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Finite-to-finite universal quasivarieties are Q-universal

M. E. ADAMS AND W. DZIOBIAK

Dedicated to the memory of Viktor Aleksandrovich Gorbunov

Abstract. LetK be a quasivariety of algebraic systems of finite tyldeis said to beuniversalif the categoryG
of all directed graphs is isomorphic to a full subcategori ofif an embedding o6& may be effected by a functor
F : G — K which assigns a finite algebraic system to each finite graph, Khensaid to befinite-to-finite
universal.K is said to beQ-universalif, for any quasivariety of finite type,L (M) is a homomorphic image of
a sublattice of_.(K), whereL (M) and L (K) are the lattices of quasivarieties containedlirandK, respectively.

We establish a connection between these two, apparently unrelated, notions by showing ttsafirfite-
to-finite universal, therK is Q-universal. Using this connection a number of quasivarieties are shown to be
Q-universal.

1. Introduction

An algebraic system of finite type a nonvoid set which admits a finite family of oper-
ations and relations. It is aalgebraif it admits no relations and eelational systenif it
admits no operations.

For a clasK of algebraic systems of similar type, laK), H(K), S(K), P(K), and
Pu(K) respectively denote the classes of all isomorphic algebraic systems, homomorphic
images, subsystems, products, and ultraproducts of algebraic syst&maiiclassK is
aquasivariety provided K = ISPP,(K) (equivalently,K is a universal Horn class that
contains a trivial algebraic system) and isariety providedK = HSP(K) (thus, every
variety is a quasivariety). For further information on quasivarieties see Section 2 and, more
generally, Gorbunov [11].

A quasivariety of algebraic systeri{sis universalif every category of algebras of finite
type (or equivalently, as shown by Pultr [23], Hédrand Pultr [16] and Vognka, Hediin,
and Pultr [28], the categorg of all directed graphs) is isomorphic to a full subcategory
of K. If an embedding ofc may be effected by a functér : G — K which assigns a
finite algebraic system to each finite graph, tKers said to bdinite-to-finiteuniversal. Of
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particular interest for a universal quasivari&tys the fact that, for every monoit!, there
exists a proper class of non-isomorphic algebraic systems belonglgetich of which

has an endomorphism monoid isomorphido If K is finite-to-finite universal, then, in
addition, for a finite monoid/, there exists infinitely many non-isomorphic finite algebraic
systems inK with the preceding property. The literature on universal quasivarieties is
extensive and many familiar (quasi)varieties of algebraic systems are known to be finite-
to-finite universal. For a detailed background see Pultr and Ténk24]. More recent
results include, for example, a complete characterization of all varieti€3 df-lattices

that are finite-to-finite universal as given by Gatk] Koubek, and Sichler in [9]. Their
result represents the conclusion of a long sequence of papers beginning atiterGmnd
Sichler [14] (see [9] and the references therein).

For a quasivarietK, let L(K) denote the lattice (ordered by inclusion) of all quasi-
varieties contained iK. A quasivarietyK of algebraic systems of finite typed®-universal
providing that, for any quasivarietyl of finite type,L(M) is a homomorphic image of a
sublattice ofL (K). Sapir introduced the notion in [25] where he showed that the variety of
commutative 3-nilpotent semigroups@suniversal. In [1], it was shown that the existence
of a family of finite members in a quasivariely satisfying a set of conditions denoted
(P1)—(P4) (see Section 2) is sufficient to guarantee that the ideal lattice of a free lattice with
o free generators is embeddablditK ) which, in turn, is sufficient to ensure thidtis O-
universal. An alternative set of conditions guaranteghgniversality of a quasivariety is
given in Gorbunov [10]. As a consequence, a number of quasivarieties of familiar algebras
were thereby seen to li@-universal (for details, see [1] and [10]).

The principal aim of this paper is to establish the following.

THEOREM 1.1. If K is a finite-to-finite universal quasivariety of algebraic systems of
finite type, therK is Q-universal.

By Theorem 1.1, the following theorem of Sizg immediate.

COROLLARY 1.2. (Sizy[26]) The quasivariety of directed grapi&is Q-universal.

We will consider the quasivariety of undirected graphs elsewhere and, in particular, there
answer a problem of Kravchenko [20] by showing that the quasivariety of undirected graphs
is alsoQ-universal.

At the risk of gross over simplification, for @-universal quasivarieti{, amongst the
most interesting properties are that the free latticerdree generators is embeddable into
L(K) (and, hencel.(K) fails to satisfy any non-trivial lattice identity) and tHat(K )| = 2*.

We remark that, for any finite-to-finite universal quasivari€tyit is not difficult to see that
|[L(K)| = 2*. Thus, of principal interest for finite-to-finite universal quasivarietfes
of finite type is that a free lattice ol free generators is embeddable i@ ) which,
therefore, fails to satisfy any non-trivial lattice identity. In fact, what will follow from
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the proof of Theorem 1.1 is that the ideal lattice of a free latticeodnee generators is
embeddable int@ (K) wheneveK is finite-to-finite universal and of finite type.

As stated above, many quasivarieties of algebraic systems are known to be finite-to-
finite universal. For example, from Hedrland Pultr [16] and Theorem 1.1, we obtain the
following.

COROLLARY 1.3. (Gorbunov [10]For n > 2, the quasivarietyA,, of all algebras
with n unary operations ig)-universal.

Even though, as observed in [18]; is not finite-to-finite universal (in fact, not univer-
sal), Kartashov [17] showed that the free latticeudfree generators is embeddabld.itA ).
Later this was strengthened by Gorbunov [10] who showedAhés alsoQ-universal.

Applying a result of [5] and Theorem 1.1, we also obtain the following.

COROLLARY 1.4. The quasivariety, of all posets with: distinguished constants is
Q-universal iffn > 2.

We remarkthatin [5]itwas also shown that the quasivari@&iasof bounded distributive
lattices withn distinguished constants amy, of distributive lattices with: constants are
finite-to-finite universal iffn > 2 andn > 3, respectively. Corresponding results for
Q-universality have already been established in [2].

From a result of Gorélk, Koubek, and Sichler [9] and Theorem 1.1, we conclude the
following.

COROLLARY 1.5. The following hold

(i) ifavarietyV of (0, 1)-lattices contains a finite non-distributive simp 1)-lattice,
thenV is Q-universaj
(i) avarietyV of modular(0, 1)-lattices isQ-universal iffM3 belongs tov.

By inspecting the construction of the functor given in [9] for a varietyf bounded
(0, 1)-lattices to be finite-to-finite universal one can obtain a stronger corollary than
Corollary 1.5(i). Namely, if aquasivarietyV of (0, 1)-lattices contains a finite non-
distributive simple(0, 1)-lattice, thenV is Q-universal.

Compare 1.5 (ii) with the analogous result established in [8] (cf. [1]): a va¥iebf
modular lattices i®-universal iff Mz 3 belongs tov/. Note that, for a variety of modular
(0, 1)-lattices or modular lattices, if Mlor M3 3 ¢ V, respectively, then the lattice of
quasivarieties contained W forms a countable chain.

For other examples of universal quasivarieties to which Theorem 1.1 can be applied we
refer the reader to Demlavand Koubek [6], Koubek [18], Hedn and Pultr [15] and [16],
as well as Pultr and Trnk@v[24].
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As illustrated byA1, the converse implication to Theorem 1.1 does not hold. This
is not an isolated example. Another is given in Tropin [27] (cf. [1] and [7]) where it is
shown that the variety of pseudocomplemented distributive lattic@susiversal but, as
observed in [4], it is not finite-to-finite universal. Here too it is the case that the variety of
pseudocomplemented distributive lattices is not actually universal albeit, in a sense that can
be made precise, it is almost universal (see [4]).

2. ldea of the proof of Theorem 1.1

For a clasK of algebraic systems of similar type, [8tK) denote the quasivariety gen-
erated byK (the smallest quasivariety to contaif): in general,Q(K) = ISPPy(K).
If K has only finitely many members, s& = {Ao, ..., A,_1}, then we may write
Q(Ag, ..., A,_1) rathertharQ({Ao, ..., An_1)}).

For a setl, we shall denote by, (1) the set of all finite subsets @f

Assumel is an infinite set of cardinality and consider an infinite familyAy : W €
Psin(1)) of finite algebraic systems of similar type that satisfy the following conditions,
whereX, Y, andZ € Pin(1):

(P1) Ay is a trivial algebraic system;

(P2) if X =Y U Z,thenAx € Q(Ay, Ayz);

(P3) if X £ andAyx € Q(Ay), thenX =Y;

(P4) if Ax is a subsystem aB x C for finite B andC € Q({Aw : W € Psin(1)}), then
there existt andZ with Ay € Q(B), Az € Q(C),andX =Y U Z.

Note that atrivial algebraic systemA is one whose domain consists of exactly one
element, say, such that, for each functiofi, f(a, ..., a) = a and, for each relatio®,
(a,...,a) € R.

The method used in this paper for proving that a quasivarie®rimiversal is based on
the following proposition which was proved in [1] for algebras. However, a straightforward
inspection of the proof given in [1] shows that the proposition is also true for algebraic
systems. An alternative method is given in Gorbunov [10].

PROPOSITION 2.1If K is a quasivariety of algebraic systems of finite type that con-
tains an infinite family of finite members satisfy{id) — (P4, then the ideal lattice of a free
lattice with w free generators is embeddableiK). In particular, L(K) is Q-universal
and, therefore, fails every non-trivial lattice identity and is of cardinality

Let R denote the quasivariety of commutative rings with a unit. In particular, each
member(R; +, -, —, 0, 1) of R has type(2, 2, 1, 0, 0). LetK; denote the full subcategory
of K consisting of all finite systems &f.

A map between two directed graphs is said to lsrang morphismn G if it is onto
both on vertices and on edges.
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Applying the functors used by Hednland Pultr [16] and [23] to show that every category
of algebras of finite type is isomorphic to a full subcategoryGoive will establish the
following in Section 3.

PROPOSITION 2.2.There exists a functof that fully embeds the categoB; into
the categoryGs such that, whenevep : A —> B is an onto morphism iR¢, then
F(p) : F(A) — F(B) is a strong morphism iiG;.

Next, using Proposition 2.1 we will prove the following in Section 4.

PROPOSITION 2.3.LetK be a quasivariety of algebraic systems of finite type. If the
categoryR; is isomorphic to a full subcategory Kf; by a functor- : Ry — K; for which
every homomorphis(g) : F(A) — F(B) is onto whenevep : A — B is onto, then
K is Q-universal.

Let G denote the full subcategory &f that is determined by the following two objects:
the singleton void graply = ({0}, #) and the two-element grapfi = ({0, 1}, {(0, 1)});
morphisms irG are mappings that preserve edges.4(&) denote the class of morphisms
in G that are strong (see above) afdl(G) the class of morphisms i that are injective.

To complete the proof of Theorem 1.1, we will need a proposition which is a particular
case of Theorem 1.2 established in Koubek and Sichler[19]. In order to state the proposition,
some categorical notations are required.

For a categorK, letF : J — K be adiagramin K, that is a functor from an index
categoryd toK. A coneof F is an object3 of K together with a family(y; : F(i) — B :

i € obj(J)) of K-morphisms such that, for every arrew i — jinJ, ¥; = ;oF(u). A

colimit of a diagranF : J — K isa coneg(y; : F(i) — B : i € obj(J)) of F such that,
for every other conéy; : F(i) — C : i € obj(J)) of F, there exists a unique-morphism
o : B —> C such that, for every € obj(J), ¢; = o o ;. ThenK is cocompletgroviding
colimits of all diagrams irK exist.

A factorization systeni€, M) for K consists of some categoéyof K-epimorphisms
and some categort of K-monomorphisms such that, for evaymorphism f, there
exists a decompositiofi = moe with e € £ andm € M, and thediagonalization property
holds (that is, foti o e = m o k with e € £ andm € M, g oe = k andm o g = h for some
K-morphismg).

A family (¢; : A; — B :i € I) of K-morphisms is called ainkin K. A sink (¢; :
A; —> B: i € I)inK is said to be a# (K)-sinkif, for every sink(vy; : A; —> C: i € )
in K and evernyK-morphismo : C — B, ¢; = o o y; for all i € I implies thato is in
E(K).

Finally, (£(K), M(K)) factorizes sinkén K if, for every sink inK (¢; : A; — B :

i € I)there exist a€ (K)-sink (v; : A; —> C: i € I) ando : C — Bin M(K) such
thatyp; = o o y; foralli € 1.
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The following proposition is a particular case of Theorem 1.2 from Koubek and Sichler
[19]; that® is finite-to-finite follows from the proof of Theorem 1.2 given in [19].

PROPOSITION 2.4.Suppose thd is a cocomplete category of algebraic systems with
homomorphisms as morphisms and with a factorization sy&feov). If F: G — K
is a full embedding that is finite-to-finite, then there is a funebor G — K having the
following properties

(i) @ is finite-to-finite, full, and faithful
(i) if (£, M) factorizes sinks i and if F|G maps everg (G)-sink inG to an&(K)-
sink, then® (£(G)) C €.

We will show in Section 5 that, for a finite-to-finite universal quasivari€tgf algebraic
systems, all of the assumptions of Proposition 2.4 conceliage satisfied by a choice of
& and M whereby every member &f is also an onto map. Theorem 1.1 will then follow
from Propositions 2.4, 2.2, and 2.3. IndeedKdte a finite-to-finite universal quasivariety
of algebraic systems of finite type. By Proposition 204; G — K is afinite-to-finite full
embedding such that, for alf andH in G, ®(f) : ®(G) — ®(H) is onto whenever
f : G — H is strong inG. This, by Proposition 2.2, yields a finite-to-finite and full
embeddingD o F : Rf —> K; that satisfies the assumptions of Proposition 2.3. Thus, by
Proposition 2.3K is Q-universal.

3. Proof (Proposition 22)

For algebraic system4 and B of similar type, a mapping : A — B is ahomomor-
phismif ¢(c¢) = ¢ for each constani(f(ao, ..., a,-1)) = f(¢(ag), ..., ¢(a,—1)) for
each functionf of non-zero arity, ang(R) C R for each relationR. A homomorphism
¢ A — B is strongprovided that is onto and every relation iB is an image ofy of
the corresponding relation i, that is, if S is ann-ary relation inB and the corresponding
relation inA is R, thenS = {(¢(ap), ..., ¢(ay,—1)) : (ao, ...,a,—1) € R}. (In particular,
for an algebra, every onto homomorphism is strong.)

A directed graphs a pair(X; R) whereR C X x X. For directed grapheX; R) and
(Y; S) regarded as algebraic systems, a mapX — Y is compatibleproviding it is
a homomorphism (namely, fer, b € X, (¢(a), (b)) € S whenever(a, b) € R). Thus
G denotes category of all directed graphs together with all compatible maps. Clearly, the
categoryGs (all finite directed graphs) is a full subcategory®@f Recall (see above), a
compatible map : X — Y is strongif it is onto andS = {(¢(a), ¢ (b)) : (a, b) € R}.

For a given fixed finite type\, let A(A) denote the category of all algebras of tyfve
where morphisms are the usual homomorphisms. In Pultr [23] andiHeuirtl Pultr [16],
for any given fixed finite typeA, a sequence of functors are given to establish Afat)
is isomorphic to a full subcategory &. The objective of this section is to consider the
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functors given by them as applied A4 A), where throughout has the same fixed finite

type (2,1, 1,0, 0) asR, and thereby establish 2.2. We remark that in [23], Pultr operates
in a set theory that does not allow inaccessible cardinals. Even though this set theoretic
assumption was later removed in \dka, Hediih and Pultr [28], it in no way affects our
considerations since we are concerned only with

Following [16] (page 394), foA = {k; : 1 <i <n},letA* ={k;+1: 1<i <n}.

If R(A*) denotes the category of all relational systems of tewhere morphisms are
all maps which preserve the corresponding relationdtf then there exists a full and
faithful functorF; : A(A) — R(A*) given as follows. For an algebta; f1, ..., f,)in
A(A) and for each < i < n, define a relatiorR; by (ax, ..., ax,, ar+1) € R; in F1(A)
iff fi(a1,...,ar,) = ag+1in A. ThenF1(A) = (A; Ry, ..., R,). For a homomorphism
¢ :A—> BinA(A),Fi(p) = ¢.

Clearly, for a finite algebrai in A(A), F1(A) is a finite relational system. Clearly
too, if o : (A; f1,..., fu) — (B; f1,..., fn) is an onto homomorphism iA(A), then
F1(p) : F1(A) — F1(B) is a strong homomorphism R(A*).

To summarize, the functd¥; : A(A) — R(A*) is a full and faithful functor which
assigns a finite relational systemRfA*) to every finite algebra iA (A) and which assigns
to every onto homomorphism if8(A) a strong homomorphism R(A*).

Following [16] (page 394, the proof of Theorem 1), for a fixed givenAethich will
be specified below, IeA(A) denote the category of all unary algeb(as {f, : a € A})
where the morphisms are the usual homomorphisms. Then there is a full and faithful functor
F, : R(A*) — A(A) as now prescribed.

ForA*=1{k; +1: 1<i <n}, set

A={G j)r1<i<nandl<j =<k +1}U({1 23}

ThenF; is given as follows. FortX; Ry, ..., R,) an object ofR(A*), setFy(X) =
XUUUi} xR » 1<i <m)U{u, v} {fij: 1<i<nandl1l<j <k +1}U{f1, f2, f3})
whereu andv are disinct elements not belongingXoU | J({i} x R; : 1 <i <n)and

fiji, (0 1<1<k+1) = x; forall(x;: 1<I <k +1) €R,
fij(¢&) = u otherwise
f1¢) = u forall&,

v ifE#Ew,
f2(6) = {u it & = v,
_Ju ifEF#u,
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Given a morphisnp : X — Y in R(A*), let

Fa(e) (u)
Fa(p)(v) v,
Fa(p)(x) p(x) forallx € X, and
Fap)((G, (x5 11 <1<k +1)) = (,(p(x): 1 <1<k +1)
for(x;: 1<l <ki+1) €R;.

u?

Clearly, for a finite relational systeti of R(A*), F2(X) is a finite algebrd»(X) since
A* is finite. Suppose that : X —> Y is a strong homomorphism R(A*). We claim
thatFa (@) : F2(X) — Fa(Y)isontoinA(A). Sincey is onto, itis clear that U {u, v} C
F2()(X U {u, v}). Thus, to justify the claim it is only necessary to consider elements of
theform(i,(y;: 1<l <k;+1)forsomel<i<nand(y: 1<l <k;+1 €R;
inY. Asgisstrong,(y; : 1 <1 <ki+1 = (p(x)) : 1 <1 < k; +1) for some
(x;: 1<l<ki+1 eR;,. ButthenFa(p)(i, (x;: 1<l <k +1)=0(0(p(x)): 1<
[ <ki+1)=C(,(y:1=<I =<k +1)),showingF(¢) is onto as claimed.

To summarize, the functdt, : R(A*) — A(A) is a full and faithful functor which
assigns a finite algebra A A) to every finite relational system R(A*) and which assigns
to every strong homomorphism R(A*) an onto homomorphism iA(A).

Following [16] (page 394), for the set given in the definition of,, let R(A) denote
the category whose objects are relational systekhgR, : a € A}) where, fora € A,
R, € X x X and morphisms are the usual homomorphisms (namelyXfofR, : a € A})
and(Y;{R, : a € A}), ¢ : X —> Y is a homomorphism providing, for evetye A,
(p(x), p(y)) € R, inY whenever(x, y) € R, in X). Then there is a full and faithful
functorFs : A(A) — R(A) defined as follows. For a unary algelité; {f, : a € A})
in A(A), F3(X) = (X; {R, : a € A}) where, foralle € A andx, y € X, (x, y) € R, iff
fa(x) = y. Forahomomorphism : X — Y in A(A), F3(p) = ¢.

Clearly, for a finite algebr& in A(A), F3(X) is a finite relational system iR(A).
Equally obvious is the fact th&t3(¢) is an onto homomorphism iR(A) wheneverp :
X — Y is an onto homomorphism iA(A). Furthermore, if,(x, y) € R, in F3(Y)
for somea € A, theny = f,(x) inY. Sincep : X — Y is an onto homomorphism
in A(A), x = o(x’) andy = ¢(y) for somex’ andy’ in X with y = f,(x"). Since
', fa()) = (', y) € Ry in F3(X) and (x,y) = (p(x), (), Fa(p) is a strong
homomorphism iR (A).

To summarize, the functdes : A(A) — R(A) is a full and faithful functor which
assigns a finite relational systemR{A) to each finite algebra iA(A) and which assigns
to every onto homomorphism il(A) a strong homomorphism iR(A).

Following [23] (page 232, the proof of Theorem 2.5), @&t denote the category of all
directed graphéX; R) such thatx, x) ¢ R foranyx € X and, foreacly € X, (x,y) € R
for somex € X. Obviously,G, together with all compatible mappings is a full subcategory
of G. Then there is a full and faithful functéis : R(A) —> Ga. That functor, as given in
[23], will now be defined.
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SinceA isfinite, itis possible to choose afiniigid (in the sense that the only compatible
map from the graph to itself is the identity map) directed graphE) belonging tdG,; such
that|B| > |A| + 1. Let(B; E) denote some such fixed choice for which, in addition, the
length of any cycle iiB; E) is divisible by either 2 or 3. Lep;, for 1 < i < 4, be mutually
different primes each of which is distinct from 2 and 3. et | J(U; : 1 <i < 4) where,
forl<i<4,U; ={u;;: 1< j< p;}aresets of formally distinct elements. Since
|A| 4+ 1 < |B|, we may choose a one-to-one mappingA —> B andb, € B\« (A). For
i=12,setB; ={(b,i): b e B} anda; : A —> B; be given byy; (a) = (x(a), i).

For (X;{R, : a € A}) an object inR(A), let X, = {(x,y,a) : (x,y) € Ry},
Xa=UX,: ae A),andset

Fa(X) =(XUX4UUUB1UB2; R)

whereR € (XU X4 UU U By U B2) x (XU X4 UU U By U Bp) will now be specified.
R contains precisely the following elements:

(uij,ujjrpforl<i<d4andi<j<p —1L

(Ui, p;,uin) forl <i <4

(11, (b,1)) fori =1,2and(b, 1) € B1;

(ui1, (b, 2)) fori = 3,4 and(b, 2) € By;

(b, i), (b, i) fori = 1,2 and(b, b’) € E;

((bg,1),x)fori =1,2andx € X;

(x, (x, y, @), ((x, y,a), y), and(e;(a), (x, y, a))
fori=1,2, (x,y) € R, anda € A.

Given a homomorphismp : (X;{R, : a € A}) — (Y;{S, : a € A}) in R(A), let
Fa(p) : F4(X) —> F4(Y) in G4 be given by

Falp)(x) = o(x) forx € X,
Fa(p)((x,y,a)) = (o), ¢(y),a) forx,y e X anda € A,
Falp)(x) = x forx e UU B1 U Bs.

If X is afinite relational system iR(A), then, since botth and B are finite,X 4, B1,
and B; are finite. By the choice of/, X U X4 U U U B1 U By is finite and, in particular,
F4(X) is a finite directed graph i®;.

Lety : (X;{R,: a € A}) — (Y; {S, : a € A}) be anonto and strong homomorphism
in R(A), then it is to be shown that the compatible mapgigy) : Fa(X) — F4(Y) is
strong inGa.

SinceF4(p) is the identity onU U B1 U Bz and, forx € X, F4(¢)(x) = ¢(x), to see
that F4(¢) is onto, it is only necessary to consider element¥ of For (x, y,a) € Yq,
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(x,y) € S,. Sinceg is strong, there exist’,y’ € X such that(x’,y’) € R, and
(x,y) = (p(x), 9(y")). Thus,

Fal)((x, ¥, a)) = (p(x), 0(y), a)

= (x,y,a),

as required.

Similar to the above, to see thigj(¢) is strong, it is only necessary to consider edges
in F4(Y) that contain an element dofs. For (x, (x, y,a)) € Sin F4(Y), (x,y) € S,.
Sincep : X — Y is strong, (x,y) = (p&’),¢(y")) for some (x’,y") € R,.
Thus, (x', (x’, y',a)) € R while F4(p)(x") = ¢(x') = x and F4(p)((x, y',a)) =
(e(x"), o(y"),a) = (x,y,a), as required. Likewise, fof(x, y,a),y) € S in Fa(Y),
(x,y) € S; and(x,y) = (o), (y")) for some(x’, y') € R,. In particular, as to be
shown,F4(p)((x", ¥, a)) = (e(x"), (3", a) = (x,y,a) andF4(p)(y") = ¢(Y') = y.
Finally, for (¢;(a), (x, y,a)) € Swithi = 1,2, (x,y) € S, and, once more, there are
X',y e X with (x,y) = (p(x"), 9(y") and(x’, y") € R,. ThenF4(p)(ai(a)) = a;(a)
andF4(p)((x', y', a)) = (x, y, a), as desired.

To summarize, the functét, : R(A) — Gg is a full and faithful functor which assigns
a finite directed graph ifs, to each finite relational system R(A) and which assigns a
strong compatible map 65 to every strong homomorphism Ri(A).

Thus, as shown above, the functer A(A) —> Gj given by

F=F40F30F20F;

is a full and faithful functor such that a finite algebrafdifA) is assigned to a finite directed
graph inG; and an onto homomaorphism &(A) is assigned to a strong compatible map
in Ga. SinceR is a full subcategory oh(A) andGg is a full subcategory oB, the functor

F : Rf — Gs establishes Proposition 2.2, thereby completing this Section.

4. Proof (Proposition 23)

The aim of this section is to establish Proposition 2.3.

A homomorphismy is anembeddingf A into B if it is one-to-one and, for every
n-ary relationR in A and its corresponding relatioin B, for all ag, ..., a,-1 € A,
(ao, ...,ay—1) € RIff (p(ag), ..., p(ay—1)) € S. A isembeddable int® if there is an
embeddingy of A into B. An isomorphismis an onto embedding. IA € B and the
identity mapping is an embedding dfinto B, thenA is asubsystenof B. Moreover, if
¢ . A —> Bis ahomomorphism, then the subsystenBafetermined by (A) is called a
homomorphic image of under ¢ and is often denoted dyn(e).

Let B and(B; : i € I) be algebraic systems of similar type aqf : i € I) be
a family of homomorphisms such that, fore I, f; : B — B;. We shall denote by
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(fi + i € I) the homomorphism fronB into [ [(B; : i € I) defined as follows: fox € B,
mi((fi + i € I)(x) = fi(x) for all i € I, wheren; denotes the projection map from
[1(B; : i € I) ontoB;. In particular, fori € I, 7; o (f; : i € I) = f;, that is the diagram
of Figure 1 commutes.

[1B;:iel

Figure 1

Throughout this section, lé&€ be a quasivariety of algebraic systems of finite type and
F : Ry — K} be a full and faithful functor for whiclir(¢) : F(A) — F(B) is an onto
homomorphism whenever: A — B is onto.

Using the functof we will define a family(Aw € K; : W € Pjn(1)) that satisfies
(PD)—(P4 of Section 2 for a suitable countably infinite detwith this in mind, we pause
to considerRs.

For a primep, let (Z,; +, -, —, 0, 1) denote the ring of integers modujo SinceZ,
is simple and the unit is a constant, the only endomorphisii,af the identity map. In
particular, for a primey, if ¢ : Z, — Z, is a homomorphism, thep = ¢ andg is the
identity.

SinceR has the Fraser-Horn property (namely, for Bj, R1 € R, whenever® is a
congruence relation oRg x R1, there exist congruence relatioBg and®1 on Rg andR1,
respectively, such th& is of the form®g x ®1), the following is immediate.

LEMMA 4.1. LetK U {p} be afinite set of prime numbers.df [[(Z; : i € K) —
Z, is a homomorphism, them € K andg = m,, wherer, is the p-th projection.

LEMMA 4.2. LetK andJ be finite sets of prime numbers.df [[(Z; : i € K) —
]‘[(Z?j . j € J)is ahomomorphism, wherg > 1forall j € J,then(i) J C K; (ii) if ¢
is one-to-one, thel C J.

Let 7 be some fixed infinite set of prime numbers. We now define a suitable family
(Aw € K¢ : W € Pin(I)). Recall thatPs, (1) denotes all finite subsets of the det
Obviously, as required by conditi@gR 1), Ay is defined to be a trivial algebraic system from
K. Ford # W € Pin(I), Aw is defined as the homomorphic imageef [(Z; : i € W))
in[](F(Z;) : i € W) under the homomorphistf-(z;) : i € W).
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Fory # W e Psn(I), some words of clarification on the definition dfy, are in
order. Since the-th projections; : [[(Z; : i € W) — Z; is a ring homomorphism
for eachi € W, the homomorphisni(sr;) assigned tor; sends the algebraic system
F(](z; : i € W)) into the algebraic systef(Z;). In other words, for eache W, we
have a homomorphism

F(r) @ F (]_[(z,» e W)) — F(Z)).
As such there is a well-defined homomorphism
(Fmi): i e W) F (H(Zi Cie W)) — [[F@):iew.

By definition, Ay is the homomorphic image 6% [(Z; : i € W) In[[(F(Z;): i € W)
under this homomorphism. In particulatyy is a substructure of[(F(Z;) : i € W),
which we denote bAw < [[(F(Z;) : i € W), whose operations and relations are defined
as follows: if f is ann-ary operation for some > 1, then, forag, a1, ..., a,-1 € Aw <
[1Fz):iew,

flao, ay, ..., a,_1)(0) = f(ao(@), a1(@), ..., ay—10)),

wherei € W; if R is ann-ary relation for some > 1, then forag, a1, ...,a,-1 € Ay <

[[(F(Zi):ieWw),
(ag, a1, ...,an—1) € Rin Ay iff (ap(i), a1(i), ..., a,_1(0)) € RinF(Z;)
for eachi e W.

F(m;)
F(H(Zi ciew) —  F(Z)

(F(my): i e W) \ /

Aw <TI(F(Z;): i e W)

Figure 2

Observe that, fof € W, 7; o (F(r;) : i € W) = F(r;). In particular, the diagram of
Figure 2 commutes.
Condition(P2 follows from the next lemma.
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LEMMA4.3. LetX,Y,andZ € Pin(I). If X = Y U Z, thenAy is embeddable in
Ay X Az.

Proof. SinceAy is atrivial algebraic system, we may assume that ¢ andZ # . Let
ay [1(Zi:ieX) —[[(Z:ieY)yandnz :[[(Zi: i e X) — [[(Zi: i € Z)
denote suitable projections of the rif§(Z; : i € X). Letzwy : [[(F(Z): i € X) —
[I(F(Z) : i e Y)andZz : [[(F(Z) : i € X) — [[(F(Z;) : i € Z) denote suitable
projections of the algebraic systgf(F(Z;) : i € X). See Figure 3.

F(ry) F(rz)
FQIZi:ieY) «——  FJZi:ieX) —— v F(IZ:ic2)

(F(r)tieY) (F(j) 1 i € X) (F(r;) : i € Z)
Ay < Ty Ax < Ty Az <
[I(F(Z):ieY) [I(F(Z):ieX) [I(F(Z):ieZ)
Figure 3

SinceX = YU Z, fora,b € [[(F(Z;) : i € X), a = biff Ay(a) = 7y(b) and
7z (a) = Tz (b). Thus, in order to show thaty is embeddable idy x Az, it is sufficient
to show the following:

() #r(Ax) C Ay andiz(Ax) C Az;

(ii) if R is ann-ary relation from the type oK andag, ai, ..., a,—1 are elements of
Ax, then(ag, a1, ..., a,-1) € Rin Ax whenever(7y (ao), 7z(ao)), (Ty(a1), 7Tz
(a1)), ..., (@y(ap—1),7z(ap—1))) € Rin Ay x Az.

We begin by showingfy (Ax) € Ay and merely observe that a similar argument shows
thatmz(Ax) € Az.
Leta € Ax. We needtofind € F(J](Z; : i € Y)) suchthafF(z;): i € Y)(b) = 7y
(a). Since(F(;) : i € Y)(b) € Ay, this would givery (a) € Ay and, sozy(Ax) C Ay
as required.
Sincea € Ax,a = (F(w;) : i € X)(x) forsomex € F([](Z; : i € X)). We set
b = F(zy)(x). Thus, it remains to show that

(F(mi) 1 i € Y)(F(ry)(x)) = 7y (a).

Since both sides of this equation belong{¢F(Z;) : i € Y), we need to show that, for
each projectionr; : [[(F(Z;) :i € Y) — F(Z;), wherej € Y,

mi((F(m;) @ i € Y)(F(ry)(x))) = 7 (y ().
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We have

wj((F(i) 1 i € Y)(F(ry)(x))) = (wj o (F(mi) i € Y)(F(my)(x))
= F () (F(my)(x))
= (F(rj) o F(my)) (x)
= F(nj omy)(x) (sinceF is a functor)
= F(m;)(x)
=m;(a) (because = (F(m;): i € X)(x))
= (7 o Ty)(a)

=1 (7y(a)).
ThUS,ﬁy(Ax) C Ay.
Assumg((TTy (ao), Tz (ao)), (Ty(a1), Tz(a1)), ..., (Ty(an—1), Tz(an—1))) € RiNAyx
Az, whereag, ...,a,_1 € A. Then(xwy(ag), 7y(ai),...,7y(a,—1)) € R in Ay and

(Fz(ao), Tz(a1), ..., 7z(a,—1)) € Rin Az. SinceAy < [[(F(Z) : i € Y)
andAz < [[(F(Z;) : i € Z), this implies that, for eache Y U Z, (7;(ao), 7i(a1), - . .,
7i(an—1)) € RinF(Z;). HoweverX = Y UZ andAy isasubsystemdf[(F(Z;) : i € X).
It follows that (ag, a1, ..., a,—1) € Rin Ax becauseyp, ...,a,_1 € Ax. O

For a categoryC and a family ofC morphismsf; : B — B; fori € U, the family is
amono source irC for the objects if, for all morphismsf : A — B andg : A — B,
the following implication holds: iff; o f = fi o g foralli € U, thenf = g.

LEMMA 4.4, If, fori € U, f; : B —> B; is a mono source in the categoR¢, then
(fi : i € U)is aone-to-one homomorphism franinto [ [(B; : i € U).

Proof. Sincef; isahomomorphismforeache U,(f; :i e U): B — [[(B; :i € U)
is @ homomorphism. We will show thay; : i € U) is one-to-one. To this effect it is
enough to show that, for distingt b € B, f;(a) # f;(b) for somej € U. Suppose, to the
contrary, that for some, b € B with a # b we havef;(a) = f;(b) foralli € U. Consider
the free ringS in the variety generated by that is freely generated by a single element
SinceB is finite, so too is the ring. In particular,S belongs tdRs.

Let f: S — Bandg : S — B be ring homomorphisms satisfyinf(x) = a and
g(x) = b. SinceS is finite, f : S — B andg : § —> B are morphisms ifRs. Since
fita) = fi(b)foralli e U, fio f = fiogforalli € U. However,f; : B —> B; for
i € U is amono source foB in Rs. It follows that f = g, which is a contradiction. Thus,
asrequired(f; : i € U) is one-to-one. O

Condition(P3) will be derived in the next lemma.

LEMMA 4.5. For X andY € Pin(1),if X #fandAx € Q(Ay),thenX =Y.
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Proof. SinceAy € Q(Ay), there exists a finite séf and an embedding such that
h:Axy — A?. For each pai(s, k) € Y x U, we have a homomorphism
mgompoh Ay — F(Zy)

wherer; is thek-th projection ofAlYf onto Ay and; is thes-th projection of[ [(F(Z;) :
i € Y) onto F(Zy) (recall thatAy is a substructure of [(F(Z;) : i € Y)). Since
(Fry) + i € X) : F([[(Zi : i € X)) — Ax, we have, for(s,k) € Y x U, a
homomorphism

myomoho (Fr): i€ X):F (H(Z,- e X)) — F(Z,).

Consequently, sinck is a full embedding oRs into Ks, it follows that there exists a ring
homomorphismy k) : [[(Z; : i € X) — Z, such that

F(Y(s.0) = s omkoho (F(m;) @ i € X).

We show that the family ) @ [[(Z; © i € X) — Z;, where(s,k) € ¥ x U,
is a mono source fof[(Z; : i € X)inRs. Letf : A — J[(Z; : i € X) and
g:A— J[(Z; : i € X)be morphisms iR such thaty ) o f = Y.k o g for all
(s, k) € Y x U. SinceF is a functor, the last equation implies

F(Ys.0) o F(F) = F(¥.h0) o F(g)
forall (s, k) € Y x U. Hence,
mgompoho(F(m)): i€ X)oF(f)=nsompoho(F(m;): i € X)oF(g)

forall (s,k) € Y x U. Sinceh : Ax — A‘Y’ is an embedding/\ (Ker(ws o 7ty o h) :
(s,k) €Y x U) =way. Thus,

(Fi): i e X)oF(f) = (F(m;) : i € X)oF(g).

In turn, this impliesF(;) o F(f) = F(r;) o F(g) foralli € X and, in particular,
F(m; o f) = F(r; 0o g) for alli € X. SinceF is a faithful functor, we conclude that
o f =mogforalli € X. Now observe that the family of homomorphisms: [[(Z; :

i € X) — Z;fori € X isamono source fof[(Z; : i € X) inRs. Thus,f = g and,
so, the familyy 1) - [1(Zi : i € X) — Z; for (s,k) € Y x U is a mono source for
[1(Z; : i € X) inRs¢. By 4.4, the homomorphism

(Vien: (k) eY xU): [z iex)— [zl sevr)
is one-to-one. By 4.2X = Y as required. O

If f: A — Bisamorphism irKs, then we denote bim(f) the substructure oB
that is the homomorphic image dfunder .
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LEMMA4.6. If f: Ax — F(Z;))™ x --- x F(Z;)™ is a morphism irKs, then
{i1, ..., ix} € X and the image oA x under f (that is, Im( f)) is isomorphic tady, where
Y ={i1,..., i}

Proof. We first show thafii, ..., iy} € X. Consider the homomorphismB(r;) :
ieX):FI(Z : i € X)) — Ax, f : Ax —> F(Zi)™ x - x F(Z;)"™,
andmy,, @ F(Ziy)™ x --- x F(Zy)"™ —> F(Z;,) where 1< p < k,1 < q < m,,
andm,, denotes the composite of the projection fréitiZ;, )"t x --- x F(Z;)™ onto
F(Z;,)™r and the projection fronf(Z;,)"» onto itsqg-th component. In particular, for
each 1< p < kand 1< g < m,, there is a homomorphism,, o f o (F(;) : i € X) :
FIZi: i€ X)) — F(Z;,). Since the functoF is full, we have a ring homomorphism
¢ [1(Zi i e X)—> Z;, suchthaF(p) = mp; 0 fo(F(m): i € X). Byd.l,ip € X
which establishes that = {iq, ..., iy} C X.

In fact, by 4.1, we know thap = i, and, so,

F(mi,) =mpg0 fo(Fm): ieX)

forl<p<kandl<gqg <mp.

(F(r;) : i € X)

FI[(Zi: ieX) ——— Ax

((F(iy), -, Fmiy) - 1<p<k\ J !

F(Zi)"™ x -+ X F(Z3, )™

Figure 4

We claim that the diagram of Figure 4 commutes where, for each pl< k,
(F(mi,), ..., F(m,)) is understood to be an ,-tuple.
To see this it is enough to show that, for every k¥ < kand 1<t < m,,

st 0 ((F(ti,)s .. F(mi,)) : 1< p<k) =mg 0 fo(F(m): ie€X).

However,rs; o ((F(m;,), ..., F(m;,)) © 1 < p < k) = F(m;,). Since, by the above,
F(mi,) = g 0 f o (F(m;) i € X), the diagram commutes, as required.

Foreach 1< p <k, letd, : Z;, — Z;np” denote the diagonal embedding where, for
allx € Z;, and 1< g < m, w,(dp(x)) = x.
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We now define a homomorphisen: F(Z;) x --- x F(Z;,) — F(Z;))™ x ---x
F(Z;)" by

e=((F(rl): 1<q<mp)oF(dy)oR,: 1<p<k)
where? ), is the projection of (Z;,) x --- x F(Z;,) onto F(Zi,) anan is the projection

of Zl.’Z" onto theg-th component oZl.'Z".
The proof of 4.6 will be completed by 4.7, 4.8, and 4.9.

(Fmip), - Fri,)): 1<p<k)
F(Zi)™mt x - x F(Z; )"k

F1(Z; : i € X))
F(ry) €
(F(ry) i ie€Y)
FQI(Z;: ieY)) Ay
Figure 5

LEMMA 4.7. The diagram of Figure5 commutes whergF(z;,), ..., F(m;,)) is
regarded as ann ,-tuple forl < p < k, andny is the projection of( [(Z; : i € X)
onto[[(Z;: i € Y).

Proof. It is sufficient to show that, for each4 s < kand 1< ¢ < myj,
nsroeo(F(mi) 1 i €Y)oF(ny) =mg o ((F(mi,),....,F@m,)): 1< p <k).

Sinceny o ((F(mi,), ..., F(m,)) : 1 < p < k) = F(m,), itis sufficient to show that
msoeo(F(m) i € Y)oF(ny) = F(m;,). Before we do so, recall that,, is the composite
of two projections: one acting frof(Z;,)"* x - - - x F(Z;, )" ontoF(Z;,)"» and another
fromF(Z;,)"» onto thez-th component oF (Z; ,)"». Denoting these projections py and
ny, respectively, we have that, = n} o p;. We now show thats; o e o (F(;) 1 i € Y)
oF(my) = F(m;,).

ngoeo (F(m): i €Y)oF(ry)
= (mg0e)o (F(m;): i € Y)oF(ny)
= (7 0 ((F(ﬂ,qy) 1<g<mp)oF(dy)ony:1<p<k))o(F(m):iecY)oF(ry)
(by the definition of)
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=(7}fopso((|:(nz)i l<g<mp)oF(dy)omy,: 1<p<k))o(F(m):iecY)
oF(y) (sincemy =1} o py)

= o ((F(): 1< g <my)oF(dy) oTs)) o (F(mi) : i €Y)oF(ry)

= ((nf o (F(m) : 1< q <my)) oF(dy) o7y) o (F(m;) 1 i € Y)oF(y)

=F@!) oF(dy) o5 0 (F(mi) : i € Y)oF(my)

= F(TL’; odg)omgo(F(mi): i €Y)oF(my)

= 7,0 (F(m): i €Y)oF(my)
(asn! o ds is the identity mapdz, onZ; andF(idz, ) is the identity map on
F(Z:,))

= F(m;,) o F(zry) (since7; is the projection oF(Z;,) x - -- x F(Z;,) ontoF(Z;,))

= F(T(,‘s ] JTy)

=F(@r;,) (sincei; €Y),

as required. O

LEMMA 4.8. The subsystems B{Z;,)"t x --- x F(Z;,)"* which are images ofi x
under f and of Ay undere, respectively, coincide.

Proof. Itis sufficient to show that the domain of the imagedaf underf and the domain
of the image ofdy undere coincide.

Let x be in the image ofAx under f. Since the homomorphisrF(r;) : i € X) :
F(](Z; : i € X)) — Ay is onto (by the definition ofi x) and the diagram of Figure 4
commutes{(F(x;,), ..., F(m,)) : 1 < p <k)(y) = x for some elemeny € FJIz;: :

i € X)). Since the diagram of Figure 5 commute&) = x, wherez = (F(m;) @ i €
Y) o F(rry)(y). Thus,x is in the image ofAy undere.

Suppose now that is in the image ofAy undere. Sinceny : [[(Z; : i € X) —
[1(Z; : i € Y) is onto, it follows, from the hypothesis of 1.1 (namelyy) : F(A)
—> F(B) is onto whenevep : A —> B is onto), that~(zry) : F([[(Z; : i € X)) —
F(J(z; : i € Y))is also onto. SincéF(;) : i € Y): F([(Z; : i €Y)) — Ay
is onto, it follows from 4.7 that there exists an elemenin F([[(Z; : i € X)) for
which ((F(z;,), ..., F(mi,)) 1 1< p<k)(y) = x. As the diagram of Figure 4 commutes,
f(z) = x wherez is the element ofix given byz = (F(;) : i € X)(y). In particularx
is in the domain of the image ofx underf. O

LEMMA 4.9. The image ofAy undere is isomorphic toAy.

Proof. Sincee is a homomorphism, we need to show the following:

(i) eis one-to-one;

(i) if R is ann-ary relation in the type oK andag, a1, ..., a,—1 are elements oAy,
then(ag, a1, ...,a,—1) € R in Ay whenever(e(ag), e(ay), ..., e(a,—1)) € R in
F(Zi)"™ x - x F(Z;)™*.
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Letx andy € Ay and assume(x) = e(y). SinceAy is a subsystem o]f](F(Zl-p) :
1 < p < k) (recall thatY = {i1, ..., ix}), we need to show that(p) = y(p) for every
1 < p < k,wherex(p) andy(p) denote the-th components of andy, respectively. Since
e(x) ande(y) € F(Z;))™ x --- x F(Z;,)™*, it follows from the assumptioa(x) = e(y)
thatmy, ce(x) = m; oe(y) foralll < s < kand 1<t < my. But, foreach 1< s < k and
1<t < mg, we have

myroe(x) =mgyo((F(l): 1<qg<mp)oF(dy)oR,: 1<p<k)(x)
= F(r}) o F(dy) o 7s(x)
= F(! o ds) o 75 (x)
=F(idz, ) o 7s(x)

idr(z;,) o s (x)

NEY

= x(s).

Similarly one shows thaty; o e(y) = y(s). Thus, sincery; o e(x) = 75 o e(y) for all
l<s<kandl<r <m, x =yand, as required,is one-to-one.

AssumeRr is ann-ary relation in the type df, ag, a1, . . ., a,—1 are elements ol y, and
(e(ag), e(ay), ..., e(as—1)) € RinF(Z;))™ x --- x F(Z;,)"*. SinceAy is a subsystem
of F(Z;)) x --- x F(Z;,), in order to show thafag, a1, ..., a,—1) € R in Ay it suffices
to show that(ww, (ao), 7p(a1), ..., Tplan-1)) € Rin F(Z;,) for every 1< p < k where,
we recall, 7, is the p-th projection of[[(F(Z;,) : 1 < p < k) ontoF(Z;,). Since
(e(ag), e(ay), ..., e(an—1)) € RinF(Z;))™ x --- x F(Z;,)™*, we infer from the definition
of e that, forevery 1< p < kand 1< g < m,,

(F(ng) o F(dp) o 7y (ao), F(ng) oF(dy)om,
(a1),...,F(r}) o F(dy) o Tp(an-1)) € R
in theg-th component of (Z;,,)"», that is, inF(Z; ). HoweverF(r) o F(d,) = F(z} o
dp) = F(idz,,) = idr(z ). In particular, for every 1= p < &, (TTp(ao), Tplay), ..., 7y
(an-1)) € RinF(Z;,), as required. O
By 4.8 and 4.9, the image ofy underf is isomorphic toAy and, so, the proof of 4.6

is complete. O
The following will complete the proof of 1.1 by establishi(ig4).

LEMMA 4.10. If @ # X € Psin(1) and Ay is a subsystem a® x C for finite B and
C e QUF(Z) : i el}),thenImrzp) = Ay and Imn¢c) = Az forsomeY andZ C X
withY U Z = X, whererp andn¢ are the projections oAy into B and C, respectively.

Proof. Since B and C are finite, there existy, ..., i, j1,..., j; in I and numbers
mi, ..., mg,ni, ..., n; > 1such thaiB is embeddable int&(Z;,)"* x ...F(Z; )™ and
C is embeddable int6(Z )"t x ...F(Z;)™", say

g1 B <> F(Zi)™ x - x F(Z;)" andh : C <> F(Zj;)" x --- x F(Z;)".
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Set
Y ={i1,...,ixyandZ = {j1, ..., ji}.

The proof of 4.10 will follow from 4.6 together with 4.11.
LEMMA4.11. YU Z = X.

Proof. Since
gomp :— F(Z;)"t x --- x F(Z;)" andh o r¢c — F(Z;)" x --- x F(Z;)™

are morphisms itKs, by 4.6,Y € X andZ C X.

Foreach 1< p <k and 1< g < m,, 7,, denotes the composition of two projections:
one acting fronF(Z;,)™ x - - - x F(Z; )™ ontoF(Z; )" » and another frorf(Z; ,)"» onto
theg-th component oF(Z;,)"r. Thus,

Tpg P F(Zi)™ x -+ x F(Zi)"™ —> F(Z;).

Likewise, for each 1< r < land 1< s < n,, n,; denotes the composition of two
projections: one acting fror(Z;,)"* x --- x F(Z;)" ontoF(Z;,)" and another from
F(Z;,)" onto thes-th component oF(Z;,)" . Thus,

Trs - F(Zjl)nl X +-- X F(Zj[)nl —> F(Zj,).

Since(F(m;) : i € X) : F([[(Zi - i € X)) —> Ax,gomp: Ax —> F(Zi)™ x -+ x
F(Z;)™, andh o mc : Ax — F(Z;)"™ x --- x F(Z;)", we have a family of
homomorphisms

mpgogompo(F(r): ieX):F([[@i:iex) — Fz,)
and
Trsohomco(F(r) i€ X) F([[Zi:iex) — Fz))

wherel< p<k,1<g=<mp,1<r<l,and1<s <n,.

SinceF is a full embedding, for each, ¢, r, ands as above, there exist ring homo-
morphismsy,, and ¢, in Ry such thatp,, : [[(Z; : i € X) — Z;,, Flppg) =
Tpg © & OB O (F(ri) © i€ X), ¥ - [[Zi 1 i € X) — Zj., andF(y,s) =
mrs o home o (F(m;) & i € X). We show that the family consisting of al},,'s and,’s
is a mono source fof[(Z; : i € X) in Rs.

Leteg ander : A — [[(Z; : i € X) be ring homomorphisms iR; such that
©Opg © 80 = @pg 0 £1 AN, 0 9 = VY 0 &1 for all p, ¢, r, ands as above. Itis to be
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shown thakg = ¢1. SinceF is a functor, it follows thaF(¢,,) o F(eg) = F(@pq) o F(e1)
andF(v,5) o F(eo) = F(,5) o F(e1) for all p, ¢, r, ands as above. Consequently,

wpgogompo(F(m):ie€X)oF(eg) =mpgogompo(F(m): i€ X)oF(e1)
and
mrsohomco(F(mi): i€ X)oF(eg) =msohomco(F(m): i € X)oF(e1)

for all p, g, r, ands. However,Ay is a subsystem aB x C andg andh are embeddings.
Thus,

AKer(mp,ogomp): 1< p<kandl<gqg <mp) A A\Ker(m,sohomnc):
l<r<land1l<s <n,) = way.

Consequently,

(F(j) : i € X)oF(g0) = (F(ry) : i € X) oF(e1).
In particular, for each € X,

F(ri) o F(e0) = F(1;) o F(e1).

SinceF is a faithful embedding, we obtaity o eg = 71; 0 €1 for all i € X. However, the
family 7; : [[(Z; : i € X) — Z; fori € X is amono source fof[(Z; : i € X) in Ry
and, sogo = e1. In particular, we conclude that the family of al},’s andy,;'s is a mono
source for[[(Z; : i € X) in Rs. By 4.4, there is a one-to-one ring homomorphism from
[1Zi : i e X)into Z[* x -+ x Z}¥ x Z'} x -~ x Z'}] which, by 4.2(ii), implies that
X C i1, ..., ix} YU {j1,..., ji}. InotherwordsX C Y U Z as required. O

To summarizeY = {i1,...,ix}, Z ={j1, ..., i}, X =Y U Z,

g Ax — Bandg: B — F(Z;))" x --- x F(Z;,)"*,
and

e Ax — Candh : C — F(Z;)" x --- x F(Z;)".

where bothg ands are embeddings. By 4.@n(rp) = Ay andIim(n¢) = Az, thereby
completing the proof of 4.10. O

Concluding this section we want to mention tRatcan be replaced in 2.2 and in 2.3 by
many other classes of finite algebras and still lead to the same conclusions. The only one
requirement is that each must have the properties of the @pgshich were used in the
proof of 2.3.
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5. Proof (Proposition 2.4)

For afinite-to-finite universal quasivariety of algebras, the assumptions of Proposition 2.4
are readily verified (indeed, well known). For a quasivariety of algebraic systems some
subtleties remain which may be overcome by the use of the concept of a congruence as
given by Gorbunov and Tumanov in [13].

In this section, a similarity type is regarded as a triQle= (F, R, a), whereF andR
are the sets of functional and relational symbol§ofespectively,and : FUR — w
is the arity function of2, where it is understood thatr) > O forr € R. The symbok: is
meant to be the identity symbol and it is assumed that R. Of course, the arity o
is 2. We denote bR™ the setR U {~}.

An algebraic system of typ® is any triple of the formAd = (A; {fa: f € F},{ra:

r € R}) such thatd is a non-empty setf4 : AY) — A is a function, and 4 € A%
is a relation for allf € F andr € R. We denote the algebra pant; {f4: f € F}) of A
by alg(A) and the relational part afA; {r 4 : r € R}) by rel(A), respectively.

Given a non-empty set. A function H that assigns to every elemenbf R* a subset
of A%0) is called ankR*-indexed family omi. Congruences on an algebraic systdrare
special types oR"-indexed families om.

Given an algebraic system of type 2. An R*-indexed family® on A is said to be a
congruencen A (see [13] or [11]) if® satisfies the following conditions:

(i) ®(=) isacongruence oalg(.A);
(i) foreachr € R,r4 C O();
(iii) foreachr € R,if x; = y;(O(=)) forall1 <i <a(r)and(xy, ..., xq0)) € OF),
then(ys, ..., ya¢)) € ).

Thequotient systeml/© of A by © is defined as follows:

() alg(A/©)isalg(A)/O(=);
(i) forr e R, ([x1]®, ..., [xa(n]®) € r a0 iff (x1,...,Xa()) € O).

Noticethatif® (~) = {(x, x) : x € A},thend/®is(A;{f4: f € F},{®O() :r € R}).

From now onK is assumed to be a quasivariety of algebraic systems of finite®ype
and is regarded as a category with homomorphisms as morphisms.

A congruenced® on an algebraic systetd of type @ not necessarily belonging €
is said to be & -congruencef 4/® € K. SinceK is closed under subdirect products
and contains a trivial system, for eveRy"-indexed familyH on A there exists a smallest
K -congruence® such thatd < ©, thatisH(r) € O(r) for all r € RT. The smallest
congruence containing/ is denoted by®k (H). The following lemma characterizes
Ok (H), where Q4 means amR*-indexed family ond such that Q(~) = {(a, a) : a € A}
and Q4 (r) = r 4 forr € R andwhere in a quasi-identityandr are permitted to represest
as well.
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LEMMA5.1. (see [11])Let A be an algebraic system of tyge, and let H be an

R*-indexed family ond. Then, forr € RT and(c1, ..., cap)) i A, (c1, ..., Car)) €
Ok (H)(r) iffthere exista quasi-identityx[ A\, _,. r; (ti; (%), . . ., i) x) = r(nkx),...,
ta¢ ()] valid in K and a sequencg of elements im such that(;, (b), . . ., t,-a(,i>(5)) €

(HUOQ)(ry) fori < kand(t1(d), ..., tagy () = (1, - -, Ca(r))-

The lemma differs slightly from its counterpart in [11]: the difference is more convenient
in our context.

We first show thaK is cocompletgethat is colimits of all diagrams iK exist.

LetF : J — K be adiagramin K, that is a functor from an index categaiyto K.

A coneof F is an object5 of K together with a family(y; : F(i)) — B : i € obj))

of K-morphisms such that, for every arrew. i — j in J, ¥; = ¥; o F(u). A colimit

of a diagranF : J — K isaconey; : F(i) — B : i € obj(J)) of F such that, for
every other conéy; : F(i) — C : i € obj(J)) of F, there exists a uniqui€ -morphism
o : B — C such that, for every € obj(J), ¢; = o o ;.

LetF : J — K be a diagram ifK. For an object in J, let A; denote the universe of
F(i). We assume that; N A; = ¥ whenevet # j; this assumption is made only in order
to simplify the construction given below.

Let F be a free algebraic system i with | J(A; : i € obj(J)) as the set of free
generators. Far, j € obj(J) and an arrow : i —> j in J, we set

Di(~) = {(c, frlc1,....ca(f)) - €, CLy -5 Cay) € Ai, ¢ = friy(CcL, ..., Ca(f))s
andf € F}
E, = {(c, Fw)(c)) 1 c € Ai}.

Next, we set
H(x) = U(D,- (=) : i e objd)) U U(E” : uis an arrow inJ) and
H(r) = | Jr : i €0bjQ)) forr e R.

Notice thatH is anR™-indexed family onF.
Fori € obj(J), we definayp; : F(i) — F/Ok(H) by

i (x) = [x]Ok (H) for x € A;.

A routine verification shows that; : F(i) — F/Ok (H) is aK-morphism.

PROPOSITION 5.2 F/©k (H) together with(p; : F(i) — F/Ok(H) : i €
obj(J)) is acolimitof F : J — K.

Proof. That(g; : F(i) — F/Ok (H) : i € obj(J)) is a cone of is obvious.
Let(y; : FG) — A: i € obj(J)) beaconeoF. Lety : F —> A be aK-morphism
satisfyingy (@) = v (a) for eacha € A; and each € obj(J). It is obvious thaty exists
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and is uniquely determined by the family; : i € obj(J)). Define anR™-indexed family
E on F as follows:

E(=) {(x,y): y(x) =y(»}and
E(r) = {(x1,...,x40)) © (y(x1), ..., ¥(xq¢))) €rpa}forr e R.

We claim

(i) O (H)(®») C E(®)
(i) Ok (H)(r) € E(r)forr € R.

From the definitions of (~) and H (r), the definition ofy, and from the assumption
that(y; : Fi) — A : i € obj(J)) is a cone ofF it follows that H(~) € E(x) and
H(r) € E(r) forr € R. We conclude that (i) and (ii) hold.

Defineo : F/Ok (H) — Aby

o ([x]Ok (H)) = y (x).

By Claim (i), o is well-defined. Obviouslyy preserves operations. By Claim (ii), it also
preserves relations. Thuasis a homomorphism.

Fori € obj(J) anda € A;, we haves o ¢;(a) = o(g;(a)) = o([albk (H)) = y(a) =
Y¥i(a). The uniqueness af is easy to establish. Thug/©k (H) together with(p; :
FG) — F/Ok(H) : i € obj(J)) is a colimit of F. O

Lety : A — B be aK-morphism. LeC be the subsystem & determined by (A),
that is

C=(p(A), {f: feFhL{rgNeA) ) : reR).
Define anR™-indexed familylm¢ on ¢(A) as follows:

(Img)(~) = {(c,c): ce C}and
(Imp)(r) = ¢(ry) forr € R.

We have
LEMMA5.3. Ok (Img)(x) = (Imp)(=).

Proof. Let (a1, a2) € Ok (Img)(®). Then, by 5.1,

(tiy (), - ., iy, (b)) € (IM@)(r7) fOr i < k, where Q4) = Img, and
(t1(b). 12(b)) = (a1, az)
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for some quasi-identityx[ /\; _, ri (t;, (%), . . ., liaty) (%)) = n(x) = t2(x)] valid inK and
a sequence of elements inC. Since(Img)(x) = {(c,c) : ¢ € C}and(Img)(r;) C re,
we have

(ti, (D), ...,z,-a(,l_)(l_))) ercfori <k.

As the above quasi-identity is valid i becaus& € K, we obtains (b) = () and,
consequentlyg; = ap. Thus®g (Img)(x~) € (Img)(=). The converse inclusion is
obvious. O

It follows from 5.3 thatC/®k (Im ) is of the form
(p(A), {fB: feFL{Ok(me)(r): r € R})

and, a®dk (Img) is aK -congruence ofd, the system belongs t. In what follows it will
be denoted by (Img, B).

Let £(K) and M (K) denote the classes of &l-homomorphismg : A — B such
that B coincides withM (Img, B) andy : C — D such thaty is injective, respectively.
Notice that every member &f(K) is a surjective map.

A factorization systeni€, M) for K consists of some categoéyof K-epimorphisms
and some categont of K-monomorphisms such that, for evaymorphism f, there
exists a decompositiofi = moe with e € £ andm € M, and thediagonalization property
holds (that is, foti o e = m o k with e € £ andm € M, g oe = k andm o g = h for some
K-morphismg).

PROPOSITION 5.4.(£(K), M(K)) is a factorization system fdf .

Proof. Let ¢ : A — B be aK-homomorphism. Defing : A — M(Img, B)
andy : M(Img, B) —> B by p(x) = ¢(x) forx € A andy(x) = x for x € ¢(A).
SinceM (Img, B) € K, p andy areK-morphisms. Obviouslyy = v o p, proving that
(E(K), M(K)) has the factorization property.

To prove that(£(K), M(K)) has the diagonalization property, let: A — B, o :
A— C,p: B — D,y : C — D beK-morphisms such that is in £(K), ¥ is in
M(K),andp o ¢ = Y oo. Sincey is injective,Ker ¢ < Kero. So,themap : B — C
is well-defined, where(x) = o(y), y € A and¢(y) = x. The facts that preserves
operationsg o ¢ = o, andys o ¢ = p are obvious; they follow from the definition ef We
show thats preserves relations which will complete the proof.

Letr € Rand(cy,...,cqr)) € rB. Asg is in £(K), B coincides withM (Img, B).
This, by 5.1, implies

11y (D), .., iy, (b)) € (IM@)(r7) for i < k, where Q1) = Img, and

(tl(E), cees ta(ri)(E)) =(c1,.-., Ca(r))
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for some quasi-identity

Q1 VE[\ ity @), ...ty () = r(t1(X), .., tagr) ()]

i<k

valid in K and a sequendeof elements inB. Letd be a sequence of elementssuch
thate(d) = b. Sinceyp preserves terms, we have

(@i, (), ..., 9ty (@) € (IM)(r7) fori < kand

(@), .., pltai (@))) = (@(z1), - - -, P(Za(r)),

wherezy, ..., z4(-) are elements oft such thatp(z;) = ¢; fori = 1,..., a(r). Recall that
(Img)(=) = {(b,b) : b € B} and(Img)(r) = ¢(ry) forr € R. Thus, for each < k,
thereis(y;,, ..., y,-a(m) inr; , suchthat;, d) = vi;(Kerg)forl < j <a(r;). Butkerg <
Kero. Sot;, (d) = yi;(Kero) for1 < j < a(r;) ands;(d) = zj(Kero) for1 < j < a(r).
Aso is aK-morphism andy;, . . ., yia(»w) € ri 4, We obtain(t, (o0 (d)), . . ., ti,,, (0 (d))) €
ri.. But the quasi-identityQ is valid in C. So (t1(0(d)), . . . , ta¢)(c(d))) € re. Thus
(0(z1),...,0(za))) € re, thatis(e(cy), ..., e(ca))) € re, proving thate preserves
relations. o

A family (¢; 1 A; — B :i € I) of K-morphisms is called ainkin K. A sink (¢; :
A; — B: i e I)inK issaidto be a#& (K)-sinkif, forevery sink(y; : A;, — C: i € I)
in K and evenK-morphismo : C — B, ¢; = o o y; for all i € I implies thato is in
E(K).

Let(g; : A; —> B: i € I)beasinkirK. LetC be the subalgebra alg(53) generated
by U(¢i(A;) : i € I). Letim|J ¢; denote the following? *-indexed family onC:

(lmU<p,~)(~) — {(c,c): ceC) and
(ImU(p,-)(r) = @ity ieDforrer.

One may verify as in the proof of 5.3 th@tk (ImJ ¢;) (=) = (Im ¢:)(=). This gives
that the quotient systegy ©x (Im ¢;) coincides with

(c.tss: ferfox (mJo)o): rer)).
In what follows the system will be denoted By(Im | ¢;, B).

LEMMA 5.5. AsinkinK (¢; : A; —> B: i € I)isan&(K)-sink iff B coincides with
M(Im{J ¢, B).



\ol. 46, 2001 Finite-to-finite universal quasivarieties @ainiversal 279

Proof. Consider the conéy; : A, — M(mJ¢;,B) : i € I), wherey;(x) =
@i (x) for x € A;, and theK-morphismo : M(Im|Jg;, B) — B, whereo(x) =
x for x in M(UmU @i, B). If (9 : A — B : i € I)is an&(K)-sink, theno
belongs to€(K). In particular,o is the identity map o3 andrg = @k (Imo)(r) for
r € R. But®k (Imo) = Ok (Ok (Im|J ¢;)) and, a®dk (Ok (Im|J ¢;)) = O (ImJ i),
Ok (Imo) = Ok (ImJ ¢;). ThusB coincides withM (Im | i, B).

Assume now thaB coincides withM (ImJ ¢;, B). Let(y; : A; — C: i el)bea
sink inK ando : C — B be aK-morphism such that; o 0 = ¢; for alli € 1. Notice
thato (C) coincides withB. Define

(Imo)(~) ={(b,b) . b e B} and
(Imo)(r) =o(rc) forr € R.

Notice that(Imo)(x) = Ok (ImJ ¢:) (=) and, forr € R,

(mUe) ) € moy) < o (imJoi) .

This givestha®k (Imo) = Ok (Im|J ¢;) which, inturn, implies thaM (Im o, B) coincides
with M (Im|J ¢;, B). ThusM (Imo, B) coincides with3, showing that isin £(K). O

We say that£(K), M(K)) factorizes sinkén K if, for every sink inK (¢; : A; —
B: i €I)there exist alf (K)-sink (y; : A; — C: i € I) ando : C —> B in M(K)
such thaty; = o o y; foralli € I.

PROPOSITION 5.6.

(i) (EK), M(K)) factorizes sinks it ;
(i) If F: G — K is afunctor, therF[G maps ever¥ (G)-sink inG to an&(K)-sink.

Proof. (i) As C, takeM (ImJ ¢;, B), asy;, takey; (x) = ¢; (x) for all x € A;, and, as
o, takeo (x) = x for all x in M(Im|J ¢;, B). Obviously,c : M(Im{J¢;, B) — Bisin
M(K) and, by 5.5(y; : Aj — M(mUe;, B) : i € 1) is an&(K)-sink.

(ii) Notice that amongg-morphisms of arf(G)-sink in G at least one must be an
isomorphism. Thus the image of the sinkBbynust be arf (K)-sink. O

It follows from Propositions 5.2, 5.4, and 5.6 thakifa finite-to-finite universal quasi-
variety of algebraic systems, th&htogether with€ (K) and M(K) satisfies the assump-
tions of Proposition 2.4. Thus, for every finite-to-finite universal quasivariety of algebraic
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systemsK there exists a finite-to-finite and full embeddidy : G — K such that
D(f): D(G) — D(H) is onto whenevery : G —> H is a strong morphism ifs.

6. Posets with constants (Corollary 14)

In[5], itwas proved thalP,, is finite-to-finite universaliff: > 2. Clearly,Pg has precisely
two subquasivarieties (itself and the trivial quasivariety). Thus, by Theorem 1.1, the proof
of Corollary 1.4 will be completed if we show thaiP;) is a finite lattice.

For a finite non-trivial algebraic system, let Ao, ..., A,—1 denote the set of all
proper subsystems of. Then A is critical providing A ¢ Q(Aoq,...,A,—1) = ISP
(Ao, ..., Ay—1). In particular,(P; <, p) in Py is not critical providing, for every, y € P
with y £ x, there exist a proper subsystgirof P and an order-preserving mapg P —>
0 such thatp(p) = p ande(y) £ ¢(x). A quasivariety of relational systems and, hence,
any subquasivariety éf;, is generated by its critical relational systems. Thus, classification
of the critical relational systems & will lead automatically to a determination 6{P1).

Let (Py; <, p) denote the trivial algebraic system . With the preceding remarks
in mind, let(P; <, p) be a critical relational system ;. We will show that, for some
2 <i <7, (P;<,p)isisomorphic to(P;; <, p) where P, = P3 = P4 = {p, a} with
a<pinPyandp <ain Py, andPs = Ps = P; = {p,a,b} wherea <bin Ps,a <b, p
in P, andb, p < ain Py.

Suppose that both, and P4 are subsystems ¢P; <, p). Foranyx, y € Pwithy £ x,
there exists an order-preserving mapnto any 2-element chain iR with p(y) £ ¢(x).

In particular, depending on the value@(p), ¢ may be considered as a morphism frém
to P, or P4 and, so,P is not critical.

Assume then that eithdg?, or P4 is not a subsystem aP. If Pgis a subsystem (and,
S0, P4 is not a subsystem), then, for£ x, if y < p leto(y)) = p ande(P\[y)) = a,
andify £ pleto(y)) = b, o(([N]\[y)) = a ande(P\([y) U ([y)])) = p. Either way,
we conclude thaP = Ps. A similar argument shows th@& = P~ in the event thaP; is a
subsystem oP.

Assume then that neithdls, nor Pz, nor one ofP; or P4 is a subsystem aP. Suppose,
P is a subsystem. IP = (p], then, fory £ x, leto(P) — P> be given byp((x]) = a
ande(P\(x]) = p. Itfollows thatP = P,. If P # (p], then P3 is a subsystem aP. For
y % x, ¢ as just defined will serve unless= p. In which case, lep : P — P3 be given
by ¢ ((p]) = p ande(P\(p]) = a. SinceP is critical, this situation can not arise. Thus,
we conclude thaP = P, if P, is a subsystem. A similar argument holds shoBldbe a
subsystem.

Should neitheP, nor P4 be subsystems af, then, for non-trivialP, either P contains
a 2-element chain and we conclude tiRat= Ps or elseP = P3.

In summary, any critical system By is of the formP; for some 2<i < 7.
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Since the only proper subsystemsref P3, andP, are trivial, P; is criticalfor2 < i < 4.
For any homomorphism from Ps to a proper subsystem of itseff(a) = ¢(b) and, so, it
too is critical. Finallyg(b) is comparable wittp for any homomorphism fron®g or P7 to
a proper subsystem of itself and, 9%,and P; are also critical.

By the above(P;; <, p) for2 < i < 7is a complete description of the critical relational
systems oP;.

Clearly, Q(P1) is covered byQ(P;) for 2 < i < 4 andQ(Ps3) is covered byQ(Ps).
However, sincdo(P;)| = 1 for any homomorphismp : P, — Ps withi = 2 or 4,
Q(P2) andQ(Py) € Q(Ps). Likewise,|p(P2)| =1if ¢ : P —> P7and|p(Py)| = 1if
@1 Pa—> Ps. ThusQ(P2) £ Q(P7) andQ(Ps) Z Q(Pe). SincePs € Q(Ps) andQ(F7),
Q(P2)vVQ(P3) = Q(P2)VQ(P5), Q(Pa)vQ(P3) = Q(P4)VQ(Ps), Ps € Q(P2)VQ(Pa),
andP; € Q(P2) v Q(P4), we conclude the following.

Figure 6

PROPOSITION 6.1.L(P1) is diagrammed by Figuré.
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eliminating the extra assumption imposed on the functor.

The authors would also like to thank the referee for some thoughtful comments.
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