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Abstract. The paper is devoted to the concept of conical measures which is central for
the Choquet theory of integral representation in its final version. The conical measures
need not be continuous under monotone pointwise convergence of sequences on the lat-
tice subspace of functions which form their domain. We prove that they indeed become
continuous (even in the nonsequential sense) when one restricts that domain to an obvi-
ous subcone. This result is in accord with the recent representation theory in measure and
integration developed by the author. We also prove that one can pass from the subcone
in question to a certain natural extended cone.

The main point in the present paper comes from the theory of integral representation due
to Choquet 1956–68 in its final version. This version takes place on certain convex cones in
certain locally convex topological vector spaces. The fundamental concepts are the caps of
these cones and the conical measures on the spaces. The aim is to represent certain conical
measures in terms of appropriate Radon measures. We refer to the expositions in Choquet [3]
and Becker [1] and to the survey articles [2] [4]. Our point of interest is the concept of conical
measures. In the review [13] on the book [1] the present author commented on that concept
and on possible variants, and in the meantime obtained some relevant results which this paper
wants to develop. They can be expected to form a sensible combination with our recent work
in measure and integration [10] [11] [12].

Let E be a real vector space. We form the usual classes E� of all linear and E# of all sublinear
functionals E → R. The Choquet theory under consideration assumes a linear subspace
F ⊂ E� which separates E. The weak topology σ(E, F) on E is Hausdorff with topological
dual F. One defines s(E)= s(E, F)⊂ RE to consist of the pointwise maximaϑ = f1 ∨ . . .∨ fr

of finite families f1, . . . , fr ∈ F, and h(E)= h(E, F) := s(E, F)− s(E, F)⊂ RE . One verifies
that h(E, F) is a lattice subspace, while s(E, F) is a maximum-stable convex cone. The conical
measures on E (with respect to F) are defined to be the positive (:= isotone) linear functionals
ψ : h(E, F) → R. They are of course in one-to-one correspondence with their restrictions to
s(E, F), that is with the isotone positive-linear functionals ϕ : s(E, F) → R.

The conical measures do not well comply with the traditional representation theorems of
Daniell-Stone type. One reason is that the lattice subspace h(E, F) does not fulfil the Stone
condition (because its members are positive-homogeneous functions on E). It can be said that
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Choquet invented the caps in order to overcome this drawback. The other reason is that the
conical measures need not be continuous under monotone pointwise convergence even in the
σ (:= sequential) sense, except when E is complete in σ(E, F), that is when the canonical map
E → F� is onto; see [3] 38.13–14. This unpleasant fact obstructs the extension of conical
measures, a procedure in which the Stone condition does not occur.

It is this situation to which our former comments applied. First of all one has

F ⊂ s(E, F) ⊂ E#
σ(E,F) ⊂ E# ⊂ RE,

where E#
σ(E,F) consists of the members of E# which are continuous in σ(E, F). One concrete

proposal was to consider the idea to base the concept of conical measures upon E#
σ(E,F) in

place of s(E, F), a perhaps more flexible function class. The immediate response of Gustave
Choquet was that with this one might come to the same conical measures as before. It will
be proved below that this suspicion is in fact true: Each isotone positive-linear functional
ϕ : s(E, F) → R is the restriction of a unique φ : E#

σ(E,F) → R of the same sort. It remains to
be seen what the benefits of E#

σ(E,F) are compared to s(E, F).
The other concrete proposal arose from the experience that in [10] [11] [12] the fundamental

representation procedure in measure and integration has been restructured and in particular
extended, as to the domains of the basic functionals, from Stonean lattice subspaces of
functions to Stonean lattice cones. Thus it was a natural proposal to remain, as to the domains
of conical measures, with cones like s(E, F) and E#

σ(E,F) and to refrain from the transition
to differences. We know from [10] 3.11 and 14.20 that such transitions can result in the
destruction of continuity. Therefore the present paper will concentrate on the further question
whether and in what sense continuity can be asserted for the functionals on those smaller
domains. Our result will be the desirable one in the sense of [10] [11] [12]: Each isotone
positive-linear functional φ : E#

σ(E,F) → R, and hence each such ϕ : s(E, F)→ R, is downward
continuous under pointwise convergence even in the τ (:= nonsequential) sense. Thus the
picture is quite different from the former one. But of course the task of actual representation
for these functionals in the spirit of [10] [11] [12] remains to be done.

The proofs of the two results in question rest upon certain fundamental properties of the
classes E� and E# around the Hahn-Banach theorem. The basic facts are the maximum and
sum theorems after the author’s paper [8] of 1972, which was an attempt at systematization.
A similar attempt has been made in 1969 in the Lectures on Analysis of Choquet [3] chapter 8.
It includes the sum theorem and its connection with the Strassen disintegration theorem, but
there is no explicit maximum theorem. The maximum theorem remained almost unnoticed
to this day despite its remarkable power, for which we insert one more example with an
extension of the decomposition theorem [3] 36.4. In [8] the maximum and sum theorems
were simple consequences of a Hahn-Banach separation theorem which is equivalent to the
Mazur-Orlicz theorem [15] 2.41. Later on the separation theorem found a wide extension
in Fuchssteiner-König [5], and on this basis the maximum and sum theorems in [9] [14],
but these extensions will not be needed in the sequel. For the entire context we refer to the
historical comments in Fuchssteiner-Lusky [6] pp. 72–86 and [14] pp. 109–115.

Then we also need the two basic tool theorems about weak topologies on vector spaces: On
the one hand we adopt from [8] [9] the assertion called the convex closure theorem, which is
the common substance of the strong separation and bipolar theorems. On the other hand we
present the Alaoglu-Bourbaki theorem in an unconventional version which might well be its
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final one. The author produced this version in his courses since 1989 but did not see it in the
literature earlier than in 1997 in Pallu de la Barrière [16] amidst of preliminaries p. 17 (an old
special case, which is much closer to the usual Alaoglu-Bourbaki theorem, is in [7] excerc. 3
p. 90).

All this will be presented in Section 1, with at least short sketches of proofs even of the old
results, in order to make the text self-contained (from the basic Hahn-Banach theorem) and
to underline its ease. The author likes the fact that the machinery of topological vector spaces
does not occur at all. After this then Section 2 will obtain our main results.

The author wants to express his warmest thanks to Gustave Choquet and Richard Becker
for most valuable exchange of ideas and for the benefits which he drew from their works.

1. Some basic properties of sublinear functionals. Let as before E be a real vector space
with E� and E#. For ϑ ∈ E# we defineΛ(ϑ) ⊂ E� to consist of all f ∈ E� such that f � ϑ. The
basic Hahn-Banach theorem asserts that Λ(ϑ) is nonvoid. It is obvious that Λ(ϑ) is convex.

Theorem 1.1. Assume that ϑ ∈ E#, and that A ⊂ E is nonvoid convex.
1) (Variant of the Mazur-Orlicz Theorem) If F : A → R is concave with F � ϑ|A then

there exists f ∈ Λ(ϑ) such that F � f |A.
2) There exists f ∈ Λ(ϑ) such that inf( f |A) = inf(ϑ|A).

S k e t ch o f p r o o f . 1) Define θ(x) = inf{ϑ(x + tu)− tF(u) : u ∈ A and t � 0} for x ∈ E.
One verifies that θ ∈ E#, and for f ∈ E� the equivalence f � θ ⇔ f � ϑ and F � f |A.

2) We can assume that c := inf(ϑ|A) > −∞. The assertion follows from 1) applied to
F := c. ��

For the sequel we define Pr to consist of all t = (t1, . . . , tr) ∈ Rr with t1, . . . , tr � 0 and
t1 + · · · + tr = 1.

Theorem 1.2. Assume that ϑ1, . . . , ϑr ∈ E# and f ∈ E�, and that A ⊂ E is nonvoid convex.
1) (Maximum Theorem) If f � ϑ1 ∨ . . . ∨ ϑr on A then there exists t ∈ Pr such that f �

t1ϑ1 + · · · + trϑr on A.
2) (Sum Theorem) If f � ϑ1 + · · · + ϑr on A then there exist fl ∈ Λ(ϑl) (l = 1, . . . , r) such

that f � f1 + · · · + fr on A.
3) (Combination) If f � ϑ1 ∨ . . . ∨ ϑr on A then there exist fl ∈ Λ(ϑl) (l = 1, . . . , r) and

t ∈ Pr such that f � t1 f1 + · · · + tr fr on A.

S k e t ch o f p r o o f . 1) Define H ∈ (Rr)# to be H(u)= u1 ∨ . . .∨ ur ∀u = (u1, . . . ,ur) ∈ Rr .
Then Λ(H) ⊂ (Rr)� consists of the h ∈ (Rr)� of the form h(u) = t1u1 + · · · + trur ∀u ∈ Rr

with t ∈ Pr . The assertion follows from 1.1.2) applied to H ∈ (Rr)# and to the convex subset
{u ∈ Rr : ul � ϑl(x)− f(x) (l = 1, . . . , r) for some x ∈ A} ⊂ Rr .

2) The case r = 1 is obvious. For the induction step 1 � r ⇒ r + 1 assume that ϑ0,

ϑ1, . . . , ϑr ∈ E# fulfil f � ϑ0 + ϑ1 + · · · + ϑr on A. The assertion follows from 1.1.1) ap-
plied to ϑ0 and F := (

f − (ϑ1 + · · · + ϑr)
)|A and from the induction hypothesis.

3) Combine 1) and 2). ��
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For later reference we collect the required properties of the formation Λ(·). They are all
clear after 1.1 and 1.2.

P r o p e r t i e s 1.3. 1) Λ(ϑ1 + · · · + ϑr) = Λ(ϑ1)+ · · · +Λ(ϑr) ∀ϑ1, . . . , ϑr ∈ E#.
2) Λ(tϑ) = tΛ(ϑ) ∀ϑ ∈ E# and t � 0.
3) Λ(ϑ1 ∨ . . . ∨ ϑr) = conv(Λ(ϑ1), . . . , Λ(ϑr)) ∀ϑ1, . . . , ϑr ∈ E#.
4) For α, β ∈ E# we have α � β ⇔ Λ(α) ⊂ Λ(β).
5) Let M ⊂ E# be nonvoid and downward directed (in the pointwise order). Then the point-

wise infimum α := inf
ϑ∈M

ϑ is in E#, and we have Λ(α) = ∩
ϑ∈M

Λ(ϑ).

We turn to the relevant weak topologies. The weak� topology σ(E�, E) on E� is defined
to be the restriction to E� ⊂ RE of the product topology σ(RE, E) on RE . For each ϑ ∈ E#

the subset Λ(ϑ) ⊂ E� is compact in σ(E�, E), that is in σ(RE, E). This follows from Λ(ϑ) =
E� ∩ Π

x∈E
[−ϑ(−x), ϑ(x)], since E� is closed and the subsequent product set is compact in

σ(RE, E).
In contrast to the unique topology σ(E�, E) on E� we have to consider a whole collection

of topologies on E. For each linear subspace F ⊂ E� let σ(E, F) be the weakest topology on
E in which all members f ∈ F are continuous functions E → R. Thus σ(E, F) is Hausdorff
iff F separates E.

Convex Closure Theorem 1.4. Let F ⊂ E� be a linear subspace. For nonvoid A ⊂ E then

convA
σ(E,F) = {u ∈ E : f(u) � sup

x∈A
f(x) for all f ∈ F}.

S k e t ch o f p r o o f . To be shown is ⊃. We fix a �∈ convσ(E,F). There are f1, . . . , fr ∈ F and
ε > 0 such that max{| fl(x − a)| : l = 1, . . . , r} � ε ∀x ∈ convA. Thus the sublinear functional
ϑ := f1 ∨ (− f1) ∨ . . . ∨ fr ∨ (− fr) fulfils

inf{ϑ(z) : z ∈ a − convA} � ε.

From 1.1.2) we obtain an f ∈ Λ(ϑ) such that

inf{ f(z) : z ∈ a − convA} � ε.

This means that f(a) � sup{ f(x) : x ∈ convA} + ε > sup{ f(x) : x ∈ A}. Now 1.2.1) says that
f ∈ F. It follows that a is not in the second member. ��

Consequence 1.5. For nonvoid A ⊂ E� we have

convA
σ(E�,E) = {h ∈ E� : h(x) � sup

f ∈A
f(x) for all x ∈ E}.

S k e t ch o f p r o o f . Follows from 1.4 via the canonical map E → (E�)�. ��
We come to the Alaoglu-Bourbaki theorem. We define K(E) to consist of all nonvoid

convex and weak� compact subsets of E�.

Theorem 1.6. The map ϑ �→ Λ(ϑ) is a bijection Λ : E# → K(E). The inverse map is
K �→ ϑ : ϑ(x) = max{ f(x) : f ∈ K} for x ∈ E.
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P r o o f. We know that ϑ �→ Λ(ϑ) is a map Λ : E# → K(E). We define I : K(E) → E#

as follows. For each x ∈ E the evaluation E� → R : f �→ f(x) is continuous in σ(E�, E),
and hence is bounded and attains its supremum on each K ∈ K(E). For K ∈ K(E) thus
ϑ(x) := max{ f(x) : f ∈ K} ∀x ∈ E defines a functional ϑ ∈ E#. We put I(K ) := ϑ. We have to
prove that I ◦Λ is the identity on E# and thatΛ ◦ I is the identity on K(E). i) I ◦Λ = identity
on E#: Let ϑ ∈ E# and K := Λ(ϑ). For each a ∈ E we obtain from 1.1.2) applied to {a} ⊂ E
an f ∈ K such that f(a) = ϑ(a). Thus ϑ(a) = max{h(a) : h ∈ K}. This means that ϑ = I(K ).
ii) Λ ◦ I = identity on K(E): Let K ∈ K(E) and ϑ := I(K ). From 1.5 we have

K =convK
σ(E�,E)={h ∈ E� : h(x) � sup

f ∈K
f(x)=ϑ(x) ∀x ∈ E}=Λ(ϑ). ��

We conclude the section with an application of 1.2 which extends and specifies the decom-
position theorem [3] 36.4 (except of course its extra assertion which requires some sort of
lattice assumption). We note that an assertion of similar kind occured in [8] p. 507 and [9] 6.2.

Theorem 1.7. Let A ⊂ E� be nonvoid, and assume that ϑ(x) := sup{| f(x)| : f ∈ A} < ∞
∀x ∈ E and hence ϑ ∈ E#. Then

Λ(ϑ) = conv
(
convA

σ(E�,E)
,−convA

σ(E�,E))
.

P r o o f. Define α(x) := sup{ f(x) : f ∈ A} and β(x) := sup{− f(x) : f ∈ A} for x ∈ E, so that
α,β ∈ E# with ϑ = α∨ β. We have β(x)= α(−x) ∀x ∈ E and henceΛ(β)= −Λ(α). Moreover

Λ(α) = convA
σ(E�,E)

from 1.5. The assertion follows from 1.3.3). ��
2. The main results. Let as before E be a real vector space with E� and E#. We fix a linear

subspace F ⊂ E� which separates E and consider

F ⊂ s(E, F) ⊂ E#
σ(E,F) ⊂ E# ⊂ RE,

as defined in the introduction.

Proposition 2.1. For ϑ ∈ E# the following are equivalent.
1) ϑ is upper semicontinuous in σ(E, F).
2) ϑ is continuous in σ(E, F).
3) There exists a nonvoid finite M ⊂ F such that ϑ � max

f ∈M
f .

4) There exists a nonvoid finite M ⊂ F such that |ϑ(u)− ϑ(v)| � max{| f(u − v)| : u, v ∈ M}
for all u, v ∈ E.

5) Λ(ϑ) is contained in some finite-dimensional linear subspace of F.

The proof will be after the scheme 1)⇒3)⇒4)⇒2)⇒1) and 3)⇔5). We start with a useful
remark.

R e m a r k 2.2. Let T ⊂ E� be a nontrivial finite-dimensional linear subspace and
f1, . . . , fr ∈ T be a basis of T . Define

‖ f ‖ :=
r∑

l=1
|tl| for f =

r∑
l=1

tl fl ∈ T,

so that ‖ · ‖ is a norm on T which of course produces σ(E�, E)|T . Also define ω :=
f1 ∨ (− f1) ∨ . . . ∨ fr ∨ (− fr), so that ω ∈ E# with Λ(ω) ⊂ T . Then

Λ(ω) = { f ∈ T : ‖ f ‖ � 1},
and hence is a 0 neighbourhood in σ(E�, E)|T .
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P r o o f o f 2.2. f ∈ Λ(ω) = conv(± f1, . . . ,± fr , 0) means that

f =
r∑

l=1
(sl − tl) fl + c0 with s1, . . . , sr, t1, . . . , tr � 0

and
r∑

l=1
(sl + tl)+ c = 1,

which is equivalent to

f =
r∑

l=1
cl fl with

r∑
l=1

|cl| � 1, that is to ‖ f ‖ � 1. �

P r o o f o f 2.1. 1)⇒3). Under 1) [ϑ < 1] is a 0 neighbourhood in σ(E, F). Thus there exists
a nonvoid finite M ⊂ F such that max{| f(x)| < 1 : f ∈ M} ⇒ ϑ(x) < 1 and hence

ϑ(x) � max{| f(x)| : f ∈ M} = max{ f(x) ∨ (− f(x)) : f ∈ M} for all x ∈ E.

3)⇒4) For u, v ∈ E we have

|ϑ(u)− ϑ(v)| = (ϑ(u)− ϑ(v))∨ (ϑ(v)− ϑ(u)) � ϑ(u − v) ∨ ϑ(v− u)

� max{ f(u − v)∨ f(v − u) : f ∈ M}
= max{| f(u − v)| : f ∈ M}.

4)⇒2) and 2)⇒1) are obvious. 3)⇒5) For M = { f1, . . . , fr} we see from 1.3.3) that

Λ(ϑ) ⊂ Λ( f1 ∨ . . . ∨ fr) = conv( f1, . . . , fr) ⊂ Lin( f1, . . . , fr).

5)⇒3) Assume that Λ(ϑ) is contained in the nontrivial finite-dimensional linear subspace
T ⊂ F, and let f1, . . . , fr ∈ T be a basis of T as in 2.2. Then ‖ f ‖ � c < ∞ ∀ f ∈ Λ(ϑ) since
Λ(ϑ) is compact in σ(E�, E)|T . Therefore

f(x) =
r∑

l=1
tl fl(x) � c max{| fl(x)| : l = 1, . . . , r} for f ∈ Λ(ϑ) and x ∈ E,

and hence ϑ � c f1 ∨ (− f1) ∨ . . . ∨ fr ∨ (− fr). ��
Proposition 2.3 (which will not be needed in the sequel). For ϑ ∈ E# the following are

equivalent.
1) ϑ is continuous in the Mackey topology τ(E, F).
2) Λ(ϑ) ⊂ F.

S k e t ch o f p r o o f . One of the usual definitions of the Mackey topology τ(E, F) is that
a basis of 0 neighbourhoods consists of the so-called polars [max

f ∈K
f � 1] of the K ∈ K(E)

with K ⊂ F, which in view of 1.6 are the [ϑ � 1] for the ϑ ∈ E# with Λ(ϑ) ⊂ F. ��
We come to the first main result.

Theorem 2.4. Assume that H ⊂ E# is a convex cone with s(E, F)⊂ H ⊂ E#
σ(E,F). Then each

isotone positive-linear functional ϕ : H → R is downward τ continuous under pointwise con-
vergence, that is: If M ⊂ H is nonvoid and downward directed ↓ α ∈ H then inf

ϑ∈M
ϕ(ϑ)= ϕ(α).
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P r o o f. In view of 2.1 we can assume that that there is a nontrivial finite-dimensional linear
subspace T ⊂ F such that Λ(ϑ) ⊂ T for all ϑ ∈ M, and hence that Λ(α) ⊂ T as well. From
1.3.5) we know thatΛ(α) = ∩

ϑ∈M
Λ(ϑ). Let f1, . . . , fr ∈ T be a basis of T and ω ∈ E# as in 2.2.

For ε > 0 then Λ(εω) = εΛ(ω) ⊂ T is a 0 neighbourhood in σ(E�, E)|T . Thus compactness
implies the existence of ϑ ∈ M such that Λ(ϑ) ⊂ Λ(α)+ εΛ(ω) = Λ(α+ εω) and hence
ϑ � α+ εω. In view of ω ∈ s(E, F) ⊂ H we have ϕ(ϑ) � ϕ(α+ εω) = ϕ(α)+ εϕ(ω). Thus
inf
ϑ∈M

ϕ(ϑ) � ϕ(α)+ εϕ(ω) for each ε > 0 and hence � ϕ(α) . ��
Our next aim is the approximation Theorem 2.6 below.

Lemma 2.5. Let T be a nontrivial finite-dimensional real vector space and ‖ · ‖ be a norm
on T. For nonvoid K ⊂ T and δ > 0 define K(δ) := { f ∈ T : dist( f, K ) � δ}, so that K(δ) is
i) compact when K is compact and ii) convex when K is convex. If K is compact convex and
δ > 0 then there exists a nonvoid finite M ⊂ K(δ) such that K ⊂ convM ⊂ K(δ).

P r o o f. Let M ⊂ K(δ) be nonvoid finite such that K(δ) ⊂ M(δ). Then fix f ∈ K . For
each v ∈ T with ‖v‖ � δ we have f + v ∈ K(δ) ⊂ M(δ), so that there exists u ∈ M with
‖ f + v − u‖ � δ. For ϕ ∈ T � therefore

ϕ( f )+ ϕ(v) � ϕ(u)+ |ϕ( f + v − u)| � sup
u∈M

ϕ(u)+ δ‖ϕ‖.
From sup{ϕ(v) : v ∈ T with ‖v‖ � δ} = δ‖ϕ‖ we obtain ϕ( f ) � sup

u∈M
ϕ(u) for all ϕ ∈ T �. After

1.4 this says that f ∈ convM
σ(T,T�) = convM. ��

Theorem 2.6. Assume that ϑ ∈ E#
σ(E,F), and let T ⊂ F be a nontrivial finite-dimensional

linear subspace withΛ(ϑ) ⊂ T. Then there exists a sequence (ϑn)n in s(E, F) such that ϑn ↓ ϑ
pointwise on E, and that the Λ(ϑn) are ⊂ T and neighbourhoods of Λ(ϑ) in σ(E�, E)|T.

P r o o f. Let ‖ · ‖ be a norm on T as in 2.2, and put K := Λ(ϑ) ⊂ T . For n ∈ N we obtain
from 2.5 a nonvoid finite M(n) ⊂ K( 1

2n )(
1

2n ) = K( 1
2n−1 ) such that

K ⊂ . . . ⊂ K

(
1

2n

)
⊂ convM(n) ⊂ K

(
1

2n−1

)
⊂ . . . ⊂ K(1) ⊂ T.

Thus convM(n) ⊂ T is a neighbourhood of K in σ(E�, E)|T . After 1.6 there exists ϑn ∈ E#

with Λ(ϑn) = convM(n) ⊂ T . From 1.3.3) it follows that Λ(ϑn) = convM(n) = Λ( max
f ∈M(n)

f)

and hence ϑn = max
f ∈M(n)

f ∈ s(E, F). At last fromΛ(ϑn) = convM(n) ↓ K = Λ(ϑ) and 1.3.4)5)

we see that ϑn ↓ ϑ. ��
Proposition 2.7. Assume that M ⊂ s(E, F) is nonvoid and downward directed ↓ α ∈ E#

σ(E,F).
For each isotone positive-linear ϕ : s(E, F) → R then

inf
ϑ∈M

ϕ(ϑ) = inf{ϕ(η) : η ∈ s(E, F) with η � α}.

P r o o f. To be shown is �. We can assume that there is a nontrivial finite-dimensional
linear subspace T ⊂ F such that Λ(ϑ) ⊂ T for all ϑ ∈ M, and hence that Λ(α) ⊂ T as well.
From 2.6 we obtain a sequence (ϑn)n in s(E, F) such that ϑn ↓ α pointwise on E, and that the
Λ(ϑn) ⊂ T are neighbourhoods ofΛ(α) in σ(E�, E)|T . For fixed n ∈ N thenΛ(α) = ∩

ϑ∈M
Λ(ϑ)
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from 1.3.5) and compactness furnish some ϑ ∈ M such thatΛ(ϑ) ⊂ Λ(ϑn) and hence ϑ � ϑn ,
so that ϕ(ϑ) � ϕ(ϑn). It follows that inf

ϑ∈M
ϕ(ϑ) � ϕ(ϑn) for all n ∈ N. Now for fixed η ∈ s(E, F)

with η � αwe have ϑn ∨ η ∈ s(E, F) and ϑn ∨ η ↓ α∨ η = η, and hence ϕ(ϑn ∨ η) ↓ ϕ(η) from
2.4 applied to H = s(E, F). It follows that

inf
ϑ∈M

ϕ(ϑ) � lim
n→∞ ϕ(ϑn) � lim

n→∞ ϕ(ϑn ∨ η) = ϕ(η). �

We come to the second main result.

Theorem 2.8. Each isotone positive-linear functional ϕ : s(E, F)→ R has a unique isotone
positive-linear extension φ : E#

σ(E,F) → R. It is defined to be

φ(α) = inf{ϕ(η) : η ∈ s(E, F) with η � α} for α ∈ E#
σ(E,F).

P r o o f. i) We define φ : E#
σ(E,F) → [−∞,∞[ as above, where 2.6 or 2.1.2)⇒3) has been

used. φ is isotone and an extension of ϕ. Also φ(α) > −∞, because the Hahn-Banach theorem
furnishes an f ∈ Λ(α) and hence φ(α) � ϕ( f ) > −∞. After 2.6 there are sequences (αn)n in
s(E, F) such that αn ↓ α pointwise on E, and from 2.7 we have ϕ(αn) ↓ φ(α) each time. It
follows that φ is additive and hence positive-linear. Thus φ is as required.

ii) Assume now that θ : E#
σ(E,F) → R is any isotone positive-linear extension of ϕ. We know

from 2.4 that both θ and φ are downward σ continuous. Thus the approximation Theorem 2.6
implies that θ = φ. ��
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