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© Birkhäuser Verlag, Basel, 2001

Locally finite varieties

Guram Bezhanishvili

Abstract. In this paper we present a new and useful criterion for a variety to be locally finite. Many examples are
given to justify the effectiveness of the criterion.

1. Introduction

The only characterization of locally finite varieties which can be found in a textbook
of universal algebra states that a given variety V is locally finite iff all finitely generated
free V-algebras are finite. No other more effective criteria for a variety to be locally finite
have been known. A. Malcev was the first who partly filled in this gap. He introduced
the notions of locally finite algebras and uniformly locally finite classes of algebras, and
proved that in order for a variety V of a finite signature to be locally finite it is necessery
and sufficient that V be generated by a uniformly locally finite class (see Malcev [24]).
However, several unsolved questions still remained: How to generalise Malcev’s theorem
to an arbitrary variety (not necesserily of a finite signature)? Is it possible to find out more
effective criterion for a variety to be locally finite? This paper is devoted to answer these
and other related questions.

The paper is organized as follows. §2 has an auxiliary purpose. In it we introduce the
notions of a regularly locally finite class (in the weak sense) and a uniformly locally finite
class (in the weak sense), which will play a central role in §3. We prove that every regularly
locally finite class (in the weak sense) is also uniformly locally finite (in the weak sense),
and that the converse holds only if we deal with the classes of algebras of a finite signature.
§3 is the core of the paper. In it we prove that the operations H and S preserve local
finiteness and give a necessery and sufficient condition for P to preserve local finiteness1.
We extend Malcev’s theorem to any variety (not necesserily of a finite signature), and also
present more effective criterion for a variety to be locally finite. Moreover, several useful
consequences of these results are established. Finally, in §4 we consider many (known and
new) examples of locally finite varieties and show how effectively the criterion works.

Presented by Professor George McNulty.
Received March 3, 1998; accepted in final form January 23, 2001.
1Here and below H, S and P denote the operations of taking homomorphic images, extracting subalgebras and

forming direct products.
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2. Regular and uniform local finiteness

A universal algebra A = (A, {fi}i∈I ) is said to be locally finite if every finitely generated
subalgebra of A is finite (cf. Malcev [24]). A class K of (the same type) universal algebras
is called locally finite if every algebra from K is locally finite (cf. Malcev [24]). Below we
consider only the classes of universal algebras of the same type.

If a class K is locally finite, then obviously every finitely generated algebra from K is
finite. Conversely, we have that if every finitely generated algebra from K is finite and
S(K) ⊆ K (in particular, if K forms a variety), then K is locally finite. However, in general
there are classes whose finitely generated algebras are finite, but they are not locally finite.
A witness is a class which contains a single universal algebra A which is neither locally
finite nor finitely generated. Therefore, it is natural to call the classes whose all finitely
generated algebras are finite locally finite in the weak sense.

DEFINITION 2.1. a) A class K is said to be regularly locally finite if K is locally finite
and for any n ∈ ω there exist only finitely many nonisomorphic n-generated sub-
algebras of algebras from K.

b) A class K is called regularly locally finite in the weak sense if K is locally finite
in the weak sense and for any n ∈ ω there exist only finitely many nonisomorphic
n-generated algebras from K.

c) (See Malcev [24]) A class K is said to be uniformly locally finite if for any n ∈ ω

there exists m(n) ∈ ω such that the cardinality of every n-generated subalgebra of an
algebra from K is less than or equal to m(n).

d) A class K is called uniformly locally finite in the weak sense if for any n ∈ ω there
exists m(n) ∈ ω such that the cardinality of every n-generated algebra from K is less
than or equal to m(n).

It is obvious that if K is regularly locally finite, then K is uniformly locally finite as
well. In the same way, if K is regularly locally finite in the weak sense, then K is uniformly
locally finite in the weak sense.

Conversely, if the signature of algebras from K is finite, then uniform local finiteness
of K implies regular local finiteness of K. Indeed, first note that if K is uniformly locally
finite, then all n-generated algebras from S(K) are finite. Further, since a finite set gives
rise only to finitely many nonisomorphic algebras of a given finite signature, any set whose
cardinality is less than or equal to m(n) ∈ ω gives rise only to finitely many nonisomorphic
algebras of the signature of K. Now since we have only finitely many nonequivalent sets
of the cardinality less than or equal to m(n), there exist only finitely many nonisomorphic
algebras of the signature of K whose cardinalities are less than or equal to m(n). Hence,
there are only finitely many nonisomorphic n-generated subalgebras of algebras from K.

Analogously we can prove that if the signature of algebras from K is finite and K is
uniformly locally finite in the weak sense, then K is also regularly locally finite in the weak
sense.
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On the other hand, the example presented in Page 361 of Section 14.1 of Chapter VI
of Malcev [24] (in English translation it is Page 286) serves as an example of a uniformly
locally finite class of algebras of infinite signature which is not regularly locally finite. It
also serves as an example of a class of algebras which is uniformly locally finite in the weak
sense, but is not regularly locally finite in the weak sense.

It is evident that regular local finiteness is much stronger condition than local finiteness.
However, if all n-generated free algebras F(n) (n ∈ ω) of the variety Var(K) = HSP(K)

belong to S(K) (in particular, if K forms a variety), then local finiteness of K is equivalent
to regular local finiteness of K. Indeed, if F(n) ∈ K and K is locally finite, then since all
n-generated algebras A(n) from Var(K) and, in particular, all n-generated algebras from
S(K) are homomorphic images of F(n), all of them are finite. Moreover, since every A(n)

is isomorphic to F(n)/θ for a suitable congruence θ of F(n), and F(n) has only a finite
number of different congruences (for F(n) is finite itself), there is only a finite number of
nonisomorphic n-generated subalgebras of algebras from K, and K is regularly locally finite.

In the same way, if F(n) ∈ K for every n ∈ ω, then local finiteness of K in the weak
sense is equivalent to regular local finiteness of K in the weak sense. Needless to say that if
K has a finite signature and F(n) ∈ S(K) (F(n) ∈ K) for every n ∈ ω, then local finiteness
of K (in the weak sense) is equivalent to uniform local finiteness of K (in the weak sense).

3. The criterion

DEFINITION 3.1. Let {Ai : i ∈ I } be a family of (the same type) universal algebras,
A ∈ S(

∏
i∈I Ai ) and πi :

∏
i∈I Ai → Ai denote the i-th projection. {Ai : i ∈ I } is said

to be regularly (uniformly) locally finite with respect to A if the family {πi(A) : i ∈ I } is
regularly (uniformly) locally finite.

It is obvious that if the family {Ai : i ∈ I } is regularly (uniformly) locally finite, then
{Ai : i ∈ I } is regularly (uniformly) locally finite with respect to any A ∈ S(

∏
i∈I Ai ),

and that if A is a subdirect product of {Ai : i ∈ I } (in particular, if A = ∏
i∈I Ai), then

{Ai : i ∈ I } is regularly (uniformly) locally finite iff {Ai : i ∈ I } is regularly (uniformly)
locally finite with respect to A.

It is also worth mentioning that for a finitely generated A ∈ S(
∏

i∈I Ai ), we have that
{πi(A) : i ∈ I } is regularly (uniformly) locally finite iff {πi(A) : i ∈ I } is regularly
(uniformly) locally finite in the weak sense. Let us prove this statement for a regularly
locally finite class. The case of a uniformly locally finite class is proved analogously.
Suppose A is n-generated and {πi(A) : i ∈ I } is regularly locally finite in the weak sense.
Then all πi(A) (i ∈ I ) are also n-generated. Therefore, all of them are finite and there
exists only a finite number of nonisomorphic πi(A) (i ∈ I ). But then the cardinality of
every subalgebra of an algebra πi(A) (i ∈ I ) is also finite and there exists only a finite
number of nonisomorphic subalgebras of algebras πi(A) (i ∈ I ).

THEOREM 3.2. a) If A1 is locally finite and A2 ∈ S(A1), then A2 is also locally finite.
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b) If A1 is locally finite and A2 ∈ H(A1), then A2 is locally finite as well.
c) If A = ∏

i∈I Ai , then A is locally finite iff {Ai : i ∈ I } is regularly locally finite with
respect to any n-generated subalgebra A(n) of A. (In particular, if {Ai : i ∈ I } is
regularly locally finite, then A is locally finite.)

d) If the signature of algebras Ai (i ∈ I ) is finite, then A = ∏
i∈I Ai is locally finite iff

{Ai : i ∈ I } is uniformly locally finite with respect to any n-generated subalgebra
A(n) of A. (In particular, if {Ai : i ∈ I } is uniformly locally finite, then A is locally
finite.)

Proof. a) Since A2 is a subalgebra of A1, then for every n-generated subalgebra A(n) of
A2, A(n) is also a subalgebra of A1. Now since A1 is locally finite, A(n) is finite. Hence,
A2 is also locally finite.

b) Suppose A2 ∈ H(A1) and A2[g1, . . . , gn] is an n-generated subalgebra of A2.
Denote by h a homomorphism from A1 onto A2. Then we have h−1(gi) �= ∅ for every
i ∈ [1, n]. Suppose pi ∈ h−1(gi) and show that A2[g1, . . . , gn] ∈ H(A1[p1, . . . , pn]).
Indeed, for every a ∈ A1[p1, . . . , pn] we have that there exists an n-placed term t such
that a = t (p1, . . . , pn). But then h(a) = h(t (p1, . . . , pn)) = t (h(p1), . . . , h(pn)) =
t (g1, . . . , gn) ∈ A2[g1, . . . , gn]. Hence, the restriction of h to A1[p1, . . . , pn] is a
homomorphism from A1[p1, . . . , pn] into A2[g1, . . . , gn]. Let us prove that it is an
onto homomorphism. For every b ∈ A2[g1, . . . , gn] we have b = t ′(g1, . . . , gn) =
t ′(h(p1), . . . , h(pn)) = h(t ′(p1, . . . , pn)) and hence (h|A1[p1,...,pn])

−1(b) �= ∅. There-
fore, A2[g1, . . . , gn] ∈ H(A1[p1, . . . , pn]). Now since A1 is locally finite, A1[p1, . . . , pn]
is finite and hence A2[g1, . . . , gn] is finite too. Therefore, A2 is locally finite.

c) If A = ∏
i∈I Ai is locally finite, then for any n ∈ ω and for any n-generated subalgebra

A(n) of A, all πi(A(n)) are finite (for all of them are homomorphic images of A(n)).
Moreover, since all homomorphic images of A(n) are determined by the congruences of
A(n), and since the number of congruences of A(n) is finite (for A(n) is finite itself), there
are only finitely many nonisomorphic πi(A(n)), which means that the family {πi(A(n)) :
i ∈ I } is regularly locally finite (in the weak sense).

Conversely, suppose {Ai : i ∈ I } is regularly locally finite with respect to any A(n). We
shall prove that all A(n) are finite for any n ∈ ω. Indeed, for any A(n) we have that A(n) is
embedded into

∏
i∈I πi(A(n)). For each i ∈ I , let θi be the kernel of the homomorphism

A(n) onto πi(A(n)). Let us regard two elements i and j of I as equivalent if θi = θj . This
equivalence relation partitions I . Let J be a transversal of this partition. So J is a subset of
I and it has exactly one element from each equivalence class. Now the family {θj : j ∈ J }
seperates the points of A(n). This means that A(n) is embeddable into

∏
j∈J πj (A(n))

and the θj ’s will be the kernels of the underlying system of homomorphisms. Therefore,
|A(n)| ≤ | ∏j∈J A(n)/θj | and we only need to show that | ∏j∈J A(n)/θj | is finite. Since
all A(n)/θj are n-generated, all of them are finite. Therefore, it remains to show that J is
finite itself. But since the family {πi(A(n)) : i ∈ I } is regularly locally finite, the number
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of nonisomorphic A(n)/θj is finite too. Hence it remains to show that for every j ∈ J , the
set Jj = {k ∈ J : A(n)/θj � A(n)/θk} is finite as well. For this we need two additional
lemmas:

LEMMA 3.3. For any universal algebra A and any two congruence relations θi and θj

of A the following two conditions are equivalent:

1. There exists an isomorphism ψ : A/θj → A/θi such that ψ ◦ hj = hi , where
hj : A(n) → A(n)/θj and hi : A(n) → A(n)/θi are canonical morphisms;

2. θi = θj .
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Figure 1

A

A/θj A/θi

hj hi
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Proof. Suppose θi = θj . Then it is obvious that the identical morphism ψ : A/θj →
A/θi is an isomorphism and ψ ◦hj = hi . Conversely, suppose θi �= θj . Then either θi �⊆ θj

or θj �⊆ θi . For certainty suppose θi �⊆ θj . Then there exist a, b ∈ A such that (a, b) ∈ θi

and (a, b) /∈ θj . But then hi(a) = hi(b) and hj (a) �= hj (b). Now for any isomorphism
ψ : A/θj → A/θi , if ψ ◦ hj = hi then ψ ◦ hj (a) = hi(a) = hi(b) = ψ ◦ hj (b), which
contradicts the fact that ψ is injective. Hence, ψ ◦ hj �= hi . �

LEMMA 3.4. Suppose A is a finitely generated universal algebra and g1, . . . , gn are
generators of A. Let also hB and hC be homomorphisms from A to B and C respectively,
and ψ be such a homomorphism from C to B that ψ ◦hC �= hB . Then there exists i ∈ [1, n]
such that ψ ◦ hC(gi) �= hB(gi).

Proof. Suppose ψ ◦ hC(gi) = hB(gi) for any i ∈ [1, n]. Then for any a ∈ A we have
hB(a) = hB(t (g1, . . . , gn)) = t (hB(g1), . . . , hB(gn)) = t (ψ ◦hC(g1), . . . , ψ ◦hC(gn)) =
ψ ◦hC(t (g1, . . . , gn)) = ψ ◦hC(a), which contradicts our assumption. Hence, there exists
i ∈ [1, n] such that ψ ◦ hC(gi) �= hB(gi). �

Now let us return to the proof of Theorem 3.2. Suppose k ∈ Jj and k �= j . Then
Lemma 3.3 implies that ψ ◦ hk �= hj . From Lemma 3.4 it follows that there exists m ∈
[1, n] such that ψ ◦ hk(gm) �= hj (gm), and hence (ψ ◦ hk(g1), . . . , ψ ◦ hk(gn)) �= (hj
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(g1), . . . , hj (gn)). Now since both (ψ ◦ hk(g1), . . . , ψ ◦ hk(gn)) and (hj (g1), . . . , hj (gn))

belong to (A(n)/θj )
n, and since (A(n)/θj )

n is finite (for A(n)/θj is finite itself), there exist
only finitely many different n-tuples, and hence, there exist only finitely many ks which
differ from j . Therefore, Jj is finite for any j ∈ J . As a result we obtain that A(n) is finite
for any n ∈ ω.

(It is obvious that if {Ai : i ∈ I } is regularly locally finite, then {πi(A(n)) : i ∈ I }
is regularly locally finite (in the weak sense) for any A(n) ∈ S(

∏
i∈I Ai ). But then the

above arguments imply that A = ∏
i∈I Ai is locally finite; though regular local finiteness

of {Ai : i ∈ I } does not follow from local finiteness of A.)
d) follows from c) and the fact that for any family of algebras of a finite signature the

notions of regular local finiteness (in the weak sense) and uniform local finiteness (in the
weak sense) coincide. �

For a class K of universal algebras we denote by PS(K) the class of all subdirect products
of algebras from K. A family {Ai : i ∈ I } of subdirectly irreducible algebras is said to
be a subdirect decomposition or a subdirect representation of A, if each Ai is a factor of
A and A ∈ PS{Ai : i ∈ I }. In other words, it means that there is a system {hi}i∈I of
homomorphisms such that

1. hi maps A onto Ai for each i ∈ I ;
2. The system {hi}i∈I separates the points of A.

As a direct consequence of Theorem 3.2 we get the following

THEOREM 3.5. Let {Ai : i ∈ I } be a subdirect decomposition of A into subdirectly
irreducible factors. Then

1) A is locally finite iff the class {Ai : i ∈ I } is regularly locally finite with respect to
all n-generated subalgebras of A. In particular, if {Ai : i ∈ I } is regularly locally
finite, then A is locally finite.

2) If the signature of A is finite, then A is locally finite iff the class {Ai : i ∈ I }
is uniformly locally finite with respect to all n-generated subalgebras of A. In
particular, if {Ai : i ∈ I } is uniformly locally finite, then A is locally finite. ¨

Another immediate consequence of Theorem 3.2 is the following

COROLLARY 3.6. 1) If K is locally finite, then the classes S(K) and H(K) are also

locally finite.
2) If K is regularly locally finite (in the weak sense), then P(K) is locally finite (in the

weak sense). Moreover, if K is regularly locally finite in the weak sense, then PS(K)

is locally finite in the weak sense.
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3) If K is a class of algebras of a finite signature, then uniform local finiteness of K
(in the weak sense) implies local finiteness of P(K) (in the weak sense). Moreover,
uniform local finiteness of K in the weak sense implies local finiteness of PS(K) in
the weak sense.

Now we are in a position to prove our criterion.

THEOREM 3.7. 1) For a given variety V of universal algebras, V is locally finite
iff V is generated by a regularly locally finite class.

2) If V has a finite signature, then V is locally finite iff V is generated by a uniformly
locally finite class.

3) A variety V is locally finite iff the class VSI of all subdirectly irreducible V-algebras
is regularly locally finite in the weak sense.

4) If V has a finite signature, then V is locally finite iff VSI is uniformly locally finite in
the weak sense.

Proof. 1) As was already mentioned, if a variety V is locally finite, then it is regularly
locally finite. Hence, every subclass of V is also regularly locally finite. Conversely,
if V is generated by a regularly locally finite class K, then V = HSP(K), and using
Corollary 3.6 we obtain that V is locally finite.

2) directly follows from 1).
3) It is obvious that if V is locally finite, then VSI is regularly locally finite in the weak

sense. Conversely, suppose VSI is regularly locally finite in the weak sense. From
Birkhoff’s theorem we have V = PS(VSI ). From Corollary 3.6 it follows that V is
locally finite in the weak sense. Now since S(V) ⊆ V and V is locally finite in the
weak sense, we obtain that V is locally finite.

4) directly follows from 3).
�

A variety V is said to be finitely generated if V is generated by a finite family of finite
algebras, or which is the same, by a single finite algebra. It is obvious that the class {A} is
regularly locally finite for every finite algebra A. Consequently, we arrive at the following

COROLLARY 3.8. If a variety V is finitely generated, then it is locally finite.

It should be mentioned that Item 2 of Theorem 3.7 and Corollary 3.8 were first proved
in Malcev [24]. However, the proofs offered above are much simpler. Moreover, Items 3
and 4 prove to be the most useful in applications. Indeed, they allow to restrict our attention
to the class VFGSI of finitely generated subdirectly irreducible V-algebras, which one can
handle quite easily, while the best you can achieve by Malcev’s criterion is to deal with the
class VSI , which is still rather huge to be able to work with (especially if the variety under
consideration is not residually small). For practical use of our criterion see §4 below.
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It is known that a variety generated by a locally finite algebra is not always locally finite.
Theorem 3.7 offers us the following criterion to recognize whether a variety generated by
a locally finite algebra is locally finite.

THEOREM 3.9. Let V be the variety generated by a locally finite algebra A. Then:

1) V is locally finite iff {A} is regularly locally finite iff, for any n ∈ ω, there exists only a
finite number of nonisomorphic algebras in the family of all n-generated subalgebras
of A.

2) If the signature of A is finite, then V is locally finite iff {A} is uniformly locally finite
iff, for any n ∈ ω, there exists m(n) ∈ ω such that the cardinality of every n-generated
subalgebra of A is less than or equal to m(n).

It also follows that the join of two subvarieties V1 and V2 of a variety V is locally finite
iff both V1 and V2 are locally finite. Indeed, it is obvious that if V1 ∨V2 is locally finite, then
so are both V1 and V2. Conversely, suppose both V1 and V2 are locally finite. Then they are
regularly locally finite too. By Corollary 3.6, HSP (V1 ∪ V2) is locally finite. Now since
V1 ∨V2 = HSP(V1 ∪V2), we obtain that V1 ∨V2 is locally finite. Hence, the class �LF(V)

of locally finite subvarieties of a variety V always forms a lattice which is a (non-bounded)
sublattice of the lattice �(V) of all subvarieties of V .

It is known from Blok [8] that every proper subvariety V0 of a congruence-distributive
finitely approximated variety V has a cover in the lattice �(V). Now we show that if V0

is locally finite, then its cover is locally finite too. Indeed, since V0 �= V and V is finitely
approximated, there exists a finite algebra A in V − V0. Consider the variety Var(A) ∨ V0.
From Jonsson’s lemma it follows that (Var(A) ∨ V0)SI ⊆ (V0)SI ∪ HS(A), and since
(V0)SI is regularly locally finite in the weak sense and HS(A) is finite, (Var(A) ∨ V0)SI is
also regularly locally finite in the weak sense. Therefore, Var(A) ∨ V0 is locally finite and
there exist only finitely many varieties in the interval [V0, Var(A) ∨ V0]. It should be clear
that one of them will cover V0.

4. Examples

4.1. Boolean algebras

Let us denote the variety of all Boolean algebras by BA. It is well known that the only
subdirectly irreducible Boolean algebra is 2 = {0, 1} (see e. g. Sikorski [30]). Therefore,
BA = Var(2) and BA is a finitely generated variety. Now using Corollary 3.8 we obtain
that BA is locally finite.



Vol. 46, 2001 Locally finite varieties 539

4.2. Monadic Boolean algebras

Let us recall that a pair (B, ∃) is called a monadic Boolean algebra, written (B, ∃) ∈
MBA, if B ∈ BA and ∃ is a unary operator on B satisfying the following identities (see
Halmos [15]):

∃0 = 0;
a ≤ ∃a;
∃(∃a ∧ b) = ∃a ∧ ∃b.

It is known that every monadic Boolean algebra (B, ∃) is represented as the pair (B, B0)

where B0 is a relatively complete subalgebra of B (that is the set {b ∈ B0 : a ≤ b} has
a least element for every a ∈ B), and that (B, B0) is subdirectly irreducible iff B0 = 2.
Therefore, for any n-generated subdirectly irreducible monadic Boolean algebra (B, ∃) we
have that B is n-generated as a Boolean algebra, and hence, there exists m(n) such that
|B| ≤ m(n). But then the class MBASI is uniformly locally finite in the weak sense, and
Theorem 3.7 implies that MBA is locally finite.

4.3. Distributive lattices

Let us denote the variety of all distributive lattices by DL. It is well known that the
only subdirectly irreducible distributive lattice is 2 = {0, 1} (see e.g. Birkhoff [5] or
Grätzer [14]). Therefore, DL = Var(2) and DL is a finitely generated variety. As a direct
consequence of Corollary 3.8 we get that DL is locally finite.

4.4. Monadic distributive lattices

A pair (D, ∃) is called a monadic distributive lattice, written (D, ∃) ∈ MDL, if D ∈ DL
and ∃ is a unary operator on D satisfying the following identities (the definition can be
found in Cignoli [9], N. Bezhanishvili [4], and implicitely in Ono [28]):

∃0 = 0;
a ≤ ∃a;
∃(∃a ∧ b) = ∃a ∧ ∃b;
∃(a ∨ b) = ∃a ∨ ∃b.

It is known from [4] that every monadic distributive lattice (D, ∃) is represented as the
pair (D, D0) where D0 is a relatively complete sublattice of D satisfying the condition
a ∧ ∧

Db = ∧
Da∧b for every a ∈ D0 and b ∈ D (here for any a ∈ D, Da denotes the set

{b ∈ D0 : a ≤ b}, and
∧

Da – a least element of Da). Moreover, we have that if (D, D0) is
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subdirectly irreducible, then D0 = 2 (however, unlike MBA, the converse does not hold in
general case). Therefore, for any n-generated subdirectly irreducible monadic distributive
lattice (D, ∃), D is n-generated as a distributive lattice, and hence, there exists m(n) such
that |D| ≤ m(n). But then the class MDLSI is uniformly locally finite in the weak sense,
and by Theorem 3.7 MDL is locally finite. (The construction of finitely generated free
MDL-algebras can be found in Cignoli [10].)

4.5. Implicational semilattices

Let us denote the variety of all implicational semilattices by IS. The investigation of
implicational semilattices can be found in Diego [11], Köhler [18] and Rasiowa [29]. It is
known that an implicational semilattice (A, ∧, →) ∈ IS is subdirectly irreducible iff the set
A−{1} contains a greatest element, say a, and that A−{a} forms an implicational semilat-
tice of A. Therefore, for any n-generated subdirectly irreducible implicational semilattice
A we have that A − {a} is an (n − 1)-generated implicational semilattice. Hence, for any
n-generated subdirectly irreducible implicational semilattice A, |A| ≤ |Fn−1| + 1, where
Fn−1 denotes the (n−1)-generated free implicational semilattice. Now since |F0| = 1, we
can prove by induction that the class of all subdirectly irreducible implicational semilattices
is uniformly locally finite in the weak sense, which together with Theorem 3.7 imply that
IS is locally finite.

4.6. Heyting algebras

Let us denote the variety of all Heyting algebras by HA. It is known that a Heyting
algebra (H, ∧, ∨, →, 0) ∈ HA is subdirectly irreducible iff the set H − {1} contains a
greatest element, say a (see e.g. Esakia [12]). Let us consider the following list of formulas

P1 : q1 ∨ ¬q1;
Pn+1 : qn ∨ (qn → Pn−1), n ≥ 1;

and prove that the variety HA + (Pn = 1) is locally finite for any n ∈ ω (this fact was
first established by Kuznetsov [19], [20] and Komori [17]). Indeed, HA + (P1 = 1) = BA
and therefore is locally finite. Suppose HA + (Pn = 1) is locally finite and let us prove
that so is HA + (Pn+1 = 1). For any m-generated subdirectly irreducible algebra H ∈
HA + (Pn+1 = 1), consider the algebra H/[a) (here [a) denotes the filter generated by a).
We have that H/[a) is also an m-generated algebra and that H/[a) ∈ HA + (Pn = 1) (see
Komori [17]). By the induction hypothesis, there exists k(m) such that |H/[a)| ≤ k(m).
Now since |H | = |H/[a)| + 1, then |H | ≤ k(m) + 1. Therefore, the class of all subdirectly
irreducible algebras of HA + (Pn+1 = 1) is uniformly locally finite in the weak sense, and
from Theorem 3.7 it follows that HA + (Pn+1 = 1) is locally finite.
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4.7. Monadic Heyting algebras

Let us recall that a triple (H, ∀, ∃) is called a monadic Heyting algebra, written (H, ∀, ∃) ∈
MHA, if H ∈ HA and ∀ and ∃ are unary operators on H satisfying the following identities
(see Monteiro and Varsavsky [27] and Bezhanishvili [1], [2]):

(1) ∀a ≤ a a ≤ ∃a;
(2) ∀(a ∧ b) = ∀a ∧ ∀b ∃(a ∨ b) = ∃a ∨ ∃b;
(3) ∀1 = 1 ∃0 = 0;
(4) ∃∀a = ∀a ∀∃a = ∃a;
(5) ∃(∃a ∧ b) = ∃a ∧ ∃b.

In the same way as for monadic Boolean algebras we have that every monadic Heyting
algebra (H, ∀, ∃) is represented as the pair (H, H0) where H0 is a relatively complete
Heyting subalgebra of H (note that this time relatively complete means that the sets {b ∈
H0 : a ≤ b} and {b ∈ H0 : b ≤ a} have a least and a greatest elements, respectively), and
that (H, H0) is subdirectly irreducible iff H0 is subdirectly irreducible as a Heyting algebra
(see [1], [2]).

In the same way as for Heyting algebras we can prove that MHA + (Pn = 1) is locally
finite for any n ∈ ω (this fact was first established in [1]). For this with every Pn let us
associate the formula Pn[∀qi/qi] which is obtained from Pn by substituting every occurence
of qi by ∀qi (i ≤ n). Now for every n < ω consider the list of varieties MHA + (Pn =
1) + (P1[∀qi/qi] = 1), . . . , MHA + (Pn = 1) + (Pn[∀qi/qi] = 1) and prove that every
variety from this list is locally finite. Since MHA + (Pn = 1) + (Pn[∀qi/qi] = 1) =
MHA + (Pn = 1), it will follow that MHA + (Pn = 1) is locally finite too.

It is obvious that if (H, H0) ∈ MHA + (Pn = 1) + (P1[∀qi/qi] = 1), then H0 ∈
HA + (P1 = 1) = BA, and if (H, H0) is subdirectly irreducible, then H0 = 2. Therefore,
if (H, H0) is n-generated, H is n-generated as a Heyting algebra, and since H ∈ HA +
(Pn = 1), there exists m(n) such that |H | ≤ m(n). Hence, the class (MHA + (Pn =
1) + (P1[∀qi/qi] = 1))SI is uniformly locally finite in the weak sense and by Theorem 3.7
MHA + (Pn = 1) + (P1[∀qi/qi] = 1) is locally finite.

Now suppose MHA + (Pn = 1) + (Pn−1[∀qi/qi] = 1) is locally finite and let us prove
that MHA+ (Pn = 1)+ (Pn[∀qi/qi] = 1) is locally finite too. For this suppose (H, H0) ∈
MHA + (Pn = 1) + (Pn[∀qi/qi] = 1) is an m-generated subdirectly irreducible algebra.
Then H0 is subdirectly irreducible as a Heyting algebra and there exists a greatest element,
say a, in H0 − {1}. Consider the algebra (H/[a), H0/[a)∩H0). Since (H/[a), H0/[a)∩H0)

is a homomorphic image of (H, H0), (H/[a), H0/[a)∩H0) is also m-generated. Moreover,
(H/[a), H0/[a)∩H0) ∈ MHA + (Pn = 1) + (Pn−1[∀qi/qi] = 1), and from the induction
hypothesis it follows that there exists k(m) such that |H0/[a)∩H0 | ≤ k(m). Since |H0| =
|H0/[a)∩H0 |+1, |H0| ≤ k(m)+1. But then we can easily prove that H is no more than (m+
k(m)+1)-generated as a Heyting algebra and since H ∈ HA+ (Pn = 1), there exists r(m)
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such that |H | ≤ r(m). Therefore, (MHA + (Pn = 1) + (Pn[∀qi/qi] = 1))SI is uniformly
locally finite in the weak sense and by Theorem 3.7 MHA + (Pn = 1) + (Pn[∀qi/qi] = 1)

is locally finite. As a result we obtain that MHA + (Pn = 1) is locally finite for every
n < ω.

4.8. Closure algebras and Grzegorczyk algebras

Let us recall that a couple (B, C) is called a closure algebra, written (B, C) ∈ CA,
if B ∈ BA and C is a closure operator on B satisfying Kuratowski’s identities (see e.g.
McKinsey and Tarski [25], Blok [6] and Esakia [12]):

C0 = 0;
a ≤ Ca;
CCa ≤ Ca;
C(a ∨ b) = Ca ∨ Cb.

Let Ia = −C −a. I is called an interior operator and it satisfies the identities which are
dual to the identities defining a closure operator. That is why closure algebras are sometimes
called equivalently interior algebras.

It is known that the set H = {Ia : a ∈ B} is a sublattice of B which constitutes a Heyting
algebra, and that (B, C) is represented as the pair (B, H), where H is a relatively complete
sublattice of B. It is also known that (B, C) is subdirectly irreducible iff H is subdirectly
irreducible as a Heyting algebra.

Consider the following list of formulas:

P I
1 : Iq1 ∨ I¬Iq1;

P I
n : Iqn ∨ I (Iqn → P I

n−1).

It is obvious that P I
n is valid in (B, H) iff Pn is valid in H . We are in a position now

to prove that V ∈ �(CA) is locally finite iff there exists a natural number n such that
V ⊆ CA + (P I

n = 1) (this theorem was first established by Blok [6] and Maksimova
[22]). Indeed, since CA + (P I

1 = 1) = MBA, CA + (P I
1 = 1) is locally finite. Suppose

CA + (P I
n−1 = 1) is locally finite and let us prove that so is CA + (P I

n = 1). For every
subdirectly irreducible (B, H) ∈ CA + (P I

n = 1), there exists a greatest element, say
a, in H . It is obvious that (B/[a), H/[a)∩H ) is a homomorphic image of (B, H), and
that (B/[a), H/[a)∩H ) ∈ CA + (P I

n−1 = 1). Moreover, if (B, H) is m-generated, so is
(B/[a), H/[a)∩H ). But then there exists k(m) such that |H/[a)∩H | ≤ k(m), and since
|H | = |H/[a)∩H | + 1, |H | ≤ k(m) + 1. Further, B is at most (m + k(m) + 1)-generated
as a Boolean algebra, and hence, there exists r(m) such that |B| ≤ r(m). Therefore, the
class (CA + (P I

n = 1))SI is uniformly locally finite in the weak sense, and by Theorem 3.7
CA + (P I

n = 1) is locally finite.
Thus, for every variety V ∈ �(CA), if there exists a natural number n such that V ⊆

CA+ (P I
n = 1), then V is locally finite. Conversely, if V �⊆ CA+ (P I

n = 1) for any n, then
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CA+grz+lin ⊆ V (here grz denotes Grzegorczyk’s formula I (I (a → Ia) → a) ≤ a and
lin denotes Dummet’s formula I (Ia → b) ∨ I (Ib → a) = 1), and since CA + grz + lin
is not locally finite, neither is V . As a result we obtain that V is locally finite iff there exists
a natural number n such that V ⊆ CA + (P I

n = 1) iff CA + grz + lin �⊆ V .
Denote by Grz the subvariety of CA whose algebras satisfy Grzegorczyk’s formula. It is

obvious that Grz = CA+grz. The algebras from Grz are called Grzegorczyk algebras. As
a direct consequence of the previous theorem we obtain that a variety V ∈ �(Grz) is locally
finite iff there exists a natural number n such that V ⊆ Grz + (P I

n = 1) iff Grz + lin �⊆ V .
Later we will see that this theorem can be extended to the variety of monadic Grzegorczyk
algebras.

4.9. Derivative algebras and Magari algebras

Let us recall that a derivative algebra is a pair (B, δ), written (B, δ) ∈ DA, where B ∈ BA
and δ is a unary operator on B which satisfies the following identities (see McKinsey and
Tarski [25]):

δ0 = 0.

δ(a ∨ b) = δa ∨ δb;
δδa ≤ δa.

Let τa = −δ − a. It is known that τ satisfies the identities which are dual to the identities
defining δ, and that derivative algebras can be defined in terms of τ as well.

With every derivative algebra (B, δ) is naturally associated the closure algebra (B, Cδ)

by putting Cδa = a ∨ δa for every a ∈ B. (Dually Iτ a = a ∧ τa.) Therefore, there
exists a natural functor � : DA → CA which sends every (B, δ) ∈ DA to (B, Cδ) ∈ CA.
The important property of � is the fact that (B, δ) is subdirectly irreducible iff (B, Cδ) is
subdirectly irreducible. It is also easy to prove that � is not injective, and that for every
class K ⊆ DA we have �H(K) = H�(K), �S(K) ⊂ S�(K) and �P(K) = P�(K).
Therefore, �-image of a variety is not always a variety. For V ∈ �(DA) denote by �̂(V)

the least variety generated by �(V). It is obvious that �̂(V) = S�(V), and that �̂ is a
morphism from �(DA) to �(CA). Note that �̂ is an order-preserving morphism, but it is
not a lattice morphism.

Now we are ready to prove that V ∈ �(DA) is locally finite iff �̂(V) is locally finite
(see Maksimova [23]).

Consider the following list of formulas:

P τ
1 : (q1 ∧ τq1) ∨ [¬(q1 ∧ τq1) ∧ τ¬(q1 ∧ τq1)];

P τ
n : (qn ∧ τqn) ∨ [((qn ∧ τqn) → P τ

n ) ∧ τ((qn ∧ τqn) → P τ
n )].
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We have that P τ
n is valid in (B, δ) iff P I

n is valid in (B, Cδ) (it directly follows from
the identity Iτ a = a ∧ τa). Let us prove that DA + (P τ

n = 1) is locally finite for every
n ∈ ω (see Blok [7]). Indeed, DA + (P τ

1 = 1) = DA + δ(p ∧ τp) ≤ p, and hence
(DA+(P τ

1 = 1))SI = MBASI ∪{(2, δ)}, where δ1 = δ0 = 0. But then (DA+(P τ
1 = 1))SI

is uniformly locally finite in the weak sense and by Theorem 3.7 DA + (P τ
1 = 1) is locally

finite.
Now suppose DA+(P τ

n−1 = 1) is locally finite and let us prove that so is DA+(P τ
n = 1).

For a given m-generated subdirectly irreducible algebra (B, δ) we have that (B, Cδ) is also
subdirectly irreducible. Therefore, there exists an elementa ∈ B such thata∧τa is a greatest
element in the set H − {1}. But then the algebra (B/[a∧τa), δ[a∧τa)) is a homomorphic
image of (B, δ) and it belongs to DA + (P τ

n−1 = 1). Since (B/[a∧τa), δ[a∧τa)) is also
m-generated, by the induction hypothesis there exists k(m) such that |B/[a∧τa)| ≤ k(m).
But then |H | ≤ k(m) + 1. Now since Iτa = τa for every a ∈ B, we have that τa ∈ H

for every a ∈ B. Therefore, B is no more than (m + k(m) + 1)-generated as a Boolean
algebra, and hence there exists r(m) such that |B| ≤ r(m). But then (DA + (P τ

n = 1))SI

is uniformly locally finite in the weak sense and on the base of Theorem 3.7 we conclude
that DA + (P τ

n = 1) is locally finite.
Conversely, suppose V �⊆ DA + (P τ

n = 1) for any n ∈ ω. Then �̂(V) �⊆ CA + (P I
n =

1) for any n ∈ ω, and hence �̂(V) is not locally finite. Now since �̂(V) = S�(V),
Corollary 3.6 implies that �(V) is not locally finite as well. Hence, there exists (B, Cδ) ∈
�(V) which is not locally finite. But then neither is (B, δ) ∈ V , and V is not locally finite
as well.

As a result we obtain that the following conditions are equivalent:

1) V ∈ �(DA) is locally finite.
2) There exists n ∈ ω such that V ⊆ DA + (P τ

n = 1).
3) There exists n ∈ ω such that �̂(V) ⊆ CA + (P I

n = 1).
4) Grz + lin �⊆ �̂(V).
5) �̂(V) is locally finite.

Denote by Mag the subvariety of DA whose algebras satisfy Löb’s formula τ(τa →
a) ≤ τa. The algebras from Mag are called Magari algebras. Note that �̂(Mag) = Grz,
and hence V ∈ �(Mag) implies �̂(V) ∈ �(Grz) (see Kuznetsov and Muravitskij [21]).
As a direct consequence of the previous theorem we obtain that a variety V ∈ �(Mag) is
locally finite iff there exists n ∈ ω such that V ⊆ Mag + (P τ

n = 1) iff �̂(V) is locally
finite. Later we will see that this theorem can be extended to the variety of monadic Magari
algebras.

4.10. Monadic Grzegorczyk algebras

A triple (B, C, ∃) is called a monadic closure algebra, written (B, C, ∃) ∈ MCA, if
(B, C) ∈ CA, (B, ∃) ∈ MBA and ∃Ca ≤ C∃a (see Monteiro [26], Esakia [13] and
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Bezhanishvili [3]). For a given monadic closure algebra (B, C, ∃), the couple (B0, C0),
where B0 = {∃a : a ∈ B} and C0 is the restriction of C to B0, forms a subalgebra of
(B, C), and we have that every monadic closure algebra (B, C, ∃) can be represented as
the pair ((B, C), (B0, C0)), where (B0, C0) is a relatively complete subalgebra of (B, C).
Moreover, (B, C, ∃) is subdirectly irreducible iff (B0, C0) is subdirectly irreducible as a
closure algebra (see [3]).

Note that there exists a close correspondence between monadic closure algebras and
monadic Heyting algebras. Indeed, with every monadic closure algebra (B, C, ∃) we can
associate the monadic Heyting algebra (H, ∀H , ∃H ), where H = {Ia : a ∈ B}, ∀H a = I∀a

and ∃H a = ∃a for every a ∈ H . Here Ia = −C − a and ∀a = −∃ − a for every a ∈ B.
Now we have that H0 = {Ia : a ∈ B0} and that the following conditions are equivalent:

1) (B, C, ∃) is subdirectly irreducible.
2) (B0, C0) is subdirectly irreducible as a closure algebra.
3) (H, ∀H , ∃H ) is subdirectly irreducible as a monadic Heyting algebra.
4) H0 is subdirectly irreducible as a Heyting algebra (see [3]).

Let us call an algebra (B, C, ∃) ∈ MCA a monadic Grzegorczyk algebra, written
(B, C, ∃) ∈ MGrz, if (B, C) ∈ Grz (see [13] and [3]). We are in a position now to
prove that a variety V of monadic Grzegorczyk algebras is locally finite iff there exists
n ∈ ω such that V ⊆ MGrz + (P I

n = 1). Denote by P I
n [∀qi/qi] the polynomial which

is obtained from P I
n by replacing every occurence of qi in P I

n by ∀qi (1 ≤ i ≤ n), and
let us prove that the variety MGrz + (P I

n = 1) + (P I
k [∀qi/qi] = 1) is locally finite

for every k ≤ n. Suppose (B, C, ∃) is an m-generated subdirectly irreducible algebra
from MGrz + (P I

n = 1) + (P I
1 [∀qi/qi] = 1). Then (B0, C0) is a subdirectly irre-

ducible algebra from Grz + (P I
1 = 1), and hence B0 = 2 and C0 is discrete. But then

(B, C) is m-generated as a closure algebra, and since (B, C) ∈ Grz + (P I
n = 1) and

Grz + (P I
n = 1) is locally finite, there exists k(m) such that |B| ≤ k(m). Therefore, the

class (MGrz + (P I
n = 1) + (P I

1 [∀qi/qi] = 1))SI is uniformly locally finite in the weak
sense, and by Theorem 3.7 MGrz + (P I

n = 1) + (P I
1 [∀qi/qi] = 1) is locally finite. Now

suppose MGrz+ (P I
n = 1)+ (P I

n−1[∀qi/qi] = 1) is locally finite and let us prove that so is
MGrz + (P I

n = 1) + (P I
n [∀qi/qi] = 1). Consider an m-generated subdirectly irreducible

algebra (B, C, ∃) ∈ MGrz + (P I
n = 1) + (P I

n [∀qi/qi] = 1). Then (H, ∀H , ∃H ) is a
subdirectly irreducible monadic Heyting algebra from MHA + (Pn = 1). Hence, there
exists a greatest element, say a, in the set H0 − {1}. Consider the filter [a) ⊆ B and the
algebra (B/[a), C[a), ∃[a)). Since (B/[a), C[a), ∃[a)) is a homomorphic image of (B, C, ∃),
it is also m-generated. Moreover, it belongs to MGrz + (P I

n = 1) + (P I
n−1[∀qi/qi] = 1),

and by the induction hypothesis there exists k(m) such that |B/[a)| ≤ k(m). But then
|H0| ≤ k(m) + 1 and since (B0, C0) ∈ Grz + (P I

n = 1), B0 is generated by H0 as a
Boolean algebra. Therefore, there exists r(m) such that |B0| ≤ r(m). Hence, (B, C) is no
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more than (m+ r(m))-generated as a closure algebra, and since (B, C) ∈ Grz + (P I
n = 1)

and Grz + (P I
n = 1) is locally finite, there exists l(m) such that |B| ≤ l(m). Thus,

(MGrz + (P I
n = 1) + (P I

n [∀qi/qi] = 1))SI is uniformly locally finite in the weak sense,
and by Theorem 3.7 MGrz + (P I

n = 1) + (P I
n [∀qi/qi] = 1) is locally finite. Now

since MGrz + (P I
n = 1) + (P I

n [∀qi/qi] = 1) = MGrz + (P I
n = 1), we obtain that

MGrz + (P I
n = 1) is locally finite for every n ∈ ω.

Conversely, if V �⊆ MGrz + (P I
n = 1) for any n ∈ ω, then obviously the ∃-free reduct

of V is not locally finite and, all the more, neither is V . As a result we arrive at the following
theorem:

The following two conditions are equivalent:

1) V ∈ �(MGrz) is locally finite.
2) There exists n ∈ ω such that V ⊆ MGrz + (P I

n = 1).

REMARK 4.1. Unfortunately, it is impossible to extend this theorem to the lattice
�(MCA), for, as was noticed by A. Tarski (see e.g. Henkin, Monk, Tarski [16]), already
MCA + P I

1 is not locally finite.

4.11. Monadic Magari algebras

A triple (B, δ, ∃) is called a monadic derivative algebra, written (B, δ, ∃) ∈ MDA, if
(B, δ) ∈ DA, (B, ∃) ∈ MBA and ∃δa ≤ δ∃a (see Esakia [13] and Bezhanishvili [3]). In
the same way as for MCA we have that for a given monadic derivative algebra (B, δ, ∃),
the couple (B0, δ0), where B0 = {∃a : a ∈ B} and δ0 is the restriction of δ to B0, forms
a subalgebra of (B, δ), and that every monadic derivative algebra (B, δ, ∃) is represented
as the pair ((B, δ), (B0, δ0)), where (B0, δ0) is a relatively complete subalgebra of (B, δ).
Moreover, (B, δ, ∃) is subdirectly irreducible iff (B0, δ0) is subdirectly irreducible as a
derivative algebra (see [3]).

As in the case of DA and CA, there exists a close correspondence between MDA and
MCA. For every (B, δ, ∃) ∈ MDA we have that (B, Cδ, ∃) ∈ MCA and that (B, δ, ∃) is
subdirectly irreducible iff (B, Cδ, ∃) is subdirectly irreducible (see [3]). Denote (B, Cδ, ∃)

by �(B, δ, ∃) and let �̂(V) denote the variety of monadic closure algebras generated by
the class �(V).

Call an algebra (B, δ, ∃) ∈ MDA a monadic Magari algebra and write (B, δ, ∃) ∈
MMag, if (B, δ) ∈ Mag (see [13] and [3]). As in the case of Mag, we have that if (B, δ, ∃) ∈
MMag, then (B, Cδ, ∃) ∈ MGrz, and that �̂(V) ∈ �(MGrz) for V ∈ �(MMag). How-
ever, unlike Mag and Grz, here we have that �̂(MMag) is properly contained in MGrz
(see [3]).

We are in a position now to prove that a variety V of monadic Magari algebras is locally
finite iff �̂(V) is locally finite. Consider the varieties MMag + (P τ

n = 1) for n ∈ ω. If
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(B, δ, ∃) ∈ (MMag + (P τ
1 = 1))SI , then (B0, δ0) ∈ (Mag + (P τ

1 = 1))SI , and hence
B0 = 2. But then (B, δ, ∃) is m-generated iff (B, δ) is m-generated as a Magari algebra,
and since Mag + (P τ

1 = 1) is locally finite, there exists k(m) such that |B| ≤ k(m).
Therefore, (MMag + (P τ

1 = 1))SI is uniformly locally finite in the weak sense, and
by Theorem 3.7 MMag + (P τ

1 = 1) is locally finite. Suppose MMag + (P τ
n−1 = 1)

is locally finite and let us prove that so is MMag + (P τ
n = 1). For an m-generated

subdirectly irreducible algebra (B, δ, ∃) ∈ MMag + (P τ
n = 1) we have that (B, Cδ, ∃) is

also subdirectly irreducible. But then there exists a ∈ B such that ∀a ∧ τ∀a is a greatest
element in the set H0 −{1}. Therefore, (B[∀a∧τ∀a), δ[∀a∧τ∀a), ∃[∀a∧τ∀a)) is a homomorphic
image of (B, δ, ∃) and (B[∀a∧τ∀a), δ[∀a∧τ∀a), ∃[∀a∧τ∀a)) ∈ MMag + (P τ

n−1 = 1). Hence,
there exists k(m) such that |B[∀a∧τ∀a)| ≤ k(m). But then |H0| ≤ k(m) + 1 and since
B0 is generated as a Boolean algebra by H0, there exists r(m) such that |B0| ≤ r(m). It
directly implies that (B, δ, ∃) is no more than (m + r(m))-generated as a Magari algebra,
and since Mag+(P τ

n = 1) is locally finite, there exists l(m) such that |B| ≤ l(m). But then
(MMag + (P τ

n = 1))SI is uniformly locally finite in the weak sense and by Theorem 3.7
MMag + (P τ

n = 1) is locally finite.
Conversely, if V �⊆ MMag+ (P τ

n = 1) for any n ∈ ω, then �̂(V) �⊆ MGrz+ (P I
n = 1).

Therefore, �(V) is not locally finite, and neither is V . As a result we arrive at the following
theorem:

For a given variety V ∈ �(MMag) the following conditions are equivalent:

1) V is locally finite.
2) There exists n ∈ ω such that V ⊆ MMag + (P τ

n = 1).
3) There exists n ∈ ω such that �̂(V) ⊆ MGrz + (P I

n = 1).
4) �̂(V) is locally finite.
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