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Abstract. Recent evidence indicates that naturally occur-
ring neuronal death in mammals is regulated by the inter-
play between receptor-mediated prosurvival and pro-
apoptotic signals. The neurotrophins, a family of growth
factors best known for their positive effects on neuronal
biology, have now been shown to mediate both positive
and negative survival signals, by signalling through the
Trk and p75 neurotrophin receptors, respectively. The
mechanisms whereby these two neurotrophin receptors

their final destinations, have extended their axons, and
have attempted to establish appropriate connections. This
period of naturally occurring neuronal death eliminates
approximately half the neurons in any given population
[2]. In the peripheral nervous system, where this process
has been extensively studied, recent work indicates that
the ultimate survival of any given neuron during this 
period is dependent upon the interplay between recep-
tor mediated prosurvival and proapoptotic signals. One
family of growth factors that have been implicated both
as positive survival signals and negative proapoptotic 
signals are the neurotrophins, the subject of this review. 
Neurotrophins mediate the survival, differentiation,
growth, and apoptosis of neurons by binding to two types
of cell surface receptors, the Trk tyrosine kinases [3, 4],
and the p75 neurotrophin receptor (p75NTR) [5, 6]. These
receptors, often present on the same cell, coordinate and
modulate the responses of neurons to neurotrophins. The
functions of the neurotrophin receptors vary markedly,
from sculpting the developing nervous system to regu-
lation of the survival and regeneration of injured neurons
[7, 8]. Strikingly, while Trk receptors largely transmit po-
sitive signals that promote neuronal survival, p75NTR

transmits both positive and negative signals and, in part-
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interact to determine neuronal survival have been diffi-
cult to decipher, largely because both can signal indepen-
dently or coincidentally, depending upon the cell or
developmental context. Nonetheless, the past several
years have seen significant advances in our understand-
ing of this receptor signalling system. In this review, we
focus on the proapoptotic actions of the p75 neurotrophin
receptor (p75NTR), and on the interplay between Trk and
p75NTR that determines neuronal survival. 

Key words. Neurotrophin; Trk receptor; p75 neurotrophin receptor; neuronal apoptosis; p53; p73; JNK; sympathetic
neuron; neuronal signal transduction; neuronal cell cycle.

Introduction

During development of the nervous system, both proge-
nitor cells and postmitotic neurons are overproduced, and
the nervous system then chooses, through a process of
elimination, those cells that have differentiated and made
appropriate connections. This cell selection process takes
place during two major periods of apoptosis. The first
occurs in the ventricular and subventricular zones of the
developing nervous system, where neural stem and pro-
genitor cells differentiate to produce the neurons and glial
cells that will migrate and populate the brain and spinal
cord. This period of apoptosis likely serves two functions:
to eliminate those progenitors that do not differentiate
appropriately, and to ensure that the appropriate cell num-
ber is generated in rapidly growing tissues such as the 
cerebral cortex. The existence of this period of apoptotic
death has only recently been appreciated [1], and the 
mechanisms that control the life versus death of any 
given cell are still only poorly understood.
The second period of apoptotic death in the nervous sys-
tem occurs once newly born neurons have migrated to
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icular, can cause neuronal apoptosis. Research is just now
elucidating the intracellular mechanisms that allow the
same family of growth factors to be both prosurvival and
proapoptotic. In this review, we will focus on the mecha-
nisms underlying the proapoptotic function of p75NTR. 

p75NTR as an apoptotic receptor

p75NTR [5, 6] was the first-discovered member of the
Fas/tumor necrosis factor (TNF) receptor family of re-
ceptors, which mediate cellular differentiation and apo-
ptosis [9]. p75NTR can interact with all of the mammalian
members of the neurotrophin family with approximately
equivalent affinities [10, 11]. p75NTR was originally re-
ported to function as a positive regulator of TrkA activity
in a number of neural cell lines [12–15]. Compared to
cells that express each receptor individually, coexpres-
sion of the p75NTR and TrkA receptors in transformed
cells led to an increase in both high-affinity nerve growth
factor (NGF)-binding sites [16, 17] and NGF-mediated
TrkA activation [12, 14, 17]. The decrease in sensory
neurons in the dorsal root ganglion (DRG) observed in
the p75NTR–/– mouse was consistent with this hypothesis
[18]; however, other defects have since been observed in
these mice that are not consistent with this idea (reviewed
below). 
More recent evidence indicates that, like other members
of this family of receptors, p75NTR signals on its own and
that, in certain cellular contexts, this signalling leads to
apoptosis. Neurotrophin binding to p75NTR stimulates the
generation of ceramide [19–21], regulates its association
with a number of proteins, including the TRAFs [22, 23],
NRIF [24], NRAGE [25], SC-1 [26], NADE [27] and
Rho [28], leads to the activation and translocation of NF-
kB [29–31], and activates the JNK pathway [19, 32–34].
As for apoptosis, the original finding that p75NTR could
mediate apoptosis of a neural cell line [35] has been ex-
tended to a large number of primary neural cells in cul-
ture. In particular, p75NTR has been implicated in the
apoptosis of cultured neonatal sympathetic neurons [32,
33], motor neurons [36, 37], sensory neurons [38–40],
hippocampal neurons [34], oligodendrocytes [19], and
postnatal Schwann cells [41, 42]. A number of studies in-
dicate that this proapoptotic function of p75NTR is essen-
tial for rapid and appropriate apoptosis during develop-
mental cell death. In particular, apoptosis is significantly
reduced in certain neuronal populations in mice lacking
p75NTR or its neurotrophin ligands. For example, apopto-
sis is decreased in embryonic retinae of NGF–/– and
p75NTR–/– mice [43, 44], the period of naturally occurring
sympathetic neuron death is attenuated in brain-derived
neurotrophic factor (BDNF)–/– mice and greatly de-
layed in the p75NTR–/– mice [32], apoptosis of trigeminal
ganglion neurons is attenuated in both neurotrophin (NT)

-4–/– and p75NTR–/– mice [40], and more basal forebrain
cholinergic neurons are present in the early postnatal
p75NTR–/– brain [45]. Moreover, p75NTR is essential for
maintaining the specificity of neuronal survival respons-
es to different neurotrophins during development: sym-
pathetic neurons of p75NTR–/– but not p75NTR+/+ mice
utilized NT-3 as a survival ligand both in vivo [46] and in
culture [47]. Thus, p75NTR and its neurotrophin ligands
are essential negative regulators of neuronal survival dur-
ing developmental neuron death.
The proapoptotic function of p75NTR has also been impli-
cated in injury-induced apoptosis. The first study to
support this idea involved the neuron-specific expression
of the p75NTR intracellular domain, which led to the death
of injured facial motor neurons in transgenic mice [48].
Endogenous p75NTR was subsequently shown to play a
role in the death of injured neonatal facial motor neurons
[36], and Schwann cell apoptosis was greatly reduced in
the distal stump of the axotomized neonatal sciatic nerve
of p75NTR–/– animals [42]. Moreover, in the adult central
nervous system (CNS), excitotoxin-induced neuronal
apoptosis was accompanied by induction of p75NTR in the
dying neurons [49], suggesting that p75NTR might repre-
sent a general stress-induced apoptotic mechanism in the
damaged or degenerating nervous system. 
All of these studies indicate that p75NTR is a signalling re-
ceptor that is important for neuronal apoptosis during de-
velopment and in the injured nervous system. However, it
is important to recognize that, like other members of the
TNF receptor family, p75NTR regulates a number of other
biological responses, including cell migration [50] and
neuronal growth and target innervation [28, 31, 45,
51–54] and that it can, paradoxically, enhance Trk-me-
diated survival (discussed below). At least part of this
pleiotropy is simply a function of cellular context.
However, additional complexity derives from the fact that
p75NTR can interact directly with Trk [55, 56], and by the
finding that its signalling capacity within a given cell is
modified by the coincident activation of Trk receptors
(discussed below). Nonetheless, the past several years
have seen the elucidation of several of the apoptotic path-
ways that are activated by p75NTR, and of the mechanisms
whereby interactions with Trk modify its biological po-
tential. 

p75NTR as an apoptotic receptor independent of Trk 

The mechanisms whereby p75NTR mediates neuronal
apoptosis have been difficult to decipher, largely because
of the interplay between p75NTR and the Trk receptors that
are present on many of the primary cells that have been
studied. However, a number of major conclusions can be
derived from the many studies described above. First, in
most of the cell culture studies, the apoptotic actions of
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p75NTR were ligand mediated, indicating that ligand
binding to p75NTR does not abolish its ability to mediate
apoptosis, as previously suggested [57]. Second, a num-
ber of these studies indicate that p75NTR can signal
apoptosis in a Trk-independent fashion. For example,
p75NTR activation caused apoptosis when sympathetic
neurons were maintained in KCl [32, 33], when sensory
neurons were maintained in ciliary neurotrophic factor
(CNTF) [39], and when Schwann cells were maintained
in insulin-like growth factor (IGF) plus neuregulin [41],
all Trk-independent survival signals. Third, in most of
these studies, p75NTR only mediated apoptosis when Trk
was inactive or suboptimally activated, leading to the con-
clusion that Trk activation can silence p75NTR apoptotic
signalling. For example, robust Trk activation blocked
p75NTR-mediated death of sympathetic [32] and trigemi-
nal mesencephalic sensory neurons [39], and expression
of exogenous TrkA in oligodendrocytes [58] or TrkB in
sympathetic neurons [59] inhibited NGF- and BDNF-in-
duced apoptosis, respectively. Thus, the outcome of neu-
rotrophin-mediated p75NTR signalling depends on the ex-
pression of Trk receptors; NGF has the potential to be
proapoptotic for cells that do not express TrkA [such as
oligodendrocytes; ref. 58], while BDNF would be
proapoptotic for those cells that do not express TrkB
[such as sympathetic neurons; ref. 32].
A fourth and somewhat surprising conclusion is that, for
at least some developing neurons, p75NTR mediates a con-
stitutive death signal, and that one of the primary ways
that Trk receptors mediate neuronal survival is by silenc-
ing this constitutive signal (fig. 1). The first line of evi-

dence supporting this conclusion derives from studies
showing that p75NTR is essential for apoptosis of some
cells following growth factor withdrawal. Barrett and
Bartlett [38] first showed that sensory neuron survival
following neurotrophin withdrawal was enhanced when
p75NTR levels were decreased. More recent work extended
this finding to other primary cells; apoptosis of
p75NTR–/– sympathetic neurons was greatly delayed fol-
lowing NGF withdrawal [32], even when Trk receptor
signalling was completely eliminated [M. Majdan, R.
Aloyz and F. D. Miller, unpublished data], and p75NTR–/–
Schwann cells showed enhanced survival in the absence
of survival factors [41, 42]. Interestingly, as no exoge-
nous p75NTR ligand is present following growth factor
withdrawal, these data may suggest that p75NTR can signal
apoptosis in a ligand-independent fashion [57]. However,
as both sympathetic neurons and Schwann cells make en-
dogenous p75NTR ligands, these data raise the equally in-
teresting possibility of an autocrine p75NTR-driven
apoptosis loop that is suppressed by survival factors.
Perhaps the most compelling evidence for the model pres-
ented in figure 1 derives from a second set of studies
examining p75NTR–/– and TrkA–/– mice. During the
postnatal period of naturally occurring sympathetic neuron
death, absence of the TrkA receptor leads to death of vir-
tually all sympathetic neurons [60], while absence of
p75NTR has the reverse effect, dramatically decreasing
apoptosis [32]. When these two animals are crossed, the
coincident loss of p75NTR in TrkA–/– mice leads to the
rescue of most of the neurons that would have died, at least
during the first postnatal week (the double knockouts die
by P7) [M. Majdan and F. Miller, unpublished data]. Thus,
sympathetic neurons are ‘destined to die’as a consequence
of an ongoing, p75NTR-mediated apoptotic signal, and sur-
vive only if they sequester sufficient NGF to robustly ac-
tivate TrkA, supporting the idea that developmental neuron
death is partially due to constitutive receptor-mediated
death signals that must be silenced by sequestration of the
appropriate prosurvival factor (fig. 1). However, the fact
that sympathetic neuron rescue is not complete in the
p75NTR–/–, TrkA–/– mice [M. Majdan and F. Miller, un-
published data], and that p75NTR – / – sympathetic neurons
still die, albeit at a reduced rate, when NGF is withdrawn
[32] or when all Trk function is pharmacologically inhibit-
ed [M. Majdan and F. Miller, unpublished data], indicates
that TrkA also partially mediates neuronal survival in a
p75NTR-independent fashion (fig. 1).
What is the biological rationale for having two neurotro-
phin receptors, one of which, TrkA, mediates neuronal
survival, and one of which, p75NTR, mediates apoptosis?
The data for sympathetic neurons suggest that p75NTR

provides a molecular mechanism for ensuring rapid and
active apoptosis when a neuron is unsuccessful in com-
peting for adequate amounts of the appropriate neurotro-
phin [61]. If a sympathetic neuron reaches the appro-
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Figure 1. TrkA mediates sympathetic neuron survival during na-
turally occurring neuronal death by blocking p75NTR-mediated
apoptotic signals. NGF signals robustly through TrkA, thereby si-
lencing any p75NTR-mediated signalling. In contrast, NT-3 signals
only weakly through TrkA, and robustly through p75NTR, thereby
‘tipping the balance’ toward apoptosis. TrkA likely overrides a
p75NTR-JNK-p53 apoptotic pathway via Ras, PI3-kinase and Akt,
acting upstream of JNK. TrkA must also signal neuronal survival
via at least one other, p75NTR-independent pathway, since sympa-
thetic neuron apoptosis is greatly delayed but not eliminated in the
absence of p75NTR. This latter survival pathway may involve regu-
lation of the cell cycle machinery. For references, see text. 



priate target and sequesters NGF, TrkA is robustly acti-
vated and any coincident activation of p75NTR is insuffi-
cient to override this survival signal [32]. Conversely,
when a neuron arrives late and/or reaches an inappropriate
target, TrkA is only weakly induced (if at all) due to lack
of NGF, whereas p75NTR can still be robustly activated by
non-TrkA-binding neurotrophins such as BDNF [32] that
are encountered in the target environment [53] and/or
made by sympathetic neurons themselves [62]. The net
outcome of such a scenario would be the rapid apoptotic
elimination of that neuron, thereby ensuring that the sub-
sequent period of target innervation occurs appropriately.
Interestingly, a similar model has recently been proposed
for developmental apoptosis of trigeminal ganglion neu-
rons where NT-4 signals apoptosis via p75NTR [40]. 
What if a developing sympathetic neuron encounters a
neurotrophin such as NT-3, which has the capacity to
weakly activate TrkA [63]? Recent evidence indicates
that p75NTR is also essential for sympathetic neurons to
select ‘appropriate’ (NGF) versus ‘inappropriate’ (NT-3)
neurotrophins for survival; the absence of p75NTR con-
verts NT-3 to a survival factor for sympathetic neurons
both in culture [47] and in vivo [46]. How does p75NTR

subserve this function? Since NT-3 activates TrkA on
p75NTR+/+ and –/– neurons to a similar extent [Majdan et
al., unpublished data], but maintains survival only for the
p75NTR–/– neurons [46, 47], and since coincident p75NTR

activation does not affect the levels of sympathetic neu-
ron TrkA activation [32, 33], then p75NTR likely ‘selects’
survival ligands by antagonistically signalling neuronal
apoptosis. Thus, a weak TrkA survival signal deriving
from NT-3 would normally be overriden by a strong
apoptotic signal deriving from p75NTR, but in the absence
of p75NTR, this weak TrkA signal is sufficient for survival
(fig. 1).

p75NTR apoptotic signal transduction

How does p75NTR signal apoptosis? One recently eluci-
dated pathway involves JNK-p53-Bax, which is activated
in sympathetic neurons both by p75NTR activation and by
NGF withdrawal [33] (fig. 2). The JNK family of stress-
activated kinases [66] has been shown to be downstream
of p75NTR in oligodendrocytes [19], sympathetic neurons
[32, 33], and hippocampal neurons [34], and JNK-me-
diated activation of c-jun has been demonstrated to be
essential for NGF withdrawal induced death of sympa-
thetic neurons [66–69]. A number of studies indicate that
p53 is also essential for both p75NTR-mediated and NGF
withdrawal-induced sympathetic neuron death. First,
overexpression of p53 is sufficient to cause the death of
sympathetic neurons in the presence of NGF [70]. Se-
cond, Vogel and Parada [71] demonstrated that embryonic
p53–/– sympathetic neurons showed enhanced survival

in culture in the absence of NGF, their obligate survival
factor. Third, Aloyz et al. [33] demonstrated that p53 
levels increased when sympathetic neurons underwent
apoptosis in response to either NGF withdrawal or ac-
tivation of p75NTR, and that apoptosis could be inhibited 
if this increase in p53 levels was prevented. Moreover, 
developmental sympathetic neuron death was delayed
(but not prevented) in the p53–/– mice.
The link between JNK and p53 was established by studies
showing that activation of the JNK pathway using a con-
stitutively activated form of MEKK (a kinase upstream of
JNK), increased p53 levels and caused p53-dependent
sympathetic-neuron apoptosis [33]. What is upstream of
JNK? Although this is still unclear with regard to p75NTR,
cdc42/Rac1 [72] and Ask1 [73] have both been shown to
act upstream of JNK in NGF withdrawal-induced apop-
tosis of sympathetic neurons. The presence of apoptotic
proteins common to both p75NTR- and NGF withdrawal-
induced cell death pathways, and the observation that
p75NTR–/– sympathetic neurons are delayed in their 
death in the absence of TrkA activation both in vitro and
in vivo (reviewed above) suggest that a major component
of NGF withdrawal-induced apoptosis involves p75NTR-
driven activation of the JNK-p53-Bax pathway. Although
the importance of this pathway for apoptosis in other cells
is not yet known, it is intriguing that p75NTR is induced in
dying cells following seizure [49] and that seizure-induc-
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Figure 2. Apoptotic signalling pathways in sympathetic neurons
activated by NGF withdrawal or selective p75NTR activation. Two
pathways are activated by withdrawal of NGF from sympathetic
neurons. The first consists of cdc42/Rac, Ask1, and, possibly,
MEKK1or MLK3 [64], MKK4/7, JNK, and p53. JNK isoforms in-
duce cell death through c-Jun and/or by increases in p53 and Bax le-
vels or activity [65]. This pathway is also activated when p75NTR is
selectively activated under conditions that cause apoptosis. A se-
cond pathway involves the activation of cell cycle regulatory molec-
ules such as CDK4/6, which results in increased pRb phosphory-
lation, and possibly the subsequent activation of p53 through
p19ARF. ∆Np73 blocks the apoptosis caused by NGF withdrawal.
We hypothesize that each pathway converges upon and activates the
p53 family to cause cell death. For references, see text.



ed apoptosis requires JNK3 [74] and p53 [75]. Also in-
triguing is the finding that p75NTR-mediated apoptosis of
oligodendrocytes involves the same pattern of caspase
activation as radiation-induced oligodendrocyte apop-
tosis [76], which is known to require p53 [77]. Thus, al-
though the mechanism by which p75NTR activates the
JNK-p53-Bax cell death pathway is still unclear, this
pathway may well play a key role in a variety of p75NTR-
driven apoptotic events.
Given the parallels between NGF withdrawal and p75NTR-
driven sympathetic neuron apoptosis, a second pathway
that is important for NGF withdrawal is also worth con-
sidering (fig. 2). This pathway involves activation of the
cell cycle regulatory molecules CDK4/6, which activate
the retinoblastoma tumor suppressor protein (pRb) by
phosphorylation, and subsequently participate in causing
sympathetic neuron apoptosis after NGF withdrawal
[78–80]. No link has yet been made between p75NTR ac-
tivation and stimulation of this cell cycle pathway in
sympathetic neurons, although NGF-induced apoptosis
of retinal ganglion cells is correlated with cell cycle re-
entry [81]. Moreover, a number of new p75NTR-interacting
proteins, including SC-1 [26] and NRAGE [25], appear to
regulate cell cycle function and, at least in the case of
NRAGE, apoptosis. However, the cell cycle pathway
possibly represents a p75NTR-independent pathway that is
responsible for the delayed apoptosis of p75NTR–/– sym-
pathetic neurons. Such a model implies that TrkA would
suppress this pathway independent of its effects on
p75NTR; TrkA is known to lock PC12 cells out of the cell
cycle [82], and a number of Trk family members are
thought to play key roles in regulating the progenitor-to-
postmitotic neuron transition [83, 84], presumably at
least partially via cell cycle regulation. Interestingly,
since pRb dysregulation is (i) known to cause p53 activa-
tion via p19ARF in nonneuronal cells [85] and (ii) leads
to p53-dependent apoptosis in the embryonic nervous
system [1], it follows that this cell cycle pathway might
also converge on p53. If this were the case, then p53
would play a pivotal role in integrating neuronal apo-
ptotic stimuli, perhaps thereby ensuring that apoptosis 
ensues only when these stimuli reach a certain critical
threshold (fig. 2).
In addition to a role for p53 in sympathetic neuron
apoptosis, recent work indicates that the related p53 fa-
mily member, p73 [86, 87], also plays an essential role,
but whereas p53 is proapoptotic, p73 is antiapoptotic. A
recent study by Pozniak et al. [88] indicates that the pre-
dominant isoform of p73 in the developing brain and
sympathetic ganglia is truncated at the amino-terminus 
(∆Np73) and lacks the transactivation domain. Levels of
∆Np73b are high in sympathetic neurons when they are
maintained in NGF, but decrease dramatically when NGF
is withdrawn; if this decrease is prevented by ectopic ex-
pression of ∆Np73, neurons are rescued from apoptosis.

Moreover, in p73–/– mice [88], developmental sympa-
thetic neuron death is enhanced, indicating an essential
antiapoptotic role for p73 in these neurons. 
How does ∆Np73 inhibit sympathetic neuron apoptosis?
∆Np73 can directly bind to p53, at least in vitro, and can
rescue p53-mediated death of sympathetic neurons [88].
Thus, one of the potential mechanisms whereby ∆Np73
might inhibit apoptosis is by binding to p53 and inhibit-
ing its proapoptotic actions (fig. 2). Does p73 play a sim-
ilar antiapoptotic role in other populations of devel-
oping or mature neurons? Although this question has not
yet been answered, the phenotype of the p73–/– mice in-
dicates that p73 is essential for normal neural develop-
ment [89]. These mice display hippocampal dysgenesis,
absence of certain neuronal subtypes in both the central
and peripheral nervous systems, and many die showing
greatly enlarged ventricles and decreased cortical tissue.
Although there are several potential explanations for
these phenotypes, they could all be explained by the ab-
sence of an antiapoptotic activity in selected populations
of CNS neurons and/or progenitors. Moreover, the trun-
cated form of p73b that is predominantly observed in the
developing brain is generated from the same gene as the
full-length, proapoptotic form of p73 by alternative pro-
moter usage [89], providing a mechanism for rapidly al-
tering the ratios of the pro- versus anti-apopotic isoforms
of p73 in the nervous system. One potential explanation
for the partial penetrance of the neural phenotype ob-
served in p53–/– embryos [1] is that p73 may be able to
compensate for the absence of p53 in the nervous system,
at least with regard to developmental apoptosis.
Other potential p75NTR-dependent apoptotic pathways in-
volve the recently reported p75NTR interactors, NRIF [24],
NRAGE [25], and NADE [27]. NRIF is a ubiquitously
expressed zinc finger protein that interacts with p75NTR in
glutathione-s-transferase (GST) pulldown assays. Intri-
guingly, analysis of NRIF–/– mice revealed a deficit in
apoptosis in the embryonic retina similar to that seen in
the NGF–/– and p75NTR–/– mice [43, 44], raising the
possibility that p75NTR signals apoptosis in some cells via
NRIF. NRAGE promotes cell cycle exit and enhances
NGF-mediated apoptosis of MAH cells, a sympathetic
progenitor cell line [25]. The third interactor, NADE,
interacts with p75NTR in a ligand-dependent fashion and
can, when cotransfected with p75NTR, lead to cellular
apoptosis. A number of other p75NTR-interacting proteins
have also recently been described, but their potential role
in apoptotic neuronal signalling is less clear. In particular,
TRAF6 and other TRAF family members can interact
with p75NTR [22, 23], as can SC-1, a zinc finger protein
that, like NRIF, associates with p75NTR in GST pulldown
assays [26]. Interestingly, NGF-mediated activation of
p75NTR led to translocation of SC-1 from the cytoplasm to
the nucleus and inhibited cellular proliferation, an ac-
tivity similar to that seen for NRAGE [25]. Are any of
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these proteins upstream in the p75NTR-JNK-p53 apoptotic
pathway? Although none of the novel interactors have
been demonstrated to couple to this pathway, a number of
the TRAFs have previously been shown to activate JNK
[90], and elevations in ceramide can also lead to acti-
vation of the JNK pathway [91]. 

The Interplay between p75NTR and TrkA signalling

One of the major conclusions that can be derived from re-
cent studies on the neurotrophin receptors is that the sig-
nalling capacity and biological role of p75NTR is a
function of cellular Trk activation status. In particular, as
discussed above, in most situations, p75NTR only mediates
neuronal apoptosis when the cognate Trk receptor is not,
or is only weakly, activated. Moreover, ectopic expression
of the appropriate Trk receptor can convert a proapoptotic
neurotrophin (which binds only to p75NTR) into a pro-
survival neurotrophin (by binding to both Trk and p75NTR)
[58, 59]. How does Trk silence the p75NTR-mediated
apoptotic pathway? A number of studies suggest that it
does so by inhibiting JNK activation. Specifically, in
sympathetic neurons, TrkA activation silenced the JNK-
p53 death pathway via Ras [92], while in oligoden-
drocytes and PC12 cells, exogenous TrkA silenced JNK
activation [58] and elevations in ceramide [21], respec-
tively. Although the precise mechanism by which Ras in-
hibits JNK activation has not yet been determined, it
likely involves the PI3-kinase-Akt pathway, which is a
major Trk-mediated survival pathway in many cells, in-
cluding sympathetic neurons [93]. 
But does coincident Trk activation convert p75NTR to a ‘si-
lent’ receptor? An increasing number of studies indicate
not, and suggest that while the proapoptotic signals are si-
lenced, other signals remain intact. For example, in basal
forebrain cholinergic neurons [45], sympathetic neurons
[52, 53], and sensory neurons [31], p75NTR activation
negatively regulates axonal growth and neuronal hyper-
trophy. In one dramatic example of this effect, adult
p75NTR–/– but not p75NTR+/+ sympathetic neurons grow
robustly over CNS myelin when stimulated with NGF in
a transgenic mouse [52]. Similarly, sympathetic neurons
hyperinnervate their target organs when BDNF levels are
decreased even by half in the BDNF+/- mice [53]. Thus,
even when neuronal survival is maintained by Trk sig-
nalling, antagonistic signalling between TrkA and p75NTR

can regulate neuronal growth. 
Recent evidence also indicates that, when p75NTR and Trk
are coincidentally activated, p75NTR-mediated NF-kB sig-
nalling may, paradoxically, enhance the ability of Trk to
promote neuronal survival. The finding that p75NTR

caused activation of the transcription factor NF-kB in
Schwann cells [29] has recently been extended to
oligodendrocytes [30] and sensory neurons [31]. Unlike

the JNK-p53 pathway, p75NTR-mediated activation of
NFkB is not silenced by coincident TrkA activation [58].
Two recent studies suggest that this NF-kB activation re-
presents a p75NTR-mediated prosurvival pathway that
collaborates with Trk. Specifically, Maggirwar et al. [94]
demonstrated that NGF treatment of sympathetic neurons
led to NF-kB activation, and that this activation was im-
portant for NGF-mediated survival. Although this study
did not examine the relative roles of TrkA versus p75NTR,
Hamanoue et al. [95] demonstrated that NGF-induced
NF-kB activation in sensory neurons required p75NTR and
that this pathway was important for survival. Thus,
p75NTR may act as a ‘switch’ in neurons. In the absence of
Trk signalling, JNK-p53 would be activated, providing a
constitutive death pathway, as seen in sympathetic neu-
rons. Conversely, coincident, optimal activation of Trk
signalling would silence the JNK-p53 pathway selec-
tively, and p75NTR-mediated activation of the NF-kB path-
way would now collaborate with Trk to maintain neuronal
survival. 
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