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Natural dualities for quasivarieties generated
by a finite commutative ring

DAVID M. CLARK, PAWEL M. IDZIAK, LOUSINDI R. SABOURIN, CSABA SZABO
AND R0OSS WILLARD

Dedicated to Viktor Aleksandrovich Gorbunov

Abstract. Let R be a finite commutative ring with identity. If the Jacobson radicat ahnihilates itself, then the
quasivariety generated by is dually equivalent to a category of structured Boolean spaces obtained in a natural
way fromR. If on the other hand the radical & does not annihilate itself, then no such natural dual equivalence
is possible. To illustrate the first result, a dual equivalence for the quasivariety generated by nﬁriv@ere

p is prime, is given.

1. Introduction

Stone’s 1936 [18] description of Boolean rings has two parts. In modern language it
says that every Boolean ring is isomorphic to the ring of all clopen subsets of some Boolean
space, and that the association between Boolean rings and the corresponding Boolean
spaces is a dual equivalence between the quasivariety of Boolean rings and the category of
Boolean spaces. The quasivariety of Boolean rings consists of all rings with identity that
are embeddable into a power of the two element fiéld In 1968 Arens and Kaplansky
[1] extended this result to the quasivariety consisting of all rings with identity that are
embeddable into a power of the fiel}. TakingG to be the automorphism group &},
and X to be a Boolean space continuously acted upoizbyhey constructed the ring of
G-stable continuous functiorfsom X into F,;. Their theorem says that

e every commutative ring with identity in the quasivariety generateg Jag isomorphic
to the ring ofG-stable continuous functions from some Bool&aspaceX into F,,
and that
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o the association between these rings and the corresponding Bapisaces is a dual
equivalence between the quasivariety generatedbgnd the category of Boolean
G-spaces.

Since the publication of Arens and Kaplansky’s work there has been a steady and growing
stream of similar results, compiled and exposited in the text [2] of Clark and Davey, where
F, is replaced by an arbitrary finite algelive. Leaving the technical definitions to the next
section, we say tha#l is dualizable if a representation of the former type exists, thht
is fully dualizable if a dual equivalence of the latter type exists, and tats strongly
dualizable if it is fully dualizable in a particularly nice way. The literature now abounds
with examples of these constructions. (See [2], Chapter 4.) Davey and Willard [10] and
Saramago [17] (Chapter 6) proved that a quasivariety which is dualizable with respect to one
finite generator is also dualizable with respect to every other finite generator. Applying this
fact to the examples given in [2], we find many quasivarieties in which every finite member
is dualizable. For example, every finite Boolean algebra, abelian group, semilattice or
vector space is dualizable. In contrast Quackenbush and$¥@have shown that every
finite nilpotent non-abelian group is non-dualizable.

However, the general problem as to whether or not an arbitrary finite alylsar is
not (strongly) dualizable remains challenging and difficult, raising the interesting question
as to whether or not the problem is even recursively decidable. This situation has led
several investigators to restrict the dualizability problem to a particular €lagslgebras,
and attempt to determine exactly which member§ afe dualizable. Two notable results
describe a class that is properly partitioned into dualizable and non-dualizable members.
Within congruence-distributive varieties, the dualizability problem has been reduced to the
problem of deciding if the algebra in question has a near-unanimity term (Clark, Davey,
Heindorf, Krauss, McKenzie, Werner: [9], [5]-if; [8]-only if):

o A finite algebra that generates a congruence-distributive variety is dualizable if and
only if it has a near-unanimity term.

lllustrating the difficulty of the dualizability problem, Clark, Davey and Pitkethly [4] give
a complete solution for a class of presumably very simple algebras:

o Of the 699 monoids of unary operations on a given three element set, ex¢gay
determine a dualizable unary algebra a267 determine a non-dualizable unary
algebra.

The goal of this paper is to give a complete solution to the dualizability problem for
finite commutative rings with identity. Interestingly, the third condition of Theorem 1.1
below was shown by Dziobiak [11] to also characterize four other classes of finite rings with
identity: those that have a finitely based quasi-equational theory, those whose generated
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guasivariety has only finitely many sub-quasivarieties, those that generate a residually small
variety and those that generate a residually finite variety.

THEOREM 1.1. Let R be a finite commutative ring with identity. Then the following
are equivalent:

1. Ris dualizable;

2. Ris strongly dualizable;

3. the Jacobson radical/ (R) of R is self annihilating, that isab = 0 whenever
a,be JR).

The significance of this result lies in the fact that commutative rings with identity are now
the only clas€ of finite algebras for which the following three statements can be made.

e Cis aclass of algebras of historical interest in classical algebra.

¢ A finite algorithm is known that will determine whether or not a membec€ d§
dualizable.

e The dualizable members 6fform a proper and algebraically interesting subclags of

2. Natural dualities

Before explaining the general context in which we work, let us say a little more about
the result of Arens and Kaplansky. Fix a finite fieid let .4 and X’ denote respectively
the quasivariety of rings generated Byand the category of Booleafi-spaces where
G = Aut(F), and lett € AandF € X denote the two incarnations Bfas aring and as a
discreteG-space respectivelyd consists of all rings with identity which are isomorphic to
subrings of powers d¥; we denote this fact byl = ISP(F). In the category of topological
spaces with an action one can form powers (using the product topology and the inherited
coordinatewise action) and subobjects (on subsets which are closed under the action). Then
X coincides with the class of topological spaces with action which are isomorphic to
topologically closed subobjects of powersffwe denote this fact byt = IS.P* (F).

The “natural” dual equivalence betweehand X is given by the contravariant hom-
functorsD = Hom(—, F) andE = Hom(—, F) and the “evaluation map” natural trans-
formationse : 14 — ED ande : 1y — DE. More specifically, forR € A, a € R and
h : R — F, we definee®(a)(h) = h(a), and forX € X, x € X anda : X — F, we
defineeX (x)(a) = a(x). Here E(X) inherits its structure as a subring of the power,
forany X € X. Similarly, if R € A, thenD(R) inherits its topology and-action as a
closed subobject QIER. To say thatD, E, e, ¢ give a dual equivalence amounts to saying
that they give a dual adjunction and for evétye A andX e X, the natural embeddings
eR R — ED(R) andeX : X — DE(X) are surjective.

The previous discussion may be carried out in a quite general setting (see [2], Chapter 1).
Briefly, supposéM is any finite algebraic structure (such as aring, group, or semigroup), let
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M be a discrete space having the same universg asd enriched with additional structure
2, and letA = ISP(M) and X = ]ISJP”“(M). ProvidedX is “compatible withM” in a
sense to be explained below, the hom-functbrs= Hom(—, M) andE = Hom(—, M)
and evaluation map natural transformatierssde will establish at least a dual adjunction
betweenA and X. If for every A € A the natural embedding® : A < ED(A) is
surjective, then we say that is dualized by X (or by M). If in addition the natural
embedding* : X < DE(X) is surjective for evernX e X, then we say tha is fully
dualized by X. In the former cased is dually equivalent to a full subcategory &f. In
the latter case it is dually equivalentdoitself.

Itis argued in [2, 881.4 and 2.3] that “additional structure” should mean a colleEtion
of operations and relations, each having a fixed but otherwise arbitrary arity and defined on
M (the common universe ™ andM). The operations iix need not be total, nor must the
arities of the operations and relations be finite. That isjsfan ordinal, then an acceptable
A-ary operation is any map : U — M whereo # U € M”*; and if» # 0, then an
acceptable.-ary relation is any € M*.

By [2, Theorem 1.5.2], the correct notion of “compatibilityXfvith M ” is the following:
eachi-ary relation inz must be the universe of a subalgebridf, and each-ary operation
f € X must be a homomorphism from a subalgebrdfto M. Operations and relations
with these properties are said to&lgebraic overM. Returning to the example of a finite
field F, the relevant algebraic operation is the Frobenius automorphism as an operation of
arity 1.

There is a notion, called “strong” duality, which has been known for some time to imply
full duality and which receives considerable attention in the book [2]. (See Definition 4.4.)
As the reader will see, our proofs of full duality are in fact proofs of strong duality. The
point to be made here is thatlifP(M) is dualized (strongly dualized) by, then it is
also dualized (strongly dualized) by any collection of algebraic operations and relations
containingX. (At present it is unknown whether ‘fully dualized’ has the same property;
this is one reason to prefer strong duality over full duality.)

It turns out [2, §2.3] thalSIP(M) is always strongly dualized by the proper clasalbf
operations and relations of all possible arities (infinite as well as finite) which are algebraic
over M, but we consider this to be cheating. Roughly speaking, we want to keep the
arities of the operations and relationsirsmall (preferably finite), hoping that topological
closure will suffice to compensate for the absence of the infinitary algebraic operations and
relations. Ifx is a cardinal, we say thal is [fully, strongly] «-dualizable if ISPP(M)
is [fully, strongly] dualized dualized) by the set of all x-ary operations and relations
algebraic oveM. In this terminology, the result of Arens and Kaplansky implies that
each finite field is strongly 2-dualizable. In general, what is desired igMhia¢ strongly
x-dualizable for some very small cardinglresulting in a more tractable dual categdty
(In particular, the standard notion dfializableis our w-dualizable.) We will prove the
following strengthened version of Theorem 1.1.
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THEOREM 2.1. LetR be a finite commutative ring with identity. Then the following
are equivalent:

1. R is k-dualizable for some cardinad;

2. R is strongly4-dualizable;

3. the Jacobson radical (R) of R is self annihilating, that isgb = 0 whenevew, b €
J(R).

Even when the Jacobson radicabois self annihilating, the s& of algebraic operations
and relations oR of arity at most 3 is generally large enough to produce arather cumbersome
dual objecR and a completely impenetrable dual categtiyP" (R). A natural game to
play is to find a smaller, more manageable subsét wfhich still does the job. The result
of Arens and Kaplansky is one instance; see [2, Theorem 4.2.5] for a similar result in case
R = Zp, Wherep, g are distinct primes.

In Theorem 7.1 we make the first move of this game in the general case. It is our
hope that ring theorists will be able to use this theorem as a starting point to obtain useful
dual equivalences for quasivarieties generated by specific finite commutative rings with
self-annihilating radicals. In the last section we give an example of what is required by
explicitly working out a dual category for the ririg,. wherep is a prime.

We shall draw freely from the general theory of natural dualities as it is expounded in [2].
Some additions to the theory which we need here, and which have already found application
in [10, 15, 13, 19], are placed in Section 4. Lambek’s book [14] provides a good reference
for the ring theory we use.

3. Nondualizability

THEOREM 3.1.Let R be a finite commutative ring (with or without identity) whose
radical is not self-annihilating. TheR is notx-dualizable for any cardinat.

This section consists of the proof of Theorem 3.1. This theorem is slightly stronger
than (1)= (3) of Theorem 2.1 in two ways: first, it applies to commutative rings without
an identity element. Second, if the rilRyhappens to have an identity element, then the
statement of the theorem has two possible interpretations, depending on whether or not
subrings inISP(R) are required to contain the identity element of the larger ring and
homomorphisms are required to preserve the identity elements of the respective rings (i.e.,
whether the identity element & is named by a formal symbol). Our proof establishes
x-nondualizability under both interpretations.

We begin with three elementary observations from [2] that hold for any finite algebra
M. First, if ISP(M) can be dualized by a s&t of operations and relations algebraic over
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M, then it can be dualized by a set consisting of relations only (as in this context operations
can be replaced by their graphs [2, Theorem 2.1.2]).

Second, supposeis a collection of operations and relations algebraic 8¥eand let the
topological structur#!, the categoryt’ and the functor®, E be defined relative t& as in
the introduction. Then for each € ISP(M) the universe of: D(A) has the following con-
crete characterization. Letoe ax-ary relation onM. A A-tuple (hy)e<;. € HOom(A, M)*
is coordinatewise inr if (hy(a))q<y € r foralla € A. If ¢ : HOm(A,M) — M is any
function, then we say thatpreserves if for every A-tuple (hy o <5 € Hom(A, M)* which
is coordinatewise in we have(p(hy))q <) € r. NOow we can state the characterization: the
universe ofE D(A) consists of those functions : Hom(A, M) — M which are continu-
ous, preserve every relatiene X, and preserve the graph of every operatfor . To
remind the reader of this fact, we shall occasionally@iggHom(A, M), M) to denote the
universe ofED(A).

Third, if the structuréVl, the category¥, the functorsD, E and the natural transfor-
mationse, ¢ are defined relative t& as in the introduction, then for eaéh € ISP(M)
the range of the natural embeddiefy : A — ED(A) is always the same: it is the set
{e”(a) : a € A} of the “evaluation-at: maps” each defined by (a)(h) = h(a).

Thus we shall accomplish our goal by constructing, for each infinite cardireating
S, € ISP(R) and a mapp, : Hom(S., R) — R which is continuous, preserves every
< k-ary relation algebraic oveR, and yet differs fromeS< (a) for everya € S.. The next
lemma is our main tool.

LEMMA 3.2. LetM be a finite algebraA € ISP(M), andy : Hom(A, M) — M.

1. ¢ is continuous if and only if there exists a finite skt < A such that for all
h,h' € Hom(A, M), if h| 4, = h'| o, thene(h) = p(h).

2. For a nonzero ordinak, ¢ preserves alk-ary relations algebraic oveM if and only
if for every setHyp € Hom(A, M) with 0 < |Hp| < |A| there exists: € A such that

@lHy = (@) Hp-

Proof. Item 1 is true by a simple compactness argument. To prove item 2, assume that
preserves all-ary algebraic relations &l and leto = Ho € Hom(A, M) with | Hg| < |A].
EnumerateHy = {hy : o < A}. For eactu € A definef, € M* by f,(a) = e”(a)(hy)
and putr = {f, : a € A}. It can be checked that the map— f, is a homomorphism
from A to M* with ranger; thereforer is the universe of a subalgebraMf* and so is a
A-ary relation algebraic oveM!.

Thusg preserves. Now consider the.-tuplet = (hy)e<;. € HOmA, M)*. Clearly
T is coordinatewise im. As ¢ preserves, we must havéo(hy))e<) = fo € r for some
a € A, which proves the “only if” direction of item 2. The converse is immediate. O
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3.1. The easy case

In this subsection we prove Theorem 3.1 in the special cas®thatr? = y2 = 0 —
xy = 0. This case includes, e.g., the riri§iss (p a prime). This subsection is redundant
in the sense that the next subsection gives a general argument covering all cases. However,
we find it easier to introduce (and believe it will be easier to read) some of the ideas in the
context of this special case.

CLAIM 3.3. There exisk € {2, 3} anda, b € R such that

1. REx?>=y"=0—xy=0.
2. d* = a®h =ab?>=0.
3. ab #0.

Proof. Let J be the radical oR. Choosen > 1 maximal such thaf?" # 0, and let
I = J". ThusI? # 0 while I* = 0. In particular/ = x* = 0.

Assume first thaR = x> = y* =0 — xy = 0. ThenR = y* =0 — )3
Choosea, ¢ € I with ac # 0. Becauser € I we geta® = 0 and therefore® =
Similarly, ¢* = 0. Sinceac # 0 we must hava? # 0 (elsea, ¢ would violateR = x? =
y*=0— xy = 0). Thena, b := a andk := 3 witness the required conditions.

Assume on the other hand that there exigt € R such that? = b* = 0 whileab # 0.
Letc = b?; thena? = ¢? = 0, so by the hypothesis of this subsection we have- 0, i.e.,
ab® = 0. Thusa, b andk := 2 witness the required conditions. O

0.

|
©

Let k, a, b be fixed as in the previous claim and put= ab # 0. We define some
elements of the rin®* as follows: R.

a=1Ja,a,0,0], b=[b,0,b0], ¢c=][c0,00], 7r=][rrrr],
wherer ranges oveR. Also define a map : R* — R by
v(w,x,y,z))=w—x—y+z
The facts we need to know about the above elements and the avap

1. at = a%b = b%a = 0, whileab = c.
2. v@") =vd") =v{F)=0foralln > 1andr € R, whilev(c) # 0.
3. visR-linear.

Fix an infinite cardinak. We define elements, 6; (j < «) andy, (r € R) of (RYH* as
follows.

a(i) = a foralli < «,
: bifi=j

6i@0) = {6 otherwise

@) =r foralli < «.
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Also define; = 6p — 0; andy; = af; for j < «, andy = afp. Thuspfy = yo =0
and for O< j < «,

a =@ a a ..., a a a ...),
ﬂj = (Q’ 67 6’ cevy 67 _Q5 6’ . )7
Vi = (g’ 67 6’ ey 67 —C, oa . )9
T
J
n = F, F, ¥, ..., F, F, F, ...),
y = 00, ....,0 0 0 ...)

Let S, be the subring ofR*)x generated by the set
{a}U{B;:j<k}yU{n :r €R}.

CLAIM 3.4. (Parity check)For everys € S, there exists a finite subsét C « such
that for all finite setsF with D C F C «,

Zu(a(z‘)) =0.
ieF

Hencey ¢ S.

Proof. Let M be the set of alb € (R*)© satisfying the above condition. Thet is an
R-submodule of R**. LetG = {a} U {B; : 0 < j <«} andletH be the closure o&
under multiplication. The#, is theR-submodule ofR*)¥ generated by U {n, : r € R},
so it suffices to show thatf U {5, : r € R} € M. We leave this verification to the
reader. O

Before defining our map, : Hom(S,., R) — R, we shall study the restriction of each
h e Hom(S., R) to the sef{y; : j < «}. Fixh e Hom(S,, R) and color the elements &f
by assigning to each < « the value ofz(y;).

CLAIM 3.5. One of the color-classes is cofinite. The union of the finite color-classes
has cardinality< |R|.

Proof. For j, ¢ < k define

j=ot ifft h(Bj)=h(Bo).

Clearly each color-class is a union sf-classes, and there are at mpgt distinct =q-
classes. It suffices to show thatjif¢, m, n are distinct members of and j =¢ ¢ and
m =g n, thenj, £, m, n belong to the same color-class. Certaiiland¢ belong to the
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same color-class, as @oandn. Furthermoreh(8; — B,) = h(B¢ — Bn) =: x. Now in
(RY*, (Bj — Bu)(Be — Bn) = (O — 07)(6n — 6¢) = O (sinced, 6, = 0 whenevep # g).
Thusx? = 0. By Claim 3.3,xy = O for all y € R such thaty* = 0 (wherek is the
integer specified in Claim 3.3). Sineé = 0 in (R** we geth(a)* = 0inR and hence
0=xh(a) =h(B; — Bn)h(a) = h(y;) — h(ym), proving thatj andm belong to the same
color-class. O

Now definey, : Hom(S,, R) — R by letting ¢, (h) be the color of the cofinite color-
class determined by. We must show three things: (1) that is continuous, (2) that
@ preserves every k-ary relation algebraic oveR, and (3) thaty, differs from every
evaluation-ats mape> (8), § € S,.

(1) LetSo = {y; : j < 2IR]|}. For everyh € Hom(S,, R), the value ofy, (k) can be
determined from the restriction éfto Sp, by Claim 3.5. Thusg, is continuous by
Lemma 3.2(1).

(2) Supposdiy € Hom(S,, R) with |Hp| < k. For eachh € Hy let C;, C « denote
the cofinite color-class determined ly By simple cardinality considerations,
| (Mner, Cnl = «, S0 we can picki € (,cp, Cn- Theng, (h) = h(y;) for every
h € Hp. By Claim 3.2(2) ¢, preserves every «-ary relation algebraic oveR.

(3) Foreach < « define the projection maps,, 75, 74, 7} € Hom(S,, R) so that for
all§ € S, and alli < «,

8(i) = [ (8), mh(8), 75(8), mh(8)].

An easy computation shows (70) = ¢ while g, (n]i.) = Oin all other cases. Now suppose
there exist$ € S, suchthaty, (h) = h(s) forallh € Hom(S,, R). In particular,nf(a) =c
while nj.(S) = 0forall (i, j) # (0, 1). This forcess = y; buty & S, by Claim 3.4. Thus
@, 1S not the evaluation-at-map for anys € S, which completes the proof th& is not
k-dualizable.

3.2. The general case

LetR be afinite commutative ring whose radical is not self-annihilating. Chedse R
satisfyinga?h = ab® = Owhilec ;= ab #0. (fREx2=y2=0 — xy =0
then use Claim 3.3; otherwise, use a failure of this implication.) Our construction is an
adaptation to several dimensions of an argument developed for certain nilpotent groups by
R. Quackenbush and the fourth author [16]. Defink, ¢, 7 € R*(r € R)andv : R* > R
exactly as in the easy case. We have

1. a?b = ab? = O whileab = c.

2. v@") =vd") =v@F)=0forallr € Randn > 1, whilev(c) # 0.
3. visR-linear.
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Fix an infinite cardinak and letG, = {x € Z" : {i < « : x(i) # 0} is finite}. We consider

G, as a free abelian group and define the standard free generators «) by
. 1ifj=i
“() = { 0 otherwise.

Now define elements,, y. (x € G), 6;.; (x € G, andi < «), n, (r € R), andy of
(R*C« as follows.

aify=x
o) = —b if y = x +¢; forsomei < «
Be(y) = b if y =x — ¢; for somei < «
0 otherwise
cify=0andx #0
ye(y) = { —¢ if y=xandx #0
0 otherwise
cify=x
Ori(y) = § —Cify=x+e¢
0 otherwise
4 = | eify=0
YO =10 otherwise

~

n(y) =r forall y € G,.

Note thatf,; = BxBx+e fOr eachx € G, andi < «, and that{y, : x € G} is
contained in the additive subgroup @)« generated by, ; : x € G,i < «}. Also
note thats, 8, # 0 only if y = x 4 ne; for somei < « andn € {-2,-1,0, 1, 2}, and
that for allxy, x2, ..., x, € G, V(Bx,Bx, - - - Br, () # O for somey € G, if and only if
n = 2 and{x1, x2} = {x, x + ¢;} for somex € G, andi < «.

Let S, be the subring ofR*)“« generated by the set

{Bx :x € G}U{n, 17 € R},

and note thaty, : x € G} C S,. The next claim is proved identically to Claim 3.4.

CLAIM 3.6. (Parity check)For everys € S, there exists a finite subsét € G, such
that for all finite setsF' with D € F C G,,

> vx) =0.

xeF

Hencey ¢ Si.
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As in the easy case, we now study the restriction of gaehHom(S,, R) to the set
{yx : x € G,}. Fixh € Hom(S;, R) and color the elements @f, by assigning to each
x € G, the value ofi(yy).

CLAIM3.7. Fori < « defineB; = {x € G, : x andx + ¢; have different colors
Then|B;| < 4|R|? for eachi < «.

Proof. We first show that itC C B; is any set having the property thatt e; # y +¢;
for all j < « wheneverx,y € C with x # y, then|C| < |R|. For suppos& is such
aset. Ifx € C, then ash(yy) # h(Yx+te;) aNAYyte, — vy = Ori = BxPrte; WE have
h(Bx)h(Bx+e;) # 0. On the other hand, if, y € C with x # y, then by assumption,
ByBx+e; = 0 and hencé (By)h(Br4e;) = 0. This provedi(By) # h(By) forallx,y € C
with x # y, and hencéC| < |R|.

Now supposéB;| > 4|R|2. For eactn € Z let B;(n) = {x € B; : x(i) = n} and put
T ={neZ: B;(n) # J}. Note that for each € T the setB; (n) satisfies the condition
of the previous paragraph; henidg (n)| < |R| for alln € T. Consequenth,T| > 4|R]|.
Hence itis possible to chooge C T with |Tg| > |R|andln—m| > 4foralln, m € Tpwith
n # m. Now choose one element from B; (n) for eachn € Topand putC = {x,, : n € Tp};
the result is a set satisfying the condition of the previous paragraph and sugt|tkatR|,

a contradiction. O

CLAIM 3.8. One of the color-classes is cofinite.

Proof. Define W to be the subgroup ofi, generated bye; : 0 <i < «}, and let
f : G, — W bethe projection defined bf(neg+x) = x forallx € W andn € Z. Foreach
xeWletLy = f~Y(x) = {x + neg : n € Z}. AlsoletF = f(Bg) whereBy is defined in
Claim 3.7. ThusF is a finite subset o, and ifx € W\ F then the “line” L, belongs to
a single color-class. Choo9é < w large enough so that € Bg implies|x(0)| < N, and
for eachx € F defineL} = {x + nep:n > N}andL; = {x + nep : n < —N}. ThusL}
andL are "half-lines” each of which belongs to a single color-class.

SinceF is finite and« > 2 we can choose and fix somes W\ F. We first show that
if y € F, thenL, andL;,r belong to the same color-class. IndeedUet {0 <i <« :
x(i) # y(i)}. Note thatU is a finite set. HenceJ{B; : i € U} is a finite set by Claim 3.7.
ChooseN, < w large enough so thaf, > N andifz € |J{B; : i € U} then|z(0)| < N,.

Then chooséy, i1, ..., i,—1 € U (not necessarily distinct) ang, o1, ..., 0,-1 € {0, 1}
so that
n—1
y=x+Y (-D%e
k=0

and for 0< j < n definex; = x + Nyeo + > _ ;(=1)%e;,. Thusxg € Ly, x, € L;r, and
for eachj < n we havex;,1 — x; = +e; for somei € U. By the choice ofv,, x; and
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xj4+1 belong to the same color-class for egch: n. Hencexg andx, belong to the same
color-class, which proves that, andL;r belong to the same color-class.

Similar arguments show that andL} belong to the same color-class wheneyver F,
and thatL, andL, belong to the same color-class wheneyet W\F y # x. Thus the
color-class containing is cofinite. O

CLAIM 3.9. More than half of the elements ¢feg : 0 < n < 4|R|?} belong to the
cofinite color-class.

Proof. Let D = {0 < n < 4|R|? : neo does not belong to the cofinite color-clasdf
n € D, then there must exigt < 0 such thatieg + i,e1 andneg + (in + 1)e1 have
different colors; similarly, there must exigt > 0 such thateg+ j,e1 andneg+ (j,, +1)ex
have different colors. Thuseg + ine1 € B1 andneg + j,e1 € By for eachn € D. Since
|B1| < 4|R|? by Claim 3.7 we getD| < 2|R|?, which proves the claim. O

Now definegy, : Hom(S,, R) — R by letting ¢, (k) be the color of the cofinite color-
class determined by. Arguing as in the easy casg, is continuous by Claim 3.9, preserves
all < «-ary relations algebraic ové& by Claim 3.8, and is not the evaluation<atnap for
anys € S, becauses ¢ S,. HenceR is notk-dualizable.

4. Contributions to the general theory

In this section we give two new tools for proving that a Betf finitary operations and
relations dualizes (or fully dualize$$P(M) whereM is a finite algebra. These tools are
stated in Theorem 4.3 and Theorem 4.11. The tools will be used in Sections 6 and 7; their
flavor is to reduce the analysis frofSPP(M) to the clasdSPsin (M) of finite members of
ISP(M).

The following lemma may be found in [12] (Theorem 1, p. 132), or see [2], 1.3.3, fora
short proof.

LEMMA 4.1. Suppose thak is a posetin which any two elements have an upper bound,
and F is a function with domairP such that for eachh € P, F(x) is a finite nonempty set.
Suppose moreover that for all paits, y) € P? withx < y we have a specified function
fry ¢ F(y) = F(x) and that these functions satigf) fry o fy; = fi,; Wwhenever
x <y <zin P,and (i) frx = idp forall x € P. Then there is a functiop with
domainP such thaip(x) € F(x) forall x € P, and fy ,(¢(y)) = ¢(x) forall x < y.

Here is a simple application.

LEMMA 4.2. LetA be alocally finite algebraB a finite algebra of the same typean
n-ary relation onB (1 < n < w), S afinite subset oA\, andg, ..., g, € BS.
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Suppose that for every finite subalgeb#g of A satisfyingS < A there exist
h1,...,h, € Hom(A1, B) such that(a) i;|s = g; fori = 1,...,n, and(b) (h1(x), ...,
h,(x)) € r forall x € A;. Then there exidiy, ..., h, € HOm(A, B) such that the same
two conditions hold wittA in place ofAj.

Proof. Let P be the poset of finite subalgebragoivhich contains, ordered by inclusion.
For eachA; € P let F(A1) be the set of alk-tuples{hy, ..., h,) € Hom(A1, B)" which
satisfy the conditions (a) and (b) above. ThuéA;) is finite and nonempty for every
A1 € P.If Ay < Azin P thendefingfa, A, : F(A2) = F(AD) by fa, a,((h1, ..., hy) =
(h1laqs - -, hnla,). By Lemma 4.1 there exists a functigrwhich assigns to eaoh; € P
ann-tuplep(A1) = (p1(a1), ..., pa(A1)) € F(A1) such tha; (A2)|a, = ¢i(Ay) for all
i =1,...,nwheneveA; < Ayin P. Definehy, ..., h, € BAso thath;| 4, = @i (A1) for
alli =1,...,nandallA1 € P. This works. O

Let M be a finite algebra ant a set of finitary operations and relations algebraic over
M, and recall the discussion in Section 2. KorC ISP(M) we say that® dualizes
if e” is surjective for evenA € K. The next theorem was discovered by ladori and
independently by the fifth author in 19954dori actually proved something stronger).
Zadori’s proof has appeared in [20]; we include our proof since it is significantly shorter.

THEOREM 4.3. SupposeM is a finite algebra and® is a set of finitary algebraic
operations and relations df1. If X dualizesISPs,(M) and X is finite, thenX dualizes
ISP(M).

Proof. By replacing operations with their graphs, we may assume Xhabnsists of
relations only [2, Theorem 2.1.2]. LA&te ISP(M) andy € Cyx(Hom(A, M), M). Choose
afinite setdg € A such thatfor alk, i’ € Hom(A, M), if k|4, = h'| o, theng(h) = (k')
(see Lemma 3.2(1)). AA is locally finite, we may assume thdy is the universe of a
subalgebra of. Let U be the set of all paire, (g1, ..., g»)) wherer € T, wheren is the
arity of r, andgs, ..., g, € Hom(Ag, M). For each(r, g) € U choose a finite subalgebra
A,z of A so that the following is true: if there do not exigt € Hom(A, M) extending
the g; and such thak(x) € r for all x € A, then there do not exigt; € Hom(A .z, M)
extending theg; and such thak(x) € r for all x € A,z (This is possible because of
Lemma4.2.) AdJ isfinite, there exists a finite subalgelxaof A whose universe contains
Ap andA. ;) for every(r, g) € U.

Fix someag € M and definep* : Hom(A1, M) — M by

@(h') if there existsi’ € Hom(A, M) with 4’| 4, = k|,
ao otherwise.

¢*(h) = {

¢* is well-defined by choice odg. We claimthaty* € Cx (Hom(A1, M), M). For suppose
r € Xisn-ary, hy, ..., h, € Hom(A1, M), and{(h1(x), ..., h,(x)) € r forall x € Aj.
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Letg, = hila, fori = 1,...,n; thus(r, g) € U, and there exist extensions of tge
to Az (namely,h;|a, ) which satisfyr coordinatewise. Thus by the construction of
Az thereexish), ..., h;, € Hom(A, M) extendingy, . .., g, such that’ (x) e r for all

x € A. Then by definition ofp* we have(p*(h1), ..., ¢*(hy)) = (p(h)), ..., @(h})) € r
asy preserves. This proves* preserves every € X, ande™ is automatically continuous
as its domain is finite. Sp* € Cx (Hom(A1, M), M).

SinceX dualizesA1 € ISPsipn(M), there existar € A1 such thatp™(h) = h(a) for all
h € Hom(A1, M). It follows thate(h’) = h’(a) for all i’ € Hom(A, M), i.e.,¢ = e”(a).
This proves that” is surjective and hencg dualizesSISP(M). O

We now turn to full dualizability, first summarizing what has been known up until now.
The condition in Definition 4.4(1) was isolated by Clark and Krauss in [5] (where it was
calledhull-kernel closurg

DEFINITION 4.4. LetM be a finite algebral/ a nonempty set, and < MY. Also
let ¥ be a set of finitary operations and relations algebraic derand letM be the
corresponding topological structure (see the introduction).

1. Theterm-closure of X, denoted by X], is the set of allg € MY which sat-
isfy the following property: for alln < w, 2 € U™ andn-ary term operations
$(X), t(X) of M, if s(f(ur), ..., fun)) =t(f(ur), ..., f(uy)) forall f € X, then
s(g(ua), ..., guy)) =1(gua), ..., gun)).

2. X isterm-closedif X = [X].

3. TC(X, M) is the assertion that every topologically closed substructure of a power of
M is term-closed. Tgn (X, M) is the restriction of this assertion to substructures of
finite powers ofVl.

4. 3 strongly dualizesISP(M) if £ dualizesISP(M) and TGX, M) holds.

DEFINITION 4.5. LetM be a finite algebra, an® a set of finitary operations and
relations algebraic ovevl.

1. By thepartial clone generated by we mean the smallest set of finitary operations
algebraic oveM which contains the projections and the operatiorg,iand is closed
under all compositions for which the induced domain (by convention, the maximum
possible) is nonempty.

2. GenCloriz, M) is the assertion that for every finitary operatipalgebraic oveM
there exists an operatidii in the partial clone generated Byhaving the same arity
ash and such that doth) < dom(%’) andh = 1’ |gomn)-

3. TC(M) is the assertion that T@, M) holds whereV is the set ofall finitary opera-
tions algebraic oveM .
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LEMMA 4.6. LetM be afinite algebra, an& a set of finitary operations and relations
algebraic overM.

1. If X strongly dualizegSP(M), thenX fully dualizesISP(M).
2. TC(Z, M) is equivalent to the conjunction aC(M) and TG (2, M).
3. TGin(2, M) is equivalent taGenClon(x, M).

Proof. Clark and Krauss [5, page 21] proved item (1) (see also [2], Theorem 3.2.4). Item
2 is essentially Theorem 3.2.2 of [2]. Item 3 was proved by Davey, Haviar and Priestley as
Theorem 5.3 in [7]; the result also appears as Lemma 9.4.1 of [2]. O

This completes our summary of the current understanding of full dualizability. Our
aim now is to give a new sufficient condition for TX&@) to hold. First we give another
characterization of the condition T&, M).

DEFINITION 4.7. LetM be a finite algebray:. a set of finitary operations and relations
algebraic oveM, andM the corresponding topological structure.

1. If A # @ andX € M4, then we say separates the points ofd if forall a, b € A
with a # b there existsf € X with f(a) # f(b).

2. SepGen(x, M) is the assertion that for eve®y € ISP(M), if X € Hom(A, M)
is a topologically closed substructurelgf“ which separates the points af then
X = Hom(A, M).

3. ProjGen(z, M) isthe assertion that for evety< MY (U # ), if X € Hom(A, M)
is a topologically closed subuniverse Idf* which contains all the projections,
(v € U), thenX = Hom(A, M).

LEMMA 4.8. For any finite algebraM and setX of finitary operations and relations
algebraic ovemM, the following are equivalent:

1. TC(Z, M).
2. SepGex, M).
3. ProjGeriz, M).

Proof. (1) = (2). Assume TCX, M). LetA € ISP(M) andX € Hom(A, M) be such
that X is a closed subuniverse MA which separates the points af and assume there
existsg € Hom(A, M)\ X. By TC(XZ, M) we get thatX is term-closed, so there must exist

n<w,(ai,...,a,) € A", andn-ary term operations and+ of M witnessing the failure
of g to be in the term-closure df.
Letb = s(a1,...,a,) € Aandc = t(ay,...,a,) € A. Then for all f € X we have

f(b) = f(s(ar,....an)) = s(f(ar),.... flan) = t(f(ay)..... fan)) = --- = f(0),
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while by the same argumepi(b) # g(c). These facts contradict the assumption tkat
separates the points df

(3) is a special case of (2).

(3) = (1). We begin with an alternate characterization of term-closure. UL&te
a nonempty set and € MY. For eachu € U letn, : X — M be the projection
onto coordinate:, let U* = {m, : u € U} € MX, and letAx be the subalgebra ofn X
generated by/*. Definev : Hom(Ax, M) — MY by v(g)(u) = g(m,). The following
lemma, which we leave as an exercise, is a slight generalization of [2, Theorem 1.1.3].

LEMMA 4.9. WithM and X as abovey is a bijection fromHom(Ax, M) to [ X].

Now assume ProjGéx, M). To prove TGX, M), letU # & and letX be a closed
subuniverse OMU. DefineAx andv as in the discussion preceding Lemma 4.9, and let
X* = v 1(X) € Hom(Ax, M). Note that ifr, : Ax — M (x € X) is a coordinate
projection, then forevery € U, v(mry)(u) = my (7)) = 7, (x) = x(u), provingv(my) = x
and hencer, € X*. It can be checked tha™* is a closed subuniverse MAX. Thus
X* = Hom(Ax, M) by ProjGernix, M), and saX is equal to its term-closure by Lemma 4.9.
This proves TCX, M). O

We remark in passing that the above proof also gives the equivalences@{XI QM)
with the restrictions of ProjGéx, M) and SepGefk, M) to finite subpower# of M.

We now give our sufficient condition for T®) to hold. We shall use this condition in
Section 7. The condition has been generalized in [19] and [15].

DEFINITION 4.10. Suppos@g < A1 < MX, ho € Hom(Ag, M), andY C X.

1. A4|y denotes the image ok1 under the natural projection homomorphism :
MY MY,

2. We say thahg lifts to Ay if there existsh’ € Hom(A1|y, M) such thatig(a) =
h'(aly) foralla € Ap.

THEOREM 4.11.Let M be a finite algebra. Suppose there is a functipn v — w
such that the following holds:

Whenevero < A; < M¥ andhg € Hom(Ag, M) whereX is finite andhg
lifts to A1, then there exist¥ C X such that)Y| < f(]Ao|) and kg lifts to
Aily.

ThenTC(M) holds.

Proof. By Lemma 4.8, it suffices to prove SepG&8hM) whereV is the set of all
finitary operations algebraic ovéf. LetM be the topological structure defined relative
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to the setV. Let f be the function given in the statement of the theorem. Note that the
displayed condition remains true whé&nis infinite, provided tha# is finite.

LetA € ISP(M) and suppos& € Hom(A, M) =: H whereX is a closed substructure
of MA which separates the points af It must be shown thaXx = Hom(A, M). Recall
the natural embedding® : A — M¥ defined prior to Lemma 3.2. Defing : A — MX
by e*(a) = e”(a)|x and letA* = ran(e*) < M¥. If B < A andg € Hom(B, M) then we
defineB* = ¢*(B) andg* = g o (¢*|3)~1 € Hom(B*, M).

Fix h € Hom(A, M). To showh € X, it suffices (by the topological closednessXof
to show thatr|4, € X|a, for everyfinite subalgebrahg of A. So letAg be fixed and let
P be the poset of all finite subalgebrasffvhich containAg, ordered by inclusion. Put
n = f(|Aol) andho = h|a,, and considehy € Hom(Ag, M). Supposé\; € P is given;
ho clearly can be lifted toA1, hencehy can be lifted toA7, and asAj < A7 < MX it
follows from the hypothesis of the theorem that there exists X such thafY| < n and
hg lifts to A|y. Enumeratd’ = {y1, ..., y;} with s < n. The latter condition/( lifting
to Ajly) can be restated as follows: there issaary operatiorg € V such that

1. {(y1(a), ..., ys(a)) is in the domain of for everya € A;.
2. If W’ € Hom(A1, M) is defined byh'(a) = g(y1(a), . .., ys(a)), thenh’| 4, = ho.

ForeachA; € P let F(A) be the set of all triplegs, y, g) where 1< s <n, y € (X|a,)*,
andg € V is ans-ary operation satisfying items (1, 2) above with respedt.téd'(Ay) is
finite and nonempty, by the above discussion. Moreovek;ifA> € P with Ay < Ay,
then(s, ¥|4,, 8) € F(Ay) whenever(s, y, g) € F(A2). Thus by Lemma 4.1 there exist
s < n,y € (M*)?*, and ans-ary operatiorg € V such thats, Y04, ) € F(Ay) for all
A1 € P. Defineh’ € MA by h'(a) = g(y1(a), ..., ys(a)). SinceX is topologically closed
we getys, ..., ys € X. Then sinceX is closed undeg we geth’ € X. Ash'|a, = hlags
this proves the theorem. O

5. Finite commutative local rings

For the remainder of this paper all rings under consideration will have a named identity
element. Saying thatthis elementis named means for us that subrings are required to contain
the identity element of the larger ring, and homomorphisms between rings are required to
send the identity element of the one ring to the identity element of the other.

In this section we shall prove some facts about finite commutative rings with identity
which arelocal, i.e., have a uniqgue maximal ideal, and whose Jacobson radical is self-
annihilating. IfRis such a ring then we denote the radicalthe unique maximal ideal)
of Rby J(R). Forn € Z we useng or justn for the corresponding element Bf The
following facts are well-known and easily proved.

LEMMA 5.1. LetR be afinite commutative local ring with identity such th@)? = {0}.
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1. There exists a unique primesuch that

(@ pr e J(R.
(b) charR) = p or p? (depending on whether or npik = 0).
(c) R/J(R) is a field of cardinalityp* for somek > 1.
2. (J(R), +) is naturally a vector space over/R(R) via the scalar multiplicatior(r +
JR)-j=rj.

3. The proper ideals of R are precisely the vector subspacdsRyf.

The unique primey initem 1 of the above lemma will sometimes be denoted by‘¢Rar
Supposer and S are finite commutative local rings with identity and self-annihilating
radicals such that Ho(8/J(S), R/J(R)) # @; thus chaf(R) = char(S) = p for some
prime p. Let K be the unique subfield d®/J(R) of cardinality |S/J(S)| and choose
0 € Hom(S/J(S), R/J(R)); thusK is the image of). SinceK is a subfield oR/J(R), we
can consider (R) as a vector space ovBrin a natural way; by way of, we can endow
J (R) with the structure of a vector space 08U (S). Let Jy(R) denote this incarnation of
J(R), and let Homg(J(S), Jo(R)) denote the set of al/ J (S)-linear transformations from
J(S) to Jy(R) which sendpg to pr. Note that Horg(J(S), Jy(R)) # @ if and only if
charR)|chars).

LEMMA 5.2. Suppose R and S are finite commutative local rings with identity and
self-annihilating radicals.

1. Everyh € Hom(S, R) induces an embedding® € Hom(S/J(S), R/J(R)) by the
rule h*(s + J(S) = h(s) + J(R).

2. Supposé® € Hom(S/J(9), R/J(R)) andh € Hom(S, R) such thath* = 6, and let
p = chai(R) = char(S). Thenh|, ) € Homy(J(9), Jo(R).

3. If Hom(S,R) # @, thenHom(S/J(S), R/J(R)) # &, chaf(S) = chaf(R), and
charR)|chars).

If RandS are as in Lemma 5.2 an@l € Hom(S/J(S), R/J(R)), then we define
Homy(S,R) = {h e Hom(S,R) : h* =6}. The previous lemma can be restated as
follows:

1. HomS, R) = | J{Homy(S,R) : 6 € Hom(S/J(S), R/J(R))}.
2. Foreacld € Hom(S/J(S), R/J(R)),themapy : h — k| s definedonHom(S, R)
sends Hom(S, R) into Hom, (J (S), J4 (R)).

Ournextgoalis to prove thatthe mapsare bijections, and thatthe converseto Lemma5.2(3)
is true.

DEFINITION 5.3. LetR be a finite commutative local ring with identity such that
J(R? = {0}, and letp = chai(R). Let Q(R) denote the image iR of the operation
t(x) = xP.
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CLAIM 5.4. Let R andp be as in the previous definition.

1. Ifa,b € R, thena = bmodJ(R) if and only ifa” = b”. In particular,a € J(R) if
and only ifa? = 0.

2. Q(R) intersects each coset d¢iR) at exactly one element.

3. Q(R) is closed under multiplication; hengg@ (R), -) “is” the multiplicative semi-
group of the field R/ (R).

LEMMA 5.5. SupposeF(x) € Z,[x] is monic and of degreé. Then there exists
F*(x) € Z[x], also monic and of degreg such that

1. The image of*(x) under the canonical homomorphisfifix] — Z,[x] is F (x).
2. In any commutative ring whose characteristic diviges if an element: satisfies
a?’ =aand F*(a)? = pF*(a) = 0, thenF*(a) = 0.

Proof. Begin by arbitrarily choosing1(x) € Z[x] to be monic, of degreé, and satisfy-
ing item 1. Choos& (x) € Z[x] so thatFl(xP@) - Fl(x)Pl = pG(x). As Fy(x) is monic,
we can writeG(x) = Fi1(x)g(x) + r(x) whereg(x), r(x) € Z[x] and degdgr(x)) < £.
Define F*(x) = Fi(x) — pr(x).

To prove this works, first note tha&t*(x) is still monic, of degreé, and satisfies item 1.
Now suppose thatis an element of a commutative ring whose characteristic diyidesnd
thata?" = a andF*(a)? = pF*(a) = 0. Because of the assumption on the characteristic
of the ring, we havdi(a)? = pFi(a) = 0. Then

F*(a) = Fi(a) — p(G(a) — Fi(a)q(a))
= Fi(a) — (F1@”") — Fi@"") + pFi(a)q(a)
=0 aScﬂ"Z =aq.

O

THEOREM 5.6. Suppose R and S are finite commutative local rings with identity and
self-annihilating radicals, thathai*(R) = chai(S) = p, thatcharR)|charS), and that
Hom(S/J(S),R/J(R)) # @. Then for eaclh € Hom(S/J(S), R/J(R)), the mapvy :

h — hl;(s is a bijection fromHomy (S, R) to Homp (J(S), Jo (R)).

Proof. Choosek, ¢ so thatR/J(R) = GF(p*) andS/J(S) = GF(pY); thus ¢|k.
Let K be the unique subfield dR/J(R) of cardinality p¢, let « be a generator oK,
and letay, .. ., ¢ be the conjugates of (includinga) overZ, inK. Foreach =1, ...,¢
let a; be the unique element @(R) N ;. Let F(x) € Z,[x] be the minimal polynomial
of « overZ,, and letF*(x) e Z[x] be the polynomial given by Lemma 5.5. Aqw;) =0
in R/J(R) we haveF*(a;) € J(R) and henceF*(a;)? = pF*(a;) = 0. Furthermore,
a’" = a; by Claim 5.4(3); thus™*(a;) = Ofori = 1,.... £ by Lemma 5.5,
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Similarly, F(x) has a rooty in S/J(S). Letc be the unique element ¢f N Q(S). By

the same argument as before, we g&tc) = 0. Fori =1, ..., ¢ letd; be the unique iso-
morphism fromS/ J (S) toK sendingy tow;. Thus{6y, ..., 6;} = Hom(S/J(S), R/J(R)).
Furthermore, forh ¢ Hom(SR) andi = 1,...,¢ the following are equivalent:

(1) h € Homy, (S, R); (2) h(c) = a;.

Fixi = 1,...,¢ and putd = 6;. SinceSis generated by (S) U {c}, the mapvy :
Homy (S, R) — Homy(J(S), Jy(R)) is injective. It remains to prove that it is surjective.
To do this, leth € Homy (J(S), Jy(R)) be given. It can be easily shown thatf (c)b) =
f(ai)A () forall f(x) € Z[x] andb € J(S). Now “define”’h : S— Rby

h(f(c) +b) = f(ai) + 1),

whereb ranges ovel/ (S) and f (x) ranges oveZ[x]. Proving this is well-defined boils
down to showing that iff (x) € Z[x] is such thatf(c) € J(S), theni(f(c)) = f(a;).
Argue as follows: letf’(x) be the image off (x) in Z,[x]. As f(c) € J(S) we have
f°(y) =0 and hence (x)| f°(x) in Z,[x]. Thus there exisg(x), h(x) € Z[x] such that
f(x) = F*(x)g(x) + ph(x). Then

faj)) = F*(ai)g(a;) + h(a;)pr

= h(a;)Pr
and
fle) = F*(c)g(c) + h(c)ps
= h(c)ps.
ThusA(f(c)) = A(h(c)ps) = h(a)A(ps) = h(a;))pr = f(a;), as required. Clearly
hljs = A; the proof that: € Homy (S, R) is left as an exercise. d

COROLLARY 5.7. Let R and S be as in Theorem®. If 6 € Hom(S/J(S), R/J(R))
andhy, hy, hs € Homy (S, R), thenhq — hy + hz € Homy (S, R).

Proof. Chooseuy, .. ., a¢ € Q(R) andc € Q(9) as in the proof of Theorem 5.6, and
fix i such tha® = 6;. Letx; = hjl;5 € Hom(J(S), Jy(R), j = 1,2,3. Ask =
A1 — A2+ A3z € Homp (J(S), Jo(R)) it follows that there existd € Homy (S, R) such that
h|js) = A. Moreover, by the proof of Theorem 5.6, for l(x) € Z[x] andb € J(S) we
have

h(f(c)+b) = f(ai) +1(b)
(f(ai) — f(ai) + f(ai)) + (A1(b) — 22(b) + A3(b))
hi(f(c) +b) = h2(f(c) +b) + ha(f(c) + b);

in other wordsh = h1 — ho + hs. O
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These are the facts we will need to prove that a finite commutative ring with identity and
self-annihilating radical is 4-dualizable. (We will do that in the next section.) To prove full
4-dualizability, we will need one more fact.

LEMMA 5.8. Suppose S is a finite commutative local ring with identity such that
J(S)? = {0}. Letp = cha(S), and suppos&, W are subspaces of (S) (i.e., proper
ideals of S) such that & W = J(S) and Spar(ps) € W. Recall thatQ(S) denotes the
image oft (x) = x? in S. Then there is an isomorphigifrom & V to a subring

nat

[4
T of SsuchthaW U Q(S) € T and S— S/V = T is a retraction.

Proof. Chooser (and¢, K, «, F* etc.) as in the proof of Theorem 5.6, with= S, but
starting with the assumption thatis a primitive element ofK (equivalently, that is a
generator of the cyclic grou@@ (S \ {0}, -)). “Define” ¢ : S/V — Shy

e((fO+w)+V)=flc)+w

wherew ranges oveW and f(x) ranges oveZ[x]. Proving thaty is well-defined boils
down to showing that iff (x) € Z[x] is such thatf(c) € J(S), thenf(c) € W. In fact,

if f(c) € J(S then it was shown in the proof of Theorem 5.6 thigt) € Spanps),
which suffices. The proof thatis a ring homomorphism is left as an exercise. Since every
element of W U Q(S) can be represented astOw or ¢" 4+ 0, we getW U Q(S) included

in the image ofp. O

Suppose thaf < S < [[,.x R, thathg € Hom(S, R), and thaty € X. Let Sy
denote the image of under the natural projectiof, .y Rc = [[,cy R:. We say thatg
lifts to S|y if there existsi’ € Hom(S|y, R) such thatig(a) = #'(a|y) for all a € Sp.

COROLLARY 5.9. Suppose$=< S < [[,x R« andhg € Hom(S, R), where R and S
are finite commutative local rings with identity and self-annihilating radicallfifts to
S, then there exists C X with |Y| < |So| - |R/J(R)| such thathg lifts to §y.

Proof. Putp = chaf(S) and let spa(p) be the span gb in J(S) as a vector space over
S/J(S). Note that/spanp)| < |S/J (9| < |R/J(R)|, since HoniS, R) # @ (ashg lifts
toS). Now choos&’ C X large enough so thatdf € (J(S) + sparp))\{0} thena|y # 0.
Suchy can be chosenwitfY'| < |J(S) +spanp)| < [/ (S)|-Isparp)| < [Sl-IR/J(R)|.
We claim thatkg can be lifted toS|y. To see this, first choose € Hom(S, R) such that
hls, = ho. Next, letV be the kernel ofy : S — Sly; thusV is a subspace aof (S) and
VN (J(S) + sparp)) = {0}. Choose a subspad® of J(S) suchthatV & W = J(S) and
J(S) + sparp) < W.

By the previous lemma, there is an isomorphigrfrom S|y to a subringT of S such
thatWu Q(S) C T andg(aly) = aforalla € T. By Claim 5.4(2), sinc& is itself local,
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every element 0§ can be written in the form + b with z € Q(S) andb € J(S). Since
QS UJ(S) C OO UW C Twehave < T. Thusifh’ : Sly — Ris defined by
h' = ho ¢, thenh’(aly) = ho(a) for all a € Sy and thereforérg lifts to S|y. O

6. Dualizing ISP(R)

We revert to the notation appropriate for natural duality theory. Throughout this section,
R is a fixed finite commutative ring with identity whose radical is self-annihilating. Let
D ={(a,b,c) € R®:a = b = ¢ (modJ (R))} a subring ofR3. Note that the ternary
partial operation: — y + z|p is @ homomorphism fror® to R, because (R)2 = {0}, and
hence is algebraic ov&. Let R3 be the set of all ternary relations algebraic oReand
putXo =R3U{x —y+zlp}

THEOREM 6.1. X dualizesISP(R).

Proof. Since Xy is finite it suffices, by Theorem 4.3, to show the following: Sfe
ISPsin(R) andg : Hom(S, R) — R andg preserves each memberb§, then there exists
b € S such thatp(h) = h(b) for all h € Hom(S, R). If suchS and¢ are given then, by
Lemma 3.2(2)¢ preserves the relations R3 if and only if

For allhq, ho, h3 € Hom(S, R) there exist®$ € S such thatp(h,) = h,(b) for
t=123.

We shall refer to the displayed condition as@mpatibilityof ¢.
Thus fixS € ISPsn(R) andg : Hom(S,R) — R such thaty is 3-compatible and
preserves — y + z|p. Decompos® andSinto directly indecomposable factors, say

R Z Ry x---xRg
S=E S x---x5.
Also choose and fix appropriate projection homomorphis;ﬁs R—>R;(i=1...,k)

andnjs :S— S§;(j =1,...,£). Note that each factdR; or S; is local ([14], p. 76,
Corollary 2) with self-annihilating radical, and that the radicalgo&nd S are each the
direct product of the radicals of their factors.

CLAIM 6.2. If h, i’ € Hom(S,R) andxRh = nRn', thenz R (p(h)) = 7R (o))

Proof. Using 3-compatibility ofp, chooseb € S such thatp(h) = h(b) andep(h’) =
W (b). Thenn R (p(h)) = nfh(b) = xR0’ (b) = (@ (h")). O
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Fixi =1,...,k. Aseveryf € Hom(S R;) is of the form f = niRh for some
h € Hom(S, R), we can defing; : Hom(S,R;) — R; by ¢;(rfh) = 7R (¢(h)), where
h € Hom(S, R). Also define

E; ={(a,b,c,d) ceR): a=b=c=d (mod J(R;)) anda — b + ¢ = d}.

CLAIM 6.3.

1. Eachg; preserves;.
2. ¢1, ..., ¢ are mutually3-compatible in the following sense: /if € Hom(S, R;,),
t =1, 2, 3, then there exists € S such thaty;, (h;) = h;(b) fort =1, 2, 3.

Proof. To prove thaty; preservesE;, we must show that ifi1, ..., kg € HOm(S, R;)
are suchthathy(b), ..., ha(b)) € E; forall b € S, then(y; (h1), ..., ¢i(hs)) € E;. Given
suchha, ..., ha, chooseny, ..., h; € Hom(S, R) such thatﬂl.’?h;k =hforr=1,...,4
andz 'hy = --- = = fhjforall j # i. Since(c,c,c,c) € E; forall j and allc € Rj,
we have(h(b), h5(b), h5(b)) € D forall b € S andh] — h3 + hi = hj. As ¢ preserves
x —y +zlp we get(p(hl), p(h3), (h3)) € D and(h]) — ¢(h3) + ¢(h3) = @(h}).
Therefore(rRp(h}), ..., nReh})) € Ei. AsaRoh}) = ¢i(xfh}) = ¢i(hs), we get
(¢i(h1), ..., @i(ha)) € E; as desired.

Next supposéi, € Hom(S, R;,) for r = 1,2,3. Choosé:; € Hom(S, R) such that
nl.fh;* = h, fort = 1, 2, 3. By 3-compatibility ofy there existd € S such thatp(h}) =
h¥(b) fort = 1,2,3. Theng;, (h,) = ¢, (n/fh;k) = nl.f (p(h¥)) = ni’fh;k(b) = h,(b) for
eachr. O

Define the relatior? € {1,...,k} x {1,..., £} byiPj iff Hom(S;,R;) # @. If i Pj
definegoij . Hom(Sj, R;)) — R; by (pij(]’l) = (pi(/’lﬂj‘s).

CLAIM 6.4.

1. Eachg;; preserved:;.
2. For eachyj, the family{¢;; : i Pj} is mutually3-compatible.

Proof. Exercise. O

Now fix j and letS* = S; andl = {i : i Pj}. Ournextgoalisto prove that{ip; : i € I}
is any family of mapsp” : Hom(S*, R;) — R; such that (i) eaclp] preservest;, and
(ii) {@ ;i € I}is mutually 3-compatible, then there exist S* such that for ali € 1
and allh € Hom(S*, R;) we haveg’(h) = h(b). (In particular, this will be true of the
family {¢;; : i € I}.) Supposde; :i € I} is such a family.

CLAIM 6.5. We may assume with no loss of generality tiaat(¢;) < J(R;) for each
iel.
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Proof. Fix ig € I and fo € Hom(S*, R;,). By 3-compatibility choose € S* such that
¢! (fo) = fo(c). Foreach e I definey; : Hom(S*, R;) — R; by v (h) = ¢} (h) — h(c).
Note in particular thaty;, ( fo) = O.

It is easy to show that eacy; preservesE;. To show that{y; : i € I} is mutually
3-compatible, simply note that i, ip, i3 € I andh, € Hom(S*,R;,), fort = 1,2, 3,
andb € S§* witnesses 3-compatibility for the:’s at i1, h2, h3, thenb — ¢ witnesses
3-compatibility for they;’s ath1, ho, h3.

Thus{y; : i € I} is one of the families which we need to consider. Moreover, suppose
i € I andh € Hom(S*, R;). Using mutual 3-compatibility of the;’s, chooseb € S*
such thaty; (h) = h(b) and ¥;,(fo) = fob). As ¥;,(fo) = 0 we gethb € ker(fo).
Since ket fo) € J(S) andh(J(S%)) < J(R;) we gety;(h) = h(b) € J(R;). Thus
ran(y;) € J(R;) for eachi € I.

Finally, d € S* satisfiesy(h) = h(d) for alli € I andh € Hom(S*, R;) if and only if
d + c satisfiesp’ (h) = h(d + ¢) forall i € I andh € Hom(S*, R;). O

Thus we shall assume that the fam{ly” : i € I} has the additional property that
ran(p;) € J(R;) fori € I. For eachi € I andh € Hom(S*,R;) let C;, = {b € §* :
h(b) = ¢} (h)}. C; is nonempty by 3-compatibility and hence is a coset of kerMore-
overp(h) € J(R;) impliesC;, € J(S%); thatis,C}, is asubspacef the vector spacé(S*)
(overS*/J(S"). Our goal, restated, is to prove tHa{{C, : h € Hom(S*, R;),i € I} is
nonempty.

CLAIM 6.6. If h, € Hom(S*, R;,), fort = 1, 2, 3, andker(h1) N ker(hp) < ker(h3),
thenCp, N Cp, € Cps.

Proof. Cp, N Cp, N Cp, # @ by mutual 3-compatibility, and’,, N Cp,, is a coset of
ker(h1) N ker(ho); henceCy, N Ch, S Chy. O

Now put p = cha*(S*) and consider cases.

CASE 1. ps+ = 0.

If J(S*) = {0} thenC;, = {0} foralli € I andh € Hom(S*, R;) and hence & ({C}, :
h € Hom(S*, R;),i € I}. So assumd (S*) # &. Let{ey, ..., ey} be a basis for (S%)
(as a vector space ov8f/J(S")), and foreach = 1, ..., m let W, = spar({e, : u # t}).

Recall thatS is residually in{R1, ..., Ry}, that S* is a direct factor ofS, and that
R1, ..., Ry are directly indecomposable. It is a property of rings with identity that this
information impliesS* is residually in{R1, ..., R;} and hences* is residually in{R; :

i € I}. Itfollowsthatthere existg € I suchthat (R;,) # {0}. By Theorem 5.6 there exist
fi, ..., fm € Hom(S*, R;y) suchthatkeif;) = W;forr = 1,...,m. ThusCyN---NCy,
is automatically nonempty; létbe the unique element in the intersection.
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We claim thath € C, forall i € I andh € Hom(S*, R;). To prove this, lef andh be
given, and choose € Hom(S*/J(S*), R; /J(R;)) such that: € Homy (S*, R;). For each
t =1,...,mlet; be the unique member of Hyrev (§%), Jo(R;)) satisfying

hie;)) ifu=t

Ai(ew) = { 0 otherwise.

Also let Ao € Homy (J(S¥), Jo(R;)) be the constant 0 map. For each= 0, ..., m let
g be the unique member of HertS*, R;) such thatg;|;s = A;, and defingig = go
andh; = h,—1 — go + g forl <t < m. Note thath; € Homy(S*, R;) for all ¢, by
Corollary 5.7. Furthermoré,, | ;(s+) = | s+ and thereforé,, = h by Theorem 5.6. We
will show b € Cy, for eachr. ObviouslyCp, = Cq, = J(S%), S0b € Cpy = Cgy. ASSUME
thatr > 0 andb € Cj,_,. Since ke(f;) = W; C ker(g;) we getC;, € C,, by Claim 6.6
and hencé € Cg,. Thus

hi—1(b) = ] (hi—1)
go(b) = ¢ (go) (=0)
g (b) = ¢ (gr).

Finally, note that(h,_1(x), go(x), g:(x), h;(x)) € E; for all x € S*. As ¢ preservest;
we have

@i (hy) = @f(hi—1) — ¢ (g0) + @7 (gr)
hi—1(b) — go(b) + g:(b)
= hi(b),

provingb € Cp,. Whens = m this yieldsb € Cj,.

CASE 2. ps+ # 0.

Again,S*isresidually in{R; : i € I}andtherefore there existse 1 suchthapR[0 # 0.
Choose anyig € Hom(S*, R;,). If J(S*) = spar(ps+) then kelho) = {0} and therefore
Cpno, = {b} for someb € J(S*). In this case, if € I andh € Hom(S*, R;) are arbitrary,
thenC;, N Cy, # @ by mutual 3-compatibility and thus we hake= C;, as desired.

So assume/(S*) # spanps+). Let {eg, e1,...,en} be a basis for/ (S*) such that
> .;ei =Pps<. Fort =0,...,mletW, = spar{e, : u # t}). By Theorem 5.6, there exist
fo. ..., fm € Hom(S*, R;,) such that keff;) = W, fort =0,...,m. ThusCgpN---N
Cy, # o automatically; leth be the unique element in the intersection. We will show
b e Cyforallh €e Hom(S*, R;),i € I.
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Leti andh be given. Chooseé so thath € Homy (S*, R;). Forr = 1,...,m let i, be
the uniqgue member of HogJ (S), Jy (R;)) satisfying

h(e;) if u=r1
Ai(ew) = { Pr; —h(e) ifu=0
0 otherwise.

Also letAg be the unique member of Hyiev (S), Jo(R))) satisfyingio(eo) = pr; while
ro(ey) = 0forl < u < m. Foreachr = 0,...,m let g; be the unique member of
Homy (S*, R;) such thatg| ) = A, and definehg = go andh; = h;—1 — go + &
for 1 <t < m. Note thath; € Homy(S*, R;) for all ¢, by Corollary 5.7. Furthermore,
hm|y(s+ = hljs and thereforé,,, = h by Theorem 5.6. We will show € Cj, for each
t. Note that kefgg) = Wo = ker(fo), S0Cgq, = Cy, by Corollary 6.6. For > 0 we have
ker(g) © Wo N W; = ker( fo) N ker(f;) and thereforeC,, © Cy, N Cy, by Corollary 6.6.
Thusb € C,, for all t. Hence the same argument given in Case 1 yieldsC},.

This completes the goal set out before Claim 6.5. As a consequence, we have proved
the following: for eachj = 1,..., £ there existd; € S; such thatforalf =1,... k, if
iPj (i.e.,, HomS;, R;) # @) theng;;(h) = h(b;) for all h € Hom(S;, R;). Letb be the
unique element db such thatrjs(b) =b;forj=1,..., ¢ Wewil complete the proof of
the theorem by showing

CLAIM 6.7. ¢(h) = h(b) for all h € Hom(S, R).

It suffices to showp; (k) = h(b) foralli = 1,...,k and allh € Hom(S, R;). Fix

i andh € Hom(S, R;). AsR; is local, there must exist such that ke(mf) C ker(h).
Let i* € Hom(S;, R;) be such thatr = h*n/S. Theng; (h) = <pl-(h*7rjs) = @ij(h*) =
h*(bj) = h*x ¥ (b) = h(b), as required. !

7. Strongly dualizing ISP(R)

We continue to assume thRtis a finite commutative ring with identity whose radical
is self-annihilating. LeRq, ..., Ry be the directly indecomposable factorsRfand let
an, cey yr,f be the corresponding projection homomorphisms fi®ras in the previous
section. Letd : R* — R be thek-ary “decomposition homomorphism” defined so that

nR(d(a)) = nR(a;) foralla e R¥and alli = 1, ...k, that is,
d(lais, ..., awl, [a21, ..., a], ..., lakL, - .., a]) = [a11, a2z, . . ., ax].

THEOREM 7.1. LetR be a finite commutative ring with identity whose radiddR)
is self annihilating. ThefiSP(R) is strongly dualized by the s&t consisting of

1. the (partial) operationt — y + z|p, whereD = {(x, y,z) e R® 1 x =; y = z},
2. the setF, of all binary (partial) operations algebraic oveR,
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3. the setR3 of all ternary relations algebraic oveR, and
4. thek-ary decomposition operatiaf defined above.

Proof. R. By Lemma 4.6 it will suffice to prove T®R) and GenCloz, R).

CLAIM 7.2. Suppos&y < S < RY andhg € Hom(Sp, R) whereU is finite andhg
liftsto S. There existy¥ C U with |Y| < |Sg| - |R/J(R)| such thatg lifts to §)y.

Proof. LetSy, ..., Scandr?, ..., ) be chosenfoBas in the proof of Theorem 6.1. For
eachu € U letp, € Hom(S, R) be the projection onto coordinate Foreachj = 1, ..., ¢
let

Xj={us)eUx{l... Kk} ker(xlp,) < ker(r?)}.

ThusXj, ..., X, partitionU x {1,...,k}. For(u,s) € X; definep, ; € Hom(S;, R,)
so thatpy,} = 7fps. Forj = 1,....¢ defines; : S; < T[] ex, Ry SO that
pj(a)(u,s) = pus(a)fora e S;. LetSY) andséj) be the images undg‘rjnf of SandSy
respectively.

Choosel € Hom(S, R) such that:|s, = ho. Fixi € {1,...,k}. AsR; is local and
n®h € Hom(S, R;), there exists a uniqug € {1, ..., ¢} such that ke(mf) C ker(mRh).
Define i’ € Hom(SY), R;) so thathiﬁjnf = nfh, and leth) = h"|Sé,~). We have
Sg) < S < H(u,s)er Ry, hf) € Hom(ng), Ri), whereR; andS"/) are local, and:
lifts to SY). Thus by Corollary 5.9 there exisi$ C X; such that]) lifts to S|y, and
1Y;1 < IS§”1 - IR:/J (Ry)|. Fix suchy; for eachi = 1, ..., k.

LetY ={ueU: (u,s) € Y1U---UY,for somes}. Then|Y| < |So| - |R/J(R)| and
the reader is invited to check thiaj lifts to S|y. O

COROLLARY 7.3. TGR) holds.
Proof. By the previous claim and Theorem 4.11. O

Now we turn to proving GenCIqiX, R). Let Sbe an arbitrary subring ®”"” (n > 1)
and define

T ={a e R":3be Ssuchthay; =b;mod/(R) fori =1,...,n}.

NotethatS< T <R",S/J(S =ET/J(T),andJ(T) =J(R) x --- x J(R).

CLAIM 7.4. Everyh € Hom(S, R) can be extended to somhg € Hom (T, R).
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Proof. As SandT have the same idempotent elements, we can decontpEseS;
x---x SpandT =Ty x --- x T, and choose projectionsf andan as in the proof of
Theorem 6.1soth&; < T; andnjs = an|5 forall j=1,...,¢.

Supposer € HOm(S,R), fix i = 1,...,k and leth; = niRh € Hom(S, R;) and
p = chai(R;). It suffices to prove the existence qu € Hom(T, R;) such thaihlﬂs =
hi. AsR; is local there exists a uniqug = 1,...,¢ such that ke(rnf) C ker(h;).
Choosed € Hom(S;/J(S)),Ri/J(R;)) andh; € Homy(S;, R;) so thath;wf = h;.
Letv : T;/J(T;) = S;/J(S;) be the isomorphism induced by the inclusion Dy of
S;, and letd* = vh. As Homy(J(S;), Jo(R;)) = Homy(J,(S;), Jp+(R;)) and because
Ju(S;) is a subspace of (T ), everyr € Homy(J(S;), Jo(R;)) can be extended to some
AT € Homy (J(T ), Jo=(R;)). Itfollows from Theorem 5.6 thdt; can be extended to some
hi € Hom(T j, R;). Now puth;" = Ei*yro. O

CLAIM 7.5. GenClorz, R) holds. Thatis, i < R" andh € Hom(S, R), then there
exists an operatiof’ in the partial clone generated by so thatS < dom(#’) < R" and
Wls =h.

Proof. Let Clo(X) denote the partial clone generated¥ysee Definition 4.5(1)). Let
Sbe given. By the previous claim we may assume with no loss of generality {Sat=
J(R) x -+ x J(R). ChooseSy, ..., Sy andrs, ..., =} as usual. Let € Hom(S, R) be
given and put;; = 7fh € Hom(S,R;) fori =1, ... k.

We shall show the following: for eadh= 1, ..., k there exists:; € Clo(X) such that
S < dom(h}) < R" andniRhHS = h;. This will suffice, for them’ = d(h}, ..., hy) will
have the desired properties.

Sofixi =1,...,k. PutU = {1, ...,n} so thatS < RY. Asin the proof of Claim 7.2,
choosej so that ke(njs) C ker(h;) and defineX; € U x {1,...,k}, definep; : S; =
S < [Tw.sex, Rs and defineh! € Hom(SY), R;) so thathiﬁjnj.s = h;. Note that
J(SV)) = [Tw,s)ex, J (Rs) by the assumption o8.

Choose&? € Hom(SY) /J(SY)), R;/J(R;)) so thath! € Homy(SY), R;) and define

C = {f € Homy(SY), R;) : 3f’ € Clo(2) such that
S< dom(f) < R"andx f'|s = fp;n}).

It suffices to show = Homy(SY), R;). The idea s to

1. Showthat contains every e Homy (S, R;) whose restriction td (S¥)) depends
on at most two coordinates (iXi;), and

2. Show that’ is closed undex — y + z, and then

3. Repeat the argument of Cases 1 and 2 in the proof of Theorem 6.1.
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To prove the first item, supposg € Homy(SY), R;), A = f|;uy, andr depends
only on the coordinate@s, s1), (u2, s2) € X;. Thus for alla € J(SY), if a5, = O
fort+ = 1,2 theni(a) = 0. We claim that for alu € SV, if ay, ) = 0fort = 1,2
then f(a) = 0. This follows from the fact that i € S“) anda, ) € J(R;) for some
(u, s) € X;, thenaq, ) € J(Ry) forall (u, s) € X;,asS") is local. Hencef depends only
on the coordinate@:y, s1), (u2, s2).

DefineTg < R%, T < R", go € Hom(To, R), andg € Hom(T, R) as follows:

To {(as;,a5,) a €S}

{b € R" : (by,. bs,) € 0)

T

f,a,nf(a) ifr=i
' . , a
nRay,) ifr#i

gb) = go(ij_a bSZ)a beT.

R
Tty gO(asl» asz) = esS

We havego € F» € ¥ and hencg € Clo(X). AsS < T andrRg|s = fﬁjnjs, we get
f € C as desired.

The proof of the second item is left to the reader. Nowfiet Homy(SY), R;) be
arbitrary; putp = cha*(R;) and argue by cases.

CASE 1. pgi» =0.

Let{es, ..., e} be abasis for (S¥)). SinceJ (SV)) = [Tw.sex; / (Rs), the basis can
be chosen so that eaehis zero at every coordinate iXi; except one. Now defink; and
g (t=0,...,m)as in the proof of Case 1 in Section 6 but within place ofs. We have
g € Homy(SY),Ry) fort = 1,..., m, eachg,|; s, depends on at most one coordinate
in X;, andf is in the closure (in Hop(SY), R;)) of {go, .. ., g} underx — y + z. Thus
fecC.

CASE 2. Psw # 0.
As in Section 6, lefeo, ..., ¢,} be a basis fo (S¥)) such that)_, e, = pg. This
basis may be chosen so that eaglexcept possiblyg is zero at every coordinate iK;

except one. Defing, andg, (r =0, ..., m) as in the proof of Case 2 in Section 6 but with
f in place ofh. This time, eacly; depends on at most two coordinatestip. The rest of
the proof is the same. O

And this completes the proof of Theorem 7.1.
In closing, note that if for each = 1,...,k we defined; : R> — R so that for
alla,b € R, nfd;(a, b) = 7(a) while nfdi(a,b) = nJR(b) for j # i, then{d} and



314 D. M. CLARK, P. M. IDZIAK, L. R. SABOURIN, C. SZABO AND R. WILLARD ALGEBRA UNIVERS.

{d1, ..., dr} generate the same partial clone. THE®(R) is also strongly dualized by
Yo U FoU{ds, ..., dr}. This proves (3} (2) in Theorem 2.1:

COROLLARY 7.6. If Risafinite commutative ring with identity such thiaR)2 = {0},
thenISP(R) is strongly dualized by the set of all algebraic (partial) operations and relations
of R of arity at most3.

8. Thering Z . of integers modulo p?

Let R be a finite commutative ring with identity whose radical is self annihilating. In
order to use Theorem 7.1 to obtain a useful strong dualitySB(R), it remains

1. toidentify the algebraic binary partial operations and ternary relations that constitute
the bulk of the sek defined in Theorem 7.1,

2. to derive fromx a small subsekt’ that also strongly dualized)SP(R) and is simple
enough to allow us

3. to find a useful description of the objects in the dual categbry= IS.P"(R)
determined by'.

In this section we illustrate how these three tasks can be successfully carried out when
R = Z,2. The results appear in Corollary 8.4, Theorem 8.6 and Theorem 8.10.

We henceforth writeZ ,» asZ ,.. We begin by identifying precisely the members of
the dualizing set of Theorem 7.1 whefR = Z .. We denote the radical & ,» by

J ={0,p,2p,...,(p—Dp}.

CLAIM 8.1. TheringZ > x Z 2 has exactly three subrings: itself, the diagonal subring
A={(a,a)a €Ly}, and the subrings; = {(a,b) :a—b e J}.

Foreachi = 0,1,..., p — 1, define the binary partial operatign : =; — Z,2 by
gi(@ b) =ia+ (1 —i)b. Eachg; is a ring homomorphism. Note thagt andg; are the
two projections on=.

CLAIM 8.2. If h is @ homomorphism from a subring 8f> x Z > to Z 2, then either
h is the first or second projection on its domain, or the domaih tf=; andh = g; for
some < p.

We next determine the subrings (it_pz)?’. We continue to write=; to denote the
relation of equivalence moduld. Recall that one subring c[zpz)3 is given by the set
D ={(ab,c eziz:aE,bE, c}.
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CLAIM 8.3. The subrings o@pz)3 are (;pz)S, D, the graphs of homomorphisms from
subrings ofZ ,» x Z > to Z > possibly followed by a permutation of the three coordinates,
andBj», B13 andBy3 where

Biz = {(ab,0) |a=, b},
Biz = {(a,b,c)|a=, ¢},
B>z = {(a,b,c) | b=, cl.

Together, Claims 8.1, 8.2 and 8.3 give us an exact description of the defined in
Theorem 7.1 wheR isZ 2.

COROLLARY 8.4. ISP(Z 2) is strongly dualized by the s&t consisting of

1. the partial ternary operationr — y + z restricted toD,

2. the two projections on each &> xZ 2, A and=, and the operationg;, 2 < i < p;

3. the ternary relations{sz)3, D, Bi, B13, B2z, and the graphs of the partial binary
operations in iten? under all possible permutations of the coordinates;

4. the identity magZ .2 — Z 2.

The next step is to extract frol a small subseX’ which still strongly dualize8SPP(Z).
General algorithms to do this are a major theme of the text [2]; see Section 2.4 and Chapters 8
and 9. We are fortunate that, in the present case, the reduction can be achieved easily from
first principles.

LEMMA 8.5. AssuméM is a finite algebra,> and X’ are sets of finitary operations
and relations algebraic ove, andISP(M) is strongly dualized b¥. ThenISP(M) is
also strongly dualized b¥’ provided that

1. for every sefs, every subseX € M¥, and every map : X — M, if ¢ preserves the
members o', theng also preserves the members3f
2. each partial operation oE is in the partial clone generated '.

Proof. To see thafISP(M) is dualized byX’, supposeA € ISP(M) and lety :
Hom(A, M) — M be continuous and preserve each membeEof Theng also pre-
serves each member &f, by item 1, and therefore i* () for somea € A. Thuse” is
surjective with respect t&’.

By Lemma 4.6, TCx, M) holds and it suffices to prove that TE’, M) holds. A
topologically closed substructure of a power(8f; ') is, by item 2, also a topologically
closed substructure of a power(@#; ) and is therefore term-closed by TE, M). This
proves TGX', M). O

THEOREM 8.6.ISP(Z ) is strongly dualized by the s ={x—y+zlp, =y}
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Proof. We takeX as given in Corollary 8.4 and verify the conditions of Lemma 8.5.
Assume thatp : X — M preserves the members Bf. Trivially every mapX — M
preserves the identity mdp,. — Z > as well as the projections dh,> x Z,2 and on
A, and preserves the sBf. x Z, itself. Sincep preserves=,, it preserves both of its
projections as well a81», B1z and Bas. If ¢ preserves a partial operation, then it trivially
preserves the graph of that partial operation under all permutations of coordinates, as well
as any other operation in the partial clone it generates. It therefore remains only to verify
that each partial operatiag) is in the partial clone generated by— y + z|p. This fol-
lows from the fact thago and g1 are projections, and from the recursign 1(a, b) =
gi(a,b)—b+a. O

The final step is to give a description of the dual categtre ]ISCIP’JF(;pz) where

Z 2:=(Z

Z, 2;x —y + z|p, =y, discrete topology

p

isthe topological structure determined®{ Relevant properties of such dual categories are
presented in Section 1.4 of Clark and Davey [2]. We will extract the necessary information
from [2] by quoting the following two theorems, where we have replaced the strudture

of arbitrary type by the particular structus,».

LEMMA 8.7. (12], Theorem 1.4.3.)f X = (X; f, =, T) € IS.P*(Z,2), then

1. Xis a structured Boolean space which satisfies every quasi-atomic formula (equation
or implication) that is satisfied by 2,

2. f is a continuous partial ternary operation whose domain is a closed subsét,of
and

3. =is aclosed subset 6f>.

LEMMA 8.8. ([2], Theorem 1.4.4.) etX = (X; f,=,7) be a Boolean space with a
ternary partial operationf and a binary relation=. ThenX e HSCP+(;pz) if and only if

1. for eachx,y € X wherex # y, there is a morphisnx : X — Z . such that
a(x) #a(y),

2. foreach(x, y, z) € X3notindoni f), thereisanx : X — Z,2 suchthata(x), a(y),
a(z)) ¢ D, and

3. for eachx, y € X wherex # y, thereisanx : X — Z,2 such thate(x) #; a(y).

We first examine the topological quasivarié&]lﬁ(gv) generated by the substructure
Jd = () f,=T)of Z,. wheref(x,y,z) = x —y + z is now a total ternary opera-
tion and= is the universal relation. Aaffine Boolean p-spaceis a structured Boolean
spaceX = (X; f,=,7) which carries the universal relatica and has an underlying
continuous binary operatiof such that X, +) is a topological vector space ovéy, and
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f(x,y,2) = x —y + z. The structure] is an example of an affine Booleanspace. We
use a result of Davey and Werner [9] to establish the following characterization of these
structures.

LEMMA 8.9. ]ISCIP”L(,D is the category of all affine Booleamnspaces.

Proof. It is immediate to check that isomorphic copies and direct products of affine
Booleanp-spaces are again affine Boolepsspaces. LetY; f,=,7) be a substructure
of an affine Boolearp-space(X; f,=,7). Then for anya € Y, the operationx +,

y = x —a + y makesY into an affine Boolearp-space, and it is easy to check that
fx,y,2) =x—4y+qzforx,y, zeY. Itfollows from Lemma 8.7 that each member of
HSCIPJF(Q) is an affine Booleap-space.

Conversely, we will use Lemma 8.8 to show that any affine Boolgaspace
(X; f,=,T)isin HSCIPJF(Q). Sincef is total and= is universal, it remains only to verify
the first item. Letr, s € X wherer # 5. By Davey and Werner [9], there is a continu-
ous homomorphism from the Boolean linear spad&’; 4+, 7) overZ, into the discrete
linear spacdJ; 4+, 7) overZ, which separates ands. (See also [2], 1.4.8.) Ag also
preserves the ternary operatigx, y, z) = x — y + z, it provides the required continuous
homomorphism. O

THEOREM 8.10.A structureX = (X; f,=,7)isin HSCP+(;p2) ifand only if (X, T)
isa Boolean space; is a continuous ternary partial operation dhand= is an equivalence
relation onX such that

1. the domain off is the union of allT’® whereT ranges over the=-classes;

2. each=-class s a closed subsetXfwhich forms an affine Boolegmnspace under;

3. if x # y in X, then there is a partition oK into two disjoint clopen unions of
=-classes, one containingand the other containing.

Proof. We apply Lemma 8.7 to check that each mem¥ef HSC]P’*(;pz) has each of
these properties by checking the quasi-equations which hol,in First, we observe
that the defining properties of an equivalence relation are all quasi-equational. Item 1 is a
consequence of the pair of quasi-equations

fE,y, 9~ f(x,y,2) «—>x=y=z,

where we recall[2, 81.4] that satisfaction on an equation involving partial operations requires
that both sides be defined. Eaghclass must be closed sineeis closed inX2. Item 2

now follows by writing the axioms of an affing-space as a set of equations, which we
can do since the underlying addition operation can be takentothey = f(x, a, y) for

any choice ot € X. To prove item 3, leX < (gpz)s and choose € S so thatx; # y;.
Definey : X — Z 2 asy(u) = 0 if us = x; andyy (u) = 1if uy # x;. Theny —1(0) and

v ~1(1) provide the required partition of.
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Now suppose thaf is a structure with the listed properties. We will verify the conditions
of Lemma 8.8. Beginning with the third condition, assume € X wherex # y. Let
x € U andy € V whereU andV partition X into two disjoint clopen unions a&-classes.
Then the mag takingU to 0 andV to 1 is the required morphism since#); 1. To prove
the second condition, suppoge y, z) € X3\dom(f). By item 1, eitherc = y ory # z,
and the result follows from the third condition.

A bit more effort is required to verify the first condition. Choosey € X wherex # y
and where, in view of the third condition, we may assume.thaty. LetT be the=-class
of x andy. SinceT forms an affine Booleap-space, Lemma 8.9 tells us that there is a
morphismg : T — J that separates andy. Our goal is to show that has an extention
¥ fromXinto Z 2.

Fori = 0,1,..., p — 1, the inverse imageg (i) partition T into disjoint subsets
which are clopen irff’. Let Up, Uy, ..., U,_1 be disjoint clopen subsets &f such that
¢~ 1(i) € U;, and letU be their union.

CLAIM 8.11. There is a clopen uniol of =-classes containing@ and contained irJ.

Proof. For each point in X\U, we can apply item 3 to obtain a clopen unior=etlasses
which containg- and does not interse€t. As X\ U is compact, finitely many of these sets
coverX\U. We takeV to be the complement of the union of these finitely many. [

We now form a clopen partition df by definingV; :== vV NUu; fori =0,1,..., p—1.
Items 2 and 3 tell us that daiy) is a closed subset of2, and therefore its intersection
Dy with V3is a closed subset 6f3. As f : Dy — V is continuous, the inverse images
f~1(vi),wherei =0, 1, ..., p—1, form a clopen partition aby in the relative topology.
Each point off~1(V;) is therefore contained in a basic clopen subset B x C of V3
whereA, B, C C V are clopen andt x B x C does not intersecf*l(vj) if j #£i. As
Dy is compact, only finitely many sets x B x C are required.

Our next step is to close the finite collection of clopen setsvhich coverV) under
intersection and complement, and Jétbe the minimal members of this new collection.
ThenA is a finite clopen partition of. Similarly, construct clopen partitiorts andC of
V sothatd € A, B € BandC e C implies thatA x B x C intersects only ong ~1(V;).

Let D be a finite common clopen refinement of the partitiohs3 andC of V. Thus
eachD € Dis contained in a member of, a member ofs and a member af. This means
thatD is a clopen partition o¥/ such thatD, E, F € D implies thatD x E x F intersects
at most onef ~1(V;).

LetE ={D eD| DNT # @}. As proven in Claim 8.11, we can find a clopen union
W of =-classes containing which is contained iy J £. The intersections of the members
of £ with W form a partition of W into clopen sets such that

1. F € FimpliesthatF N T # @ and
2. if F,G,H € F,thenforsomeé =0,1,..., p— 1the intersectiofiF x G x H) N
dom(f) is contained inf ~1(V;).
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CLAIM 8.12. Each member af is contained in some (uniqué).

Proof. Letr,s € F € F. TakingG = H = F in 2 above, we find &; such that
F3ndom(f) € f~X(V;). Thus(r, r, r), (s, s,s) € f~1(V;) and we have = f(r,r,r) €
V; ands = f(s, s, s) € V; are in the same member of the clopen patrtitiory of O

CLAIM 8.13. The mapyr : W — J, takingx to i if x € V;, is a continuous morphism
which extends.

Proof. Since eaclv; is clopeny is continuous, and trivially preserves= and extendg
sincep~1(i) € V N U; = V;. To see thatit preserves choosdu, v, w) € W3n dom(f).
Let F,G,H € F andr,s,t € T such thatu,r € F, thatv,s € G and thatw,t € H.
Choose so that(F x G x H) ndom(f) € f~(V;). Thenf(u, v, w), f(r,s, 1) € V;.
By Claim 8.12,y is constant on each member®Bf Then

U(fu,v,w)) = i =y (f(r,s,0) =o(f(r,s,0) = fler), (), ¢1))
= fWE, ¥, ¥@) = fWw, ¥@), ¥w)).

O

To complete the verification of item 1 in Theorem 8.10, recall that W and thaty :
T — J separates andy. SinceW is a clopen union of-classes, its complement is as
well. We now extend) to a continuous morphism froiXito Z > by taking all of X\ W to
any single element oZ 2. O
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