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Finite-to-finite universal quasivarieties areQ-universal

M. E. Adams and W. Dziobiak

Dedicated to the memory of Viktor Aleksandrovich Gorbunov

Abstract. Let K be a quasivariety of algebraic systems of finite type.K is said to beuniversalif the categoryG
of all directed graphs is isomorphic to a full subcategory ofK . If an embedding ofG may be effected by a functor
F : G −→ K which assigns a finite algebraic system to each finite graph, thenK is said to befinite-to-finite
universal.K is said to beQ-universalif, for any quasivarietyM of finite type,L(M ) is a homomorphic image of
a sublattice ofL(K ), whereL(M ) andL(K ) are the lattices of quasivarieties contained inM andK , respectively.

We establish a connection between these two, apparently unrelated, notions by showing that ifK is finite-
to-finite universal, thenK is Q-universal. Using this connection a number of quasivarieties are shown to be
Q-universal.

1. Introduction

An algebraic system of finite typeis a nonvoid set which admits a finite family of oper-
ations and relations. It is analgebra if it admits no relations and arelational systemif it
admits no operations.

For a classK of algebraic systems of similar type, letI (K ), H(K ), S(K ), P(K ), and
Pu(K ) respectively denote the classes of all isomorphic algebraic systems, homomorphic
images, subsystems, products, and ultraproducts of algebraic systems inK . A classK is
a quasivariety provided K = ISPPu(K ) (equivalently,K is a universal Horn class that
contains a trivial algebraic system) and is avariety providedK = HSP(K ) (thus, every
variety is a quasivariety). For further information on quasivarieties see Section 2 and, more
generally, Gorbunov [11].

A quasivariety of algebraic systemsK is universalif every category of algebras of finite
type (or equivalently, as shown by Pultr [23], Hedrlı́n and Pultr [16] and Vop̌enka, Hedrĺın,
and Pultr [28], the categoryG of all directed graphs) is isomorphic to a full subcategory
of K . If an embedding ofG may be effected by a functorF : G −→ K which assigns a
finite algebraic system to each finite graph, thenK is said to befinite-to-finiteuniversal. Of
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particular interest for a universal quasivarietyK is the fact that, for every monoidM, there
exists a proper class of non-isomorphic algebraic systems belonging toK each of which
has an endomorphism monoid isomorphic toM. If K is finite-to-finite universal, then, in
addition, for a finite monoidM, there exists infinitely many non-isomorphic finite algebraic
systems inK with the preceding property. The literature on universal quasivarieties is
extensive and many familiar (quasi)varieties of algebraic systems are known to be finite-
to-finite universal. For a detailed background see Pultr and Trnková [24]. More recent
results include, for example, a complete characterization of all varieties of(0,1)-lattices
that are finite-to-finite universal as given by Goralč́ık, Koubek, and Sichler in [9]. Their
result represents the conclusion of a long sequence of papers beginning with Grätzer and
Sichler [14] (see [9] and the references therein).

For a quasivarietyK , let L(K ) denote the lattice (ordered by inclusion) of all quasi-
varieties contained inK . A quasivarietyK of algebraic systems of finite type isQ-universal
providing that, for any quasivarietyM of finite type,L(M ) is a homomorphic image of a
sublattice ofL(K ). Sapir introduced the notion in [25] where he showed that the variety of
commutative 3-nilpotent semigroups isQ-universal. In [1], it was shown that the existence
of a family of finite members in a quasivarietyK satisfying a set of conditions denoted
(P1)−(P4) (see Section 2) is sufficient to guarantee that the ideal lattice of a free lattice with
ω free generators is embeddable inL(K ) which, in turn, is sufficient to ensure thatK isQ-
universal. An alternative set of conditions guaranteeingQ-universality of a quasivariety is
given in Gorbunov [10]. As a consequence, a number of quasivarieties of familiar algebras
were thereby seen to beQ-universal (for details, see [1] and [10]).

The principal aim of this paper is to establish the following.

THEOREM 1.1. If K is a finite-to-finite universal quasivariety of algebraic systems of
finite type, thenK isQ-universal.

By Theorem 1.1, the following theorem of Sizyı̌ is immediate.

COROLLARY 1.2. (Sizy̌ı [26]) The quasivariety of directed graphsG isQ-universal.

We will consider the quasivariety of undirected graphs elsewhere and, in particular, there
answer a problem of Kravchenko [20] by showing that the quasivariety of undirected graphs
is alsoQ-universal.

At the risk of gross over simplification, for aQ-universal quasivarietyK , amongst the
most interesting properties are that the free lattice onω free generators is embeddable into
L(K ) (and, hence,L(K ) fails to satisfy any non-trivial lattice identity) and that|L(K )| = 2ω.
We remark that, for any finite-to-finite universal quasivarietyK , it is not difficult to see that
|L(K )| = 2ω. Thus, of principal interest for finite-to-finite universal quasivarietiesK
of finite type is that a free lattice onω free generators is embeddable intoL(K ) which,
therefore, fails to satisfy any non-trivial lattice identity. In fact, what will follow from
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the proof of Theorem 1.1 is that the ideal lattice of a free lattice onω free generators is
embeddable intoL(K ) wheneverK is finite-to-finite universal and of finite type.

As stated above, many quasivarieties of algebraic systems are known to be finite-to-
finite universal. For example, from Hedrlı́n and Pultr [16] and Theorem 1.1, we obtain the
following.

COROLLARY 1.3. (Gorbunov [10])For n ≥ 2, the quasivarietyAn of all algebras
with n unary operations isQ-universal.

Even though, as observed in [16],A1 is not finite-to-finite universal (in fact, not univer-
sal), Kartashov [17] showed that the free lattice onω free generators is embeddable inL(A1).
Later this was strengthened by Gorbunov [10] who showed thatA1 is alsoQ-universal.

Applying a result of [5] and Theorem 1.1, we also obtain the following.

COROLLARY 1.4. The quasivarietyPn of all posets withn distinguished constants is
Q-universal iffn ≥ 2.

We remark that in [5] it was also shown that the quasivarietiesBDn of bounded distributive
lattices withn distinguished constants andDn of distributive lattices withn constants are
finite-to-finite universal iffn ≥ 2 andn ≥ 3, respectively. Corresponding results for
Q-universality have already been established in [2].

From a result of Goralč́ık, Koubek, and Sichler [9] and Theorem 1.1, we conclude the
following.

COROLLARY 1.5. The following hold

(i) if a varietyV of (0,1)-lattices contains a finite non-distributive simple(0,1)-lattice,
thenV isQ-universal;

(ii) a varietyV of modular(0,1)-lattices isQ-universal iffM3 belongs toV.

By inspecting the construction of the functor given in [9] for a varietyV of bounded
(0,1)-lattices to be finite-to-finite universal one can obtain a stronger corollary than
Corollary 1.5(i). Namely, if aquasivarietyV of (0,1)-lattices contains a finite non-
distributive simple(0,1)-lattice, thenV isQ-universal.

Compare 1.5 (ii) with the analogous result established in [8] (cf. [1]): a varietyV of
modular lattices isQ-universal iff M3,3 belongs toV. Note that, for a varietyV of modular
(0,1)-lattices or modular lattices, if M3 or M3,3 6∈ V, respectively, then the lattice of
quasivarieties contained inV forms a countable chain.

For other examples of universal quasivarieties to which Theorem 1.1 can be applied we
refer the reader to Demlová and Koubek [6], Koubek [18], Hedrlı́n and Pultr [15] and [16],
as well as Pultr and Trnková [24].
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As illustrated byA1, the converse implication to Theorem 1.1 does not hold. This
is not an isolated example. Another is given in Tropin [27] (cf. [1] and [7]) where it is
shown that the variety of pseudocomplemented distributive lattices isQ-universal but, as
observed in [4], it is not finite-to-finite universal. Here too it is the case that the variety of
pseudocomplemented distributive lattices is not actually universal albeit, in a sense that can
be made precise, it is almost universal (see [4]).

2. Idea of the proof of Theorem 1.1

For a classK of algebraic systems of similar type, letQ(K ) denote the quasivariety gen-
erated byK (the smallest quasivariety to containK ): in general,Q(K ) = ISPPu(K ).
If K has only finitely many members, sayK = {A0, . . . , An−1}, then we may write
Q(A0, . . . , An−1) rather thanQ({A0, . . . , An−1}).

For a setI , we shall denote byPfin(I ) the set of all finite subsets ofI .
AssumeI is an infinite set of cardinalityω and consider an infinite family(AW : W ∈

Pfin(I )) of finite algebraic systems of similar type that satisfy the following conditions,
whereX, Y , andZ ∈ Pfin(I ):

(P1) A∅ is a trivial algebraic system;
(P2) ifX = Y ∪ Z, thenAX ∈ Q(AY ,AZ);
(P3) ifX 6= ∅ andAX ∈ Q(AY ), thenX = Y ;
(P4) ifAX is a subsystem ofB × C for finiteB andC ∈ Q({AW : W ∈ Pfin(I )}), then

there existY andZ with AY ∈ Q(B), AZ ∈ Q(C), andX = Y ∪ Z.

Note that atrivial algebraic systemA is one whose domain consists of exactly one
element, saya, such that, for each functionf , f (a, . . . , a) = a and, for each relationR,
(a, . . . , a) ∈ R.

The method used in this paper for proving that a quasivariety isQ-universal is based on
the following proposition which was proved in [1] for algebras. However, a straightforward
inspection of the proof given in [1] shows that the proposition is also true for algebraic
systems. An alternative method is given in Gorbunov [10].

PROPOSITION 2.1.If K is a quasivariety of algebraic systems of finite type that con-
tains an infinite family of finite members satisfying(P1)−(P4), then the ideal lattice of a free
lattice withω free generators is embeddable inL(K ). In particular,L(K ) isQ-universal
and, therefore, fails every non-trivial lattice identity and is of cardinality2ω.

Let R denote the quasivariety of commutative rings with a unit. In particular, each
member(R; +, ·,−,0,1) of R has type〈2,2,1,0,0〉. Let Kf denote the full subcategory
of K consisting of all finite systems ofK .

A map between two directed graphs is said to be astrong morphismin G if it is onto
both on vertices and on edges.
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Applying the functors used by Hedrlı́n and Pultr [16] and [23] to show that every category
of algebras of finite type is isomorphic to a full subcategory ofG we will establish the
following in Section 3.

PROPOSITION 2.2.There exists a functorF that fully embeds the categoryRf into
the categoryGf such that, wheneverϕ : A −→ B is an onto morphism inRf , then
F(ϕ) : F(A) −→ F(B) is a strong morphism inGf .

Next, using Proposition 2.1 we will prove the following in Section 4.

PROPOSITION 2.3.Let K be a quasivariety of algebraic systems of finite type. If the
categoryRf is isomorphic to a full subcategory ofKf by a functorF : Rf −→ Kf for which
every homomorphismF(ϕ) : F(A) −→ F(B) is onto wheneverϕ : A −→ B is onto, then
K isQ-universal.

Let G denote the full subcategory ofG that is determined by the following two objects:
the singleton void graphV = ({0},∅) and the two-element graphE = ({0,1}, {(0,1)});
morphisms inG are mappings that preserve edges. LetE(G) denote the class of morphisms
in G that are strong (see above) andM(G) the class of morphisms inG that are injective.

To complete the proof of Theorem 1.1, we will need a proposition which is a particular
case of Theorem 1.2 established in Koubek and Sichler [19]. In order to state the proposition,
some categorical notations are required.

For a categoryK , let F : J −→ K be adiagram in K , that is a functor from an index
categoryJ to K . A coneof F is an objectB of K together with a family(ψi : F(i) −→ B :
i ∈ obj(J)) of K -morphisms such that, for every arrowu : i −→ j in J,ψi = ψj ◦F(u). A
colimit of a diagramF : J −→ K is a cone(ψi : F(i) −→ B : i ∈ obj(J)) of F such that,
for every other cone(ϕi : F(i) −→ C : i ∈ obj(J)) of F, there exists a uniqueK -morphism
σ : B −→ C such that, for everyi ∈ obj(J), ϕi = σ ◦ψi . ThenK is cocompleteproviding
colimits of all diagrams inK exist.

A factorization system(E,M) for K consists of some categoryE of K -epimorphisms
and some categoryM of K -monomorphisms such that, for everyK -morphismf , there
exists a decompositionf = m◦ewith e ∈ E andm ∈ M, and thediagonalization property
holds (that is, forh ◦ e = m ◦ k with e ∈ E andm ∈ M, g ◦ e = k andm ◦ g = h for some
K -morphismg).

A family (ϕi : Ai −→ B : i ∈ I ) of K -morphisms is called asink in K . A sink (ϕi :
Ai −→ B : i ∈ I ) in K is said to be anE(K )-sinkif, for every sink(ψi : Ai −→ C : i ∈ I )
in K and everyK -morphismσ : C −→ B, ϕi = σ ◦ ψi for all i ∈ I implies thatσ is in
E(K ).

Finally, (E(K ),M(K )) factorizes sinksin K if, for every sink inK (ϕi : Ai −→ B :
i ∈ I ) there exist anE(K )-sink (ψi : Ai −→ C : i ∈ I ) andσ : C −→ B in M(K ) such
thatϕi = σ ◦ ψi for all i ∈ I .



258 m. e. adams and w. dziobiak algebra univers.

The following proposition is a particular case of Theorem 1.2 from Koubek and Sichler
[19]; thatΦ is finite-to-finite follows from the proof of Theorem 1.2 given in [19].

PROPOSITION 2.4.Suppose thatK is a cocomplete category of algebraic systems with
homomorphisms as morphisms and with a factorization system(E,M). If F : G −→ K
is a full embedding that is finite-to-finite, then there is a functorΦ : G −→ K having the
following properties:

(i) Φ is finite-to-finite, full, and faithfull;
(ii) if (E,M) factorizes sinks inK and if F¹G maps everyE(G)-sink inG to anE(K )-

sink, thenΦ(E(G)) ⊆ E .

We will show in Section 5 that, for a finite-to-finite universal quasivarietyK of algebraic
systems, all of the assumptions of Proposition 2.4 concerningK are satisfied by a choice of
E andM whereby every member ofE is also an onto map. Theorem 1.1 will then follow
from Propositions 2.4, 2.2, and 2.3. Indeed, letK be a finite-to-finite universal quasivariety
of algebraic systems of finite type. By Proposition 2.4,Φ : G −→ K is a finite-to-finite full
embedding such that, for allG andH in Gf , Φ(f ) : Φ(G) −→ Φ(H) is onto whenever
f : G −→ H is strong inG. This, by Proposition 2.2, yields a finite-to-finite and full
embeddingΦ ◦ F : Rf −→ Kf that satisfies the assumptions of Proposition 2.3. Thus, by
Proposition 2.3,K isQ-universal.

3. Proof (Proposition 2.2)

For algebraic systemsA andB of similar type, a mappingϕ : A −→ B is ahomomor-
phismif ϕ(c) = c for each constant,ϕ(f (a0, . . . , an−1)) = f (ϕ(a0), . . . , ϕ(an−1)) for
each functionf of non-zero arity, andϕ(R) ⊆ R for each relationR. A homomorphism
ϕ : A −→ B is strongprovided thatϕ is onto and every relation inB is an image ofϕ of
the corresponding relation inA, that is, ifS is ann-ary relation inB and the corresponding
relation inA is R, thenS = {(ϕ(a0), . . . , ϕ(an−1)) : (a0, . . . , an−1) ∈ R}. (In particular,
for an algebra, every onto homomorphism is strong.)

A directed graphis a pair(X;R) whereR ⊆ X × X. For directed graphs(X;R) and
(Y ; S) regarded as algebraic systems, a mapϕ : X −→ Y is compatibleproviding it is
a homomorphism (namely, fora, b ∈ X, (ϕ(a), ϕ(b)) ∈ S whenever(a, b) ∈ R). Thus
G denotes category of all directed graphs together with all compatible maps. Clearly, the
categoryGf (all finite directed graphs) is a full subcategory ofG. Recall (see above), a
compatible mapϕ : X −→ Y is strongif it is onto andS = {(ϕ(a), ϕ(b)) : (a, b) ∈ R}.

For a given fixed finite type1, let A(1) denote the category of all algebras of type1
where morphisms are the usual homomorphisms. In Pultr [23] and Hedrlı́n and Pultr [16],
for any given fixed finite type1, a sequence of functors are given to establish thatA(1)
is isomorphic to a full subcategory ofG. The objective of this section is to consider the
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functors given by them as applied toA(1), where throughout1 has the same fixed finite
type 〈2,1,1,0,0〉 asR, and thereby establish 2.2. We remark that in [23], Pultr operates
in a set theory that does not allow inaccessible cardinals. Even though this set theoretic
assumption was later removed in Vopěnka, Hedrĺın and Pultr [28], it in no way affects our
considerations since we are concerned only withRf .

Following [16] (page 394), for1 = {ki : 1 ≤ i ≤ n}, let1∗ = {ki + 1 : 1 ≤ i ≤ n}.
If R(1∗) denotes the category of all relational systems of type1∗ where morphisms are
all maps which preserve the corresponding relations of1∗, then there exists a full and
faithful functorF1 : A(1) −→ R(1∗) given as follows. For an algebra(A; f1, . . . , fn) in
A(1) and for each 1≤ i ≤ n, define a relationRi by (a1, . . . , aki , aki+1) ∈ Ri in F1(A)

iff fi(a1, . . . , aki ) = aki+1 in A. ThenF1(A) = (A;R1, . . . , Rn). For a homomorphism
ϕ : A −→ B in A(1), F1(ϕ) = ϕ.

Clearly, for a finite algebraA in A(1), F1(A) is a finite relational system. Clearly
too, if ϕ : (A; f1, . . . , fn) −→ (B; f1, . . . , fn) is an onto homomorphism inA(1), then
F1(ϕ) : F1(A) −→ F1(B) is a strong homomorphism inR(1∗).

To summarize, the functorF1 : A(1) −→ R(1∗) is a full and faithful functor which
assigns a finite relational system ofR(1∗) to every finite algebra inA(1) and which assigns
to every onto homomorphism inA(1) a strong homomorphism inR(1∗).

Following [16] (page 394, the proof of Theorem 1), for a fixed given setA which will
be specified below, letA(A) denote the category of all unary algebras(X; {fa : a ∈ A})
where the morphisms are the usual homomorphisms. Then there is a full and faithful functor
F2 : R(1∗) −→ A(A) as now prescribed.

For1∗ = {ki + 1 : 1 ≤ i ≤ n}, set

A = {(i, j) : 1 ≤ i ≤ n and 1≤ j ≤ ki + 1} ∪ {1,2,3}.

ThenF2 is given as follows. For(X;R1, . . . , Rn) an object ofR(1∗), setF2(X) =
(X∪⋃

({i}×Ri : 1 ≤ i ≤ n)∪{u, v}; {fij : 1 ≤ i ≤ n and 1≤ j ≤ ki+1}∪{f1, f2, f3})
whereu andv are disinct elements not belonging toX ∪ ⋃

({i} × Ri : 1 ≤ i ≤ n) and

fij (i, (xl : 1 ≤ l ≤ ki + 1)) = xj for all (xl : 1 ≤ l ≤ ki + 1) ∈ Ri,
fij (ξ) = u otherwise,
f1(ξ) = u for all ξ,

f2(ξ) =
{
v if ξ 6= v,

u if ξ = v,

f3(ξ) =
{
u if ξ 6= u,

v if ξ = u.
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Given a morphismϕ : X −→ Y in R(1∗), let

F2(ϕ)(u) = u,

F2(ϕ)(v) = v,

F2(ϕ)(x) = ϕ(x) for all x ∈ X, and
F2(ϕ)((i, (xl : 1 ≤ l ≤ ki + 1))) = (i, (ϕ(xl) : 1 ≤ l ≤ ki + 1))

for (xl : 1 ≤ l ≤ ki + 1) ∈ Ri.
Clearly, for a finite relational systemX of R(1∗), F2(X) is a finite algebraF2(X) since

1∗ is finite. Suppose thatϕ : X −→ Y is a strong homomorphism inR(1∗). We claim
thatF2(ϕ) : F2(X) −→ F2(Y ) is onto inA(A). Sinceϕ is onto, it is clear thatY ∪{u, v} ⊆
F2(ϕ)(X ∪ {u, v}). Thus, to justify the claim it is only necessary to consider elements of
the form(i, (yl : 1 ≤ l ≤ ki + 1)) for some 1≤ i ≤ n and(yl : 1 ≤ l ≤ ki + 1) ∈ Ri
in Y . As ϕ is strong,(yl : 1 ≤ l ≤ ki + 1) = (ϕ(xl) : 1 ≤ l ≤ ki + 1) for some
(xl : 1 ≤ l ≤ ki + 1) ∈ Ri . But thenF2(ϕ)(i, (xl : 1 ≤ l ≤ ki + 1)) = (i, (ϕ(xl) : 1 ≤
l ≤ ki + 1)) = (i, (yl : 1 ≤ l ≤ ki + 1)), showingF2(ϕ) is onto as claimed.

To summarize, the functorF2 : R(1∗) −→ A(A) is a full and faithful functor which
assigns a finite algebra ofA(A) to every finite relational system inR(1∗) and which assigns
to every strong homomorphism inR(1∗) an onto homomorphism inA(A).

Following [16] (page 394), for the setA given in the definition ofF2, let R(A) denote
the category whose objects are relational systems(X; {Ra : a ∈ A}) where, fora ∈ A,
Ra ⊆ X×X and morphisms are the usual homomorphisms (namely, for(X; {Ra : a ∈ A})
and(Y ; {Ra : a ∈ A}), ϕ : X −→ Y is a homomorphism providing, for everya ∈ A,
(ϕ(x), ϕ(y)) ∈ Ra in Y whenever(x, y) ∈ Ra in X). Then there is a full and faithful
functorF3 : A(A) −→ R(A) defined as follows. For a unary algebra(X; {fa : a ∈ A})
in A(A), F3(X) = (X; {Ra : a ∈ A}) where, for alla ∈ A andx, y ∈ X, (x, y) ∈ Ra iff
fa(x) = y. For a homomorphismϕ : X −→ Y in A(A), F3(ϕ) = ϕ.

Clearly, for a finite algebraX in A(A), F3(X) is a finite relational system inR(A).
Equally obvious is the fact thatF3(ϕ) is an onto homomorphism inR(A) wheneverϕ :
X −→ Y is an onto homomorphism inA(A). Furthermore, if,(x, y) ∈ Ra in F3(Y )

for somea ∈ A, theny = fa(x) in Y . Sinceϕ : X −→ Y is an onto homomorphism
in A(A), x = ϕ(x′) andy = ϕ(y′) for somex′ andy′ in X with y′ = fa(x

′). Since
(x′, fa(y′)) = (x′, y′) ∈ Ra in F3(X) and (x, y) = (ϕ(x′), ϕ(y′)), F3(ϕ) is a strong
homomorphism inR(A).

To summarize, the functorF3 : A(A) −→ R(A) is a full and faithful functor which
assigns a finite relational system inR(A) to each finite algebra inA(A) and which assigns
to every onto homomorphism inA(A) a strong homomorphism inR(A).

Following [23] (page 232, the proof of Theorem 2.5), letGa denote the category of all
directed graphs(X;R) such that(x, x) 6∈ R for anyx ∈ X and, for eachy ∈ X, (x, y) ∈ R
for somex ∈ X. Obviously,Ga together with all compatible mappings is a full subcategory
of G. Then there is a full and faithful functorF4 : R(A) −→ Ga. That functor, as given in
[23], will now be defined.
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SinceA is finite, it is possible to choose a finiterigid (in the sense that the only compatible
map from the graph to itself is the identity map) directed graph(B;E) belonging toGa such
that |B| ≥ |A| + 1. Let (B;E) denote some such fixed choice for which, in addition, the
length of any cycle in(B;E) is divisible by either 2 or 3. Letpi , for 1 ≤ i ≤ 4, be mutually
different primes each of which is distinct from 2 and 3. LetU = ⋃

(Ui : 1 ≤ i ≤ 4)where,
for 1 ≤ i ≤ 4, Ui = {ui,j : 1 ≤ j ≤ pi} are sets of formally distinct elements. Since
|A| + 1 ≤ |B|, we may choose a one-to-one mappingα : A −→ B andbα ∈ B\α(A). For
i = 1,2, setBi = {(b, i) : b ∈ B} andαi : A −→ Bi be given byαi(a) = (α(a), i).

For (X; {Ra : a ∈ A}) an object inR(A), let Xa = {(x, y, a) : (x, y) ∈ Ra},
XA = ⋃

(Xa : a ∈ A), and set

F4(X) = (X ∪XA ∪ U ∪ B1 ∪ B2;R)
whereR ⊆ (X ∪ XA ∪ U ∪ B1 ∪ B2)× (X ∪ XA ∪ U ∪ B1 ∪ B2) will now be specified.
R contains precisely the following elements:

(ui,j , ui,j+1) for 1 ≤ i ≤ 4 andi ≤ j ≤ pi − 1;
(ui,pi , ui,1) for 1 ≤ i ≤ 4;
(ui,1, (b,1)) for i = 1,2 and(b,1) ∈ B1;
(ui,1, (b,2)) for i = 3,4 and(b,2) ∈ B2;
((b, i), (b′, i)) for i = 1,2 and(b, b′) ∈ E;
((bα, i), x) for i = 1,2 andx ∈ X;
(x, (x, y, a)), ((x, y, a), y), and(αi(a), (x, y, a))

for i = 1,2, (x, y) ∈ Ra, anda ∈ A.
Given a homomorphismϕ : (X; {Ra : a ∈ A}) −→ (Y ; {Sa : a ∈ A}) in R(A), let
F4(ϕ) : F4(X) −→ F4(Y ) in Ga be given by

F4(ϕ)(x) = ϕ(x) for x ∈ X,
F4(ϕ)((x, y, a)) = (ϕ(x), ϕ(y), a) for x, y ∈ X anda ∈ A,

F4(ϕ)(x) = x for x ∈ U ∪ B1 ∪ B2.

If X is a finite relational system inR(A), then, since bothA andB are finite,XA, B1,
andB2 are finite. By the choice ofU , X ∪ XA ∪ U ∪ B1 ∪ B2 is finite and, in particular,
F4(X) is a finite directed graph inGa.

Letϕ : (X; {Ra : a ∈ A}) −→ (Y ; {Sa : a ∈ A}) be an onto and strong homomorphism
in R(A), then it is to be shown that the compatible mappingF4(ϕ) : F4(X) −→ F4(Y ) is
strong inGa.

SinceF4(ϕ) is the identity onU ∪ B1 ∪ B2 and, forx ∈ X, F4(ϕ)(x) = ϕ(x), to see
that F4(ϕ) is onto, it is only necessary to consider elements ofYA. For (x, y, a) ∈ YA,
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(x, y) ∈ Sa . Sinceϕ is strong, there existx′, y′ ∈ X such that(x′, y′) ∈ Ra and
(x, y) = (ϕ(x′), ϕ(y′)). Thus,

F4(ϕ)((x
′, y′, a)) = (ϕ(x′), ϕ(y′), a)

= (x, y, a),

as required.
Similar to the above, to see thatF4(ϕ) is strong, it is only necessary to consider edges

in F4(Y ) that contain an element ofYA. For (x, (x, y, a)) ∈ S in F4(Y ), (x, y) ∈ Sa .
Since ϕ : X −→ Y is strong, (x, y) = (ϕ(x′), ϕ(y′)) for some (x′, y′) ∈ Ra .
Thus, (x′, (x′, y′, a)) ∈ R while F4(ϕ)(x

′) = ϕ(x′) = x and F4(ϕ)((x
′, y′, a)) =

(ϕ(x′), ϕ(y′), a) = (x, y, a), as required. Likewise, for((x, y, a), y) ∈ S in F4(Y ),
(x, y) ∈ Sa and(x, y) = (ϕ(x′), ϕ(y′)) for some(x′, y′) ∈ Ra . In particular, as to be
shown,F4(ϕ)((x

′, y′, a)) = (ϕ(x′), ϕ(y′), a) = (x, y, a) andF4(ϕ)(y
′) = ϕ(y′) = y.

Finally, for (αi(a), (x, y, a)) ∈ S with i = 1,2, (x, y) ∈ Sa and, once more, there are
x′, y′ ∈ X with (x, y) = (ϕ(x′), ϕ(y′)) and(x′, y′) ∈ Ra . ThenF4(ϕ)(αi(a)) = αi(a)

andF4(ϕ)((x
′, y′, a)) = (x, y, a), as desired.

To summarize, the functorF4 : R(A) −→ Ga is a full and faithful functor which assigns
a finite directed graph inGa to each finite relational system inR(A) and which assigns a
strong compatible map inGa to every strong homomorphism inR(A).

Thus, as shown above, the functorF : A(1) −→ Ga given by

F = F4 ◦ F3 ◦ F2 ◦ F1

is a full and faithful functor such that a finite algebra inA(1) is assigned to a finite directed
graph inGa and an onto homomorphism inA(1) is assigned to a strong compatible map
in Ga. SinceR is a full subcategory ofA(1) andGa is a full subcategory ofG, the functor
F : Rf −→ Gf establishes Proposition 2.2, thereby completing this Section.

4. Proof (Proposition 2.3)

The aim of this section is to establish Proposition 2.3.
A homomorphismϕ is an embeddingof A into B if it is one-to-one and, for every

n-ary relationR in A and its corresponding relationS in B, for all a0, . . . , an−1 ∈ A,
(a0, . . . , an−1) ∈ R iff (ϕ(a0), . . . , ϕ(an−1)) ∈ S. A is embeddable intoB if there is an
embeddingϕ of A into B. An isomorphismis an onto embedding. IfA ⊆ B and the
identity mapping is an embedding ofA into B, thenA is asubsystemof B. Moreover, if
ϕ : A −→ B is a homomorphism, then the subsystem ofB determined byϕ(A) is called a
homomorphic image ofA under ϕ and is often denoted byIm(ϕ).

Let B and (Bi : i ∈ I ) be algebraic systems of similar type and(fi : i ∈ I ) be
a family of homomorphisms such that, fori ∈ I , fi : B −→ Bi . We shall denote by



Vol. 46, 2001 Finite-to-finite universal quasivarieties areQ-universal 263

〈fi : i ∈ I 〉 the homomorphism fromB into
∏
(Bi : i ∈ I ) defined as follows: forx ∈ B,

πi(〈fi : i ∈ I 〉)(x) = fi(x) for all i ∈ I , whereπi denotes the projection map from∏
(Bi : i ∈ I ) ontoBi . In particular, fori ∈ I , πi ◦ 〈fi : i ∈ I 〉 = fi , that is the diagram

of Figure 1 commutes.

B Bi

∏
(Bi : i ∈ I )

〈fi : i ∈ I 〉
?

-

������*

fi

πi

Figure 1

Throughout this section, letK be a quasivariety of algebraic systems of finite type and
F : Rf −→ Kf be a full and faithful functor for whichF(ϕ) : F(A) −→ F(B) is an onto
homomorphism wheneverϕ : A −→ B is onto.

Using the functorF we will define a family(AW ∈ Kf : W ∈ Pfin(I )) that satisfies
(P1)−(P4) of Section 2 for a suitable countably infinite setI . With this in mind, we pause
to considerRf .

For a primep, let (Zp; +, ·,−,0,1) denote the ring of integers modulop. SinceZp
is simple and the unit is a constant, the only endomorphism ofZp is the identity map. In
particular, for a primeq, if ϕ : Zp −→ Zq is a homomorphism, thenp = q andϕ is the
identity.

SinceR has the Fraser-Horn property (namely, for allR0, R1 ∈ R, whenever2 is a
congruence relation onR0 ×R1, there exist congruence relations20 and21 onR0 andR1,
respectively, such that2 is of the form20 ×21), the following is immediate.

LEMMA 4.1. LetK ∪ {p} be a finite set of prime numbers. Ifϕ :
∏
(Zi : i ∈ K) −→

Zp is a homomorphism, thenp ∈ K andϕ = πp, whereπp is thep-th projection.

LEMMA 4.2. LetK andJ be finite sets of prime numbers. Ifϕ :
∏
(Zi : i ∈ K) −→∏

(Z
nj
j : j ∈ J ) is a homomorphism, wherenj ≥ 1 for all j ∈ J , then(i) J ⊆ K; (ii) if ϕ

is one-to-one, thenK ⊆ J .

Let I be some fixed infinite set of prime numbers. We now define a suitable family
(AW ∈ Kf : W ∈ Pfin(I )). Recall thatPfin(I ) denotes all finite subsets of the setI .
Obviously, as required by condition(P1),A∅ is defined to be a trivial algebraic system from
K . For∅ 6= W ∈ Pfin(I ),AW is defined as the homomorphic image ofF(

∏
(Zi : i ∈ W))

in
∏
(F(Zi) : i ∈ W) under the homomorphism〈F(πi) : i ∈ W 〉.
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For ∅ 6= W ∈ Pfin(I ), some words of clarification on the definition ofAW are in
order. Since thei-th projectionπi :

∏
(Zi : i ∈ W) −→ Zi is a ring homomorphism

for eachi ∈ W , the homomorphismF(πi) assigned toπi sends the algebraic system
F(

∏
(Zi : i ∈ W)) into the algebraic systemF(Zi). In other words, for eachi ∈ W , we

have a homomorphism

F(πi) : F
(∏

(Zi : i ∈ W)
)

−→ F(Zi).

As such there is a well-defined homomorphism

〈F(πi) : i ∈ W 〉 : F
(∏

(Zi : i ∈ W)
)

−→
∏
(F(Zi) : i ∈ W).

By definition,AW is the homomorphic image ofF(
∏
(Zi : i ∈ W)) in

∏
(F(Zi) : i ∈ W)

under this homomorphism. In particular,AW is a substructure of
∏
(F(Zi) : i ∈ W),

which we denote byAW ≤ ∏
(F(Zi) : i ∈ W), whose operations and relations are defined

as follows: iff is ann-ary operation for somen ≥ 1, then, fora0, a1, . . . , an−1 ∈ AW ≤∏
(F(Zi) : i ∈ W),

f (a0, a1, . . . , an−1)(i) = f (a0(i), a1(i), . . . , an−1(i)),

wherei ∈ W ; if R is ann-ary relation for somen ≥ 1, then fora0, a1, . . . , an−1 ∈ AW ≤∏
(F(Zi) : i ∈ W),

(a0, a1, . . . , an−1) ∈ R in AW iff (a0(i), a1(i), . . . , an−1(i)) ∈ R in F(Zi)

for eachi ∈ W .

〈F(πi ) : i ∈ W 〉

F(
∏
(Zi : i ∈ W))

AW ≤ ∏
(F(Zi) : i ∈ W)

F(Zi)

?

-

������*

F(πi )

πi

Figure 2

Observe that, fori ∈ W , πi ◦ 〈F(πi) : i ∈ W 〉 = F(πi). In particular, the diagram of
Figure 2 commutes.

Condition(P2) follows from the next lemma.
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LEMMA 4.3. LetX, Y , andZ ∈ Pfin(I ). If X = Y ∪ Z, thenAX is embeddable in
AY × AZ.

Proof. SinceA∅ is a trivial algebraic system, we may assume thatY 6= ∅ andZ 6= ∅. Let
πY :

∏
(Zi : i ∈ X) −→ ∏

(Zi : i ∈ Y ) andπZ :
∏
(Zi : i ∈ X) −→ ∏

(Zi : i ∈ Z)
denote suitable projections of the ring

∏
(Zi : i ∈ X). Let π̃Y :

∏
(F(Zi) : i ∈ X) −→∏

(F(Zi) : i ∈ Y ) andπ̃Z :
∏
(F(Zi) : i ∈ X) −→ ∏

(F(Zi) : i ∈ Z) denote suitable
projections of the algebraic system

∏
(F(Zi) : i ∈ X). See Figure 3.

F(
∏
(Zi : i ∈ Y ))

AY ≤∏
(F(Zi) : i ∈ Y )

〈F(πi ) : i ∈ Y 〉
?

F(
∏
(Zi : i ∈ X))

AX ≤∏
(F(Zi) : i ∈ X)

〈F(πi ) : i ∈ X〉
?

F(
∏
(Zi : i ∈ Z))

AZ ≤∏
(F(Zi) : i ∈ Z)

〈F(πi ) : i ∈ Z〉
?

�

π̃Y π̃Z

F(πY ) F(πZ)

�

-

-

Figure 3

SinceX = Y ∪ Z, for a, b ∈ ∏
(F(Zi) : i ∈ X), a = b iff π̃Y (a) = π̃Y (b) and

π̃Z(a) = π̃Z(b). Thus, in order to show thatAX is embeddable inAY ×AZ, it is sufficient
to show the following:

(i) π̃Y (AX) ⊆ AY andπ̃Z(AX) ⊆ AZ;
(ii) if R is ann-ary relation from the type ofK anda0, a1, . . . , an−1 are elements of

AX, then(a0, a1, . . . , an−1) ∈ R in AX whenever((π̃Y (a0), π̃Z(a0)), (π̃Y (a1), π̃Z

(a1)), . . . , (π̃Y (an−1), π̃Z(an−1))) ∈ R in AY × AZ.

We begin by showing̃πY (AX) ⊆ AY and merely observe that a similar argument shows
thatπ̃Z(AX) ⊆ AZ.

Let a ∈ AX. We need to findb ∈ F(
∏
(Zi : i ∈ Y )) such that〈F(πi) : i ∈ Y 〉(b) = π̃Y

(a). Since〈F(πi) : i ∈ Y 〉(b) ∈ AY , this would givẽπY (a) ∈ AY and, so,̃πY (AX) ⊆ AY

as required.
Sincea ∈ AX, a = 〈F(πi) : i ∈ X〉(x) for somex ∈ F(

∏
(Zi : i ∈ X)). We set

b = F(πY )(x). Thus, it remains to show that

〈F(πi) : i ∈ Y 〉(F(πY )(x)) = π̃Y (a).

Since both sides of this equation belong to
∏
(F(Zi) : i ∈ Y ), we need to show that, for

each projectionπj :
∏
(F(Zi) : i ∈ Y ) −→ F(Zj ), wherej ∈ Y ,

πj (〈F(πi) : i ∈ Y 〉(F(πY )(x))) = πj (π̃Y (a)).
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We have

πj (〈F(πi) : i ∈ Y 〉(F(πY )(x))) = (πj ◦ 〈F(πi) : i ∈ Y 〉)(F(πY )(x))
= F(πj )(F(πY )(x))
= (F(πj ) ◦ F(πY ))(x)
= F(πj ◦ πY )(x) (sinceF is a functor)
= F(πj )(x)
= πj (a) (becausea = 〈F(πi) : i ∈ X〉(x))
= (πj ◦ π̃Y )(a)
= πj (π̃Y (a)).

Thus,π̃Y (AX) ⊆ AY .
Assume((π̃Y (a0), π̃Z(a0)), (π̃Y (a1), π̃Z(a1)), . . . , (π̃Y (an−1), π̃Z(an−1))) ∈ R inAY×

AZ, wherea0, . . . , an−1 ∈ A. Then (π̃Y (a0), π̃Y (a1), . . . , π̃Y (an−1)) ∈ R in AY and
(π̃Z(a0), π̃Z(a1), . . . , π̃Z(an−1)) ∈ R in AZ. SinceAY ≤ ∏

(F(Zi) : i ∈ Y )

andAZ ≤ ∏
(F(Zi) : i ∈ Z), this implies that, for eachi ∈ Y ∪ Z, (πi(a0), πi(a1), . . . ,

πi(an−1)) ∈ R in F(Zi). However,X = Y ∪Z andAX is a subsystem of
∏
(F(Zi) : i ∈ X).

It follows that(a0, a1, . . . , an−1) ∈ R in AX becausea0, . . . , an−1 ∈ AX. ¨

For a categoryC and a family ofC morphismsfi : B −→ Bi for i ∈ U , the family is
a mono source inC for the objectB if, for all morphismsf : A −→ B andg : A −→ B,
the following implication holds: iffi ◦ f = fi ◦ g for all i ∈ U , thenf = g.

LEMMA 4.4. If, for i ∈ U , fi : B −→ Bi is a mono source in the categoryRf , then
〈fi : i ∈ U〉 is a one-to-one homomorphism fromB into

∏
(Bi : i ∈ U).

Proof. Sincefi is a homomorphism for eachi ∈ U , 〈fi : i ∈ U〉 : B −→ ∏
(Bi : i ∈ U)

is a homomorphism. We will show that〈fi : i ∈ U〉 is one-to-one. To this effect it is
enough to show that, for distincta, b ∈ B, fj (a) 6= fj (b) for somej ∈ U . Suppose, to the
contrary, that for somea, b ∈ B with a 6= b we havefi(a) = fi(b) for all i ∈ U . Consider
the free ringS in the variety generated byB that is freely generated by a single elementx.
SinceB is finite, so too is the ringS. In particular,S belongs toRf .

Let f : S −→ B andg : S −→ B be ring homomorphisms satisfyingf (x) = a and
g(x) = b. SinceS is finite, f : S −→ B andg : S −→ B are morphisms inRf . Since
fi(a) = fi(b) for all i ∈ U , fi ◦ f = fi ◦ g for all i ∈ U . However,fi : B −→ Bi for
i ∈ U is a mono source forB in Rf . It follows thatf = g, which is a contradiction. Thus,
as required,〈fi : i ∈ U〉 is one-to-one. ¨

Condition(P3) will be derived in the next lemma.

LEMMA 4.5. For X andY ∈ Pfin(I ), if X 6= ∅ andAX ∈ Q(AY ), thenX = Y .
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Proof. SinceAX ∈ Q(AY ), there exists a finite setU and an embeddingh such that
h : AX −→ AUY . For each pair(s, k) ∈ Y × U , we have a homomorphism

πs ◦ πk ◦ h : AX −→ F(Zs)

whereπk is thek-th projection ofAUY ontoAY andπs is thes-th projection of
∏
(F(Zi) :

i ∈ Y ) onto F(Zs) (recall thatAY is a substructure of
∏
(F(Zi) : i ∈ Y )). Since

〈F(πi) : i ∈ X〉 : F(
∏
(Zi : i ∈ X)) −→ AX, we have, for(s, k) ∈ Y × U , a

homomorphism

πs ◦ πk ◦ h ◦ 〈F(πi) : i ∈ X〉 : F
(∏

(Zi : i ∈ X)
)

−→ F(Zs).

Consequently, sinceF is a full embedding ofRf into Kf , it follows that there exists a ring
homomorphismψ(s,k) :

∏
(Zi : i ∈ X) −→ Zs such that

F(ψ(s,k)) = πs ◦ πk ◦ h ◦ 〈F(πi) : i ∈ X〉.
We show that the familyψ(s,k) :

∏
(Zi : i ∈ X) −→ Zs , where(s, k) ∈ Y × U ,

is a mono source for
∏
(Zi : i ∈ X) in Rf . Let f : A −→ ∏

(Zi : i ∈ X) and
g : A −→ ∏

(Zi : i ∈ X) be morphisms inRf such thatψ(s,k) ◦ f = ψ(s,k) ◦ g for all
(s, k) ∈ Y × U . SinceF is a functor, the last equation implies

F(ψ(s,k)) ◦ F(f ) = F(ψ(s,k)) ◦ F(g)

for all (s, k) ∈ Y × U . Hence,

πs ◦ πk ◦ h ◦ 〈F(πi) : i ∈ X〉 ◦ F(f ) = πs ◦ πk ◦ h ◦ 〈F(πi) : i ∈ X〉 ◦ F(g)

for all (s, k) ∈ Y × U . Sinceh : AX −→ AUY is an embedding,
∧
(Ker(πs ◦ πk ◦ h) :

(s, k) ∈ Y × U) = ωAX . Thus,

〈F(πi) : i ∈ X〉 ◦ F(f ) = 〈F(πi) : i ∈ X〉 ◦ F(g).

In turn, this impliesF(πi) ◦ F(f ) = F(πi) ◦ F(g) for all i ∈ X and, in particular,
F(πi ◦ f ) = F(πi ◦ g) for all i ∈ X. SinceF is a faithful functor, we conclude that
πi ◦ f = πi ◦ g for all i ∈ X. Now observe that the family of homomorphismsπi :

∏
(Zi :

i ∈ X) −→ Zi for i ∈ X is a mono source for
∏
(Zi : i ∈ X) in Rf . Thus,f = g and,

so, the familyψ(s,k) :
∏
(Zi : i ∈ X) −→ Zs for (s, k) ∈ Y × U is a mono source for∏

(Zi : i ∈ X) in Rf . By 4.4, the homomorphism

〈ψ(s,k) : (s, k) ∈ Y × U〉 :
∏
(Zi : i ∈ X) −→

∏
(ZUs : s ∈ Y )

is one-to-one. By 4.2,X = Y as required. ¨

If f : A −→ B is a morphism inKf , then we denote byIm(f ) the substructure ofB
that is the homomorphic image ofA underf .
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LEMMA 4.6. If f : AX −→ F(Zi1)
m1 × · · · × F(Zik )

mk is a morphism inKf , then
{i1, . . . , ik} ⊆ X and the image ofAX underf (that is, Im(f )) is isomorphic toAY , where
Y = {i1, . . . , ik}.

Proof. We first show that{i1, . . . , ik} ⊆ X. Consider the homomorphisms〈F(πi) :
i ∈ X〉 : F(

∏
(Zi : i ∈ X)) −→ AX, f : AX −→ F(Zi1)

m1 × · · · × F(Zik )
mk ,

andπpq : F(Zi1)
m1 × · · · × F(Zik )

mk −→ F(Zip ) where 1≤ p ≤ k, 1 ≤ q ≤ mp,
andπpq denotes the composite of the projection fromF(Zi1)

m1 × · · · × F(Zik )
mk onto

F(Zip )
mp and the projection fromF(Zip )

mp onto itsq-th component. In particular, for
each 1≤ p ≤ k and 1≤ q ≤ mp, there is a homomorphismπpq ◦ f ◦ 〈F(πi) : i ∈ X〉 :
F(

∏
(Zi : i ∈ X)) −→ F(Zip ). Since the functorF is full, we have a ring homomorphism

ϕ :
∏
(Zi : i ∈ X) −→ Zip such thatF(ϕ) = πpq ◦ f ◦ 〈F(πi) : i ∈ X〉. By 4.1,ip ∈ X

which establishes thatY = {i1, . . . , ik} ⊆ X.
In fact, by 4.1, we know thatϕ = πip and, so,

F(πip ) = πpq ◦ f ◦ 〈F(πi) : i ∈ X〉
for 1 ≤ p ≤ k and 1≤ q ≤ mp.

F(
∏
(Zi : i ∈ X)) AX

F(Zi1)
m1 × · · · × F(Zik )

mk

f〈〈F(πip ), . . . ,F(πip )〉 : 1 ≤ p ≤ k〉

〈F(πi ) : i ∈ X〉
-

?

HHHHHHj

Figure 4

We claim that the diagram of Figure 4 commutes where, for each 1≤ p ≤ k,
〈F(πip ), . . . ,F(πip )〉 is understood to be anmp-tuple.

To see this it is enough to show that, for every 1≤ s ≤ k and 1≤ t ≤ mp,

πst ◦ 〈〈F(πip ), . . . ,F(πip )〉 : 1 ≤ p ≤ k〉 = πst ◦ f ◦ 〈F(πi) : i ∈ X〉.
However,πst ◦ 〈〈F(πip ), . . . ,F(πip )〉 : 1 ≤ p ≤ k〉 = F(πis ). Since, by the above,
F(πis ) = πst ◦ f ◦ 〈F(πi) : i ∈ X〉, the diagram commutes, as required.

For each 1≤ p ≤ k, let dp : Zip −→ Z
mp
ip

denote the diagonal embedding where, for
all x ∈ Zip and 1≤ q ≤ mp, πq(dp(x)) = x.
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We now define a homomorphisme : F(Zi1) × · · · × F(Zik ) −→ F(Zi1)
m1 × · · · ×

F(Zik )
mk by

e = 〈〈F(πqp) : 1 ≤ q ≤ mp〉 ◦ F(dp) ◦ π̃p : 1 ≤ p ≤ k〉

whereπ̃p is the projection ofF(Zi1)× · · · × F(Zik ) ontoF(Zip ) andπqp is the projection

of Z
mp
ip

onto theq-th component ofZ
mp
ip

.
The proof of 4.6 will be completed by 4.7, 4.8, and 4.9.

〈〈F(πip ), . . . ,F(πip )〉 : 1 ≤ p ≤ k〉

〈F(πi ) : i ∈ Y 〉

F(Zi1)
m1 × · · · × F(Zik )

mk

AY

e

F(
∏
(Zi : i ∈ X))

F(
∏
(Zi : i ∈ Y ))

F(πY )

?

Figure 5

-

-

6

LEMMA 4.7. The diagram of Figure5 commutes where〈F(πip ), . . . ,F(πip )〉 is
regarded as anmp-tuple for 1 ≤ p ≤ k, andπY is the projection of

∏
(Zi : i ∈ X)

onto
∏
(Zi : i ∈ Y ).

Proof. It is sufficient to show that, for each 1≤ s ≤ k and 1≤ t ≤ ms ,

πst ◦ e ◦ 〈F(πi) : i ∈ Y 〉 ◦ F(πY ) = πst ◦ 〈〈F(πip ), . . . ,F(πip )〉 : 1 ≤ p ≤ k〉.

Sinceπst ◦ 〈〈F(πip ), . . . ,F(πip )〉 : 1 ≤ p ≤ k〉 = F(πis ), it is sufficient to show that
πst ◦e◦〈F(πi) : i ∈ Y 〉◦F(πY ) = F(πis ). Before we do so, recall thatπpq is the composite
of two projections: one acting fromF(Zi1)

m1 ×· · ·× F(Zik )
mk ontoF(Zip )

mp and another
fromF(Zip )

mp onto theq-th component ofF(Zip )
mp . Denoting these projections byρp and

η
p
q , respectively, we have thatπst = ηst ◦ ρs . We now show thatπst ◦ e ◦ 〈F(πi) : i ∈ Y 〉

◦F(πY ) = F(πis ).

πst ◦ e ◦ 〈F(πi) : i ∈ Y 〉 ◦ F(πY )
= (πst ◦ e) ◦ 〈F(πi) : i ∈ Y 〉 ◦ F(πY )
= (πst ◦ 〈〈F(πqp) : 1 ≤ q ≤ mp〉 ◦ F(dp) ◦ π̃p : 1 ≤ p ≤ k〉) ◦ 〈F(πi) : i ∈ Y 〉 ◦ F(πY )
(by the definition ofe)
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= (ηst ◦ ρs ◦ 〈〈F(πqp) : 1 ≤ q ≤ mp〉 ◦ F(dp) ◦ π̃p : 1 ≤ p ≤ k〉) ◦ 〈F(πi) : i ∈ Y 〉
◦F(πY ) (sinceπst = ηst ◦ ρs)

= (ηst ◦ (〈F(πqs ) : 1 ≤ q ≤ ms〉 ◦ F(ds) ◦ π̃s)) ◦ 〈F(πi) : i ∈ Y 〉 ◦ F(πY )
= ((ηst ◦ 〈F(πqs ) : 1 ≤ q ≤ ms〉) ◦ F(ds) ◦ π̃s) ◦ 〈F(πi) : i ∈ Y 〉 ◦ F(πY )
= F(πts ) ◦ F(ds) ◦ π̃s ◦ 〈F(πi) : i ∈ Y 〉 ◦ F(πY )
= F(πts ◦ ds) ◦ π̃s ◦ 〈F(πi) : i ∈ Y 〉 ◦ F(πY )
= π̃s ◦ 〈F(πi) : i ∈ Y 〉 ◦ F(πY )

(asπts ◦ ds is the identity mapidZis onZis andF(idZis ) is the identity map on
F(Zis ))

= F(πis ) ◦ F(πY ) (sinceπ̃s is the projection ofF(Zi1)× · · · × F(Zik ) ontoF(Zis ))
= F(πis ◦ πY )
= F(πis ) (sinceis ∈ Y ),

as required. ¨

LEMMA 4.8. The subsystems ofF(Zi1)
m1 × · · · × F(Zik )

mk which are images ofAX
underf and ofAY undere, respectively, coincide.

Proof. It is sufficient to show that the domain of the image ofAX underf and the domain
of the image ofAY undere coincide.

Let x be in the image ofAX underf . Since the homomorphism〈F(πi) : i ∈ X〉 :
F(

∏
(Zi : i ∈ X)) −→ AX is onto (by the definition ofAX) and the diagram of Figure 4

commutes,〈〈F(πip ), . . . ,F(πip )〉 : 1 ≤ p ≤ k〉(y) = x for some elementy ∈ F(
∏
(Zi :

i ∈ X)). Since the diagram of Figure 5 commutes,e(z) = x, wherez = 〈F(πi) : i ∈
Y 〉 ◦ F(πY )(y). Thus,x is in the image ofAY undere.

Suppose now thatx is in the image ofAY undere. SinceπY :
∏
(Zi : i ∈ X) −→∏

(Zi : i ∈ Y ) is onto, it follows, from the hypothesis of 1.1 (namely,F(ϕ) : F(A)
−→ F(B) is onto wheneverϕ : A −→ B is onto), thatF(πY ) : F(

∏
(Zi : i ∈ X)) −→

F(
∏
(Zi : i ∈ Y )) is also onto. Since〈F(πi) : i ∈ Y 〉 : F(

∏
(Zi : i ∈ Y )) −→ AY

is onto, it follows from 4.7 that there exists an elementy in F(
∏
(Zi : i ∈ X)) for

which 〈〈F(πip ), . . . ,F(πip )〉 : 1≤p≤k〉(y) = x. As the diagram of Figure 4 commutes,
f (z) = x wherez is the element ofAX given byz = 〈F(πi) : i ∈ X〉(y). In particular,x
is in the domain of the image ofAX underf . ¨

LEMMA 4.9. The image ofAY undere is isomorphic toAY .

Proof. Sincee is a homomorphism, we need to show the following:

(i) e is one-to-one;
(ii) if R is ann-ary relation in the type ofK anda0, a1, . . . , an−1 are elements ofAY ,

then(a0, a1, . . . , an−1) ∈ R in AY whenever(e(a0), e(a1), . . . , e(an−1)) ∈ R in
F(Zi1)

m1 × · · · × F(Zik )
mk .
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Let x andy ∈ AY and assumee(x) = e(y). SinceAY is a subsystem of
∏
(F(Zip ) :

1 ≤ p ≤ k) (recall thatY = {i1, . . . , ik}), we need to show thatx(p) = y(p) for every
1 ≤ p ≤ k, wherex(p)andy(p)denote thep-th components ofx andy, respectively. Since
e(x) ande(y) ∈ F(Zi1)

m1 × · · · × F(Zik )
mk , it follows from the assumptione(x) = e(y)

thatπst ◦ e(x) = πst ◦ e(y) for all 1 ≤ s ≤ k and 1≤ t ≤ ms . But, for each 1≤ s ≤ k and
1 ≤ t ≤ ms , we have

πst ◦ e(x) = πst ◦ 〈〈F(πqp) : 1 ≤ q ≤ mp〉 ◦ F(dp) ◦ π̃p : 1 ≤ p ≤ k〉(x)
= F(πts ) ◦ F(ds) ◦ π̃s(x)
= F(πts ◦ ds) ◦ π̃s(x)
= F(idZis ) ◦ π̃s(x)
= idF(Zis ) ◦ π̃s(x)
= π̃s(x)

= x(s).

Similarly one shows thatπst ◦ e(y) = y(s). Thus, sinceπst ◦ e(x) = πst ◦ e(y) for all
1 ≤ s ≤ k and 1≤ t ≤ ms , x = y and, as required,e is one-to-one.

AssumeR is ann-ary relation in the type ofK , a0, a1, . . . , an−1 are elements ofAY , and
(e(a0), e(a1), . . . , e(an−1)) ∈ R in F(Zi1)

m1 × · · · × F(Zik )
mk . SinceAY is a subsystem

of F(Zi1) × · · · × F(Zik ), in order to show that(a0, a1, . . . , an−1) ∈ R in AY it suffices
to show that(π̃p(a0), π̃p(a1), . . . , π̃p(an−1)) ∈ R in F(Zip ) for every 1≤ p ≤ k where,
we recall, π̃p is thep-th projection of

∏
(F(Zip ) : 1 ≤ p ≤ k) onto F(Zip ). Since

(e(a0), e(a1), . . . , e(an−1)) ∈ R in F(Zi1)
m1 ×· · ·×F(Zik )

mk , we infer from the definition
of e that, for every 1≤ p ≤ k and 1≤ q ≤ mp,

(F(πqp) ◦ F(dp) ◦ π̃p(a0),F(π
q
p) ◦ F(dp) ◦ π̃p

(a1), . . . ,F(π
q
p) ◦ F(dp) ◦ π̃p(an−1)) ∈ R

in theq-th component ofF(Zip )
mp , that is, inF(Zip ). However,F(πqp) ◦ F(dp) = F(πqp ◦

dp) = F(idZip ) = idF(Zip ). In particular, for every 1≤ p ≤ k, (π̃p(a0), π̃p(a1), . . . , π̃p

(an−1)) ∈ R in F(Zip ), as required. ¨

By 4.8 and 4.9, the image ofAX underf is isomorphic toAY and, so, the proof of 4.6
is complete. ¨

The following will complete the proof of 1.1 by establishing(P4).

LEMMA 4.10. If ∅ 6= X ∈ Pfin(I ) andAX is a subsystem ofB × C for finiteB and
C ∈ Q({F(Zi) : i ∈ I }), then Im(πB) ∼= AY and Im(πC) ∼= AZ for someY andZ ⊆ X

with Y ∪ Z = X, whereπB andπC are the projections ofAX intoB andC, respectively.

Proof. SinceB andC are finite, there existi1, . . . , ik, j1, . . . , jl in I and numbers
m1, . . . , mk, n1, . . . , nl ≥ 1 such thatB is embeddable intoF(Zi1)

m1 × . . .F(Zik )
mk and

C is embeddable intoF(Zj1)
n1 × . . .F(Zjl )

nl , say

g : B ↪→ F(Zi1)
m1 × · · · × F(Zik )

mk andh : C ↪→ F(Zj1)
n1 × · · · × F(Zjl )

nl .
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Set

Y = {i1, . . . , ik} andZ = {j1, . . . , jl}.
The proof of 4.10 will follow from 4.6 together with 4.11.

LEMMA 4.11. Y ∪ Z = X.

Proof. Since

g ◦ πB :−→ F(Zi1)
m1 × · · · × F(Zik )

mk andh ◦ πC −→ F(Zj1)
n1 × · · · × F(Zjl )

nl

are morphisms inKf , by 4.6,Y ⊆ X andZ ⊆ X.
For each 1≤ p ≤ k and 1≤ q ≤ mp, πpq denotes the composition of two projections:

one acting fromF(Zi1)
m1 ×· · ·×F(Zik )

mk ontoF(Zip )
mp and another fromF(Zip )

mp onto
theq-th component ofF(Zip )

mp . Thus,

πpq : F(Zi1)
m1 × · · · × F(Zik )

mk −→ F(Zip ).

Likewise, for each 1≤ r ≤ l and 1 ≤ s ≤ nr , πrs denotes the composition of two
projections: one acting fromF(Zj1)

n1 × · · · × F(Zjl )
nl onto F(Zjr )

nr and another from
F(Zjr )

nr onto thes-th component ofF(Zjr )
nr . Thus,

πrs : F(Zj1)
n1 × · · · × F(Zjl )

nl −→ F(Zjr ).

Since〈F(πi) : i ∈ X〉 : F(
∏
(Zi : i ∈ X)) −→ AX, g ◦ πB : AX −→ F(Zi1)

m1 × · · · ×
F(Zik )

mk , and h ◦ πC : AX −→ F(Zj1)
n1 × · · · × F(Zjl )

nl , we have a family of
homomorphisms

πpq ◦ g ◦ πB ◦ 〈F(πi) : i ∈ X〉 : F
(∏

(Zi : i ∈ X)
)

−→ F(Zip )

and

πrs ◦ h ◦ πC ◦ 〈F(πi) : i ∈ X〉 : F
(∏

(Zi : i ∈ X)
)

−→ F(Zjr )

where 1≤ p ≤ k, 1 ≤ q ≤ mp, 1 ≤ r ≤ l, and 1≤ s ≤ nr .
SinceF is a full embedding, for eachp, q, r, ands as above, there exist ring homo-

morphismsϕpq andψrs in Rf such thatϕpq :
∏
(Zi : i ∈ X) −→ Zip , F(ϕpq) =

πpq ◦ g ◦ πB ◦ 〈F(πi) : i ∈ X〉, ψrs :
∏
(Zi : i ∈ X) −→ Zjr , and F(ψrs) =

πrs ◦ h ◦ πC ◦ 〈F(πi) : i ∈ X〉. We show that the family consisting of allϕpq ’s andψrs ’s
is a mono source for

∏
(Zi : i ∈ X) in Rf .

Let ε0 and ε1 : A −→ ∏
(Zi : i ∈ X) be ring homomorphisms inRf such that

ϕpq ◦ ε0 = ϕpq ◦ ε1 andψrs ◦ ε0 = ψrs ◦ ε1 for all p, q, r, ands as above. It is to be
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shown thatε0 = ε1. SinceF is a functor, it follows thatF(ϕpq) ◦ F(ε0) = F(ϕpq) ◦ F(ε1)

andF(ψrs) ◦ F(ε0) = F(ψrs) ◦ F(ε1) for all p, q, r, ands as above. Consequently,

πpq ◦ g ◦ πB ◦ 〈F(πi) : i ∈ X〉 ◦ F(ε0) = πpq ◦ g ◦ πB ◦ 〈F(πi) : i ∈ X〉 ◦ F(ε1)

and

πrs ◦ h ◦ πC ◦ 〈F(πi) : i ∈ X〉 ◦ F(ε0) = πrs ◦ h ◦ πC ◦ 〈F(πi) : i ∈ X〉 ◦ F(ε1)

for all p, q, r, ands. However,AX is a subsystem ofB × C andg andh are embeddings.
Thus,∧

(Ker(πpq ◦ g ◦ πB) : 1 ≤ p ≤ k and 1≤ q ≤ mp) ∧ ∧
(Ker(πrs ◦ h ◦ πC) :

1 ≤ r ≤ l and 1≤ s ≤ nr) = ωAX.

Consequently,

〈F(πi) : i ∈ X〉 ◦ F(ε0) = 〈F(πi) : i ∈ X〉 ◦ F(ε1).

In particular, for eachi ∈ X,

F(πi) ◦ F(ε0) = F(πi) ◦ F(ε1).

SinceF is a faithful embedding, we obtainπi ◦ ε0 = πi ◦ ε1 for all i ∈ X. However, the
family πi :

∏
(Zi : i ∈ X) −→ Zi for i ∈ X is a mono source for

∏
(Zi : i ∈ X) in Rf

and, so,ε0 = ε1. In particular, we conclude that the family of allϕpq ’s andψrs ’s is a mono
source for

∏
(Zi : i ∈ X) in Rf . By 4.4, there is a one-to-one ring homomorphism from∏

(Zi : i ∈ X) into Zm1
i1

× · · · × Z
mk
ik

× Z
n1
j1

× · · · × Z
nl
jl

which, by 4.2(ii), implies that
X ⊆ {i1, . . . , ik} ∪ {j1, . . . , jl}. In other words,X ⊆ Y ∪ Z as required. ¨

To summarize,Y = {i1, . . . , ik}, Z = {j1, . . . , jl},X = Y ∪ Z,

πB : AX −→ B andg : B ↪→ F(Zi1)
m1 × · · · × F(Zik )

mk ,

and

πC : AX −→ C andh : C ↪→ F(Zj1)
n1 × · · · × F(Zjl )

nl .

where bothg andh are embeddings. By 4.6,Im(πB) ∼= AY andIm(πC) ∼= AZ, thereby
completing the proof of 4.10. ¨

Concluding this section we want to mention thatRf can be replaced in 2.2 and in 2.3 by
many other classes of finite algebras and still lead to the same conclusions. The only one
requirement is that each must have the properties of the ringsZp which were used in the
proof of 2.3.
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5. Proof (Proposition 2.4)

For a finite-to-finite universal quasivariety of algebras, the assumptions of Proposition 2.4
are readily verified (indeed, well known). For a quasivariety of algebraic systems some
subtleties remain which may be overcome by the use of the concept of a congruence as
given by Gorbunov and Tumanov in [13].

In this section, a similarity type is regarded as a triple� = (F,R, a), whereF andR
are the sets of functional and relational symbols of�, respectively, anda : F ∪ R −→ ω

is the arity function of�, where it is understood thata(r) > 0 for r ∈ R. The symbol≈ is
meant to be the identity symbol and it is assumed that≈ 6∈ R. Of course, the arity of≈
is 2. We denote byR+ the setR ∪ {≈}.

An algebraic system of type� is any triple of the formA = (A; {fA : f ∈ F }, {rA :
r ∈ R}) such thatA is a non-empty set,fA : Aa(f ) −→ A is a function, andrA ⊆ Aa(r)

is a relation for allf ∈ F andr ∈ R. We denote the algebra part(A; {fA : f ∈ F }) of A
by alg(A) and the relational part of(A; {rA : r ∈ R}) by rel(A), respectively.

Given a non-empty setA. A functionH that assigns to every elementr of R+ a subset
of Aa(r) is called anR+-indexed family onA. Congruences on an algebraic systemA are
special types ofR+-indexed families onA.

Given an algebraic systemA of type�. An R+-indexed family2 onA is said to be a
congruenceonA (see [13] or [11]) if2 satisfies the following conditions:

(i) 2(≈) is a congruence onalg(A);
(ii) for eachr ∈ R, rA ⊆ 2(r);
(iii) for eachr ∈ R, if xi ≡ yi(2(≈)) for all 1 ≤ i ≤ a(r) and(x1, . . . , xa(r)) ∈ 2(r),

then(y1, . . . , ya(r)) ∈ 2(r).
Thequotient systemA/2 of A by2 is defined as follows:

(i) alg(A/2) is alg(A)/2(≈);
(ii) for r ∈ R, ([x1]2, . . . , [xa(r)]2) ∈ rA/2 iff (x1, . . . , xa(r)) ∈ 2(r).
Notice that if2(≈) = {(x, x) : x ∈ A}, thenA/2 is(A; {fA : f ∈ F }, {2(r) : r ∈ R}).
From now onK is assumed to be a quasivariety of algebraic systems of finite type�

and is regarded as a category with homomorphisms as morphisms.
A congruence2 on an algebraic systemA of type� not necessarily belonging toK

is said to be aK -congruenceif A/2 ∈ K . SinceK is closed under subdirect products
and contains a trivial system, for everyR+-indexed familyH onA there exists a smallest
K -congruence2 such thatH ⊆ 2, that isH(r) ⊆ 2(r) for all r ∈ R+. The smallest
congruence containingH is denoted by2K (H). The following lemma characterizes
2K (H), where 0A means anR+-indexed family onA such that 0A(≈) = {(a, a) : a ∈ A}
and 0A(r) = rA for r ∈ R and where in a quasi-identityri andr are permitted to represent≈
as well.
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LEMMA 5.1. (see [11])Let A be an algebraic system of type�, and letH be an
R+-indexed family onA. Then, forr ∈ R+ and (c1, . . . , ca(r)) in A, (c1, . . . , ca(r)) ∈
2K (H)(r) iff there exist a quasi-identity∀x[

∧
i<k ri(ti1(x), . . . , tia(ri )

(x)) H⇒ r(t1(x), . . . ,

ta(r)(x))] valid in K and a sequenceb of elements inA such that(ti1(b), . . . , tia(ri ) (b)) ∈
(H ∪ 0A)(ri) for i < k and(t1(b), . . . , ta(r)(b)) = (c1, . . . , ca(r)).

The lemma differs slightly from its counterpart in [11]: the difference is more convenient
in our context.

We first show thatK is cocomplete, that is colimits of all diagrams inK exist.
Let F : J −→ K be adiagram in K , that is a functor from an index categoryJ to K .

A coneof F is an objectB of K together with a family(ψi : F(i) −→ B : i ∈ obj(J))
of K -morphisms such that, for every arrowu : i −→ j in J, ψi = ψj ◦ F(u). A colimit
of a diagramF : J −→ K is a cone(ψi : F(i) −→ B : i ∈ obj(J)) of F such that, for
every other cone(ϕi : F(i) −→ C : i ∈ obj(J)) of F, there exists a uniqueK -morphism
σ : B −→ C such that, for everyi ∈ obj(J), ϕi = σ ◦ ψi .

Let F : J −→ K be a diagram inK . For an objecti in J, letAi denote the universe of
F(i). We assume thatAi ∩Aj = ∅ wheneveri 6= j ; this assumption is made only in order
to simplify the construction given below.

Let F be a free algebraic system inK with
⋃
(Ai : i ∈ obj(J)) as the set of free

generators. Fori, j ∈ obj(J) and an arrowu : i −→ j in J, we set

Di(≈) = {(c, fF (c1, . . . , ca(f )) : c, c1, . . . , ca(f ) ∈ Ai, c = fF(i)(c1, . . . , ca(f )),

andf ∈ F }
Eu = {(c,F(u)(c)) : c ∈ Ai}.

Next, we set

H(≈) =
⋃
(Di(≈) : i ∈ obj(J)) ∪

⋃
(Eu : u is an arrow inJ) and

H(r) =
⋃
(rF(i) : i ∈ obj(J)) for r ∈ R.

Notice thatH is anR+-indexed family onF .
For i ∈ obj(J), we defineϕi : F(i) −→ F/2K (H) by

ϕi(x) = [x]2K (H) for x ∈ Ai.
A routine verification shows thatϕi : F(i) −→ F/2K (H) is aK -morphism.

PROPOSITION 5.2.F/2K (H) together with(ϕi : F(i) −→ F/2K (H) : i ∈
obj (J)) is a colimit ofF : J −→ K .

Proof. That(ϕi : F(i) −→ F/2K (H) : i ∈ obj(J)) is a cone ofF is obvious.
Let (ψi : F(i) −→ A : i ∈ obj (J)) be a cone ofF. Letγ : F −→ A be aK -morphism

satisfyingγ (a) = ψi(a) for eacha ∈ Ai and eachi ∈ obj(J). It is obvious thatγ exists
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and is uniquely determined by the family(ψi : i ∈ obj(J)). Define anR+-indexed family
E onF as follows:

E(≈) = {(x, y) : γ (x) = γ (y)} and

E(r) = {(x1, . . . , xa(r)) : (γ (x1), . . . , γ (xa(r))) ∈ rA} for r ∈ R.
We claim

(i) 2K (H)(≈) ⊆ E(≈)
(ii) 2K (H)(r) ⊆ E(r) for r ∈ R.

From the definitions ofH(≈) andH(r), the definition ofγ , and from the assumption
that (ψi : F(i) −→ A : i ∈ obj(J)) is a cone ofF it follows thatH(≈) ⊆ E(≈) and
H(r) ⊆ E(r) for r ∈ R. We conclude that (i) and (ii) hold.

Defineσ : F/2K (H) −→ A by

σ([x]2K (H)) = γ (x).

By Claim (i), σ is well-defined. Obviously,σ preserves operations. By Claim (ii), it also
preserves relations. Thusσ is a homomorphism.

For i ∈ obj(J) anda ∈ Ai , we haveσ ◦ ϕi(a) = σ(ϕi(a)) = σ([a]θK (H)) = γ (a) =
ψi(a). The uniqueness ofσ is easy to establish. ThusF/2K (H) together with(ϕi :
F(i) −→ F/2K (H) : i ∈ obj (J)) is a colimit ofF. ¨

Let ϕ : A −→ B be aK -morphism. LetC be the subsystem ofB determined byϕ(A),
that is

C = (ϕ(A), {fB : f ∈ F }, {rB ∩ ϕ(A)a(r) : r ∈ R}.

Define anR+-indexed familyImϕ onϕ(A) as follows:

(Imϕ)(≈) = {(c, c) : c ∈ C} and

(Imϕ)(r) = ϕ(rA) for r ∈ R.
We have

LEMMA 5.3. 2K (Imϕ)(≈) = (Imϕ)(≈).

Proof. Let (a1, a2) ∈ 2K (Imϕ)(≈). Then, by 5.1,

(ti1(b), . . . , tia(ri )
(b)) ∈ (Imϕ)(ri) for i < k, where 0ϕ(A) = Imϕ, and

(t1(b), t2(b)) = (a1, a2)
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for some quasi-identity∀x[
∧
i<k ri(ti1(x), . . . , tia(ri )

(x)) H⇒ t1(x) ≈ t2(x)] valid in K and

a sequenceb of elements inC. Since(Imϕ)(≈) = {(c, c) : c ∈ C} and(Imϕ)(ri) ⊆ rC ,
we have

(ti1(b), . . . , tia(ri )
(b)) ∈ rC for i < k.

As the above quasi-identity is valid inC becauseC ∈ K , we obtaint1(b) = t2(b) and,
consequently,a1 = a2. Thus2K (Imϕ)(≈) ⊆ (Imϕ)(≈). The converse inclusion is
obvious. ¨

It follows from 5.3 thatC/2K (Imϕ) is of the form

(ϕ(A), {fB : f ∈ F }, {2K (Imϕ)(r) : r ∈ R})
and, as2K (Imϕ) is aK -congruence onC, the system belongs toK . In what follows it will
be denoted byM(Imϕ,B).

Let E(K ) andM(K ) denote the classes of allK -homomorphismsϕ : A −→ B such
thatB coincides withM(Imϕ,B) andψ : C −→ D such thatψ is injective, respectively.
Notice that every member ofE(K ) is a surjective map.

A factorization system(E,M) for K consists of some categoryE of K -epimorphisms
and some categoryM of K -monomorphisms such that, for everyK -morphismf , there
exists a decompositionf = m◦ewith e ∈ E andm ∈ M, and thediagonalization property
holds (that is, forh ◦ e = m ◦ k with e ∈ E andm ∈ M, g ◦ e = k andm ◦ g = h for some
K -morphismg).

PROPOSITION 5.4.(E(K ),M(K )) is a factorization system forK .

Proof. Let ϕ : A −→ B be aK -homomorphism. Defineρ : A −→ M(Imϕ,B)
andψ : M(Imϕ,B) −→ B by ρ(x) = ϕ(x) for x ∈ A andψ(x) = x for x ∈ ϕ(A).
SinceM(Imϕ,B) ∈ K , ρ andψ areK -morphisms. Obviously,ϕ = ψ ◦ ρ, proving that
(E(K ),M(K )) has the factorization property.

To prove that(E(K ),M(K )) has the diagonalization property, letϕ : A −→ B, σ :
A −→ C, ρ : B −→ D, ψ : C −→ D beK -morphisms such thatϕ is in E(K ), ψ is in
M(K ), andρ ◦ ϕ = ψ ◦ σ . Sinceψ is injective,Ker ϕ ≤ Ker σ . So, the mapε : B −→ C
is well-defined, whereε(x) = σ(y), y ∈ A andϕ(y) = x. The facts thatε preserves
operations,ε ◦ ϕ = σ , andψ ◦ ε = ρ are obvious; they follow from the definition ofε. We
show thatε preserves relations which will complete the proof.

Let r ∈ R and(c1, . . . , ca(r)) ∈ rB. As ϕ is in E(K ), B coincides withM(Imϕ,B).
This, by 5.1, implies

(ti1(b), . . . , tia(ri )
(b)) ∈ (Imϕ)(ri) for i < k, where 0ϕ(A) = Imϕ, and

(t1(b), . . . , ta(ri )(b)) = (c1, . . . , ca(r))
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for some quasi-identity

Q : ∀x[
∧
i<k

ri(ti1(x), . . . , tia(ri )
(x)) H⇒ r(t1(x), . . . , ta(r)(x))]

valid in K and a sequenceb of elements inB. Let d be a sequence of elements ofA such
thatϕ(d) = b. Sinceϕ preserves terms, we have

(ϕ(ti1(d)), . . . , ϕ(tia(ri )
(d))) ∈ (Imϕ)(ri) for i < k and

(ϕ(t1(d)), . . . , ϕ(ta(r)(d))) = (ϕ(z1), . . . , ϕ(za(r))),

wherez1, . . . , za(r) are elements ofA such thatϕ(zi) = ci for i = 1, . . . , a(r). Recall that
(Imϕ)(≈) = {(b, b) : b ∈ B} and(Imϕ)(r) = ϕ(rA) for r ∈ R. Thus, for eachi < k,
there is(yi1, . . . , yia(ri ) ) in riA such thattij (d) ≡ yij (Kerϕ) for 1 ≤ j ≤ a(ri). ButKerϕ ≤
Ker σ . Sotij (d) ≡ yij (Ker σ) for 1 ≤ j ≤ a(ri) andtj (d) ≡ zj (Ker σ) for 1 ≤ j ≤ a(r).
Asσ is aK -morphism and(yi1, . . . , yia(ri ) ) ∈ riA , we obtain(ti1(σ (d)), . . . , tia(r) (σ (d))) ∈
riC . But the quasi-identityQ is valid in C. So (t1(σ (d)), . . . , ta(r)(σ (d))) ∈ rC . Thus
(σ (z1), . . . , σ (za(r))) ∈ rC , that is (ε(c1), . . . , ε(ca(r))) ∈ rC , proving thatε preserves
relations. ¨

A family (ϕi : Ai −→ B : i ∈ I ) of K -morphisms is called asink in K . A sink (ϕi :
Ai −→ B : i ∈ I ) in K is said to be anE(K )-sinkif, for every sink(ψi : Ai −→ C : i ∈ I )
in K and everyK -morphismσ : C −→ B, ϕi = σ ◦ ψi for all i ∈ I implies thatσ is in
E(K ).

Let (ϕi : Ai −→ B : i ∈ I ) be a sink inK . LetC be the subalgebra ofalg(B) generated
by

⋃
(ϕi(Ai) : i ∈ I ). Let Im

⋃
ϕi denote the followingR+-indexed family onC:(

Im
⋃
ϕi

)
(≈) = {(c, c) : c ∈ C} and(

Im
⋃
ϕi

)
(r) =

⋃
(ϕi(rAi

) : i ∈ I ) for r ∈ R.

One may verify as in the proof of 5.3 that2K (Im
⋃
ϕi)(≈) = (Im

⋃
ϕi)(≈). This gives

that the quotient systemC/2K (Im
⋃
ϕi) coincides with(

C, {fB : f ∈ F },
{
2K

(
Im

⋃
ϕi

)
(r) : r ∈ R

})
.

In what follows the system will be denoted byM(Im
⋃
ϕi,B).

LEMMA 5.5. A sink inK (ϕi : Ai −→ B : i ∈ I ) is anE(K )-sink iffB coincides with
M(Im

⋃
ϕi,B).
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Proof. Consider the cone(ψi : Ai −→ M(Im
⋃
ϕi,B) : i ∈ I ), whereψi(x) =

ϕi(x) for x ∈ Ai , and theK -morphismσ : M(Im
⋃
ϕi,B) −→ B, whereσ(x) =

x for x in M(Im
⋃
ϕi,B). If (ϕi : Ai −→ B : i ∈ I ) is an E(K )-sink, thenσ

belongs toE(K ). In particular,σ is the identity map onB and rB = 2K (Imσ)(r) for
r ∈ R. But2K (Imσ) = 2K (2K (Im

⋃
ϕi)) and, as2K (2K (Im

⋃
ϕi)) = 2K (Im

⋃
ϕi),

2K (Imσ) = 2K (Im
⋃
ϕi). ThusB coincides withM(Im

⋃
ϕi,B).

Assume now thatB coincides withM(Im
⋃
ϕi,B). Let (ψi : Ai −→ C : i ∈ I ) be a

sink in K andσ : C −→ B be aK -morphism such thatψi ◦ σ = ϕi for all i ∈ I . Notice
thatσ(C) coincides withB. Define

(Imσ)(≈) = {(b, b) : b ∈ B} and

(Imσ)(r) = σ(rC) for r ∈ R.

Notice that(Imσ)(≈) = 2K (Im
⋃
ϕi)(≈) and, forr ∈ R,

(
Im

⋃
ϕi

)
(r) ⊆ (Imσ)(r) ⊆ 2K

(
Im

⋃
ϕi

)
(r).

This gives that2K (Imσ) = 2K (Im
⋃
ϕi)which, in turn, implies thatM(Imσ,B)coincides

with M(Im
⋃
ϕi,B). ThusM(Imσ,B) coincides withB, showing thatσ is in E(K ). ¨

We say that(E(K ),M(K )) factorizes sinksin K if, for every sink inK (ϕi : Ai −→
B : i ∈ I ) there exist anE(K )-sink (ψi : Ai −→ C : i ∈ I ) andσ : C −→ B in M(K )
such thatϕi = σ ◦ ψi for all i ∈ I .

PROPOSITION 5.6.

(i) (E(K ),M(K )) factorizes sinks inK ;
(ii) If F : G −→ K is a functor, thenF¹G maps everyE(G)-sink inG to anE(K )-sink.

Proof. (i) As C, takeM(Im
⋃
ϕi,B), asψi , takeψi(x) = ϕi(x) for all x ∈ Ai , and, as

σ , takeσ(x) = x for all x in M(Im
⋃
ϕi,B). Obviously,σ : M(Im

⋃
ϕi,B) −→ B is in

M(K ) and, by 5.5,(ψi : Ai −→ M(Im
⋃
ϕi,B) : i ∈ I ) is anE(K )-sink.

(ii) Notice that amongG-morphisms of anE(G)-sink in G at least one must be an
isomorphism. Thus the image of the sink byF must be anE(K )-sink. ¨

It follows from Propositions 5.2, 5.4, and 5.6 that ifK a finite-to-finite universal quasi-
variety of algebraic systems, thenK together withE(K ) andM(K ) satisfies the assump-
tions of Proposition 2.4. Thus, for every finite-to-finite universal quasivariety of algebraic
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systemsK there exists a finite-to-finite and full embeddingΦ : G −→ K such that
Φ(f ) : Φ(G) −→ Φ(H) is onto wheneverf : G −→ H is a strong morphism inG.

6. Posets with constants (Corollary 1.4)

In [5], it was proved thatPn is finite-to-finite universal iffn ≥ 2. Clearly,P0 has precisely
two subquasivarieties (itself and the trivial quasivariety). Thus, by Theorem 1.1, the proof
of Corollary 1.4 will be completed if we show thatL(P1) is a finite lattice.

For a finite non-trivial algebraic systemA, let A0, . . . , An−1 denote the set of all
proper subsystems ofA. ThenA is critical providingA 6∈ Q(A0, . . . , An−1) = ISP
(A0, . . . , An−1). In particular,(P ; ≤, p) in P1 is not critical providing, for everyx, y ∈ P
with y 6≤ x, there exist a proper subsystemQ of P and an order-preserving mapϕ : P −→
Q such thatϕ(p) = p andϕ(y) 6≤ ϕ(x). A quasivariety of relational systems and, hence,
any subquasivariety ofP1, is generated by its critical relational systems. Thus, classification
of the critical relational systems ofP1 will lead automatically to a determination ofL(P1).

Let (P1; ≤, p) denote the trivial algebraic system inP1. With the preceding remarks
in mind, let (P ; ≤, p) be a critical relational system inP1. We will show that, for some
2 ≤ i ≤ 7, (P ; ≤, p) is isomorphic to(Pi; ≤, p) whereP2 = P3 = P4 = {p, a} with
a ≤ p in P2 andp ≤ a in P4, andP5 = P6 = P7 = {p, a, b} wherea ≤ b in P5, a ≤ b, p

in P6, andb, p ≤ a in P7.
Suppose that bothP2 andP4 are subsystems of(P ; ≤, p). For anyx, y ∈ P with y 6≤ x,

there exists an order-preserving mapϕ onto any 2-element chain inP with ϕ(y) 6≤ ϕ(x).
In particular, depending on the value ofϕ(p), ϕ may be considered as a morphism fromP
to P2 or P4 and, so,P is not critical.

Assume then that eitherP2 or P4 is not a subsystem ofP . If P6 is a subsystem (and,
so,P4 is not a subsystem), then, fory 6≤ x, if y ≤ p let ϕ([y)) = p andϕ(P \[y)) = a,
and if y 6≤ p let ϕ([y)) = b, ϕ(([y)]\[y)) = a andϕ(P \([y) ∪ ([y)])) = p. Either way,
we conclude thatP = P6. A similar argument shows thatP = P7 in the event thatP7 is a
subsystem ofP .

Assume then that neitherP6, norP7, nor one ofP2 orP4 is a subsystem ofP . Suppose,
P2 is a subsystem. IfP = (p], then, fory 6≤ x, let ϕ(P ) −→ P2 be given byϕ((x]) = a

andϕ(P \(x]) = p. It follows thatP = P2. If P 6= (p], thenP3 is a subsystem ofP . For
y 6≤ x, ϕ as just defined will serve unlessx = p. In which case, letϕ : P −→ P3 be given
by ϕ((p]) = p andϕ(P \(p]) = a. SinceP is critical, this situation can not arise. Thus,
we conclude thatP = P2 if P2 is a subsystem. A similar argument holds shouldP4 be a
subsystem.

Should neitherP2 norP4 be subsystems ofP , then, for non-trivialP , eitherP contains
a 2-element chain and we conclude thatP = P5 or elseP = P3.

In summary, any critical system inP1 is of the formPi for some 2≤ i ≤ 7.
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Since the only proper subsystems ofP2,P3, andP4 are trivial,Pi is critical for 2≤ i ≤ 4.
For any homomorphismϕ fromP5 to a proper subsystem of itself,ϕ(a) = ϕ(b) and, so, it
too is critical. Finally,ϕ(b) is comparable withp for any homomorphism fromP6 orP7 to
a proper subsystem of itself and, so,P6 andP7 are also critical.

By the above,(Pi; ≤, p) for 2 ≤ i ≤ 7 is a complete description of the critical relational
systems ofP1.

Clearly, Q(P1) is covered byQ(Pi) for 2 ≤ i ≤ 4 andQ(P3) is covered byQ(P5).
However, since|ϕ(Pi)| = 1 for any homomorphismϕ : Pi −→ P5 with i = 2 or 4,
Q(P2) andQ(P4) 6⊆ Q(P5). Likewise,|ϕ(P2)| = 1 if ϕ : P2 −→ P7 and|ϕ(P4)| = 1 if
ϕ : P4 −→ P6. Thus,Q(P2) 6⊆ Q(P7)andQ(P4) 6⊆ Q(P6). SinceP5 ∈ Q(P6)andQ(P7),
Q(P2)∨Q(P3) = Q(P2)∨Q(P5), Q(P4)∨Q(P3) = Q(P4)∨Q(P5),P6 ∈ Q(P2)∨Q(P4),
andP7 ∈ Q(P2) ∨ Q(P4), we conclude the following.
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Figure 6

PROPOSITION 6.1.L(P1) is diagrammed by Figure6.
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