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Abstract. The nuclear envelope is a highly dynamic
structure that reversibly disassembles and reforms at mi-
tosis. The nuclear envelope also breaks down – irre-
versibly – during apoptosis, a process essential for devel-
opment and tissue homeostasis. Analyses of fixed cells,
time-lapse, imaging studies of live cells and the develop-
ment of powerful cell-free extracts derived from gametes
or mammalian somatic cells have provided insights on the
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fate of nuclear envelope proteins during mitosis and
apoptosis, and on the mechanisms behind nuclear en-
velope modifications in these processes. In this review,
we discuss evidence leading to our understanding of the
dynamics of the nuclear envelope alterations at mitosis
and during apoptosis. We also present novel imaging and
genetic approaches to the study of nuclear envelope dy-
namics and function.
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Introduction

The nuclear envelope (NE) is a specialized domain of the
endoplasmic reticulum (ER) that surrounds the eucary-
otic cell nucleus. It contains membranes and associated
lamina-pore complex structures. The nuclear membranes
are divided into three distinct but interconnected do-
mains. The outer nuclear membrane is in direct continu-
ity with the ER membrane and shares properties with the
ER. The sharply bent pore membrane domain is associ-
ated with the nuclear pore complexes (NPCs) through
specific integral proteins. The inner nuclear membrane
(INM) contains another set of integral proteins providing
attachment sites for heterochromatin and the nuclear lam-
ina.
The nuclear lamina is a fenestrated meshwork of lamin
filaments, the most abundant peripheral proteins of the
NE. Lamins are type-V intermediate filaments encoded
by three different genes in mammals. B-type lamins are
expressed in all somatic cells, whereas A-type lamins are
lacking from some embryonic, undifferentiated and can-
cer cell types. Most likely, additional peripheral proteins
associated with the INM also exist, such as otefin [1, 2]

and Young Arrest (YA) [3–6]. Nucleoporins represent the
other large set of peripheral proteins of the NE. Their
characterization, localization within the NPC and spe-
cific roles in nucleoplasmic transport are now well docu-
mented [7].
Integral proteins of the either polytopic, i.e. they span the
membrane several times (LBR, Nurim, MAN1), or
monotopic, i.e. they harbor a single transmembrane do-
main (LAP1, LAP2b, emerin), with their amino-terminal
domain facing the nucleoplasm and interacting with the
lamina and/or chromatin. A common (LEM) motif [8] is
shared by LAP2b, emerin and MAN1; however, the func-
tion of this domain remains unclear. Although these inte-
gral proteins are ubiquitously present in the NE of human
cells, missense mutations in emerin and lamin A have
been shown to be responsible for tissue-specific diseases
[9–11]. Two additional monotopic proteins, gp210 and
POM121, with C-terminal ends facing the cytoplasm,
have been characterized in mammalian pore membranes
[12, 13].
The NE is a highly dynamic structure which grows in
interphase, breaks down in prophase of mitosis and re-
assembles after metaphase. Whereas the mitotic modifi-
cations are reversible, disassembly of NE occurring dur-
ing apoptosis is irreversible. In this review, we discuss* Corresponding author.



evidence leading to our current understanding of the dy-
namics of NE modifications during mitosis and apopto-
sis.

Dynamics of NE disassembly

The dynamics of the NE are perhaps best illustrated at
mitosis, when nuclear membranes disassemble from
chromatin and the nuclear lamina breaks down. Regard-
less of whether lamins, integral proteins of the INM, NPC
proteins or all of these play essential roles in driving the
disassembly and reassembly of the NE at mitosis, it is
generally agreed that their cell cycle-dependent phospho-
rylation is critical in these processes (fig. 1). Mitotic sol-
ubilization of lamins is believed to be elicited by phos-
phorylation by the cyclin B1-p34cdc2 complex (CDK1)
and protein kinase C (PKC) [14–17]. Intriguingly, break-
down of the NE in zebrafish meiotic extracts seems to re-
quire the sequential phosphorylation of lamin B first by
PKC, then by CDK1 (fig. 1) [18]. In light of a model of
nuclear lamina disassembly elicited by multiple kinases
[19], we proposed that PKC-mediated phosphorylation of
lamin B unmasks CDK1 phosphorylation sites in the
amino-terminal region that are critical for lamin depoly-
merization [18].
Several integral proteins of the INM, including LBR,
LAP2b and emerin, are also phosphorylated at mitosis
[20–24]. In contrast to lamins, however, there is no evi-
dence for a role of multiple kinases in phosphorylation of
INM integral proteins (fig. 1). Specific residues phos-
phorylated by CDK1 have been identified for LBR in the
N-terminal nucleoplasmic domain [20, 23]. Nucleoporins
are also phosphorylated in a cell-cycle-dependent manner
[25], as are chromatin protein HP1 variants, which are
ligands for LBR [26]. This suggests that detachment of

the INM from peripheral structures may result from phos-
phorylation of a large number of integral and peripheral
proteins of NE. From in vivo and in vitro studies per-
formed in mammalian somatic cells and in Xenopus eggs,
it appears that protein kinases promote membrane release
from chromatin [22, 27, 28], whereas protein phos-
phatases stimulate binding [29, 30]. When disassembled,
membranes containing LBR, LAP2b and gp210 are ex-
cluded from the mitotic spindle (see fig. 2 A–C), sug-
gesting that they are contained in membrane sheets too
large to enter the microtubule network [31, 32]. There-
fore, except for a fraction of emerin which is apparently
localized within the spindle [33, 34], chromosomes and
membranes are segregated during metaphase inside and
outside of the spindle, respectively.

Stepwise reassembly of the NE in living 
mammalian cells

NE reassembly at the end of mitosis has been extensively
analyzed in unsynchronized mammalian cells in culture
by classical immunofluorescence, and more recently by
dynamic studies using recombinant proteins fused to
spectral variants of the green fluorescent protein (GFP).
Reconstitution of the NE is a stepwise process which
starts in anaphase and is completed in early G1. The first
wave of protein targeting to chromosomes occurs in
anaphase A and B [32, 34] and involves INM integral
proteins LBR, LAP2b and emerin, and the nucleoporin
Nup153 [22, 31, 35, 36]. These markers are targeted to
specific chromosome surface areas that are defined by
their location with respect to the mitotic apparatus. Thus,
LAP2b and LBR are associated with the lateral margins
of chromosomes that emerge from the mitotic apparatus
(fig. 2A, blue; fig. 2B, C, green) [31, 32, 34]. In contrast,
emerin (fig. 2A, green) localizes with the central chro-
mosome core regions located within the mitotic appara-
tus (fig. 2A, tubulin in red) [33, 34], whereas Nup153
decorates the entire chromosome surface [35]. At the end
of telophase, when the mitotic apparatus has regressed
except for pole-to-pole microtubules between the two
daughter nuclei, markers of NE become uniformly dis-
tributed at the chromatin periphery [31, 32, 34, 36].
Components of the NPC also reconstitute sequentially
onto chromosomes with an apparent polarity, with the nu-
cleoplasmic Nup153 assembled first, followed by the p62
complex of the central core of the NPC and finally by the
CAN/Nup214 complex of the cytoplasmic edge of the
NPC [35]. Although the targeting topology of certain
nucleoporins may be similar to that of INM markers 
(see mAb414 antigens in fig. 2E), it remains unknown
whether NPC precursors are targeted directly to chro-
matin or to membranes previously bound to chromo-
somes. To illustrate this view, the NPC integral mem-
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Figure 1. Model of nuclear membrane and lamina disassembly by
sequential phosphorylation events elicited by PKC and CDK1. (A)
In a zebrafish egg extract, zebrafish lamin B is phosphorylated by
first PKC, and subsequently by CDK1 presumably on additional
sites. LAP2b is not phosphorylated by PKC, but is phosphorylated
by CDKI. (B) Nuclear membranes (circles) and the nuclear lamina
(dots) only disassemble upon phosphorylations elicited by first
PKC, then CDKI. Phosphorylation by first CDK1, then PKC, does
not fully phosphorylate lamin B and does not promote NE break-
down (not shown). Adapted from [88].



brane protein POM121 is targeted to chromosomes early
in anaphase and thus may provide early membrane at-
tachment of NPC precursors [35]. The integral nucleo-
porin gp210, which assembles in late telophase (fig. 2B,
D, E, red) [31, 32, 35, 36], may anchor the NPC within the
NE. Interestingly, gp210 also exhibits features of a
fusigenic protein, which raises the attractive hypothesis
that gp210 may contribute to sealing the outer and inner
nuclear membranes [13]. A likely consequence of NE
sealing in late telophase is the onset of NPC function [35]
resulting in active nucleocytoplasmic transport [34].
Nuclear import correlates with a rapid chromatin decon-
densation and nucleolar assembly. Both A- and B-type
lamins, which remain cytoplasmic during mitosis (fig.
2C), are imported into the daughter nuclei during cytoki-
nesis and early G1 [32, 37], possibly through distinct
pathways [38, R. L. Steen and P. Collas, unpublished ob-
servations]. At least in Drosophila, some lamin remains
at the nuclear periphery in the “spindle envelope” [39,
40]. Assembly of lamins into the nuclear lamina has been
shown to be essential for nuclear growth and chromatin
decondensation, as mitotic cells microinjected with anti-
lamin antibodies form daughter nuclei that remain ar-
rested in a telophase-like configuration [41].

In vitro NE reconstitution

The sequential assembly of NE components to chromatin
has also been illustrated in a recently developed in vitro
somatic nuclear reconstitution system (fig. 3) [42]. A con-
densed chromatin substrate can be prepared from isolat-
ed interphase nuclei exposed to a mitotic extract (fig. 3, 
0 min). Purification of such chromatin masses and fur-
ther incubation in an interphase extract together with
membrane vesicles derived from mitotic cells promotes
targeting of the vesicles around the chromatin. In this sys-

tem, the first vesicles detected on the chromatin surface
by phase contrast microscopy harbor LBR (fig. 3). Lamin
B, in contrast, is incorporated into the NE by nuclear im-
port only after nuclear membranes have formed [42],
strongly supporting earlier findings in sea urchin egg ex-
tracts [43].
INM proteins have specific functions in NE disassembly
and reformation at mitosis. Lamins bind chromatin and
DNA and, based on lamin depletion experiments using
extracts from somatic cells, Xenopus eggs or Drosophila
embryos, they have been proposed to play a key role in
promoting mitotic NE disassembly and reassembly [41,
44, 45]. This conclusion, however, is still debated. Im-
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Figure 2. Differential targeting of nuclear membrane, lamina and pore components to the reforming nucleus during mitosis. (A) Triple
labeling of LBR, emerin and tubulin in HeLa cells during late telophase. LBR is visualized by LBR-GFP fluorescence (blue), emerin is
labeled with anti-emerin antibodies (green) and microtubules are stained with anti-a-tubulin antibodies (red). Taken from [34] with per-
mission. (B) Immunofluorescence labeling of LAP2b (green) and gp210 (red) in HeLa cells at telophase. LAP2b is targeted to lateral
chromosomes edges whereas gp210 is still cytoplasmic. Taken from [3l] with permission. (C) Immunofluorescence labeling of LBR
(green) and lamin B (red) in HeLa cells at late telophase. (D) Immunofluorescence staining of the nuclear pore membrane proteins
POM121 (green) and gp210 (red) during cytokinesis. Photograph kindly provided by Dr B. Burke. (E) Immunofluorescence labeling of
gp210 (red) and mAb414 antigens (green) in HeLa cells at telophase [N. Chaudhary and J.-C. Courvalin, unpublished data]. Bars, 5 mm.

Figure 3. Sequential targeting of LBR and lamin B to chromo-
somes during somatic nuclear assembly in vitro. HeLa cell chro-
mosomes condensed in a mitotic cell extract were incubated in an
extract derived from interphase HeLa cells. The extract contained
an ATP-generating system, GTP and membrane vesicles purified
from mitotic HeLa cells. Nuclear reconstitution occurred over a 
2-h period at 30°C. Nuclear reassembly was examined over time by
phase contrast microscopy, DNA labeling and immunofluorescence
analysis of LBR and B-type lamins. Bar, 10 mm. Rcproduced from
[42].



munodepletion of lamins in some experiments conducted
in Xenopus extracts [46, 47] and in experiments using sea
urchin egg extracts [43] did not prevent reformation of a
nuclear membrane containing nuclear pores, although 
the assembled nuclei were unable to undergo nuclear
swelling and DNA replication [46–48]. These results
suggest that lamins are dispensable for NE reassembly,
though they undoubtedly play a critical role in various
other nuclear functions. Consistent with this idea, the
presence of LBR in NEs has been correlated with the oc-
currence of chromatin-membrane contacts but not with
lamins in the NE of Xenopus oocytes and blastomeres
[49].

Vesiculation or a continuum of nuclear membranes 
at mitosis?

Early ultrastructural analysis of mitotic cells demon-
strated a progressive fragmentation of nuclear mem-
branes, suggesting a disassembly by vesiculation [50]. In
the context of available models of membrane traffic by
vesiculation, it was suggested that the structure of the NE
might represent a balance between membrane scission
and fusion activities, with prevailing scission producing
vesicles at mitosis [51]. Subsequently, the use of antibod-
ies elicited against a battery of NE markers showed a se-
quential assembly of NE components after metaphase,
and the enrichment of LBR and LAP2b in biochemically
separable mitotic membrane fractions [31, 32]. These ob-
servations suggested a domain-specific vesiculation of
nuclear membranes. Other arguments in favor of the
vesiculation of nuclear membranes during mitosis have
emerged from electron microscopic observations and iso-
lation by ultracentrifugation of membrane fractions with
distinct abilities to bind chromatin and fuse with one an-
other [52, 53]. Furthermore, INM markers including
LBR and LAP2b have been characterized or cloned in sea
urchin and Xenopus [49, 52, 54–56]. This has enabled the
recovery of egg membrane fractions enriched in proteins
of the nuclear outer, inner or pore membrane. Using these
markers, sequential targeting of proteins of the inner nu-
clear membrane and pore membrane to sperm chromatin
was demonstrated, suggesting the existence of several
populations of nuclear membrane vesicles in egg cyto-
plasm [43, 49, 54]. These data indicate that either nuclear
vesicles exist in eggs or are generated during extract
preparation from portions of a membrane continuum en-
riched in INM proteins.
In contrast to the above studies, several observations ar-
gue against vesiculation and suggest instead that the dis-
appearance of nuclear membrane domains at mitosis oc-
curs by diffusion of their integral proteins throughout a
continuous ER membrane. First, immunofluorescence
and confocal imaging studies have shown that INM pro-

teins colocalize with ER markers at mitosis [36]. Second,
using fluorescence recovery after photobleaching and flu-
orescence loss in photobleaching, Ellenberg et al. [57]
have demonstrated that the amino-terminal domain of
LBR fused to GFP diffuses rapidly and freely within ER
membranes of metaphase cells, then immobilizes again
when ER domains contact chromatin in late anaphase and
early telophase. This study performed in living cells fa-
vors the hypothesis that integral proteins of nuclear mem-
branes diffuse throughout the mitotic ER, which remains
as an intact tubular network in many cell types. As cell
homogenization unavoidably provokes membrane vesic-
ulation and fragmentation, isolation of membrane frac-
tions enriched in one marker may also reflect its concen-
tration in microdomains of a continuous membrane sys-
tem. The use of sophisticated imaging techniques in
living cells, such as fluorescence resonance energy trans-
fer (FRET), may help resolve whether proteins derived
from a particular membrane domain fully disperse
throughout the ER or remain associated in microdomains
of the ER membrane. Indeed, FRET has proven success-
ful in detecting molecular interactions between proteins
tagged with spectral variants of GFP [58] and in detect-
ing microdomains in the plasma membrane [59]. Simi-
larly, to what extent nuclear membrane disassembly and
reassembly processes in eggs and embryos are similar to,
or different from, those in somatic cells may conceivably
be unraveled by live dynamics studies associating FRET
with multiphoton excitation microscopy.

Dynamics of the NE during apoptosis

Apoptosis is crucial for development and tissue home-
ostasis in metazoans. Apoptosis has primarily been stud-
ied in Caenorhabditis elegans, cultured cells and cell-free
systems. A unified mechanism of apoptosis has emerged
in which diverse death signals activate different signaling
pathways that converge toward a conserved execution
machinery composed of specific apoptotic proteases
(caspases) [60]. Hierarchical activation of caspases pro-
vokes the cleavage of key proteins, leading to lesions
characteristic of apoptotic cells.
Apoptosis induced in cultured cells or in cell-free extracts
generates stereotyped NE alterations. These include bud-
ding, detachment of membranes from chromatin and
clustering of NPCs [61–63]. Figure 4 illustrates such
modifications using markers of the INM and NPCs. De-
spite these NE alterations, the NE persists and in vivo and
in vitro until the late stages of apoptosis, and the ultra-
structure of chromatin-detached nuclear membranes and
NPCs is conserved [63, 64].
Cleavage of lamins 1–3 h after apoptosis induction is the
earliest biochemical modification occurring at the NE
[62, 63, 65–67]. The caspase 6 cleavage site of A- and B-

1784 B. Buendia, J.-C. Courvalin and P. Collas Nuclear envelope dynamics



type lamins has been mapped to a conserved aspartic
residue located in a hinge region upstream of coil 2 [62,
66, 68, 69]. This cleavage generates a carboxy-terminal
proteolytic fragment of 46 kDa containing coil 2, which
is necessary for the formation of stable B-type lamin ho-
modimers and for their lateral interactions in filaments.
The features of this proteolytic fragment may explain the
persistent association of lamina remnants with nuclear
membranes until late stages of apoptosis [67, 70].

In addition to lamins, other proteins of the INM and NPCs
are also selectively cleaved during apoptosis, although
with a short delay (~ 1 h) compared with lamin B. Figure
5, from Buendia and co-workers [63], shows that B-type
lamins, LAP2b and Nup153 are proteolyzed early in
apoptosis (fig. 5, right panel), whereas LBR, gp210 and
nucleoporin p62 are not cleaved (fig. 5, left panel). This
does not preclude partial proteolysis of the latter markers
at a later stage of apoptosis [70]. Protein sequence analy-
sis [71] and the use of synthetic inhibitor peptides have
identified caspase 3 as the protease responsible for apo-
ptotic cleavage of LAP2b and Nup153 [63].
Interestingly, LBR and gp210, which remain uncleaved
during apoptosis, do not harbor any consensus sites for
caspases 3 and 6 in their nucleoplasmic domains. In con-
trast, p62 displays a consensus site for cleavage by cas-
pase 3, but also remains intact during apoptosis possibly
as a result of its protection from protease activity by its
location within the compact core structure of the NPC.
Proteolysis of lamins, LAP2b, and filamentous nucleo-
plasmic Nup153, i.e. proteins connecting INM and NPC
to chromatin, may explain the detachment of the NE from
condensed apoptotic chromatin. Since NPCs are embed-
ded into the lamina meshwork and connected to the cyto-
plasm by Nup153 filaments, proteolysis of these NE
components may also explain the diffusion of NPCs in
the plane of the membrane leading to their clustering.
In addition to proteolysis, key proteins may undergo
changes in phosphorylation during apoptosis. Unsched-
uled activation of CDK1 has been reported during apo-
ptosis [72–75]; however, the requirement for apoptotic
CDK1 activation remains controversial [70, 76]. Other
kinases may also phosphorylate NE proteins during
apoptosis. For example, PKC-d has recently been pro-
posed as an apoptotic lamin kinase cooperating with cas-
pase 6 to mediate efficient lamina disassembly [77].
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Figure 4. Nuclear envelope breakdown and nuclear pore clustering
during apoptosis in human cells. (Upper panels) Immunofluores-
cence staining of LBR (green) in control and actinomycin D-treated
(Apoptosis) KE37 cells. Note the detachment and budding of the nu-
clear membranes (green) from chromatin in apoptotic cells (arrow
heads), preceding disappearance of the labeling at ultimate stages 
of apoptosis (arrow). DNA is labeled red. (Lower panels) Immuno-
fluorescence labeling of LBR (green) and Nup153/Nup214/p62
(mAbQE5, red) in control and apoptotic KE37 cells. Note the clus-
tering of nuclear pore proteins (red). Bar, 5 mm. Taken from [63].

Figure 5. Selective proteolysis of lamin B (LB), LAP2b and Nup153 in apoptotic human cells. KE37 cells were exposed to actinomycin
D (Act. D) for 0–16 h and analyzed at regular time intervals by SDS-polyacrylamide gel electrophoresis and immunoblotting. Not prote-
olysis of lamin B (LB, D), LAP2b (LAP2, D) and Nup153 (Nup153, D) (left panels), whereas LBR, gp210 and p62 remain intact (right
panels). Taken from [63].



Chromatin condensation and DNA cleavage are major
nuclear changes occurring simultaneously with NE alter-
ations during apoptosis. Distinct pathways downstream
of the effector caspase 3 are responsible for oligonucleo-
somal DNA cleavage [78] and chromatin condensation
[79], although some factors may also induce peripheral
chromatin condensation in a caspase-independent man-
ner [80]. Chromosome condensation is independently fa-
cilitated by the loss of integrity of the nuclear matrix sec-
ondary to the cleavage of some of its components such as
NuMA, topoisomerase II, and snRNP and hnRNP pro-
teins. Cleavage of the lamina network and nucleoporin
filaments, which are integral parts of the nuclear skele-
ton, cooperatively enhances the process of chromatin
condensation.
It appears, therefore, that biochemical modifications dur-
ing apoptosis are conserved, in particular the caspase-de-
pendent proteolysis of lamins and of a subset of nuclear
membrane and NPC proteins. As cleavage of proteins of
the nuclear matrix and chromatin effectors is also con-
served, it is becoming possible to identify nuclear com-
ponents that cooperate to trigger the dramatic nuclear
modifications induced by apoptosis.

Perspectives

The dawn of the 21st century has been marked by the
emergence of powerful approaches for understanding NE
dynamics during the cell cycle, development and in dis-
ease. The development of imaging software is expected to
render dynamic analyses of nuclear reconstruction after
mitosis in live cells more amenable. As an example, the
group of R. Eils at the European Molecular Biology Lab-
oratory (Heidelberg, Germany) has recently developed
fully automated image analysis tools for visualization and
quantitative evaluation of dynamic three-dimensional
data using multicolor GFP confocal time-lapse micro-
scopy. Such analyses have allowed the visualization and
quantification of LBR-YFP targeting to chromosomes
(labeled using histone H2B-CFP) during mitosis [R. Eils,
personal communication].
The study of new organisms is also likely to provide ex-
citing novel insights on NE dynamics during the somatic
cell cycle and during development. Recent studies of the
genetically tractable nematode C. elegans have identified
orthologues of mammalian integral proteins of the INM
[81]. These studies also characterized a novel timing of
disassembly of NE components during mitosis in C. ele-
gans relative to that of the open mitosis of higher eucary-
otes, the closed mitosis of S. cerevisiae and the morpho-
logically semiopen mitosis of Drosophila. Labeling of
the C. elegans NE markers Ce-emerin, Ce-MAN1 and
Ce-lamin revealed that nuclear membranes and the lam-
ina remain essentially intact during metaphase and break
down only in mid-late anaphase [81]. Interestingly, the

timing of NPC disassembly at mitosis is dependent on C.
elegans embryo age, raising the possibility that NE dy-
namics may also be developmentally regulated. Further
studies are awaited to elucidate the genetic basis for de-
velopmental regulation of NE dynamics in C. elegans and
other species.
Genetic studies of NE proteins are also anticipated to shed
light on the function of NE proteins in interphase during
development and in disease. An interaction has recently
been identified between Drosophila lamin Dm0 and
BICD, a protein involved in oocyte development [82]. A
mutation causing the dominant bicaudal Bic-D phenotype
alters binding of BICD to lamin Dm0, suggesting that in-
teraction with the lamina plays a role in Bic-D function
[82]. Additionally, the maternally-derived lamin-interact-
ing protein YA has been shown to be essential for the tran-
sition from meiosis to mitosis in Drosophila eggs and is
required for the first mitotic division [3, 5, 6]. Thus, fe-
males lacking YA function are healthy but sterile. It has
been proposed that YA function is required either for com-
pletion of meiosis or for the behavior of the female mei-
otic products and male pronucleus after fertilization [83].
Furthermore, lamin B3 has been suggested to be involved
in nuclear shaping during mouse spermiogenesis [84].
Lastly, mutations in the emerin gene have been shown to
be responsible for a rare X-linked recessive form of
Emery-Dreifuss muscular dystrophy (EDMD) [85]. An
autosomal dominant form of EDNM is also caused by mu-
tations in the LMNA (lamin A/C) gene [9]. Moreover, spe-
cific mutations in lamin A/C can elicit two other disorders,
Dunningan-type familial partial lipodystrophy [10] and
dilated cardiomyopathy [86]. Further investigations using
cell lines derived from patients, or a recently developed
lamin A knockout mouse model for EDMD [87] are ex-
pected to provide information on how mutations in emerin
and lamin A/C cause disease.
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