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Abstract. Let K be a field of characteristic p and G a nonabelian metacyclic finite p-
group. We give an explicit list of all metacyclic p-groups G, such that the group algebra
KG over a field of characteristic p has a filtered multiplicative K-basis. We also present
an example of a non-metacyclic 2-group G, such that the group algebra KG over any
field of characteristic 2 has a filtered multiplicative K-basis.

1. Introduction. Let A be a finite-dimensional algebra over a field K and let B be a K-basis
of A. Suppose that B has the following properties:

1. if b1; b2 2 B then either b1b2 � 0 or b1b2 2 B;
2. B \ rad �A� is a K-basis for rad �A�, where rad �A� denotes the Jacobson radical of A.

Then B is called a filtered multiplicative K-basis of A.

The filtered multiplicative K-basis arises in the theory of representations of algebras and
was introduced first by H. Kupisch [5]. In [1] R. Bautista, P. Gabriel, A. Roiter and
L. Salmeron proved that if there are only finitely many isomorphism classes of
indecomposable A-modules over an algebraically closed field K, then A has a filtered
multiplicative K-basis. Note that by Higman�s theorem the group algebra KG over a field of
characteristic p has only finitely many isomorphism classes of indecomposable KG-modules
if and only if all the Sylow p-subgroups of G are cyclic.

Here we study the following question from [1]: When does exist a filtered multiplicative K-
basis in the group algebra KG?

Let G be a finite abelian p-group. Then G � ha1i � ha2i � . . .� hasi is the direct product
of cyclic groups haii of order qi, the set

B � f�a1 ÿ 1�n1�a2 ÿ 1�n2 � � � �as ÿ 1�ns j 0 % ni < qig
is a filtered multiplicative K-basis of the group algebra KG over the field K of charac-
teristic p.

Moreover, if KG1 and KG2 have filtered multiplicative K-bases, which we call B1 and B2

respectively, then B1 � B2 is a filtered multiplicative K-basis of the group algebra
K�G1 �G2�.
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P. Landrock and G. O. Michler [6] proved that the group algebra of the smallest Janko
group over a field of characteristic 2 does not have a filtered multiplicative K-basis.

L. Paris [7] gave examples of group algebras KG, which have no filtered multiplicative
K-bases. He also showed that if K is a field of characteristic 2 and either a) G is a quaternion
group of order 8 and also K contains a primitive cube root of the unity or b) G is a dihedral
2-group, then KG has a filtered multiplicative K-basis. We shall show that for the class of all
metacyclic p-groups the groups mentioned in the items a) and b) are exactly those for which
a multiplicative K-basis exists.

We also present an example of a non-metacyclic 2-group G, such that the group algebra
KG over any field of characteristic 2 has a filtered multiplicative K-basis.

2. Preliminary remarks and notations. Let B be a filtered multiplicative K-basis in a finite-
dimensional K-algebra A. In the proof of the main result we use the following simple
properties of B:

(I) B \ rad �A�n is a K-basis of rad �A�n for all n ^ 1.

Indeed, by the definition of a basis, B \ rad �A� is a K-basis of rad �A� and the subset
B \ rad �A�n is linearly independent over K. Since the set of products b1b2 � � � bn with bi 2 B
is a generator system for rad �A�n and each such product is either 0 or belongs to
B \ rad �A�n, we conclude that B \ rad �A�n is a K-basis of rad �A�n.

(II) if u; v 2 B n rad �A�k and u � v �mod rad �A�k� then u � v.

Indeed, if uÿ v � P
w2B\ rad �A�k

lww with lw 2 K, then by the linearly independency of the

basis elements we conclude that lw � 0 and therefore u � v.

Recall that the Frattini subalgebra F�A� of A is defined as the intersection of all maximal
subalgebras of A if those exist and as A otherwise. G.L. Carns and C.-Y. Chao [2] showed
that if A is a nilpotent algebra over a field K, then F�A� � A2. It follows that

(III) If B is a filtered multiplicative K-basis of A and if B n f1g 7 rad �A�, then all
elements of B n rad �A�2 are generators of A over K.

Now let G be a group. For a; b 2 G we define ba � babÿ1 and �a; b� � abaÿ1bÿ1. The ideal

IK�G� �
n P

g2G
agg 2 KG j P

g2G
ag � 0

o
is called the augmentation ideal of KG. Then the following subgroup

Dn�G� �
�
g 2 G j gÿ 1 2 In

K�G�
	
:

is called the n-th dimensional subgroup of KG.

3. Results. By Theorem 3.11.2 of [3] every metacyclic p-group has the following
presentation

G � ha; b j apn � 1; bpm � apt
; ba � ari;

where t ^ 0, rpm � 1 �mod pn� and pt�r ÿ 1� � 0 �mod pn�. Therefore, every element of G can
be written as g � aibj, where 0 % i < pn and 0 % j < pmÿt. Using the identity

�xyÿ 1� � �xÿ 1��yÿ 1� � �xÿ 1� � �yÿ 1�;�1�
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we obtain that every element of the augmentation ideal IK�G� is a sum of elements of the
form �aÿ 1�k�bÿ 1�l , where 0 % k < pn, 0 % l < pmÿt and k� l ^ 1.

Theorem. Let G be a finite metacyclic p-group and K be a field of characteristic p. Then the
group algebra KG possesses a filtered multiplicative K-basis if and only if p � 2 and exactly
one of the following conditions holds:

1. G is a dihedral group;
2. K contains a primitive cube root of the unity and G is a quaternion group of order 8:

P roof. Clearly, IK�G� is a radical of KG. Suppose that f1;Bg is a filtered multiplicative
K-basis of KG. Then B is a filtered multiplicative K-basis of IK�G�. Obviously,
�aÿ 1�i�bÿ 1�j 2 I2

K�G� if i� j ^ 2 and aÿ 1; bÿ 1 are generators of IK�G� over K. By
Jennings theory [4], �aÿ 1� � I2

K�G� and �bÿ 1� � I2
K�G� form a K-basis of IK�G�=I2

K�G�.
Therefore, by property (III), the subset B n B2 consists of two elements, which we denote u
and v. Thus K�u; v� � IK�G� and�

u � a1�aÿ 1� � a2�bÿ 1� �mod I2
K�G��;

v � b1�aÿ 1� � b2�bÿ 1� �mod I2
K�G��;

�2�

where ai; bi 2 K and D � a1b2 ÿ a2b1 �j 0.
Clearly, c � �b; a� 2D2�G� and cÿ 1 2 I2

K�G�. By a simple calculation we get

uv � a1b1�aÿ 1�2 � a2b2�bÿ 1�2 � �a1b2 � a2b1��aÿ 1��bÿ 1�
� a2b1�cÿ 1� �mod I3

K�G��;
�3�

vu � a1b1�aÿ 1�2 � a2b2�bÿ 1�2 � �a1b2 � a2b1��aÿ 1��bÿ 1�
� a1b2�cÿ 1� �mod I3

K�G��;
�4�

u2 � a2
1�aÿ 1�2 � a2

2�bÿ 1�2 � 2a1a2�aÿ 1��bÿ 1� � a1a2�cÿ1� �mod I3
K�G��;�5�

v2 � b2
1�aÿ 1�2 � b2

2�bÿ 1�2 � 2b1b2�aÿ 1��bÿ 1� � b1b2�cÿ 1� �mod I3
K�G��:�6�

We consider the case when cÿ 1 2 I3
K�G�. Then by (3) and (4) we have

uv � vu �mod I3
G�K��. Moreover, uv; vu 2j I3

K�G�. Indeed, if uv or vu 2 I3
K�G� then by (3) or

(4) we obtain a1b1 � a2b2 � a1b2 � a2b1 � 0 and D � 0, which is impossible. Therefore,
uv; vu 2j I3

K�G� and uv � vu �mod I3
K�G�� and by property (II) of the filtered multiplicative

K-basis we conclude that uv � vu and IK�G� is a commutative algebra, which is
contradiction.

In the rest of the proof we assume that cÿ 1 2j I3
K�G�. It is well-known that for all

nonabelian p-groups the factor group G=G0 is not cyclic (see [3], Theorem 3.7.1). Thus r ÿ 1
is divisible by p and r ÿ 1 � ps for some s. Then cÿ 1 � �as ÿ 1�p 2 I3

K�G� for p > 2 and also
for p � 2 if s is even. We have established that s is odd and G is a 2-group with the following
defining presentation: either

G � ha; b j a2n � 1; b2m � 1; ba � ari;�7�
where r2m � 1 �mod 2n� and r �j 1 �mod 4�, or

G � ha; b j a2n � 1; b2m � a2nÿ1
; ba � ari;�8�

where r2m � 1 �mod 2n�, 2nÿ1�r ÿ 1� � 0 �mod 2n� and 4 does not divide r ÿ 1.
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Suppose that G has the defining presentation (7) and b2 � 1. Since r ÿ 1 � 2s and
�s; 2� � 1, from r2 � 1 �mod 2n� it follows that s � ÿ1 or s � ÿ1� 2nÿ2 for n ^ 3. Then by (1)
we have c� 1 � a2s � 1 � �1� a�2 �mod I3

K�G�� and it follows from (3) ± (6) that

uv � b1�a1 � a2��1� a�2 � D�1� a��1� b� �mod I3
K�G��;

vu � a1�b1 � b2��1� a�2 � D�1� a��1� b� �mod I3
K�G��;

u2 � a1�a1 � a2��1� a�2 �mod I3
K�G��;

v2 � b1�b1 � b2��1� a�2 �mod I3
K�G��:

8>>>><>>>>:�9�

Clearly uv; vu 2j I3
K�G� and by D �j 0 we have that uv �j vu �mod I3

K�G��. Since
the K-dimension of I2

K�G�=I3
K�G� equals 2, the elements uv� I3

K�G� and vu� I3
K�G� form

a K-basis of I2
K�G�=I3

K�G� and u2; v2 2 I3
K�G�. We conclude that a1�a1 � a2� � 0 and

b1�b1 � b2� � 0, whence it follows that u � a�a� b� and v � b�1� b�. Clearly we can set
a � b � 1.

Let G � ha; b j a2n � 1; b2 � 1; ba � aÿ1i with n ^ 2 be a dihedral group of order 2n�1.
We shall prove by induction in i that ui can be written as

�1� a�2iÿ1��1� a�2iÿ2�1� b� � b1�1� a�2i�b2�1� a�2iÿ1�1�b� �mod I2i�1
K �G��;�10�

where b1 � b2 � 1 if i is even and b1 � b2 � 0 otherwise.
Base of induction: It is easy to see that this is true for i � 1; 2, and the induction step

follows by,

�1� b��1� a� � �1� a��1� b� � �1� a�2�1� b� � �1� a�2

� �1� a�3�1� b� � �1� a�3 � �1� a�4 �mod I5
K�G��

and

uiu ��b1 � b2 � 1���1� a�2i�1 � �1� a�2i�1� b��
� �1� b2���1� a�2i�2 � �1� a�2i�1�1� b�� � ui�1 �mod I2i�3

K �G��:
Hence (10) holds.

Using (10), we obtain that

ui � �1� a�2iÿ1 � �1� a�2iÿ2�1� b� �mod I2i
K �G��;

vui � �1� a�2i � �1� a�2iÿ1�1� b� �mod I2i�1
K �G��;

ujv � �1� a�2jÿ1�1� b� �mod I2j�1
K �G��;

vujv � �1� a�2j�1� b� �mod I2j�2
K �G��;

where i � 1; . . . ; 2nÿ1 and j � 1; . . . ; 2nÿ1 ÿ 1.
Clearly, the factor algebra It

K�G�=It�1
K �G� has the following basis: �a� 1�t � It�1

K �G� and
�a� 1�tÿ1�bÿ 1� � It�1

K �G�.
First, let t � 2k� 1, where k � 1; . . . ; 2nÿ2 ÿ 1. Then we have

uk�1 � �1� a�2k�1 � �1� a�2k�1� b� �mod It�1
K �G��;

vukv � �1� a�2k�1� b� �mod It�1
K �G��

and it follows that uk�1 and vukv are linearly independent by modulo It�1
K �G�.
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Now, let t � 2k, where k � 1; . . . ; 2nÿ2 ÿ 1. Then we have

vuk � �1� a�2k � �1� a�2kÿ1�1� b� �mod It�1
K �G��;

ukv � �1� a�2kÿ1�1� b� �mod It�1
K �G��

and, as before, vuk and ukv are linearly independent by modulo It�1
K �G�.

Therefore the matrix of decomposition is unitriangle and

f1; v; ui; vui; ujv; vujv j i � 1; . . . ; 2nÿ1 and j � 1; . . . ; 2nÿ1 ÿ 1g
form a filtered multiplicative K-basis of KG.

Now let G � ha; b j a2n � b2 � 1; ba � aÿ1�2nÿ1i with n ^ 3 be a semidihedral group and

set u � a� b, v � 1� b. An easy calculation gives 1� aÿ1 � P2nÿ1

i�1
�1� a�i and

u2 � P2nÿ1ÿ1

i�2
�1� a�i�1� b� � P2nÿ1ÿ1

j�3
�1� a�j;

uvu � P2nÿ1

i�2
�1� a�i�1� b� � P2nÿ1

j�3
�1� a�j:

Therefore u2 � uvu �mod I2nÿ1

K �G��, but u2; uvu 2j I4
K�G� and

u2 ÿ uvu � �1� a�2nÿ1�1� b� � �1� a�2nÿ1 �j 0;

which contradicts property (II).
Suppose that G has the defining presentation (7) with m>1 or (8) with m>1. By (1) we have

�1� b��1� a� � �1� a��1� b���1� as�2��1� a��1�b���1� a�2 �mod I3
K�G��

and it follows from (3) ± (6) that

uv � b1�a1 � a2��1� a�2 � D�1� a��1� b� � a2b2�1� b�2 �mod I3
K�G��;

vu � a1�b1 � b2��1� a�2 � D�1� a��1� b� � a2b2�1� b�2 �mod I3
K�G��;

u2 � a1�a1 � a2��1� a�2 � a2
2�1� b�2 �mod I3

K�G��;
v2 � b1�b1 � b2��1� a�2 � b2

2�1� b�2 �mod I3
K�G��:

8>>>><>>>>:�11�

It is easy to see that uv; vu 2j I3
K�G�. Using the fact that D �j 0, we establish that

uv �j vu �mod I3
K�G��. Therefore uv� I3

K�G� and vu� I3
K�G� are K-linearly independent. It is

easily verified that u2 � I3
K�G� and v2 � I3

K�G� are nonzero elements of I2
K�G�=I3

K�G� and
uv �j v2, vu �j v2, uv �j u2, vu �j u2. Since the K-dimension of I2

K�G�=I3
K�G� equals 3, we have

u2 � v2 �mod I3
K�G�� and by property (II) of the filtered multiplicative K-basis, u2 � v2. From

u2 � v2 �mod I3
K�G�� we obtain a2

2 � b2
2 and a1�a1 � a2� � b1�b1 � b2�. By D �j 0 we have

a2 � b2 �j 0, whence the equation a2
1 � b2a1 � b1�b1 � b2� � 0 has a solution a1 � b1 � b2

whence D � b2
2 �j 0. Thus we observe that u � �1� l�a� b� l and v � la� b� l� 1,

where l � b1

b2
. Then, keeping the equality u2 � v2, we conclude that 1� a2 � ab� ba � 0,

which is impossible.

Suppose that G has the defining presentation (8) with m � 1. As we obtained before,
either r � ÿ1 or r � ÿ1� 2nÿ1. By (1) we have

�1� b��1� a� � �1� a��1� b� � �1� a�2 �mod I3
K�G��
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and we can write the elements u; v in the form (2). It follows from (3) ± (6) that (11) hold by
modulo I3

K�G�.
We shall consider two cases depending on the values of r and m in (8).

Case 1. Let G be a quaternion group of order 8. Then by (11) we have

uv � �a1b1 � a2b1 � a2b2��1� a�2 � D�1� a��1� b� �mod I3
K�G��;

vu � �a1b1 � a1b2 � a2b2��1� a�2 � D�1� a��1� b� �mod I3
K�G��;

u2 � �a2
1 � a1a2 � a2

2��1� a�2 �mod I3
K�G��;

v2 � �b2
1 � b1b2 � b2

2��1� a�2 �mod I3
K�G��:

8>>>><>>>>:
Since the K-dimension of Ij

K�G�=Ij�1
K �G� (j � 1; . . . ; 4) equals 2 and uv �j vu �mod I3

K�G��,
we have a2

1 � a1a2 � a2
2 and b2

1 � b1b2 � b2
2 � 0. Using the fact that D �j 0, we establish

a1

a2
� w,

b2

b1
� w2. Thus we observe that u � w�1� a� � �1� b� and v � �1� a� � w2�1� b�,

where w is a primitive cube root of the unity.

A simple calculation by modulos I4
K�G�, I5

K�G� shows that

f1; u; v; uv; vu; uvu; vuv; uvuvg
is a filtered multiplicative K-basis for KG.

Case 2. Let G has a presentation

ha; b j a2n � 1; b2 � a2nÿ1
; ba � ari�12�

with n > 2. Then by (11) we have

uv � �a1 � a2�b1�1� a�2 � D�1� a��1� b� �mod I3
K�G��;

vu � a1�b1 � b2��1� a�2 � D�1� a��1� b� �mod I3
K�G��;

u2 � a1�a1 � a2��1� a�2 �mod I3
K�G��;

v2 � b1�b1 � b2��1� a�2 �mod I3
K�G��:

8>>>><>>>>:
Since the K-dimension of I2

K�G�=I3
K�G� equals 2 and D �j 0, we have either a1 � a2 �j 0

and b1 � 0 or a1 � 0 and b1 � b2 �j 0. The second case is similar to first. Therefore, we can
put u � �1� a� � �1� b�, v � 1� b.

Case 2.1. Let r � ÿ1 in (12). Then G is a generalized quaternion group. An easy
calculation gives

�1� b��1� a� � P2nÿ1

j�1
�1� a�j�1� b� � P2nÿ1

j�1
�1� a�j�1

and

u2 � P2nÿ1

j�1
�1� a�j�1�1� b� � P2nÿ1

j�1
�1� a�j�2 � �1� a�2nÿ1

;

uvu � P2nÿ1

j�1
�1� a�j�1�1� b� � P2nÿ1

j�1
�1� a�j�2 � �1� a�2nÿ1�1� b�:
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Therefore, u2 � uvu �mod I4
K�G��, but u2; uvu 2j I4

K�G� and

u2 ÿ uvu � �1� a�2nÿ1 � �1� a�2nÿ1�1� b� �j 0;

which contradicts property (II).

Case 2.2. Let G � ha; b j a2n � 1; b2 � a2nÿ1
; ba � aÿ1�2nÿ1i. It is easy to see that

�ab�2 � a2nÿ1
b2 � 1 and

G � ha; ab j a2n � 1; �ab�2 � 1; aba � aÿ1�2nÿ1i;
which is a semidihedral group and, as we saw before, KG has no filtered multiplicative
K-basis.

Thus our theorem is proved.

4. Example. Now we give an example of a nonmetacyclic 2-group with a filtered
multiplicative basis.

Let G � ha; b j a4 � b4 � 1; ba � b2a3; ab � a2b3; �a2; b� � �b2; a� � 1i, a group of order
16, and let K be a field of characteristic 2. Then elements

f1; u; v; uv; vu; v2; uvu; uv2; vuv; v3; uvuv; uv3; vuv2; uvuv2; vuv3; uvuv3 j
u � a� b; v � m1a� m2b� �m1 � m2� and m1; m2 2 K; and m1 �j m2g

form a filtered multiplicative K-basis for KG.
Indeed, by (1) we have

�1� b��1� a� � �1� a��1� b� � �1� a�2 � �1� b�2 �mod I3
K�G��

and u; v be can writen in the form (2).
By a simple calculation modulo I3

K�G� we have

uv � �a1 � a2�b1�1� a�2 � D�1� a��1� b� � a2�b1 � b2��1� b�2;

vu � a1�b1 � b2��1� a�2 � D�1� a��1� b� � b2�a1 � a2��1� b�2;

u2 � �a1 � a2�a1�1� a�2 � a2�a1 � a2��1� b�2;

v2 � �b1 � b2��b1�1� a�2 � b2�1� b�2�:

8>>>><>>>>:�13�

It is easy to see that K-dimension of I2
K�G�=I3

K�G� equals 3 and uv �j vu �mod I3
K�G��,

uv �j u2 �mod I3
K�G��, uv �j v2 �mod I3

K�G��, vu �j u2 �mod I3
K�G��, vu �j v2 �mod I3

K�G��.
We have the following two cases.
First let u2 � v2 �j 0 �mod I3

K�G��. Then by (13) we have a2
1 � a1a2 � b2

1 � b1b2 and
a2

2 � a1a2 � b2
2 � b1b2. It follows that �a1 � a2�2 � �b1 � b2�2 and a1 � a2 � b1 � b2. Then

by u2 � v2 �j 0 �mod I3
K�G�� we have D � 0, which is impossible.

Now let u2 � 0 �mod I3
K�G�� or v2 � 0 �mod I3

K�G��. It is easy to see that the second case is
symmetric to the first one, so we consider only the first case. Then a1 � a2 �j 0 and by (13)
we have

uv � l��1� a��1� b� � �1� b�2� �mod I3
K�G��;

vu � l��1� a�2 � �1� a��1� b�� �mod I3
K�G��;

v2 � l�b1�1� a�2 � b2�1� b�2� �mod I3
K�G��;

8><>:
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where l � b1 � b2 �j 0. By a simple calculation modulo I4
K�G� we obtain

uvu � l��1� a�3 � �1� a�2�1� b� � �1� a��1� b�2 � �1� b�3�;
uv2 � l�b1�1� a�3 � b1�1� a�2�1� b� � b2�1� a��1� b�2 � b2�1� b�3�;
vuv � l2��1� a�2�1� b� � �1� a��1� b�2�;
v3 � l�b2

1�1� a�3 � b1b2�1� a�2�1� b� � b1b2�1� a��1� b�2 � b2
2�1� b�3�

8>>>><>>>>:
and modulo I5

K�G�
uvuv � l2��1� a�3�1� b� � �1� a�2�1� b�2 � �1� a��1� b�3�;
uv3 � l2�b1�1� a�3�1� b� � b1�1� a�2�1� b�2 � b2�1� a��1� b�3�;
vuv2 � l2�b1�1� a�3�1� b� � b2�1� a�2�1� b�2 � b2�1� a��1� b�3�:

8><>:
Similarly

uvuv2 � l2��1� a�3�1� b�2 � �1� a�2�1� b�3� �mod I6
K�G�;

vuv3 � l2�b1�1� a�3�1� b�2 � b2�1� a�2�1� b�3� �mod I6
K�G�;

(
and uvuv3 � l3�1� a�3�1� b�3 �mod I7

K�G��.
Since the number of elements modulo Ij

K�G�, (j � 2; . . . ; 6) equals the numbers of the
K-dimension of Ij

K�G�=Ij�1
K �G�, we conclude that the elements f1; u; v; uv; vu; v2; uvu;

uv2; vuv; v3; uvuv; uv3; vuv2; uvuv2; vuv3; uvuv3g form a filtered multiplicative K-basis for KG.
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