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© Birkhäuser Verlag, Basel, 2000

The deiodinase family: selenoenzymes regulating thyroid
hormone availability and action
J. Köhrle
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deiodinase. Complementary DNAs (cDNAs) encodingAbstract. Thyroid hormones control growth, develop-
the substrate-binding selenocysteine-containing subunitsment, differentiation and metabolism in vertebrates.

Most of the actions of the active thyroid hormone T3 of the deiodinases were cloned, though some contro-
(3,5,3%-triiodo-L-thyronine) are exerted via ligand-acti- versy still exists on the type II 5%-deiodinase subunits.
vated nuclear T3 receptors. Activation of the secretory Characterization of tissue-specific expression patterns

indicates that these selenium-dependent enzymes exertproduct of the thyroid gland, L-thyroxine (3,3%,5,5%-te-
traiodo-L-thyronine), or T4, is catalyzed by two en- tight control on local and systemic availability of active
zymes, iodothyronine-5%-deiodinases type I and type II. T3. Thus, deiodinases are envisaged as guardians to the
Inactivation of T4 and T3 occurs via type III iodothy- gate of thyroid hormone action mediated by T3 recep-

tors.ronine-5-deiodinase and to some extent by type I 5%-
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Introduction

Thyroid hormones control growth, development, differ-
entiation and many aspects of intermediary and struc-
tural metabolism in amphibia, fish, most higher
vertebrates and mammals. Most of the actions of the
active thyroid hormone T3 (3,5,3%-triiodo-L-thyronine)
are exerted via members of the c-erbA family of nuclear
receptors, acting as ligand-modulated transcription fac-
tors (TRa1, TRb1, TRb2) either in concert with closely
related ligand-independent transcription factors (TRa2
or rev-erbA) or by formation of heterodimers with
retinoid receptors (RXRs or RARs) or other members
of the c-erbA family [1, 2]. Recently, functional T3
receptors were also identified in mitochondria [3]. In
addition, strong experimental evidence has also accu-
mulated for rapid, direct thyroid hormone action at the
plasma membrane or other subcellular organelles [4–7].
The latter effects are also exerted by L-thyroxine (T4),
reverse T3 (3,3%,5%-triiodo-L-thyronine, rT3) or 3,5-T2
(3,5-diiodo-L-thyronine) and probably do not involve

(nuclear) T3 receptors. These so far unknown binding
sites or thyroid hormone-binding proteins exhibit struc-
ture-activity relationships different from those of nu-
clear T3 receptors.
Synthesis of thyroid hormone occurs exclusively in the
thyroid gland, whose main secretory product is T4 and
to some degree also T3. Enzymic production of par-
tially deiodinated products (T3, rT3, and the T2s)
mainly occurs in extrathyroidal tissues but to a minor
extent in the thyroid gland [8]. Modifications of the
alanine side chain of the amino acid T4 and its less
iodinated derivatives as well as sulfation or glu-
curonidation reactions of the acidic 4%-phenolate group
of the iodothyronines are of minor importance in thy-
roid hormone metabolism [9]. As thyroid hormones are
highly hydrophobic, several proteins are involved in
binding, distribution and transport through the vascu-
lar, interstitial and cellular compartments. These
proteins control free hormone concentrations, restrict
bioavailability and prevent elimination of the iodothy-
ronines [10].
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The deiodinase isozymes

At least three deiodinase enzymes have been identified
during the last few years and have been cloned and
characterized at the molecular level [8]. The existence of
deiodinases was first postulated immediately after the
discovery of T3 in 1952 by Pitt-Rivers and colleagues
[11]. The unequivocal proof of extrathyroidal produc-
tion of T3 was obtained in 1970 after administration of
T4 to athyreotic patients [12]. The initial description of
enzymatic in vitro production of T3 from T4 by 5%-deio-
dinase (now type I) in perfused livers, intact hepatocytes
and subcellular fractions was enabled in 1975 with the
development of highly sensitive radioimunoassays for
T35 [13, 14]. Soon after, a second enzyme forming rT3
from T4 and degrading T3 to 3,3%-T2, the so-called
5-deiodinase (now type III), was postulated. Deiodina-
tion experiments in brain tissues of eu- and hypothyroid
rats using the potent inhibitor of type I 5%-deiodinase,
6-n-propyl-2-thiouracil (PTU), led to the discovery of
the type II 5%-deiodinase in 1981 [15]. T4 is also deiodi-
nated at the tyrosyl ring in the 5-position by the 5-deio-
dinase (type III). These three deiodinase enzymes, types
I, II and III, show rather different biochemical and
regulatory characteristics, exhibit different tissue distri-
bution and developmental patterns of expression, and
respond differently to deiodinase inhibitors (see table 1).

Recently, cDNAs encoding subunits of these deiodinase
enzymes have been cloned, functionally expressed and
characterized in several cell types, tissues and species [8,
16]. Current experimental evidence suggests that the
three deiodinases comprise a family of selenoproteins
encoded by different genes. However, some controversy
still exists on the exact biochemical nature of the type II
5%-deiodinase (see below).

Gene structure, chromosomal location and biochemical
characteristics of deiodinases

Type I 5%deiodinase 5%DI, mainly expressed in liver,
kidney, thyroid and euthyroid anterior pituitary, func-
tions as a homodimer of a 27-kDa subunit encoded by
2.1-kb messenger RNA (mRNA) [17, 18]. The human
5%DI gene located on the short arm of the human
chromosome 1p32–33 (corresponding to mouse chro-
mosome 4), is 17.5 kb long, and is composed of four
exons [19]. Several regulatory elements of the promoter
of the human 5%DI gene have been functionally charac-
terized. Like house-keeping genes, it does not contain a
CAAT or TATA box [20, 21]. The reaction product of
the enzyme, T3 and retinoids induce expression of the
5%DI gene via two complex thyroid hormone response
retinoic acid response (TRE/RARE) elements located in

Table 1. Deiodinase isoenzymes, biochemical characteristics, regulation and function.

Type I 5%-deiodinase Type III 5-deiodinaseProperty Type II 5%-deiodinase

systemic \local T3 production, local \systemic T3 productionFunction inactivation of T4 and T3
degradation of rT3 and sulfated
iodothyronines
liver, kidney, thyroid, pituitary, placenta, brain; many tissues; notExpression (hypothyroid) pituitary, brain,

brown adipose tissue, skin, pituitary, thyroid, kidney, adult liverheart, brown adipose tissue in
placenta; thymus, pineal andsheep
harderian glands; glial cells and
tanycytes

Cosubstrate DTT or DTE in vitro; higher DTT or DTE in vitro; higherDTT or DTE in vitro; not
concentrations than for 5%DIconcentrations than for 5%DIglutathione or thioredoxin in vivo

Subcellular endoplasmic reticulum in liver, endoplasmic reticuluminner plasma membrane; p29
subunit associated with F-actininner plasma membrane in kidneylocation
and perinuclear vesiclesand thyroid
respectively

human, rat, mouse, chicken, Ranahuman, rat, mouse, chicken, Ranahuman, rat, mouse, dog, chicken;Cloned in
not expressed in Rana catesbeiana,species catesbeiana, Fundulus heteroclitus catesbeiana, Xenopus lae6is
Oreochromis niloticus (tilapia), (teleost), rainbow trout
rainbow trout

Selenocysteine (?)histidine, selenocysteine, cysteine, selenocysteineEssential amino
phenylalanineacid residues

cAMP; FGF; phorbolesters viaT3, retinoids; TSH and cAMP inInduction T3, FGF, EGF
PKC; ANP and CNP via cyclicthyroid only; testosterone (liver),

carbohydrate GMP in glial cells
Ca2+-PI pathway in thyroid; T3Repression
dexamethasone
PTU, iodoacetate, aurothioglucose, T4, rT3, iopanoateInhibition iopanoate
iopanoate

FGF: fibroblast growth factor. PKC: protein kinase C. ANP: atrial natriuretic peptide. CNP: C-type natriuretic peptide. EGF:
epidermal growth factor.
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the proximal promoter/enhancer region 5% to the tran-
scriptional start site at −23/−24 bp. 5%DI prefers rT3
as substrate and shows rather low affinity for T4
(KMapp, 2 mM). The type I enzyme also deiodinates
4%-O-sulfates of T4 and T3 at the tyrosyl ring by 5-deio-
dination under certain reaction conditions and thus
shows limited reaction specificity due to some wobble in
its active site [8, 22]. 5%DI cDNAs have been cloned
from several species (human, rat, mouse, dog, chicken
and tilapia) [16, 23–26].
The type II 5%-deiodinase acts as a heterotrimeric com-
plex of �200 kDa containing a 29-kDa subunit that
interacts with filamentous actin. In rat astrocytes, lig-
and binding to this subunit leads to alteration of the
polymerization state of the actin cytoskeleton associ-
ated with substrate binding and deiodination [27]. In
contrast to 5%DI, the type II 5%D prefers T4 over rT3 as
substrate and is strictly a phenolic ring 5%-deiodinase
with a nanomolar apparent KM for T4. The human gene
encoding 5%DII has been mapped to chromosome
14q24.2–q24.3 and consists of two exons and a 7.4-kb
intron [28, 29]. So far no detailed information on its
promoter or regulation is available. 5%DII is mainly
expressed in the central nervous system (CNS), the
hypothyroid pituitary and the brown adipose tissue of
rodents, as well as in some other tissues. In contrast to
5%DI, 5%DII is rapidly inactivated by its substrate T4 and
rT3, but not T3, by mechanisms involving internaliza-
tion associated with polymerization of the actin cy-
toskeleton as well as preoteasomal degradation [4, 30].
Recent evidence suggests that 5%DII activity is repressed
by T3 via transcriptional mechanisms [31]. Several
agents such as growth factors, cyclic AMP (cAMP) and
corticosteroids and others stimulate 5%DII activity [22]
(table 1).
In addition to intracellular redistribution via the F-actin
microfilament network [4], inactivation of 5%DII in pitu-
itary tumor cell lines via the proteasome pathway exists.
Substrate (rT3) can accelerate degradation and reduce
the half-life of 5%DII activity from �1 h to 20 min [30].
Oxidation of the selenoyl intermediate of 5%DII after
completion of the first half reaction of the 5%-deiodina-
tion of the substrate rT3 or T4 might provide the signal
for accelerated degradation of the 5%DII (subunit) via
the proteasome pathway. This hypothesis is compatible
with a previous proposal of mine in that deiodinases
might not act as enzymes that are regenerated to per-
form several reaction cycles but rather as ‘vectorial
catalysts’, which inactivate substrate. Thereby deiodi-
nase both provides a signal to the cell via alteration of
polymerization state of F-actin microfilaments and
eliminates the messengers T4 and T3 combined with
termination of the signal by irreversible proteolytic
degradation of (part of the) 5%DII enzyme [8, 32].
Neosynthesis of 5%DII after stimulation of gene expres-

sion by low-circulating thyroid hormone levels or other
agents (cAMP) [33] and growth factors known to in-
duce 5%DII expression might allow rapid regulation of
the availabilty of local (and systemic) T3 supply for
homeostatic control of growth, differentiation, develop-
ment and basal metabolism.
The type III 5-deiodinase enyzme inactivates T4 and its
metabolites by removal of iodine atoms at the tyrosyl
ring [8]. The holoenzyme structure of this enzyme, con-
taining a 32-kDa substrate binding subunit, is not yet
known. The gene encoding 5D is located on the human
chromosome 14q32 (corresponding to mouse chromo-
some 12F1) [34]. The gene contains a single 1.8-kb
exon. A putative 526-nucleotide promoter fragment
contains consensus TATA, CAAT and GC elements
and drives luciferase reporter gene constructs after
transfection into several cell types. 5D is expressed in
many tissues, but not adult liver, kidney, thyroid and
pituitary. It shows a different developmental profile
compared with the two other activating deiodinases,
and is thought to prevent accumulation of T4 or its
active metabolite T3 in cells and tissues at inappropriate
times and concentrations, especially during develop-
ment but also in adult organisms [8]. High expression of
5DIII in human fetal and neonatal liver, adipose tissue
and skeletal muscle is thought to account for thyroid
hormone degradation in these immature organs during
development [35, 36]. Recently, overexpression of 5DIII
in tadpoles was shown to arrest metamorphosis by
preventing resorption of tails and gills, indicating the
importance of coordinated control of cellular T3 levels
both at the level of synthesis and degradation [37]. In
the turtle, a 5DIII form similar to that of birds and
rodents has recently been characterized and found to
have a much wider tissue distribution (highest expres-
sion in kidney, and much lower levels in liver, pancreas,
heart, ovary and brain) and enzyme characteristics dis-
tinct from 5DIII that has been characterized in other
species thus far [38]. Expression of mammalian 5DIII is
stimulated by T3 and retinoids (similar to 5%DI), growth
factors and phorbol esters; the latter agents apparently
act via stimulation of the MEK/ERK signalling cascade
[39]. cDNAs for 5DIII have been cloned for human, rat,
chicken, Xenopus lae6is, Rana catesbeiana and tilapia [8,
16, 40].

The selenoenzyme nature of the deiodinase isoenzymes

So far the exact mechanism of reductive deiodination of
iodothyronines and the cleavage of the aromatic car-
bon-iodine bond of iodothyronines is not understood.
Thus the identification of the deiodinase family as sele-
noenzymes provided some progress in understanding
this unusual monodeiodination reaction, which occurs
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in sequential steps. The physiological cofactor of this
reaction has not yet been identified (or may not even
exist). In vitro, reduced dithiols with strong reduction
potentials such as DTT or DTE support the reaction
and act as cosubstrates with millimolar apparent KM in
this two-substrate deiodination reaction [8, 22].
Whereas 5%DI exhibits a two-substrate ping-pong mech-
anism of reaction with the formation of an oxidized
enzyme selenoyl-iodide intermediate, the 5%DII and
5DIII reaction proceeds with a two-substrate sequential
mechanism of reaction without formation of an oxi-
dized enzyme selenoyl-iodide intermediate. This differ-
ence might contribute to the observation that PTU and
aurothioglucose, which are potent inhibitors of 5%DI,
are less effective in the type II 5%D and the type III 5D
reaction [8, 16]. Nevertheless, a type I selenoenyzme
deiodinase in tilapia is less sensitive to these agents, and
site-directed mutagenesis experiments point to the con-
tribution of other active site residues as well as to
differences in substrate and ligand preferences [25, 41].
Using a combination of affinity labelling methods with
a substrate analogue [17, 42] and metabolic 75-selenite
labelling of membranes exhibiting different 5%DI activity
in selenium-depleted and -repleted animals [43], an un-
equivocal identification of 5%DI as a selenoenzyme con-
taining selenocysteine in its active site was
independently achieved in 1990 by two groups [43, 44].
Shortly after, the expression cloning of the rat 5%DI
cDNA in Xenopus lae6is oocytes confirmed these find-
ings and identified the UGA-codon directing cotransla-
tional selenocysteine insertion into the 27-kDa 5%DI
subunit in the context of a hairpin-loop structure in the
3%-untranslated region, the SECIS element [18]. Re-
placement of selenocysteine by cysteine or other amino
acids leads to a marked decrease or loss in enzyme
activity similar to observations for other selenoenzymes
[e.g. gluthathione peroxidase (GPx)]. Deletion of the
SECIS element of the mRNA produces a truncated
protein where the base triplet UGA is interpreted as an
amber stop codon. Heterologous SECIS elements from
other mRNAs encoding for selenoproteins can substi-
tute for the 5%DI SECIS element, but with different
efficiency [45]. In contrast to procaryotic SECIS ele-
ments that are located immediately downstream of the
UGA codon and form part of the hairpin stem struc-
ture, the SECIS elements of eukaryotic mRNAs may
act over considerable distances or even in trans posi-
tion. However, cotranslational selenocysteine insertion
efficiency markedly decreases if the SECIS element is
located too far downstream (see below, type II 5%-deiod-
inase) [46].
Soon after 5%DI, 5DIII was identified as selenoenzyme
using reverse-transcriptase polymerase chain reaction
(RT-PCR)-based homology cloning and degenerated
oligonucleotide screening methods, based on the as-

sumption of homologies between the active sites of the
individual deiodinase isoenzymes [34, 40, 47]. Similar to
5%DI, the selenocysteine residue is encoded by UGA in
the context of a SECIS element in the 3% untranslated
region (UTR) of the 5DIII mRNA. Substitution of
selenocysteine by cysteine or another amino acid again
resulted in marked reduction or inactivation of the
5DIII enzyme activity.
Some difficulties were encountered during the cloning
and identification of the type II 5%deiodinase. Using
RT-PCR and degenerated oligonucleotide homology
cloning, a putative rat and human 5%DII cDNA was
identified, which hybridized to a 7–8-kb mRNA, much
larger than the mRNAs of 5%DI and 5DIII that are in
the 2-kb range [16, 48–54]. Furthermore, the tissue
distribution of this heterogenous 5%DII mRNA did not
fully correspond to the distribution of the 5%DII enzyme
activity. Some tissues such as kidney, where no 5’DII
activity can be measured, exhibit strong 5%DII hy-
bridization signals, whereas no 5%DII hybridization sig-
nal could be found in some tissues clearly expressing
5%DII activity. Furthermore, initially no SECIS element
could be located in the 3%UTR at a distance so far found
in other selenocysteine-containing proteins such as the
5%DI or 5DIII, the 5%DII in Rana catesbeiana [48], GPx
isozymes, selenoprotein P or W or others. Recently,
using PCR-cloning methods, full-length cDNA clones
were assembled for the human, mouse, chicken and
Fundulus heteroclitus 5%DII gene, all of which contain a
SECIS element far downstream (4–7 kb) of the UGA
codon [46, 52, 53]. The efficiency of these SECIS ele-
ments to incorporate selenocysteine into the 5%DII sub-
unit protein is extremely poor, but positioning this
SECIS element closer to the UGA codon allows seleno-
cysteine incorporation also in heterologous context.
Functional 5%DII activity and incorporation of selenium
was shown for the proteins encoded by these artificial
or assembled cDNA constructs. In contrast to the mam-
malian 5%DII gene, the 5%DII cDNA isolated from Rana
catesbeiana is more closely related to the 5%DI and
5DIII gene structure and hybridizes to a 1.5-kb mRNA
[48]. Here, a convincing demonstration of experimental
data on the selenoprotein nature of the enzmye has
been presented. In contrast to the human and rat
cDNA, which contain a second UGA codon close to
the 3% end of the coding region, the Rana and Fundulus
cDNA have only one UGA codon in a domain highly
similar to that of the UGA codons of the 5%DI and
5DIII and the first in-frame UGA codon of mammalian
5%DII [51, 55]. Apparently, the translation of the down-
stream UGA codon and incorporation of selenocysteine
into the in vitro translated protein encoded by chimeric
5%DII cDNA-SECIS hybrids is not required to generate
5%DII activity [56]. In contrast to all other 5%DII en-
zymes, the Fundulus 5%DII also catalyzes 5%-deiodination
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of T3. Whether this represents a phylogenetic precursor
of the other deiodinases or a teleost-specific evolution-
ary event remains to be studied in further species [55].
Currently, not enough comparative sequence data is
available to allow evolutionary considerations explain-
ing the divergence of the mammalian 5%DII gene organi-
zation, expression and function compared with those of
amphibia. However, the marked similarity of the 5%DII
cDNAs among the mammalian species together with
biological evidence on function and expression in vari-
ous vertebrates supports the hypothesis that the 5%DII
cDNAs so far identified might encode at least a subunit
of the functional 5%DII enzyme. Contrary to this inter-
pretation, a recent report raises some doubts on the
nature of this 5%DII cDNA and its function as 5%DII
subunit [54]. Immunoprecipitation experiments, cellular
antisense approaches, hybridization selection and com-
parative expression and modulation of the p29 protein,
supposed to represent a substrate-binding subunit with
biochemical and cell biological properties remarkably
congruent to that of functional 5%DII activity at least in
rat astrocyte cultures, suggest that the putative 5%DII
cDNA protein or its fragment, terminated at the UGA
codon, cannot fully account for the attributes of a 5%DII
subunit or functional protein. Several lines of evidence
support the identification of the p29 protein as the
substrate-binding subunit of 5%DII, such as proportion-
ality of affinity labelling of p29 and concomitant inacti-
vation of 5%DII, tissue distribution of p29 and 5%DII
activity, cAMP stimulation of 5%DII activity and redis-
tribution of p29 from the perinuclear to the plas-
mamembrane space in astrocytes [4, 33, 57]. Further
studies, including identification of the other so far un-
known 5%DII subunit(s) or regulatory properties, are
required to resolve this discrepancy.
Whereas 5%DI and 5DIII contain only one UGA codon,
the 5%DII cDNA contains two UGA codons, one in a
position close to the C-terminus, a situation similar to
mammalian thioredoxin reductases (TrxR). In these en-
zymes this penultimate SeC residue is essential for en-
zyme activity. The selenoprotein nature of TrxR was
not recognized for years, and this UGA was misinter-
preted as stop codon [58]. Site-directed mutagenesis
experiments, eliminating the second SeC residue in the
5%DII cDNA, revealed that this residue is not essential
for the deiodinase activity [56], whereas replacements of
the conserved SeC residue, located in a position similar
to that of other deiodinases, markedly reduces or even
destroys funtional activity.
Initial assumptions that the different PTU sensitivity of
the type I and type II 5%-deiodinase, used for experimen-
tal operative distinction between the two isoenzymes in
parallel to their different reaction characteristics, might
be associated with the presence or absence of selenocys-
teine in the active site of the two enzymes were not

substantiated and were even contradicted. Whereas re-
placement of the selenocysteine by cysteine in the 5%DI
caused both a marked loss in enzyme activity and
substrate turnover and led to a sequential mechanism of
reaction similar to the 5%DII enzyme, recent data on
type I 5%D isozmyes in other species revealed low PTU
sensitivity despite the selenoprotein character and other
biochemical characteristics typical for 5%DI enzymes [16,
25, 41, 59, 60]. Site-directed mutagenesis studies on
several deiodinase isozmyes now identified a series of
amino acid residues essential for substrate, cosubstrate
and inhibitor binding as well as variations in the com-
plex two-substrate mechansim of reaction (ping-pong,
ordered, sequential) and confirmed previous biochemi-
cal evidence on active site residues involved in deiodina-
tion [8, 61, 62].

Selenium-dependent expression of 5%DI

Initial evidence from animal experimental, clinical and
in vitro cell culture studies suggested a clear selenium-
dependent expression of 5%DI varying with selenium
availability [32, 63, 64]. In contrast, no clear directly
selenium-dependent expression could initially be shown
for 5%DII [65–70]. Some data indicated that under con-
ditions of severe selenium deficiency, expression of type
III 5-deiodinase decreases, supporting its identification
as a selenoprotein [68, 71].

Is there evidence that selenium status affects expression
of human type I 5%-deiodinase and thus alters T3
production?

So far no clear demonstration of selenium-dependent
expression of 5%DI activity in vivo with subsequent
decrease in T3 production has been shown in human
(patho-)physiology [8]. Some alterations of serum thy-
roid hormone levels are associated with altered selenium
concentrations in the blood. However, no evidence for a
cause-effect relationship has been presented. In con-
trast, selenium supplementation in septic patients
known to present with the syndrome of nonthyroidal
illness and low serum T3 levels improved the clinical
outcome of the patients, but this was not correlated to
recovery of T3 levels to normal [72]. Moreover, in one
study even a decrease in serum T3 levels and T3/T4
ratio has been suggested to be correlated to very high
selenium intake [73]. In elderly patients associations
between trends of lower serum T3 levels and decreased
plasma selenium values were reported [74, 75]. Varia-
tions of serum thyroid hormone levels were also found
after selenium supplementations were administered in
children suffering from cystic fibrosis or living on
protein-free diets due to phenylketonuria or patients on
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long-term parenteral nutrition [76, 77]. However, these
alterations might be caused by changes in thyroid func-
tion itself or selenium-induced alterations in thyroid
hormone homeostasis and not directly by altered ex-
pression of type I 5%-deiodinase.
In an experimental study, we analyzed the selenium
content of human thyroid tissue and the levels of func-
tional expression of the two selenoenzymes type I 5%D
and glutathione peroxidase [8, 78]. We found no corre-
lation between selenium tissue content and expression
of either of the two functional selenoenzymes in the
same specimen of normal, pathological or cancerous
thyroid tissue, indicating that other regulatory factors
override control of enzyme expression by the selenium
content (at least in the human thyroid).
In contrast to these observation in humans, animal
experimental evidence clearly supports regulation of
5%DI expression by the selenium status [16, 32, 43, 44,
63, 66, 68, 79, 80]. However, these models allow much
more pronounced manipulations of selenium status ei-
ther by withdrawal or replenishment to extents not
found in human nutrition. Especially in rats, clear dose-
response relationships for selenium control of 5%DI
epxression in various tissues have been presented. Re-
markable is the finding that different tissues expressing
5%DI activity respond differently and in an hierarchical
or well-regulated manner to manipulations of selenium
status. Furthermore, various selenoproteins studied
show marked tissue-specific expression differences in the
hierarchy of selenium depletion and repletion [66, 79–
83]. Generally, 5DI is ranked higher in the preference of
selenium supply than the cytosolic GPx (cGPx),
whereas phospholipid hydroperoxide GPx (PHGPx)
and SeP appear to be ranked at the same level or even
higher in the selenium hierarchy than 5%D, at least in
those tissues where all three selenoenzymes are
expressed.
Whereas expression of liver and kidney 5%DI rapidly
responds to selenium, variation thyroid 5%DI shows only
minor response to selenium manipulations [32, 68, 84–
89]. This might be due to the fact that thyroid, similar
to other organs of the endocrine system (adrenals, go-
nads, pancreas) as well as the central nervous system,
either retains or accumulates selenium stores during
depletion, whereas the major body stores such as mus-
cle, skin, liver and so on are rapidly depleted after
selenium withdrawal and repleted after the other tissue
stores are filled [8, 90]. The mechanism underlying this
preferential mobilization and redistribution of tissue
selenium is still unclear. It might be speculated that vital
organs required for survival, systemic regulation and
reproduction of the organism are protected from sele-
nium deficiency.
In an animal model, iodine-deficient heifers and their
offspring, a marked 10–12-fold increase in the activity

of the selenoenzyme type I 5%-deiodinase accompanied
by a 2–4-fold increase in cGPx was found by iodine
deficiency [85]. However, these changes were only ob-
served in the thyroid, not in liver, pituitary or brain,
indicating both tissue-specific regulation and adaption
of expression of selenoenzymes to physiological de-
mand. The increased thyroidal T3 production at the
local level, as well as the individual and distinct regula-
tion of individual selenoproteins in the same tissue, is
independent from selenium supply.
In brains of rats, selenium- and iodine-deficient in the
second generation, expression and activities of 5%DI,
cGPx and PHGPx remained relatively constant,
whereas serum thyroid hormone levels and expression
of these enzymes showed marked alterations in livers
and thyroids of these animals [68, 69, 88, 91]. Indepen-
dent of selenium status, iodine deficiency increases
5%DII activity in brain and pituitary, consistent with
decreased thyroid hormone levels in this constellation
[31, 68, 85, 92–94]. These findings confirm a minor
effect of manipulation of (peripheral) selenium status
on expression of selenoproteins in the brain even after
prolonged selenium deficiency [68, 69, 95] and suggest
an efficient retention or redistribution of limited sele-
nium sources to tissues and selenoproteins involved in
coordination of critical and essential vital functions.

Is there an hierarchy of selenium incorporation into
different selenocysteine-containing proteins?

In cell culture experiments, using both primary culture
or established immortalized or tumor cell lines, a clear
dependence of 5%DI expression from selenium supply in
the medium can be shown. In nontransformed porcine
kidney cells, 5%DI activity and mRNA levels rapidly
increase if selenium concentration in the culture
medium reaches nanomolar levels. A plateau of activity
and expression is reached above 200 nM, and concen-
trations higher than 1000 nM lead to decreases in 5%DI
activity, probably a sign of toxicity of high selenite
concentration in these (and other epithelial) cells [80].
Both transcriptional and posttranscriptional mecha-
nisms contribute to this selenite-induced expression of
5%DI. However, at low selenite concentrations, 5%DI
mRNA (similar to those of other mRNAs coding for
selenocysteine-containing proteins) is stabilized by a yet
unknown mechanism [82]. Probably mRNA is pro-
tected by ribosomes arresting at UGA codons in the
context of SECIS elements in the 3%UTR region due to
lack of the other selenium-dependent factors required to
translate UGA codons. Alternatively, specific proteins
binding to and protecting SECIS structures in the ab-
sence of selenium might be involved in the observed
maintainance of significant basal steady-state transcript
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levels of 5%DI even at very low selenite concentrations
in the culture medium [45, 82, 96–98].
A further observation of these experiments using cell
cultures might contribute to explain the observed hier-
archy of selenium incorporation into different se-
lenoproteins. During the selenite depletion phase we
observed a transient decrease followed by an increase
in 5%DI expression in LLC-PK1 cells, whereas cGPx
continued to decrease during further depletion periods
[80]. Probably selenium mobilized by turnover of the
more abundant cGPx, which also has a shorter half-
life in these cells than 5%DI is shifted and incorporated
into the very low abundance 5%DI enzyme, thus main-
taining the potential to synthesize the essential hor-
mone T3 from T4. The mechanisms behind these
observations are not understood, because the mam-
malian homologue of SelB is still missing. On the
other hand, comparative analysis of the efficiency of
various SECIS structures identified so far revealed a
different potency and efficiency of these structures in
directing selenocysteine incorporation into the same
coding frame fused to different SECIS elements [45,
99–102]. This observation might also be part of the
explanation for the cell- and tissue-specific hierarchy
of selenium incorporation into eukaryotic se-
lenoproteins in the intact organisms.
Similar to kidney and liver cell culture studies, sele-
nium-dependent expression of selenoproteins can also
be shown in thyroid cell lines. In the immortalized
nontransformed rat thyroid cell line FRTL5, selenium
depletion reduces activity and mRNA levels of cGPX,
whereas minor alterations are observed for expression
and mRNA abundance of both 5%DI and PHGPx [32,
63, 64, 78, 81, 86]. Induction of 5%DI by TSH requires
the presence of selenium in the culture medium [81,
86]. In contrast to FRTL5 cells, only minor variations
of 5%DI expression are observed after manipulation of
selenium supply in the culture medium, whereas cGPx
expression is doubled at selenium concentrations ex-
ceeding 100 nM [64, 78]. These findings indicate that
regulation of expression of the selenoenzyme 5%DI de-
pends on factors other than selenium availability, but
presence of sufficient selenium is essential and a factor
in exerting this expression.

Selenium-dependent regulation of expression of 5%DII?

In animal experiments demonstrating clear selenium-
dependent expression of 5%DI (and later on 5DIII), no
direct evidence had been found indicating alterations
of 5%DII in the brain, pituitary, placenta, skin, brown
adipose tissues or other organs expressing 5%DII activ-
ity. This led to the interpretation that 5%DII is not a
selenoprotein, in contrast to 5%DI, an assumption

compatible with the low sensitivity of 5%DII against
the inhibitors PTU or thiogold-glucose, which are po-
tent agents against selenoproteins (see above). Also,
several attempts to provoke altered 5%DII expression
by manipulation of selenium availability in cell culture
models initially failed [65, 67], providing even more
support for the hypothesis that 5%DII might be a cys-
teine homologue of the selenoenzyme 5%DII. 5%DII
rapidly responds to alterations of thyroid hormone
status. Therefore, rapid effects exerted by manipula-
tion of selenium status on thyroid hormone synthesis
and secretion as well as on 5%DI activity might indi-
rectly lead to thyroid hormone (especially T4 or rT3)-
induced alteration of 5%DII expression, obscuring or
overriding direct regulation of 5%DII activity or ex-
pression by selenium status. Recently, some experi-
mental evidence in cell culture models and in vitro
using chimeric 5%DII constructs or mutants of the pu-
tative 5%DII cDNA has been brought forward to indi-
cate selenium regulation of 5%DII [49, 70]. However,
due to the short half-life of 5%DII, its regulation by
many other factors including its own substrate and
the already mentioned difficulties expressing enough
functional enzyme in vitro, further studies are needed
to clearly establish direct selenium regulation of 5%DII
expression not only in cell lines or animal experimen-
tal models but also in vivo.

Selenium-dependent regulation of 5DIII

Similar to 5%DII, expression and function of 5DIII
shows limited response to natural or experimental
variations of selenium supply [68, 103]. However, sev-
eral studies could convincingly demonstrate, at least
in cell culture experiments, clear selenium-dependent
stimulation of 5DIII expression [40, 71]. As already
suggested for 5%DII, the SECIS element of 5DIII ap-
pears to be more efficient than that of 5%DI, at least
in those chimeric constructs tested so far. Currently
no conditions are known where physiological or
pathophysiological variations of selenium status in hu-
man beings directly alter transcription, expression or
function of any of the three deiodinases to an extent
that modulates thyroid hormone homeostasis or ac-
tion. This statement does not exclude the possibility
of such effects during development and maturation
or under specific circumstances in some tissues,
organs or cells. Animal experimental data also indi-
cate that nondeiodinative metabolism of conjugated
(sulfated) thyroid hormone metabolites is altered by
variations of selenium status, leading to increased
half-life of active thyroid hormones under conditions
of selenium deficiency and disturbed thyroid hormone
status [104].
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Deiodinases in development

Recently, the crucial role of development- and tissue-
specific expression of the deiodinase isoenzymes for
strict and timely control of available thyroid hormone
levels in various organs including the brain has been
lucidly demonstrated in the traditional models of thy-
roid hormone- controlled metamorphosis of amphibia
[105]. With the molecular identification and characteri-
zation of both isoforms of deiodinase enzymes and T3
receptors, these sensitive techniques and analytical tools
made available hereby revealed a clear pattern of T3-
regulated control of gene expression, mediated by T3
receptors, during the complex remodelling and differen-
tiation programs associated with tadpole metamorpho-
sis [37, 106–109]. Stage- and tissue-specific sequential
regulation of thyroid hormone receptors and 5%DII and
5DIII during metamorphosis in R. catesbeiana and X.
lae6is tadpoles allows for ordered progress of timely
differentiation and resorption processes independent of
circulating systemic thyroid hormone levels. Subsequent
high expression of 5DIII in tissues that have completed
metamorphosis would render them resistant to further
inappropriate action of thyroid hormone [107]. Simi-
larly, complex patterns of expression of deiodinase
isoenyzmes and T3-receptor forms are also reported for
developing rat and chicken models [23, 110, 111]. No
information is available whether and to what extent
selenium availability regulates developmental expres-
sion of deiodinase isoenzymes. In summary, deiodinases
are envisaged as guardians to the gate of thyroid hor-
mone action mediated by ligand-activated nuclear and
mitochondrial T3 receptors, and other cellular or sys-
temic targets of iodothyronine metabolites.
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Kühn E. R., Leonard J. L. et al. (1997) Expression of
chicken hepatic type I and type III iodothyronine deiodi-
nases during embryonic development. Endocrinology 138:
5144–5152

24 Mol K. A., Van Der Geyten S., Darras V. M., Visser T. J.
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J., Eber O. and Langsteger W. (eds), Blackwell Wissenschaft,
Graz, Austria

73 Brätter P. and Negretti De Brätter V. E. (1996) Influence of
high dietary selenium intake on the thyroid hormone level in
human serum. J. Trace Elem. Med. Biol. 10: 163–166

74 Feldkamp J., Dohan O., Becker A., Seppel T., Szabolcz I.
and Lombeck I. (1996) Selenium amd iodide status of 301
institutionalized elderly subjects. Exp. Clin. Endocrinol. 104:
92

75 Olivieri O., Girelli D., Azzini M., Stanzial A. M., Russo C.,
Ferroni M. et al. (1995) Low selenium status in the elderly
influences thyroid hormones. Clin. Sci. 89: 637–642

76 Terwolbeck K., Behne D., Meinhold H., Menzel H. and
Lombeck I. (1993) Increased plasma T4-levels in children
with low selenium state due to reduced type I iodothyronine
5%-deiodinase activity? J. Trace Elem. Electrolytes. Health
Dis. 7: 53–55

77 Kauf E., Dawczynski H., Jahreis G., Janitzky E. and Win-
nefeld K. (1994) Sodium selenite therapy and thyroid-hor-
mone status in cystic fibrosis and congenital hypothyroidism.
Biol. Trace Elem. Res. 40: 247–253
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