖uθ‖qq +

4(q − 1)
q

ν

∫
B2

[(
∂u

q/2
θ

∂ρ

)2

+
(
∂u

q/2
θ

∂z

)2]
+ νq

∫
B2

uqθ
ρ2

≤ q

∫
B2

u−ρ
ρ
uqθ + q‖uθ‖qq + ‖hθ‖qq. (25)

The first integral on the right-hand side can be estimated as follows:∫
B2

u−ρ
ρ
uqθ ≤ δ1

∫
B2

uqθ
ρ2 +

1
4δ1

∫
B2

(u−ρ )2uqθ

≤ δ1
∫
B2

uqθ
ρ2 +

1
4δ1

(∫
B2

(u−ρ )s
)2/s(∫

B2

|uθ|
sq
s−2

) s−2
s

≤ δ1
∫
B2

uqθ
ρ2 +

1
4δ1
‖u−ρ ‖2s‖uθ‖

q s−3
s

q ‖uθ‖3q/s3q

≤ δ1
∫
B2

uqθ
ρ2 + δ2‖uθ‖q3q + c4‖u−ρ ‖

2s
s−3
s ‖uθ‖qq

≤ δ1
∫
B2

uqθ
ρ2 + c5δ2

∫
B2

[(
∂u

q/2
θ

∂ρ

)2

+
(
∂u

q/2
θ

∂z

)2]
+ c4‖u−ρ ‖

2s
s−3
s ‖uθ‖qq

where

c4 =
s− 3
s

(
3
sδ2

) 3
s−3
(

1
4δ1

) s
s−3

.

(We have used the Young inequality

ab ≤ δ2 a
α +

α− 1
α

(
1
αδ2

) 1
α−1

b
α
α−1

which holds for all a ≥ 0, b ≥ 0, δ2 > 0 and α > 1.) Substituting these estimates
into (25), we obtain the inequality

d

dt
‖uθ‖qq +

(
4(q − 1)

q
ν − c5δ2q

)∫
B2

[(
∂u

q/2
θ

∂ρ

)2

+
(
∂u

q/2
θ

∂z

)2]
+ (ν − δ1)q

∫
B2

uqθ
ρ2

≤ c4q‖u−ρ ‖
2s
s−3
s ‖uθ‖qq + q‖uθ‖qq + ‖hθ‖qq.

Choosing δ1 = ν and δ2 = 4ν(q − 1)/c5q2, we get:

c4 =
s− 3
s

(
1
4ν

) s+3
s−3
(

3c5
s

) 3
s−3
(

q2

q − 1

) 3
s−3

and
d

dt
‖uθ‖qq ≤ q c6(t, q) ‖uθ‖qq + ‖hθ‖qq (26)

where
c6(t, q) = c4 ‖u−ρ (. , t)‖

2s
s−3
s + 1.
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Integrating inequality (26) with respect to t from t0 − τ to t, we obtain:

‖uθ(. , t)‖qq ≤ e
∫ tt0−τqc6(σ,q)dσ‖uθ(. , t0 − τ)‖qq +

∫ t

t0−τ
e∫

t

ξqc6(σ,q)dσ‖hθ(. , ξ)‖qqdξ,

‖uθ(. , t)‖q ≤ e∫
t0
t0−τ

c6(σ,q)dσ
[
‖uθ(. , t0 − τ)‖q + τ1/q |||hθ|||∞,∞

]
.

Due to our assumption about uρ, c6(. , q) is integrable on the time interval
]t0 − τ, t0 [ . Hence

|||uθ|||∞,q ≤ c7(q) < +∞ for each q ∈ N. (27)

Thus, we can observe that uθ satisfies assumptions of Theorem 2. However, we
cannot simply finish the proof of Theorem 1 on this place and refer to Theorem
2. It would be a logical loop because some estimates we will still derive in this
section and use in order to complete the proof of Theorem 1 will also be used in
the proof of Theorem 2.

Step 2. Let 0 < ε < 1 and let us multiply equation (23) by ωθ/ρ2−ε and integrate
over B2. If we also apply integration by parts and use equation (12), we obtain:

d

dt

1
2

∫
B2

ω2
θ

ρ2−ε +
1
2

∫
B2

uρ
ρ2−ε

∂ω2
θ

∂ρ
+

1
2

∫
B2

uz
ρ2−ε

∂ω2
θ

∂z
−
∫
B2

uρ
ρ3−εω

2
θ−2

∫
B2

uθ
ρ3−εωρωθ

=
∫
B2

gθ
ωθ
ρ2−ε + ν

∫
B2

ωθ
ρ2−ε

∂2ωθ
∂ρ2 + ν

∫
B2

ωθ
ρ2−ε

∂2ωθ
∂z2 + ν

∫
B2

ωθ
ρ3−ε

∂ωθ
∂ρ
−ν
∫
B2

ω2
θ

ρ4−ε

d

dt

1
2

∫
B2

ω2
θ

ρ2−ε + ν

∫
B2

1
ρ2−ε

[(
∂ωθ
∂ρ

)2

+
(
∂ωθ
∂z

)2]
= ε

∫
B2

uρ
ω2
θ

ρ3−ε +
∫
B2

2uθ
ρ3−εωρωθ + ν

[
(2− ε)2

2
− 1
]∫

B2

ω2
θ

ρ4−ε +
∫
B2

gθ
ωθ
ρ2−ε . (28)

The axial symmetry of the flow implies that ωθ, uρ and uρ behave like O(ρ) as
ρ → 0+ and so the presence of parameter ε assures the convergence of the above
integrals. The terms on the right-hand side of (28) can be rewritten or estimated
in this way: ∫

B2

2uθ
ρ3−εωρ ωθ = −

∫
B2

2uθ
ρ3−ε

∂uθ
∂z

ωθ

=
∫
B2

u2
θ

ρ3−ε
∂ωθ
∂z

≤ ν

2

∫
B2

1
ρ2−ε

(
∂ωθ
∂z

)2

+
1
2ν

∫
B2

u4
θ

ρ4−ε ,∫
B2

1
ρ2−ε

(
∂ωθ
∂ρ

)2

=
(1− ε)(2− ε)

2

∫
B2

ω2
θ

ρ4−ε +
∫
B2

[
∂

∂ρ

(
ωθ
ρ1−ε

)]2 1
ρε
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and∫
B2

gθ
ωθ
ρ2−ε ≤

(∫
B2

∣∣∣∣ ωθρ1−ε

∣∣∣∣6)1/6(∫
B2

∣∣∣∣gθρ
∣∣∣∣6/5)5/6

≤ c8
[∫

B2

∣∣∣∣∇( ωθ
ρ1−ε

)∣∣∣∣2]1/2

≤ c9
[∫

B2

∣∣∣∣∇( ωθ
ρ1−ε

)∣∣∣∣2 1
ρε

]1/2

≤ ν

4

∫
B2

∣∣∣∣∇( ωθ
ρ1−ε

)∣∣∣∣2 1
ρε

+ c10.

Substituting these equalities and estimates to (28), we can obtain:

d

dt

1
2

∫
B2

ω2
θ

ρ2−ε +
ν

4

∫
B2

{[
∂

∂ρ

(
ωθ
ρ1−ε

)]2

+
[
∂

∂z

(
ωθ
ρ1−ε

)]2} 1
ρε

≤ ε
∫
B2

|uρ|
ω2
θ

ρ3−ε + r +
1
2ν

∫
B2

u4
θ

ρ4−ε + c10

≤ ε
∫
B2

|uρ|
ω2
θ

ρ3 R
ε
2 +

1
2ν

∫
B2

u4
θ

ρ4R
ε
2 + c10.

(Remind that R2 is the radius of ball B2.) Passing now to zero with ε, we get

d

dt

1
2

∫
B2

ω2
θ

ρ2 +
ν

4

∫
B2

{[
∂

∂ρ

(
ωθ
ρ

)]2

+
[
∂

∂z

(
ωθ
ρ

)]2}
≤ 1

2ν

∫
B2

u4
θ

ρ4 + c10. (29)

Step 3. In order to estimate the integral on the right-hand side of (29), we mul-
tiply equation (18) by u3

θ/ρ
2 and integrate over B2. We obtain:

d

dt

1
4

∫
B2

u4
θ

ρ2 dx+
∫
B2

uρ
u3
θ

ρ2

∂uθ
∂ρ

+
∫
B2

uz
u3
θ

ρ2

∂uθ
∂z

+
∫
B2

u4
θ

ρ3 uρ

=
∫
B2

hθ
u3
θ

ρ2 + ν

∫
B2

u3
θ

ρ3

∂

∂ρ

(
ρ
∂uθ
∂ρ

)
+ ν

∫
B2

u3
θ

ρ2

∂2uθ
∂z2 dx− ν

∫
B2

u4
θ

ρ4 ,

d

dt

1
4

∫
B2

u4
θ

ρ2 dx−
∫
B2

∂uρ
∂ρ

u4
θ

4ρ2 +
∫
B2

uρu
4
θ

4ρ3 −
∫
B2

∂uz
∂z

u4
θ

4ρ2 +
∫
B2

uρu
4
θ

ρ3

=
∫
B2

hθ
u3
θ

ρ2 − 3ν
∫
B2

u2
θ

ρ2

(
∂uθ
∂ρ

)2

+ ν

∫
B2

u4
θ

ρ4 − 3ν
∫
B2

u2
θ

ρ2

(
∂uθ
∂z

)2

− ν
∫
B2

u4
θ

ρ4 ,

d

dt

1
4

∫
B2

u4
θ

ρ2 +
3
2

∫
B2

uρu
4
θ

ρ3 +
3ν
4

∫
B2

1
ρ2

[(
∂u2

θ

∂ρ

)2

+
(
∂u2

θ

∂z

)2]
=
∫
B2

hθ
u3
θ

ρ2 .

Since

3ν
4

∫
B2

1
ρ2

(
∂u2

θ

∂ρ

)2

=
3ν
4

∫
B2

[
∂

∂ρ

(
u2
θ

ρ

)]2

+
3ν
4

∫
B2

u4
θ

ρ4 ,
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we obtain

d

dt

1
4

∫
B2

u4
θ

ρ2 +
3ν
4

∫
B2

{[
∂

∂ρ

(
u2
θ

ρ

)]2

+
[
∂

∂z

(
u2
θ

ρ

)]2}
+

3ν
4

∫
B2

u4
θ

ρ4

= −3
2

∫
B2

uρu
4
θ

ρ3 +
∫
B2

hθ
u3
θ

ρ2 .

Using the estimate ∫
B2

hθ
u3
θ

ρ2 ≤
ν

4

∫
B2

∣∣∣∣uθρ
∣∣∣∣4 + c11|||hθ|||4∞,∞,

we get

d

dt

1
4

∫
B2

u4
θ

ρ2 +
3ν
4

∫
B2

{[
∂

∂ρ

(
u2
θ

ρ

)]2

+
[
∂

∂z

(
u2
θ

ρ

)]2}
+
ν

2

∫
B2

u4
θ

ρ4

= −3
2

∫
B2

uρu
4
θ

ρ3 + c11|||hθ|||4∞,∞ ≤
3
2

∫
B2

|uρ|u4
θ

ρ3 + c12. (30)

Step 4. Multiplying (30) by 2/ν2 and adding it to (29), we obtain:

d

dt

1
2

∫
B2

ω2
θ

ρ2 +
d

dt

1
2ν2

∫
B2

u4
θ

ρ2 +
ν

4

∫
B2

{[
∂

∂ρ

(
ωθ
ρ

)]2

+
[
∂

∂z

(
ωθ
ρ

)]2}
+

3
2ν

∫
B2

{[
∂

∂ρ

(
u2
θ

ρ

)]2

+
[
∂

∂z

(
u2
θ

ρ

)]2}
+

1
2ν

∫
B2

u4
θ

ρ4 ≤
3
ν2

∫
B2

|uρ|u4
θ

ρ3 +c13. (31)

The first term on the right-hand side of (31) can be estimated as follows:

3
ν2

∫
B2

|uρ|u4
θ

ρ3 ≤ 3
ν2

(∫
B2

u2
ρ

ρ2

)1/4(∫
B2

u6
ρ

)1/12(∫
B2

u4
θ

ρ4

)5/8(∫
B2

u36
θ

)1/24

≤ 1
2ν

∫
B2

u4
θ

ρ4 + c14

(∫
B2

u2
ρ

ρ2

)2/3(∫
B2

u6
ρ

)2/9(∫
B2

u36
θ

)1/9

.

Using Lemma 3 and estimate (27), we obtain:

3
ν2

∫
B2

|uρ|u4
θ

ρ3 ≤ 1
2ν

∫
B2

u4
θ

ρ4 + c15

(∫
B2

ω2
θ

)2/3(∫
B2

u6
ρ

)2/9

≤ 1
2ν

∫
B2

u4
θ

ρ4 + c16

(∫
B2

ω2
θ

ρ2

)(∫
B2

u6
ρ

)1/3

+c17.

Substituting this estimate into (31), we get:

d

dt

1
2

∫
B2

ω2
θ

ρ2 +
d

dt

1
2ν2

∫
B2

u4
θ

ρ2 +
ν

4

∫
B2

{[
∂

∂ρ

(
ωθ
ρ

)]2

+
[
∂

∂z

(
ωθ
ρ

)]2}
+

3
2ν

∫
B2

{[
∂

∂ρ

(
u2
θ

ρ

)]2

+
[
∂

∂z

(
u2
θ

ρ

)]2}
≤c18

(∫
B2

ω2
θ

ρ2

)(∫
B2

u6
ρ

)1/3

+c19. (32)
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‖uρ‖26 is an integrable function of t on the interval ]t0 − τ, t0 [ and so estimate
(32) implies, except others, the boundedness of ‖ωθ/ρ‖2 (and consequently also
the boundedness of ‖ωθ‖2) on the time interval ]t0 − τ, t0 [ .

Step 5. Finally, let us multiply equation (22) by ωρ, equation (24) by ωz, sum
these products and integrate over B2. We obtain:

d

dt

1
2

(
‖ωρ‖22 + ‖ωz‖22

)
+ ν
(
‖∇ωρ‖22 + ‖∇ωz‖22

)
+ ν

∫
B2

ω2
ρ

ρ2

=
∫
B2

(gρωρ + gzωz) +
∫
B2

∂uρ
∂ρ

ω2
ρ +

∫
B2

(
∂uρ
∂z

+
∂uz
∂ρ

)
ωρωz +

∫
B2

∂uz
∂z

ω2
z . (33)

We can now estimate the terms on the right-hand side:∫
B2

(gρωρ + gzωz) ≤
1
2

(
‖ωρ‖22 + ‖ωz‖22 + ‖g‖22

)
,∫

B2

∂uρ
∂ρ

ω2
ρ ≤

∥∥∥∥∂uρ∂ρ
∥∥∥∥

2
‖ωρ‖24 ≤ c2(2)‖ωθ‖2‖ωρ‖24 ≤ δ‖ωρ‖26 + c20(δ)‖ωρ‖22

≤ c21δ‖∇ω‖22 + c20(δ)‖ωρ‖22,

∫
B2

(
∂uρ
∂z

+
∂uz
∂ρ

)
ωρωz ≤

∥∥∥∥∂uρ∂z +
∂uz
∂ρ

∥∥∥∥
2
‖ωρ‖4‖ωz‖4

=
∥∥∥∥−ωθ + 2

∂uρ
∂z

∥∥∥∥
2
‖ωρ‖4‖ωz‖4

≤ c22‖ωθ‖2
(
‖ωρ‖24 + ‖ωz‖24

)
≤ δ
(
‖ωρ‖26 + ‖ωz‖26

)
+ c23(δ)

∥∥∥∥ωθρ
∥∥∥∥4

2

(
‖ωρ‖22 + ‖ωz‖22

)
≤ c21δ

(
‖∇ωρ‖22 + ‖∇ωz‖22

)
+ c24(δ)

(
‖ωρ‖22 + ‖ωz‖22

)
.

(We have used Lemma 3 in order to estimate ‖∂uρ/∂ρ‖2 and ‖∂uρ/∂z‖2.)∫
B2

∂uz
∂z

ω2
z = −

∫
B2

(
∂uρ
∂ρ

+
uρ
ρ

)
ω2
z ≤

(∥∥∥∥∂uρ∂ρ
∥∥∥∥

2
+
∥∥∥∥uρρ

∥∥∥∥
2

)
‖ωz‖24

≤ c2(2)‖ωθ‖2‖ωz‖24 ≤ c2(2)
∥∥∥∥ωθρ

∥∥∥∥
2
‖ωz‖1/22 ‖ωz‖

3/2
6

≤ δ‖ωz‖26 + c25(δ)‖ωz‖22 ≤ c21δ‖∇ωz‖22 + c25(δ)‖ωz‖22.

(We have also used Lemma 3 in order to estimate the L2-norms of ∂uρ/∂ρ and
uρ/ρ.) Choosing now δ so small that 3c21δ ≤ ν/2 and substituting all the above
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estimates to (33), we obtain:

d

dt

1
2

(
‖ωρ‖22 + ‖ωz‖22

)
+
ν

2

(
‖∇ωρ‖22 + ‖∇ωz‖22

)
+ ν

∫
B2

ω2
ρ

ρ2

≤
[
‖g‖22 + c20(δ) + c24(δ) + c25(δ)

](
‖ωρ‖22 + ‖ωz‖22

)
.

Integrating this inequality on the time interval ]t0−τ, t0 [ , we obtain the bounded-
ness of ‖ωρ‖2 and ‖ωz‖2 on this interval. This fact, together with the boundedness
of ‖ωθ‖2 and Lemma 2 implies the boundedness of ‖Du‖2 on ]t0 − τ, t0 [ . Using
the technique explained e.g. by V. A. Solonnikov in [25], u can be extended to a
strong solution of the problem (14)–(16) on the interval ]t0 − τ, t0 + τ ′ [ for some
τ ′ > 0. Due to the smoothness of function h, this solution is a classical solution
on ]t0 − τ, t0 + τ ′ [ . Hence (x0, t0) cannot be a singular point of solution u of the
problem (14)–(16) or solution v of the problem (1)–(4). �

4. Proof of Theorem 2

Step 1. We can derive estimate (31) in the same way as in the previous section.
However, the integral on the right-hand side of (31) must be estimated in a different
way. We will estimate this integral later, in Step 3.

Step 2. We multiply equation (23) by ω7/5
θ and integrate over B2. We get:

d

dt

5
12

∫
B2

ω
12/5
θ +

35ν
36

∫
B2

∣∣∣∇ω6/5
θ

∣∣∣2 + ν

∫
B2

ω
12/5
θ

ρ2

=
∫
B2

uρ
ρ
ω

12/5
θ + 2

∫
B2

uθ
ρ
ω

7/5
θ ωρ +

∫
B2

gθω
7/5
θ . (34)

The terms on the right-hand side can be estimated in this way:∫
B2

uρ
ρ
ω

12/5
θ ≤ ‖uρ‖∞

∥∥∥∥ωθρ
∥∥∥∥

2
‖ωθ‖7/514/5 ≤ ‖uρ‖∞

∥∥∥∥ωθρ
∥∥∥∥

2
‖ωθ‖11/13

2 ‖ωθ‖36/65
36/5 . (35)

The norm ‖uρ‖∞ can be estimated by means of interpolation inequalities (see L.
Nirenberg [21]):

‖uρ‖∞ ≤ c26‖uρ‖7/10
12 ‖∇uρ‖3/10

36/5,

‖uρ‖∞ ≤ c27‖uρ‖7/13
6 ‖∇uρ‖6/13

36/5.

The norms ‖uρ‖12 and ‖uρ‖6 can be estimated by ‖∇uρ‖12/5 and ‖∇uρ‖2. Thus,
if we also use Lemma 3, we obtain:

‖uρ‖∞ ≤ c28‖ωθ‖7/10
12/5 ‖ωθ‖

3/10
36/5, (36)

‖uρ‖∞ ≤ c29‖ωθ‖7/13
2 ‖ωθ‖6/13

36/5. (37)
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If we raise inequality (36) to the power 12
35 , inequality (37) to the power 23

35 , multiply
the two inequalities and substitute the product into (35), we obtain:∫

B2

uρ
ρ
ω

12/5
θ ≤ c30

∥∥∥∥ωθρ
∥∥∥∥

2
‖ωθ‖

7
10 ·

12
35

12/5 ‖ωθ‖
11
13 + 7

13 ·
23
35

2 ‖ωθ‖
36
65 + 3

10 ·
12
35 + 6

13 ·
23
35

36/5

= c30

∥∥∥∥ωθρ
∥∥∥∥

2
‖ωθ‖6/25

12/5‖ωθ‖
6/5
2 ‖ωθ‖

24/25
36/5

≤ δ‖ωθ‖12/5
36/5 + c31(δ)‖ωθ‖22‖ωθ‖

2/5
12/5

∥∥∥∥ωθρ
∥∥∥∥5/3

2

≤ δc32‖∇ω6/5
θ ‖22 + c33(δ)‖ωθ‖22

(∥∥∥∥ωθρ
∥∥∥∥2

2
+ ‖ωθ‖12/5

12/5

)
. (38)

2
∫
B2

uθ
ρ
ω

7/5
θ ωρ = −2

∫
B2

uθ
ρ
ω

7/5
θ

∂uθ
∂z

=
7
6

∫
B2

u2
θ

ρ

∂ω
6/5
θ

∂z
ω

1/5
θ

≤ ν

4

∫
B2

∣∣∣∣∂ω6/5
θ

∂z

∣∣∣∣2 +
49
36ν

∫
B2

u4
θ

ρ2 ω
2/5
θ

≤ ν

4

∫
B2

∣∣∣∇ω6/5
θ

∣∣∣2 +
49

36ν

(∫
B2

u12
θ

ρ6

)1/10(∫
B2

u4
θ

ρ2

)7/10(∫
B2

ω2
θ

)1/5

≤ ν

4

∫
B2

∣∣∣∇ω6/5
θ

∣∣∣2 + δ

(∫
B2

u12
θ

ρ6

)1/3

+ c34(δ)
(∫

B2

u4
θ

ρ2

)(∫
B2

ω2
θ

)2/7

≤ ν

4

∫
B2

∣∣∣∇ω6/5
θ

∣∣∣2 + c35δ

∫
B2

∣∣∣∣∇(u2
θ

ρ

)∣∣∣∣2 + c34(δ)
(∫

B2

u4
θ

ρ2

)
‖ωθ‖4/72 . (39)∫

B2

gθω
7/5
θ ≤

∫
B2

ω
12/5
θ + c36. (40)

Substituting estimates (38)–(40) to (34) and adding inequality (31), we obtain:

d

dt

(
1
2

∥∥∥∥ωθρ
∥∥∥∥2

2
+

1
2ν2

∥∥∥∥u2
θ

ρ

∥∥∥∥2

2
+

5
12
‖ωθ‖12/5

12/5

)
+
ν

4

∥∥∥∥∇(ωθρ
)∥∥∥∥2

2

+
(

3
2ν
− δc35

)∥∥∥∥∇(u2
θ

ρ

)∥∥∥∥2

2
+

1
2ν

∥∥∥∥uθρ
∥∥∥∥4

4

+
(

26ν
36
− δc32

)∥∥∥∇ω6/5
θ

∥∥∥2

2
+ ν

∫
B2

|ωθ|12/5

ρ2 ≤ 3
ν2

∫
B2

|uρ|u4
θ

ρ3

+c33(δ)‖ωθ‖22
(∥∥∥∥ωθρ

∥∥∥∥2

2
+ ‖ωθ‖12/5

12/5

)
+ c34(δ)

∥∥∥∥u2
θ

ρ

∥∥∥∥2

2
‖ωθ‖4/72 + ‖ωθ‖12/5

12/5 + c37. (41)

Step 3. We will now estimate the first term on the right-hand side of (41). We
will distinguish between the two cases: s ≥ 6 and s < 6.
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Step 3.1. s ≥ 6

3
ν2

∫
B2

|uρ|u4
θ

ρ3 ≤ 3
ν2

(∫
B2

∣∣∣∣uρρ
∣∣∣∣q)1/q(∫

B2

∣∣∣∣uθρ
∣∣∣∣4)α/4(∫

B2

∣∣∣∣u2
θ

ρ

∣∣∣∣2)β/4(∫
B2

|uθ|s
)γ/s

(42)

where α+ β + γ = 4, α+
β

2
= 2,

1
q

+
α

4
+
β

4
+
γ

s
= 1 and 12

5 ≤ q ≤
36
5 .

Interpolating the Lq-norm between the L12/5- and the L36/5-norms, we obtain:∥∥∥∥uρρ
∥∥∥∥
q

≤
∥∥∥∥uρρ

∥∥∥∥
36−5q

10q

12/5

∥∥∥∥uρρ
∥∥∥∥

15q−36
10q

36/5
.

Using this estimate, applying the Young inequality, estimating the L12/5-norm of
uρ/ρ by means of Lemma 3 and using finally the continuous imbedding ofW 1,2

0 (B2)
into L6(B2), we can obtain that the right-hand side of (42) is less than or equal to

δ

∥∥∥∥uρρ
∥∥∥∥12/5

36/5
+ δ

∥∥∥∥uθρ
∥∥∥∥4

4
+ c38(δ)

∥∥∥∥uρρ
∥∥∥∥

4(36−5q)
5(12+3q−2αq)

12/5

∥∥∥∥u2
θ

ρ

∥∥∥∥
4βq

12+3q−2αq

2
‖uθ‖

8γq
12+3q−2αq
s

≤ δc39

∥∥∥∇ω6/5
θ

∥∥∥2

2
+ δ

∥∥∥∥uθρ
∥∥∥∥4

4
+ c40(δ)‖uθ‖

8γq
12+3q−2αq
s

(
‖ωθ‖12/5

12/5 +
∥∥∥∥u2

θ

ρ

∥∥∥∥ 6β
7−3α

2

)
. (43)

The left-hand side of (41) contains the norm ‖u2
θ/ρ‖2 in power 2 and so we need the

power on the right-hand side to be also 2. So we get the condition: 6β/(7−3α) = 2.
This condition, together with already mentioned equations for α, β, γ and q, gives:
α = 5

3 , β = 2
3 , γ = 5

3 and q = 12s/(5s− 20). Moreover,

8γq
12 + 3q − 2αq

=
20s

7s− 30
and

12
5
≤ 12s

5s− 20
≤ 36

5
⇐⇒ s ≥ 6.

It follows from the assumptions of Theorem 2 (item 1) that ‖uθ‖20s/(7s−30)
s is

integrable, as a function of time, on the interval ]t0 − τ, t0 [ .

We can now substitute the computed values of α, β, γ and q to (43), (42) and
to (41). Choosing δ sufficiently small and integrating then (41) with respect to
time, we obtain the boundedness of the norms ‖ωθ/ρ‖2, ‖u2

θ/ρ‖2 and ‖ωθ‖12/5 on
the time interval ]t0 − τ, t0 [ .

Step 3.2. s < 6 If we multiply equation (18) by uq−1
θ ρq (where q is an even

natural number) and integrate over B2, we obtain:
d

dt

1
q

∫
B2

uqθρ
q + ν(q − 1)

∫
B2

|∇(uθρ)|2(uθρ)q−2

=
∫
B2

hθu
q−1
θ ρq ≤ c41

∫
B2

|uθρ|q−1 ≤ c42

∫
B2

|uθρ)|q +
c43

q
.

If we integrate this inequality with respect to t, we can show that the norm ‖uθρ‖q
is bounded on the interval ]t0 − τ, t0 [ and moreover, the upper bound does not
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depend on q. Thus, we can pass to +∞ with q and we obtain the boundedness
of ‖uθρ‖∞ on ]t0 − τ, t0 [ . The integral on the right-hand side of (41) can now be
estimated:

3
ν2

∫
B2

|uρ|u4
θ

ρ3 ≤ 3
ν2

(∫
B2

∣∣∣∣uρρ
∣∣∣∣ 36

5
) 5

36
(∫

B2

∣∣∣∣uθρ
∣∣∣∣4)α

4
(∫

B2

∣∣∣∣u2
θ

ρ

∣∣∣∣2)
β
4
(∫

B2

|uθ|s
) γ
s

‖uθρ‖ξ∞
(44)

where α+β+γ+ ξ = 4, α+
β

2
= 2,

α

4
+
β

4
+
γ

s
=

31
36

and α, β, γ, ξ ≥ 0. Using the

Young inequality as in Step 3.1 and the boundedness of ‖uθρ‖∞ on ]t0 − τ, t0 [ ,
we can further estimate the right-hand side of (44) and we get:

3
ν2

∫
B2

|uρ|u4
θ

ρ3 ≤ δ‖ωθ‖12/5
36/5 + δ

∥∥∥∥uθρ
∥∥∥∥4

4
+ c44(δ)‖uθ‖

12γ
7−3α
s

∥∥∥∥u2
θ

ρ

∥∥∥∥
6β

7−3α

2
. (45)

If we put again 6β/(7− 3α) = 2, we obtain:

α =
45− 5s

9
, β =

5s− 24
9

, γ =
5s
18
, ξ =

30− 5s
18

and
12γ

7− 3α
=

10s
5s− 24

.

It can be easily verified that α, β, γ, ξ ≥ 0 and 7−3α > 0 if and only if 24
5 < s ≤ 6.

Substituting these values of α, . . . , ξ into (45), we get:

3
ν2

∫
B2

|uρ|u4
θ

ρ3 ≤ δ‖ωθ‖12/5
36/5 + δ

∥∥∥∥uθρ
∥∥∥∥4

4
+ c44(δ)‖uθ‖

10s
5s−24
s

∥∥∥∥u2
θ

ρ

∥∥∥∥2

2
. (46)

It follows from the assumptions of Theorem 2 (item 2) that ‖uθ‖10s/(5s−24)
s is

integrable on the interval ]t0 − τ, t0 [ .
We can now use estimate (46) in (41). Choosing δ sufficiently small and inte-

grating (41) with respect to time, we obtain again the boundedness of the norms
‖ωθ/ρ‖2, ‖u2

θ/ρ‖2 and ‖ωθ‖12/5 on the time interval ]t0 − τ, t0 [ .

Step 4. The proof of Theorem 2 can now be completed in the same way as the
proof of Theorem 1 – see Step 5 in Section 3. �
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