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Abstract. In this paper we use Krasnoselskii�s fixed point theorem to establish the
existence of at least one positive solution y 2 Lp�0;T� of the integral equation

y�t� � h�t� � �T
0

k�t; s�f �s; y�s��ds; a.e. t 2 �0;T� and related equations.

1. Introduction. Much work has been carried out on the existence of positive, continuous
solutions of various types of Hammerstein integral equations (see references). One of the
most common approaches to a problem of this nature is to use Krasnoselskii�s fixed point
theorem. In this paper we consider the Hammerstein integral equation

y�t� � h�t� � �T
0

k�t; s�f �s; y�s�� ds; a.e. t 2 �0;T�;�1:1�

and use Krasnoselskii�s theorem on this occasion, to establish conditions under which �1:1�
will have at least one positive solution y 2 Lp�0;T�; 1 % p <1 : In fact we first consider �1:1�
when h � 0; that is,

y�t� � �T
0

k�t; s�f �s; y�s�� ds; a.e. t 2 �0;T�;�1:2�

since the analysis is slightly more straight forward in this case. Half the battle in applying
Krasnoselskii�s fixed point theorem to a problem, is establishing an appropriate cone in
which the desired solution will lie and ensuring that the integral operator behaves correctly
on this cone. In both of the equations mentioned above we place conditions mainly on the
kernel to ensure that the hypotheses of Krasnoselskii�s fixed point theorem are satisfied.

We lastly consider the nonlinear integral equation on the half line, namely

y�t� � h�t� � �1
0

k�t; s�f �s; y�s�� ds; a.e. t 2 �0; 1�;�1:3�

which can be dealt with in a similar manner to �1:1� and �1:2�:
We complete the introduction by stating the following theorem which will be used

throughout the next section.

Theorem 1.1 Krasnoselskii�s Fixed Point Theorem [5]. Let E be a Banach space and let
C � E be a cone in E: Assume that W1; W2 are open subsets of E with 0 2 W1; W1 � W2; and
let

K : C \ �W2nW1� ! C
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be a completely continuous operator such that either

(i) jjKujj % jjujj; u 2 C \ @W1 and jjKujj ^ jjujj; u 2 C \ @W2

or
(ii) jjKujj ^ jjujj; u 2 C \ @W1 and jjKujj % jjujj; u 2 C \ @W2

is true. Then K has a fixed point in C \ �W2nW1�:

2. Positive Lp solutions. Consider the nonlinear integral equation

y�t� � �T
0

k�t; s�f �s; y�s�� ds; a.e. t 2 �0;T�:�2:1�

We would like to know what conditions one requires on k and f in order for this equation to
have a positive solution y 2 Lp�0;T� where 1 % p <1 : Here by a positive function y we
mean y�t� > 0 for a.e. t 2 �0;T�:

Nota t ion . We will use jj:jjp to denote the norm on Lp�0;T� with

jjyjjp :� �T
0
jy�t�jp dt

 !1
p

if 1 % p <1 ;

while

jjyjjp :� essÿ sup
t2�0;T�

jy�t�j if p � 1 :

Ultimately we will apply Krasnoselskii�s fixed point theorem to obtain the desired result.
This means that we must construct an appropriate cone in Lp�0;T� and ensure that the
relevant integral operator satisfies the conditions of this fixed point theorem on the cone.

We start by defining the operators KL : Lp2 �0;T� ! Lp�0;T� and F : Lp�0;T� ! Lp2 �0;T�
by

KLy�t� :� �T
0

k�t; s�y�s� ds; a.e. t 2 �0;T��2:2�
and

Fy�t� :� f �t; y�t��; a.e. t 2 �0;T��2:3�
respectively. Here 1 % p2 <1 and p1 is such that

1
p1
� 1

p2
� 1:

Concentrating first on the operator F : Lp�0;T� ! Lp2 �0;T� suppose that

f : �0;T� �R! R is a CarathØodory function; that is
(i) the map t 7! f �t; y� is measurable for all y 2 R;

(ii) the map y 7! f �t; y� is continuous for almost all t 2 �0;T�;

8<:�2:4�

and

there exists a1 2 Lp2 �0;T� and a2 > 0

such that jf �t; y�j % a1�t� � a2jyj
p

p2 ; a.e. t 2 �0;T�
�2:5�

hold. Then we have that

f �t; y�t�� 2 Lp2 �0;T� for y 2 Lp�0;T�
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and from [4], we see that

F : Lp�0;T� ! Lp2 �0;T� is continuous and bounded�2:6�
is true. From �2:5� we obtain

jf �t; y�t��jp2 % 2p2ÿ1 a p2
1 �t� � a p2

2 jy�t�jp
ÿ �

; a.e. t 2 �0;T�
and hence �T

0
jf �t; y�t��jp2 dt % 2p2ÿ1

� �T
0

a p2
1 �t� dt � a p2

2

�T
0
jy�t�jp dt

�
:

Thus defining y 2 C�0; 1� by

y�t� :� 2
p2ÿ1

p2 jja1jjp2
p2
� a p2

2 tp
� � 1

p2 ; t 2 �0; 1��2:7�

we see that

there exists y 2 C�0; 1� such that jjFyjjp2
% y�jjyjjp� for all y 2 Lp�0;T��2:8�

holds. Finally since we are interested in positive solutions of �2:1� we will assume
that

f �t; y� > 0 for all y > 0 and a.e. t 2 �0;T��2:9�
is satisfied. Thus defining the cones

Cp :� fy 2 Lp�0;T� : y�t� ^ 0 a.e. t 2 �0;T�g
and

Cp2 :� fy 2 Lp2 �0;T� : y�t� ^ 0 a.e. t 2 �0;T�g
we see from �2:6� and �2:9� that

F : Cp ! Cp2 is a bounded, continuous operator.�2:10�
We now turn our attention to the operator KL : Lp2 �0;T� ! Lp�0;T�: Suppose that

k : �0;T� � �0;T� ! R is such that �t; s� 7! k�t; s� is measurable�2:11�
and

there exists 0 < M % 1; k1 2 Lp�0;T� and k2 2 Lp1 �0;T�
such that 0 < k1�t�; k2�t� a.e. t 2 �0;T� and
Mk1�t�k2�s� % k�t; s� % k1�t�k2�s� a.e. t 2 �0;T�; a.e. s 2 �0;T�:

8<:�2:12�

hold. From �2:12� we have immediately that

�T
0

�T
0
jk�t; s�jp dt

 !p1
p

ds

0@ 1A 1
p1

% jjk1jjpjjk2jjp1
�M0 <1 :

Thus from [9, pp. 47 ± 49] we have that

KL : Lp2 �0;T� ! Lp�0;T� is a completely continuous operator.
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In fact due to the positivity of the kernel k we have that

KL : Cp2 ! Cp is a completely continuous operator�2:13�
is true. However we can be more specific about the range of KL:

If y 2 Cp2 then we know from �2:12� that

jKLy�t�jp % kp
1�t�
� �T

0
k2�s�y�s�ds

�p

; a.e. t 2 �0;T�;

that is,

jjKLyjjp % jjk1jjp
�T
0

k2�s�y�s� ds:�2:14�

However we also have from �2:12� that for y 2 Cp2 ;

KLy�t� ^ M k1�t�
�T
0

k2�s�y�s�ds; a.e. t 2 �0;T�:

Combining this inequality with �2:14� we have that for y 2 Cp2 ;

KLy�t� ^ M
k1�t�
jjk1jjp

jjKLyjjp; a.e. t 2 �0;T�:�2:15�

Thus defining

a�t� :�M
k1�t�
jjk1jjp

; a.e. t 2 �0;T�;�2:16�

we see that a 2 Lp�0;T�; a�t� > 0; a.e. t 2 �0;T� and jjajjp �M % 1: Therefore if we define the
cone Cp;a by

Cp;a :� fy 2 Lp�0;T� : y�t� ^ a�t�jjyjjp; a.e. t 2 �0;T�g;
then by �2:15� and �2:13� we have

KL : Cp2 ! Cp;a is a completely continuous operator:�2:17�
Finally since Cp;a 7 Cp; if we let

Ky�t� :� KLFy�t� � �T
0

k�t; s�f �s; y�s�� ds; a.e. t 2 �0;T�;

then �2:10� and �2:17� combine to give

K : Cp;a ! Cp;a is a completely continuous operator.�2:18�
Now that it is clearer what operator and cone we intend to use in Krasnoselskii�s fixed

point theorem, we state the following existence result for �2:1�:

Theorem 2.1. Assume that p; p1 and p2 are such that 1 % p1 % p <1 and 1=p1 � 1=p2 � 1:
Suppose that f : �0;T� �R! R satisfies �2:4�; �2:5�; �2:9� and

f �t; y� is nondecreasing in y for a.e. t 2 �0;T�;�2:19�
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while k : �0;T� � �0;T� ! R satisfies �2:11� and �2:12�: In addition assume that

there exists a > 0 such that 1 <
a

jjk1jjpjjk2jjp1
y�a��2:20�

and

there exists b > 0; b �j a; such that 1 >
b

Mjjk1jjp
�T
0

k2�s�f �s; a�s�b�ds

�2:21�

(Here y 2 C�0; 1� is as described in �2:7� and a 2 Lp�0;T� is as described in �2:16�:) Then
�2:1� has at least one positive solution y 2 Lp�0;T� and either

(A) 0 < a < jjyjjp < b and y�t� ^ a�t�a a.e. t 2 �0;T� if a < b

or

(B) 0 < b < jjyjjp < a and y�t� ^ a�t�b a.e. t 2 �0;T� if b < a

holds.

P roof. Define

Wa :� fy 2 Lp�0;T� : jjyjjp < ag
and

Wb :� fy 2 Lp�0;T� : jjyjjp < bg:
Assume that b < a: (A similar argument holds if a < b:) It is clear from �2:18� that

K : Cp;a \ �WanWb� ! Cp;a is a completely continuous operator.

If we show that in addition

jjKyjjp % jjyjjp for y 2 Cp;a \ @Wa�2:22�
and

jjKyjjp ^ jjyjjp for y 2 Cp;a \ @Wb�2:23�
are true, then by Krasnoselskii�s fixed point theorem the operator K has a fixed point in
Cp;a \ �WanWb�: This in turn implies that �2:1� has at least one solution y 2 Lp�0;T� such that
b % jjyjjp % a and y�t� ^ a�t�b for a.e. t 2 �0;T�:

Suppose then that y 2 Cp;a \ @Wa: In particular jjyjjp � a: Then �2:12�; Hölder�s
inequality, �2:8� and �2:20� give

jjKyjjp % jjk1jjpjjk2jjp1
jjFyjjp2

% jjk1jjpjjk2jjp1
y�jjyjjp�

� jjk1jjpjjk2jjp1
y�a� < a � jjyjjp

and thus �2:22� is satisfied.
Next suppose that y 2 Cp;a \ @Wb: Then jjyjjp � b and note also that y�t� ^ a�t�b for a.e.

t 2 �0;T�: Conditions �2:12� and �2:19� give
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�T
0
jKy�t�jp dt ^ Mpjjk1jjpp

� �T
0

k2�s�f �s; y�s�� ds
�p

^ Mpjjk1jjpp
� �T

0
k2�s�f �s; a�s�b�ds

�p

:

This inequality along with �2:21� implies that

jjKyjjp ^ Mjjk1jjp
� �T

0
k2�s�f �s; a�s�b�ds

�
> b � jjyjjp

± thus �2:23� holds and the theorem is proved. h

Ex a mpl e 2 . 1 . Let p; p1 and p2 be as in Theorem 2.1 and suppose that f �s; y� � yn where
0 % n < 1: It is immediate that f satisfies �2:4�; �2:9� and �2:19�: To ensure that �2:5� holds
(with a1 � 0 and a2 � 1�; we must make the additional assumption that np2 % p: This fact,
along with Hölder�s inequality gives�T

0
jf �s; y�s��jp2 ds � �T

0
jy�s�jnp2 ds % Tmjjyjjnp2

p�2:24�

where m :� �pÿ np2�=p: In addition from �2:24� we can define y�t� :� Ctn where
C :� Tm=p2 : It remains to show that there exist a and b that satisfy �2:20� and �2:21�
respectively, with the above choice of f and y: Since 0 % n < 1; it is possible to choose 0 < a

(large enough) and 0 < b (small enough) to satisfy

1 <
a1ÿn

Cjjk1jjpjjk2jjp1

and

1 >
b1ÿn

Mjjk1jjp
�T
0

k2�s�an�s�ds

respectively. In addition we see that 0 < b < a since

b1ÿn < MCjjk1jjpjjk2jjp1
jjajjnp �M1�nCjjk1jjpjjk2jjp1

% Cjjk1jjpjjk2jjp1
< a1ÿn:

For integral equations with similar nonlinearities, we refer the reader to the references. In
particular [2, 3, 6 ± 8, 12] discuss integral equations where the nonlinearity f exhibits
sublinear growth as above.

Ex a mpl e 2 . 2 . Let p; p1 and p2 be as in Theorem 2.1 and suppose that f �s; y� � yn where
now n > 1 and we assume again that np2 % p: Arguing as in Example 2.1, we see that f
satisfies �2:4�; �2:5�; �2:9� and �2:19� and y can once again be given by y�t� :� Ctn where C is
as defined in the above example. Now since n > 1; one can choose 0 < a (small enough) to
ensure that

1 <
1

Cjjk1jjpjjk2jjp1
anÿ1 :
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In addition b can then be chosen (large enough) such that 0 < a < b and

1 >
1

Mjjk1jjp
� �T

0
k2�s�an�s�ds

�
bnÿ1

:

Integral equations whose nonlinear part exhibits superlinear growth are also discussed in
[2, 3, 6 ± 8].

While the results in [2, 3] also rely on Krasnoselskii�s fixed point theorem, the advantage
of Theorem 2.1 for the two examples discussed here, is that we are only required to know
how the nonlinearity f behaves at two points, a and b:

Re ma r k 2.1. In Theorem 2.1 we sought the existence of a positive solution y 2 Lp�0;T�
of �2:1�: It is possible to modify the hypotheses of this theorem to obtain the existence of at
least one nonnegative solution of �2:1�; that is, a solution y 2 Lp�0;T� such that y�t� ^ 0; a.e.
t 2 �0;T�: Replacing condition �2:12� with

there exists 0 < M % 1; k1 2 Lp�0;T� and k2 2 Lp1 �0;T�
such that 0 % k1�t�; k2�t� a.e. t 2 �0;T�; 0 < jjk1jjp; jjk2jjp1

and
Mk1�t�k2�s� % k�t; s� % k1�t�k2�s� a.e. t 2 �0;T�; a.e. s 2 �0;T�

8<:�2:12?�

and assuming that
�T
0

k2�s�f �s; a�s�b�ds > 0; for all b > 0; will ensure the result.

For the remainder of this section we will concentrate on establishing results analogous to
Theorem 2.1, for two variations of equation �2:1�: Firstly we consider the Hammerstein
integral equation

y�t� � h�t� � �T
0

k�t; s�f �s; y�s�� ds; a.e. t 2 �0;T�:�2:25�

The hypotheses and proof of Theorem 2.1 can be modified easily to ensure that this
nonlinear equation has at least one positive solution y 2 Lp�0;T�: We give some details of the
proof here since it is necessary to consider a slightly different cone to the one used in the
proof of Theorem 2.1.

Theorem 2.2. Suppose that f : �0;T� �R! R satisfies �2:4�; �2:5�; �2:9� and �2:19�; while
k : �0;T� � �0;T� ! R satisfies �2:11� and �2:12�: In addition assume that

h 2 Lp�0;T� and h�t� ^ a�t�jjhjjp; a.e. t 2 �0;T�;
here a 2 Lp�0;T� is as described in �2:16�;

�
�2:26�

there exists a > 0 such that 1 <
a

4
pÿ1

p �jjhjjp � jjk1jjpjjk2jjp1
y�a��

�2:27�

and

there exists b>0; b�j a; such that 1>
b

2
1ÿp

p

�
jjhjjp�Mjjk1jjp

�T
0

k2�s�f �s; ~a�s�b�ds
��2:28�

are true. (The function y in �2:27� is such that �2:8� holds, while ~a in condition �2:28� is as
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given in �2:33�:) Then �2:25� has at least one positive solution y 2 Lp�0;T� and either

(A) 0 < a < jjyjjp < b and y�t� ^ a�t�a a.e. t 2 �0;T� if a < b

or
(B) 0 < b < jjyjjp < a and y�t� ^ a�t�b a.e. t 2 �0;T� if b < a

holds.

P roof. From the proof of Theorem 2.1 we see that �2:10� is true, that is,

F : Cp ! Cp2 is a bounded, continuous operator,

where Fy�t� :� f �t; y�t��; a.e. t 2 �0;T�: Defining the operator ~K : Lp2 �0;T� ! Lp�0;T� by

~Ky�t� :� h�t� � �T
0

k�t; s�y�s� ds; a.e. t 2 �0;T�;

we can show (once again using [9, pp. 47 ± 49] in addition to �2:26�) that

~K : Lp2 �0;T� ! Lp�0;T� is a completely continuous operator.

Indeed, due to the positive nature of the functions involved, it is clear that

~K : Cp2 ! Cp is a completely continuous operator.�2:29�
However, as in the proof of Theorem 2.1, we want to be more specific about the range of ~K
in this case.

If y 2 Cp2 ; then from �2:12�; �2:26� and using the facts that

�a� b�p % 2pÿ1�ap � bp� and �a� b�1p % 2
pÿ1

p �a1
p � b

1
p� for a; b > 0; p ^ 1;�2:30�

we see that

j ~Ky�t�jp % 2pÿ1 jh�t�jp � kp
1�t�
� �T

0
k2�s�y�s� ds

�p
 !

; a.e. t 2 �0;T�;
that is,

jj ~Kyjjpp % 2pÿ1 jjhjjpp � jjk1jjpp
� �T

0
k2�s�y�s�ds

�p
 !

;

and therefore

jj ~Kyjjp % 4
pÿ1

p

�
jjhjjp � jjk1jjp

�T
0

k2�s�y�s�ds
�
:�2:31�

However we also have from �2:12� and �2:26� that for y 2 Cp2 ;

~Ky�t� ^ a�t�jjhjjp �Mk1�t�
�T
0

k2�s�y�s�ds

�M
k1�t�
jjk1jjp

�
jjhjjp � jjk1jjp

�T
0

k2�s�y�s�ds
�
; a.e. t 2 �0;T�:

Combining this with �2:31� yields

~Ky�t� ^ 4
1ÿp

p M
k1�t�
jjk1jjp

jj ~Kyjjp; a.e. t 2 �0;T�:�2:32�
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Thus defining

~a�t� :� 4
1ÿp

p M
k1�t�
jjk1jjp

; a.e. t 2 �0;T�;�2:33�

we see that ~a 2 Lp�0;T�; ~a�t� > 0; a.e. t 2 �0;T� and jj~ajjp � 4
1ÿp

p M % 1: Therefore if we define
the cone Cp;~a by

Cp;~a :� fy 2 Lp�0;T� : y�t� ^ ~a�t�jjyjjp; a.e. t 2 �0;T�g;
then by �2:29� and �2:32� we have

KL : Cp2 ! Cp;~a is a completely continuous operator:

Finally if we let

Ky�t� :� ~KFy�t� � h�t� � �T
0

k�t; s�f �s; y�s�� ds; a.e. t 2 �0;T�;

we obtain

K : Cp;~a ! Cp;~a is a completely continuous operator.

In order to apply Krasnoselskii�s fixed point theorem to obtain the desired result it remains
to show that

jjKyjjp % jjyjjp for y 2 Cp;~a \ @Wa�2:34�
and

jjKyjjp ^ jjyjjp for y 2 Cp;~a \ @Wb�2:35�
are true. (Here Wa and Wb are as defined in the proof of Theorem 2.1.) Suppose first that
y 2 Cp;~a \Wa; implying in particular that jjyjjp � a: This fact, �2:31�; Hölder�s inequality,
�2:8� and �2:27� give

jj ~Kyjjp % 4
pÿ1

p �jjhjjp � jjk1jjpjjk2jjp1
y�jjyjjp�

� 4
pÿ1

p �jjhjjp � jjk1jjpjjk2jjp1
y�a�� < a � jjyjjp

± thus �2:34� holds.
For y 2 Cp;~a \Wb we have that jjyjjp � b and y�t� ^ ~a�t�b; a.e. t 2 �0;T�: This information,

along with �2:12� and �2:19�; gives

jKy�t�jp ^ jh�t�jp �Mpkp
1�t�
� �T

0
k2�s�f �s; y�s�� ds

�p

^ jh�t�jp �Mpkp
1�t�
� �T

0
k2�s�f �s; ~a�s�b�ds

�p

:

If we recall that �a� b�1p ^ 2
1ÿp

p �a1
p � b

1
p�; for a; b > 0 and p ^ 1; we now obtain from �2:28�;

jjKyjjp ^ 2
1ÿp

p

�
jjhjjp �Mjjk1jjp

�T
0

k2�s�f �s; ~a�s�b�ds
�
> b � jjyjjp;

± and �2:35� is proved. h
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Finally we state a result for a second variation of �2:1�; namely,

y�t� � h�t� � �1
0

k�t; s�f �s; y�s�� ds; a.e. t 2 �0; 1�:�2:36�

Theorem 2.3. Suppose that f : �0; 1� �R! R satisfies �2:4�; �2:5�; �2:9� and �2:19�;
k : �0; 1� � �0; 1� ! R satisfies �2:11� and �2:12� and h : �0; 1� ! R satisfies �2:26�; in
addition to �2:27� and �2:28� being true, where in all of the above, T � 1 and �0;T� is
replaced by �0; 1�: Then �2:36� has at least one positive solution y 2 Lp�0; 1� and either

(A) 0 < a < jjyjjp < b and y�t� ^ a�t�a a.e. t 2 �0; 1� if a < b

or

(B) 0 < b < jjyjjp < a and y�t� ^ a�t�b a.e. t 2 �0; 1� if b < a

holds.

Nota t ion . Here jj:jjp denotes the norm on Lp�0; 1� with

jjyjjp :�
� �1

0
jy�t�jp dt

�1
p

if 1 % p <1 ;

while

jjyjjp :� essÿ sup
t2�0;1�

jy�t�j if t � 1 :

P r oof. Proving that �2:36� has at least one positive solution y 2 Lp�0; 1� follows almost
identically to the proof of Theorem 2.1 and Theorem 2.2. The only real difference arises
when we want to show that

K1 : Lp2 �0; 1� ! Lp�0; 1� is a completely continuous operator,�2:37�
where now

K1 y�t� :� h�t� � �1
0

k�t; s�y�s� ds; a.e. t 2 �0; 1�:�2:38�

In the proofs of Theorem 2.1 and Theorem 2.2 we refer the reader to [9, pp. 47 ± 49], where
the Riesz compactness criteria are used, to show that both KL : Lp2 �0;T� ! Lp�0;T� and
~K : Lp2 �0;T� ! Lp�0;T� are completely continuous. Slightly different compactness criteria

are required to show that �2:37� is true, however the reader can find the details of this
argument in [9, pp. 66 ± 68]. We omit the rest of the details since they are identical to those
already outlined in the above proofs. h

References

[1] P. J. BUSHELL, On a class of Volterra and Fredholm nonlinear integral equations. Math. Proc.
Cambridge Philos. Soc. 79, 329 ± 335 (1976).

[2] L. H. ERBE and H. WANG, On the existence of positive solutions of ordinary differential equations.
Proc. Amer. Math. Soc., 120, 3, 743 ± 748 (1994).

[3] L. H. ERBE, S. HU and H. WANG, Multiple positive solutions of some boundary value problems.
J. Math. Anal. Appl. 184, 640 ± 648 (1994).

375Vol. 76, 2001 Positive Lp solutions of Hammerstein integral equations



[4] M. A. KRASNOSELSKII, Topological Methods in the Theory of Nonlinear Integral Equations. Oxford
1964.

[5] M. A. KRASNOSELSKII, Positive Solutions of Operator Equations. Groningen 1964.
[6] M. MEEHAN and D. O�REGAN, Multiple nonnegative solutions of nonlinear integral equations on

compact and semi-infinite intervals. Appl. Anal. 74, 413 ± 427 (2000).
[7] M. MEEHAN and D. O�REGAN, Positive solutions of singular and nonsingular Fredholm integral

equations. J. Math. Anal. Appl. 240, 416 ± 432 (1999).
[8] M. MEEHAN and D. O�REGAN, Positive solutions of singular integral equations. J. Integral

Equations Appl. To appear.
[9] D. O�REGAN and M. MEEHAN, Existence Theory for Nonlinear Integral and Integrodifferential

Equations. Dordrecht 1998.
[10] C. A. STUART, Integral equations with decreasing nonlinearities and applications. J. Differential

Equations 18, 202 ± 217 (1975).
[11] C. A. STUART, Concave solutions of singular nonlinear differential equations. Math. Z. 136, 117 ±

135 (1974).
[12] C. A. STUART, Existence theorems for a class of nonlinear integral equations. Math. Z. 137, 49 ± 66

(1974).
[13] L. VON WOLFERSDORF, Travelling wave solutions of a nonlinear diffusion equation with integral

term. Z. Anal. Anwendungen 9, 4, 303 ± 312 (1990).
[14] P. P. ZABREYKO, A. I. KOSHELEV, M. A. KRASNOSELSKII, S. G. MILKIN, L. S. RAKOV-SHCHIK and

V. YA. STETSENKO, Integral Equations ± a Reference Text. Leyden 1975.

Eingegangen am 12. 11. 1999

Anschriften der Autoren:

Maria Meehan
School of Mathematical Sciences
Dublin City University
Glasnevin
Dublin 9
Ireland

Donal O�Regan
Department of Mathematics
National University of Ireland
Galway
Ireland

376 M. MEEHAN and D. O�REGAN ARCH. MATH.


