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On a filtered multiplicative basis of group algebras

By

VICTOR BovDI#)

Abstract. Let K be a field of characteristic p and G a nonabelian metacyclic finite p-
group. We give an explicit list of all metacyclic p-groups G, such that the group algebra
KG over a field of characteristic p has a filtered multiplicative K-basis. We also present
an example of a non-metacyclic 2-group G, such that the group algebra KG over any
field of characteristic 2 has a filtered multiplicative K-basis.

1. Introduction. Let A be a finite-dimensional algebra over a field K and let B be a K-basis
of A. Suppose that B has the following properties:

1. if by, b, € B then either b1b, = 0 or b1b; € B;
2. BNrad (A) is a K-basis for rad (A), where rad (A) denotes the Jacobson radical of A.

Then B is called a filtered multiplicative K-basis of A.

The filtered multiplicative K-basis arises in the theory of representations of algebras and
was introduced first by H. Kupisch [5]. In [1] R. Bautista, P. Gabriel, A. Roiter and
L. Salmeron proved that if there are only finitely many isomorphism classes of
indecomposable A-modules over an algebraically closed field K, then A has a filtered
multiplicative K-basis. Note that by Higman’s theorem the group algebra KG over a field of
characteristic p has only finitely many isomorphism classes of indecomposable KG-modules
if and only if all the Sylow p-subgroups of G are cyclic.

Here we study the following question from [1]: When does exist a filtered multiplicative K-
basis in the group algebra KG?

Let G be a finite abelian p-group. Then G = {a;) X (az) x ... x {ay) is the direct product
of cyclic groups (a;) of order g;, the set

B={(a; —1)"(a@a-1)" - (a; =)™ | 0=n<gq;}

is a filtered multiplicative K-basis of the group algebra KG over the field K of charac-
teristic p.

Moreover, if KG; and KG, have filtered multiplicative K-bases, which we call By and B,
respectively, then B; x B, is a filtered multiplicative K-basis of the group algebra
K [G1 X Gz}
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P. Landrock and G. O. Michler [6] proved that the group algebra of the smallest Janko
group over a field of characteristic 2 does not have a filtered multiplicative K-basis.

L. Paris [7] gave examples of group algebras KG, which have no filtered multiplicative
K-bases. He also showed that if K is a field of characteristic 2 and either a) G is a quaternion
group of order 8 and also K contains a primitive cube root of the unity or b) G is a dihedral
2-group, then KG has a filtered multiplicative K-basis. We shall show that for the class of all
metacyclic p-groups the groups mentioned in the items a) and b) are exactly those for which
a multiplicative K-basis exists.

We also present an example of a non-metacyclic 2-group G, such that the group algebra
KG over any field of characteristic 2 has a filtered multiplicative K-basis.

2. Preliminary remarks and notations. Let B be a filtered multiplicative K-basis in a finite-
dimensional K-algebra A. In the proof of the main result we use the following simple
properties of B:

(I) Bnrad (A)" is a K-basis of rad (A)" for all n = 1.

Indeed, by the definition of a basis, BNrad(A) is a K-basis of rad (A) and the subset
Bnrad(A)" is linearly independent over K. Since the set of products b1b; - - - b, with b; € B
is a generator system for rad (A)" and each such product is either 0 or belongs to
Bnrad(A)", we conclude that BNrad (A)" is a K-basis of rad (A4)".

(IT) if u,v € B\ rad (A)* and u = v (modrad (A)") then u = v.

Indeed, if u —v = > Aww with 4,, € K, then by the linearly independency of the

weBNrad (A)
basis elements we conclude that 4,, = 0 and therefore u = .

Recall that the Frattini subalgebra @(A) of A is defined as the intersection of all maximal
subalgebras of A if those exist and as A otherwise. G.L. Carns and C.-Y. Chao [2] showed
that if A is a nilpotent algebra over a field K, then @(A) = A2. It follows that

(III) If B is a filtered multiplicative K-basis of A and if B\ {1} < rad(A), then all
elements of B\ rad (A)* are generators of A over K.

Now let G be a group. For a,b € G we define ’a = bab™' and [a, b] = aba~'b~". The ideal
I(G) ={ ¥ a9 €KG | ¥ a, =0}
9eG g9eG

is called the augmentation ideal of KG. Then the following subgroup
Dn(G)={geGlg-1€x(G)}.
is called the n-th dimensional subgroup of KG.

3. Results. By Theorem 3.11.2 of [3] every metacyclic p-group has the following
presentation

G={ab|ad" =1, VP =a", ba=a",

where t = 0, " =1 (modp") and p’(r — 1) = 0 (mod p"). Therefore, every element of G can
be written as g = a'b/, where 0 =i < p" and 0 = j < p”~'. Using the identity

) (y-D=C-Dy-D+x-1)+-1),
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we obtain that every element of the augmentation ideal Ix(G) is a sum of elements of the
form (a —1)¥(b — 1), where 0 = k < p", 0= < p™ ' and k+1= 1.

Theorem. Let G be a finite metacyclic p-group and K be a field of characteristic p. Then the
group algebra KG possesses a filtered multiplicative K-basis if and only if p =2 and exactly
one of the following conditions holds:

1. G is a dihedral group;

2. K contains a primitive cube root of the unity and G is a quaternion group of order 8.

Proof. Clearly, Ix(G) is a radical of KG. Suppose that {1, B} is a filtered multiplicative
K-basis of KG. Then B is a filtered multiplicative K-basis of Ix(G). Obviously,
(a—1)'(b—-1) €IZ(G) if i+j=2 and a—1,b — 1 are generators of Ix(G) over K. By
Jennings theory [4], (a — 1) +1%(G) and (b — 1) + I%(G) form a K-basis of Ix(G)/I%(G).
Therefore, by property (III), the subset B \ B? consists of two elements, which we denote u
and v. Thus K[u,v] = Ix(G) and
{ u=ay(a—1)+ab—1)(modI%(G));

v=p(a—1)+p(b—1) (modI%(G)),
where a;,; € K and 4 = o418, — a5, + 0.

Clearly, ¢ = [b,a] € D,(G) and ¢ — 1 € I%(G). By a simple calculation we get

uv = arfy(a — 1) + aafy(b —1)* + (a1 + axBy)(a—1)(b — 1)

)

3)
+afy(c — 1) (mod [g(G)),
W o = afy(a— 1) + (b — 1) + (anfy + cofy)(a— 1)(b — 1)
+aify(c — 1) (mod [3(G)),
(5) W =a2a—17+ (b -1 +2ma(a—1)(b—1) + ayaz(c —1) (mod I} (G)),
(6) 2 = Fa—17 + B0 — 17 +28B5a— 1)(b— 1) +iBs(c — 1) (mod I(G)).

We consider the case when c¢—1¢€/3(G). Then by (3) and (4) we have
uv = vu (mod I3, (K)). Moreover, uv, vu € I3(G). Indeed, if uv or vu € I};(G) then by (3) or
(4) we obtain a;f; = apf, = a1, + axf; = 0 and 4 = 0, which is impossible. Therefore,
uv,vu € I3(G) and uv = vu (mod I3 (G)) and by property (II) of the filtered multiplicative
K-basis we conclude that uv=wu and Ix(G) is a commutative algebra, which is
contradiction.

In the rest of the proof we assume that ¢ — 1 & I3(G). It is well-known that for all
nonabelian p-groups the factor group G/G’ is not cyclic (see [3], Theorem 3.7.1). Thus r — 1
is divisible by p and r — 1 = ps for some 5. Then ¢ — 1 = (a* — 1)* € I3(G) for p > 2 and also
for p =2 if s is even. We have established that s is odd and G is a 2-group with the following
defining presentation: either

(7) G={(ab|d =1, b =1, ba=a"),

where *" =1 (mod2") and r = 1 (mod 4), or

(8) G=(abl|d =1, b =d* g ba=a",

where r*" =1 (mod2"), 2"~!(r — 1) = 0 (mod?2") and 4 does not divide r — 1.
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Suppose that G has the defining presentation (7) and b*> = 1. Since r —1 =2s and
(s,2) = 1, from r* = 1 (mod 2") it follows that s = —1 or s = —1 +2"~2 for n = 3. Then by (1)
we have ¢ +1 =a® +1 = (1 +a)* (mod I3(G)) and it follows from (3)—(6) that

uv = fi(ar + a)(1+a) + A1 +a)1+b) (mod I3 (G));
) =i +P)(1+a)’ +4(1+a)(1+b)  (mod I} (G));
1 = ay(aq + a2)(1 + a)? (mod I3 (G));
2= BB+ By)(1+a) (mod I3(G)).

Clearly uv,vu € I%(G) and by A+0 we have that wuv = vu(modI3(G)). Since
the K-dimension of 1%(G)/I3(G) equals 2, the elements uv + I3(G) and vu + I3(G) form
a K-basis of I%(G)/I3(G) and u?,1? € I%(G). We conclude that ai(a1 + ) =0 and
B1(B1 + B,) =0, whence it follows that u = a(a + b) and v = (1 + b). Clearly we can set
a=p=1.

Let G = (a,b|a* =1, b*=1, Pa=a"") withn = 2 be a dihedral group of order 2"+1.
We shall prove by induction in i that u’ can be written as
(10) (1+@)" (14 @) (14 b) + B (14 @) +,(1 + @) (1+b) (mod [ (G)),

where 5, =, =1if i is even and 8; = 5, = 0 otherwise.
Base of induction: It is easy to see that this is true for i = 1,2, and the induction step
follows by,

(1+b)(1+a) =1 +a)(1+b)+ (1 +a’(1+b) + (1 +a)’
+(14+a’1+b)+(1+a)+(1+a) (modI3(G))
and

wu = (B + >+ DI +a)* " + (1+a) (1 +b)]
+ 1+ +a)? + 1+ (1+b)] = u'! (mod IF(G)).
Hence (10) holds.
Using (10), we obtain that
=1+ a)zl'—l +(1+ a)Zf—Z(l + b) (mod I2(G)),
il = (14 a)* + (1 +a)* (1 +b) (mod 7+ (G)),
Wo = (1+a)? ' (1 +b) (mod 7T (G)),
wlv = (14 a)?(1+b) (mod IZ(G)),
wherei=1,...,2" landj=1,...,2" 1 - 1.
Clearly, the factor algebra I%(G)/I ! (G) has the following basis: (a + 1) + I (G) and
(a+1)"'(b—1)+ILY(G).
First, let t = 2k + 1, where k =1,...,2" 2 — 1. Then we have
W= 1+ a)* T + (1 4+ a)*(1 4 b) (mod I 1(G)),
v = (1+ (14 b) (mod I (G))

k+1

and it follows that «**! and vu*v are linearly independent by modulo I (G).
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Now, let t = 2k, where k =1,...,2""2 — 1. Then we have
ik = (14 a)* + (14 a)* (1 4 b) (mod I (G)),
kv = (14 a)* (14 b) (mod I (G))

and, as before, vu* and u*v are linearly independent by modulo I};rl(G).
Therefore the matrix of decomposition is unitriangle and

{0, 0/, v/, o, odv |i=1,...,2" Vandj=1,...,2" 1 -1}

form a filtered multiplicative K-basis of KG.
Now let G = (a,b | a* =b?> =1,%a = a'*2"") with n = 3 be a semidihedral group and

21
setu=a+b, v=1+b. An easy calculation gives 1 +a! = 3 (1 +a)" and
i=1

-1y _ 21 .
w= Y (1+a)(l+b)+ Y (1+a),
i =3
-l _ 21 .
wu=> (1+a)(1+b)+ > (1+a).
= =3

Therefore 2 = uvu (mod 12~ (G)), but 12, uvu & I%(G) and

W —uu=(1+a (1+b)+(1+a)?" =0,

which contradicts property (I1).
Suppose that G has the defining presentation (7) with m >1 or (8) with m > 1. By (1) we have

(14 b)(1+a) = (1 +a)(1 + b)+(1+ a’)*=(1+ a)(1+b)+(1 + a)* (mod I3(G))
and it follows from (3)-(6) that

wv = By(ar + a)(1+a)’ + A(1+a)(1+b) + wpy(1+b)*  (mod I}(G));

a1 = ar(By + o) (1 +a)> + A(1+a)(1 +b) + axfy (1 +b)°  (mod I3 (G));
u? = ai(ay + a2)(1+a)* + a3(1 +b)’ (mod I},(G));

2 = BB +B)(1+a) + B5(1 +b)’ (mod I}(G)).

It is easy to see that uw,vu & I%(G). Using the fact that 4 # 0, we establish that
uv = vu (mod I} (G)). Therefore uv + I3 (G) and vu + I3 (G) are K-linearly independent. It is
easily verified that u? + I3(G) and 1? + I}(G) are nonzero elements of I%(G)/I3(G) and
uv = 1%, vu £ 1%, uv = u?, vu = 1. Since the K-dimension of 1%(G)/I%(G) equals 3, we have
u? =17 (mod I3 (G)) and by property (II) of the filtered multiplicative K-basis, u?> = 1*. From
u? = 1* (mod I}, (G)) we obtain o} = 3 and a;(a; + a2) = (B + B,). By 4 =0 we have
az = B, = 0, whence the equation o2 + f,a; + (B, + B,) = 0 has a solution a; = S + S,
whence A = f5 + 0. Thus we observe that u= (1+A)a+b+4 and v=Aa+b+A+1,

where A = g—l Then, keeping the equality u> = 17, we conclude that 1 4+ a® +ab + ba =0,

2
which is impossible.

Suppose that G has the defining presentation (8) with m = 1. As we obtained before,
either r = —1 or r = —1 +2""1. By (1) we have

(1+b)1+a) = (1+a)(1+b)+ (1+a)* (mod I3(G))
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and we can write the elements u, v in the form (2). It follows from (3)—(6) that (11) hold by
modulo 73 (G).
We shall consider two cases depending on the values of r and m in (8).

Case 1. Let G be a quaternion group of order 8. Then by (11) we have

= (@py + i+ why)(1 +a) + A1 +a)(1 +b) (mod [} (G));
u= (a1fy + mify + aofy)(1+a)* + A(1 +a)(1+b) (mod I3 (G));
= (@ + wa + dd)(1 + a) (mod [3(G));
= (Bi + 1B + £)(1 + ) (mod [} (G)).
Since the K-dimension of I]K(G)/I’K“(G) (i=1,...,4) equals 2 and uv = vu (mod I3 (G)),

we have o} +ajay + a3 and B + B8, + 5 = 0. Using the fact that 4 =0, we establish

“_ & = w?. Thus we observe that u = w(1 4 a) + (14 b) and v = (1 + a) + ?*(1 + b),

a ﬁl

where w is a primitive cube root of the unity.
A simple calculation by modulos I%(G), I3 (G) shows that

{1, u, v,uv, vu, uvu, vuv, uvuv}
is a filtered multiplicative K-basis for KG.
Case 2. Let G has a presentation

(12) a,b|d =1, *=d", Pa=ad)

with n > 2. Then by (11) we have
w= (a1 + a@)fy (1 +a) + A1 +a)(1+
v = o (By + o) (1 +a)’ + A(1+a)(1 +
w2 = ay(ag + a2)(1 4 a)* (mod I3(G));
12 = By + Bo)(1 +a) (mod I} (G)).

Since the K-dimension of 1%(G)/I3(G) equals 2 and A4 = 0, we have either a1 = a; £ 0
and 8, =0 or a; =0 and 8; = 3, = 0. The second case is similar to first. Therefore, we can
putu=(1+a)+(1+b),v=1+b.

1+ b) (mod I3 (G));
1+ b) (mod I} (G));

Case 2.1. Let r=—1 in (12). Then G is a generalized quaternion group. An easy
calculation gives
21 21

(1+b)(1+a)= 1(1+a)f(1+b)+ 2(1“)1“
= p

~

and

2'—1 - n—1
= Z(1+a)’“1+b) S a1+
P

j=1
21 21 n—1

ww =3 (1+ay*'(1+b) + + ay? +(1+a)” (1+b).
j=1 j=1
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Therefore, u? = uvu (mod I (G)), but u?, uvu & I} (G) and
W —uvu = (1+ a)zw1 + 1+ a)zm1 (1+b)=+0,

which contradicts property (II).

Case 22. Let G={a,b|a* =1, b*=a?", ba=a"""). It is easy to see that
(ab)* =a*'b* =1 and

G =~ <(l,ab | 2= 1, (ab)2 =1, aby — a,1+2»171>7
which is a semidihedral group and, as we saw before, KG has no filtered multiplicative

K-basis.
Thus our theorem is proved.

4. Example. Now we give an example of a nonmetacyclic 2-group with a filtered
multiplicative basis.
Let G = (a,b|a* =b*=1,%a = b*a®, °b = a*b>, [a*>,b] = [b*,a] = 1), a group of order
16, and let K be a field of characteristic 2. Then elements
{1, u, v, uv, vu, v, uvi, uv®, vuv, v, uvuw, uv®, vur?, uvur? vur® uur® |
u=a+b,v=mua+ub+ (u +u)and u;, u, € K, and py * p, }

form a filtered multiplicative K-basis for KG.
Indeed, by (1) we have

(1+b)1+a) = (1 +a)(1+b) + (1 +a)* + (1+b)* (mod I3(G))

and u, v be can writen in the form (2).
By a simple calculation modulo /3 (G) we have

v = (a1 + a2)By (1+a)” + A1 +a)(1+b) + a2(By + o) (1 +b)’;

=i (By +Bo)(1+a) +A(1+a)(1+b) + (e +a2)(1+b)%

W = (a1 + a)ar (14 a)* + ax(aq + az)(1 + b)?;

= (B + BB (1+a) + B, (1 + b)),

It is easy to see that K-dimension of I%(G)/I%(G) equals 3 and uv = vu (mod I3(G)),
uv = u? (mod I3 (G)), uv £ 17 (mod I3 (G)), vu = u? (mod I3 (G)), vu = 17 (mod I3 (G)).

We have the following two cases.

First let u?> =1? = 0(mod [}(G)). Then by (13) we have o} +ajay = 7 + B8, and
2+ ajay = B2 + By, It follows that (a1 + a2)* = (B, + f,)* and a; + az = f; + f8,. Then
by u? = 1? = 0 (mod I3 (G)) we have A = 0, which is impossible.

Now let #? = 0 (mod I3 (G)) or 1* = 0 (mod I3 (G)). It is easy to see that the second case is
symmetric to the first one, so we consider only the first case. Then a1 = a, =+ 0 and by (13)
we have

(13)

uv = A[(1 + a)(1 + b) + (1 + b)*] (mod I3 (G));
v = A[(14a)* + (1 +a)(1 + b)] (mod I3 (G));
2 = A (1+a)> + By(1 + b)*] (mod I} (G)),



88 V. Bovbi ARCH. MATH.

where 1 = 8, + 3, = 0. By a simple calculation modulo I%(G) we obtain

uvu = A[(1+a)’ + (1 +a)*(1+b) + (1 +a)(1 +b)> + (1 +b)*);

w? = A[B1(1+a)’ + Bi(1+a)’(1+b) + By (1 +a)(1 +b)* + B,(1 +b)7);

vuv = 22[(1 4 a)*(1 + b) + (1 + a)(1 + b))

P =AB1(1+a) + Bia(1+a* (14 b) + Biy(1+ a)(1 + b) + B5(1+ b)’]
and modulo 7% (G)

uuw = 22[(1+ a1 +b) + (1 +a)* (1 +b)* + (1 +a)(1 + b)*];

w’ = 2[Bi(1+a)’ (14 b) + B1(1+a)’(1+b) + By(1 +a)(1 +b)°;

vur? = 2B (1+a)’ (14 b) + By (1+a)° (1 +b)* + By(1 + a)(1 + b)°].
Similarly

wur? = 21 +a)* (1 +b)* + (14 a)*(1 + b)’] (mod IS(G);
v = (B (14 a)* (14 ) + B5(1 + @)’ (1 + b)*] (mod I§(G);

and uvur® = 2>(1 4+ a)*(1 + b)* (mod I.(G)).

Since the number of elements modulo IQ(G), (j=2,...,6) equals the numbers of the
K-dimension of I’,;(G)/I’,?l(G), we conclude that the elements {1,u,v,uv,vu,1?, uvu,
uv?, vuv, v uvuw, uv’, vuv? , uvur?, vur’ uvur’} form a filtered multiplicative K-basis for KG.
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