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Stone algebra extensions with bounded dense sets

M. GEHRKE, C. WALKER AND E. WALKER

Abstract. Stone algebras have been characterized by Chen and Grätzer in terms of triples (B, D, 8),
where D is a distributive lattice with 1, B is a Boolean algebra, and 8 is a bounded lattice
homomorphism from B into the lattice of filters of D. If D is bounded, the construction of these
characterizing triples is much simpler, since the homomorphism 8 can be replaced by one from B into
D itself. The triple construction leads to natural embeddings of a Stone algebra into ones with bounded
dense set. These embeddings correspond to a complete sublattice of the distributive lattice of lattice
congruences of S. In addition, the largest embedding is a reflector to the subcategory of Stone algebras
with bounded dense sets and morphisms preserving the zero of the dense set.

1. Introduction

Stone algebras first gained interest when they were characterized by Grätzer and
Schmidt as the solution of a problem of Stone: they are bounded distributive lattices
for which the set of prime ideals satisfies the property that each prime ideal contains
a unique minimal prime ideal [9]. These algebras were studied quite extensively in
the 1960s and early 1970s. Recently, Stone algebras with bounded dense sets have
arisen in various applications, including conditional event algebras and the study of
rough sets and this has led us to investigate this special class of Stone algebras.

One of the main tools for understanding the structure of a Stone algebra was
proved by Chen and Grätzer’s triple construction [3, 4]. A Stone algebra S is
determined as soon as we know its center, its dense set, and how the two sit inside S.
Chen and Grätzer showed that this information is carried by a triple (B, D 8), where
D is a distributive lattice with 1, B is a Boolean algebra, and 8 is a bounded lattice
homomorphism from B into the lattice of filters of D. Such a triple gives rise to a
Stone algebra whose center is B and whose dense set is D. Conversely, given a Stone
algebra with dense set D and center B, there is a natural homomorphism from B into
the lattice of filters of D, and this triple yields a Stone algebra isomorphic to the
original one. Katrin|lcbreve|ák and others [10, 11, 12, 13, 14, 19, 20] have simplified
this construction and generalized it in various directions. In this paper we use a slight
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variation of Katrin|lcbreve|ák’s triple construction that permits a more straightfor-
ward construction of the corresponding Stone algebra.

If a Stone algebra has a bounded dense set, as the ones that arise in recent
applications do, the triple described above can be replaced by a triple (B, D, 8),
where D is a bounded distributive lattice, B is a Boolean algebra, and 8 is a bounded
lattice homomorphism from B into D itself, as observed by Katrin|lcbreve|ák in [10]
and studied further by Köhler in [15]. This major simplification of the triple
construction led us to the study of embeddings of a Stone algebra into Stone
algebras with bounded dense set, which is the primary subject of this paper. We
define a bounded dense extension of a Stone algebra S to be a Stone algebra monic
g : S�T, where the dense set of T has a smallest element and T is generated as a
Stone algebra by the image of S together with the smallest element of the dense set
of T. We show that the relation defined by T15T2 if the map S�T1 factors through
the map S�T2 orders the set of isomorphism classes of bounded dense extensions
of a Stone algebra S. There is a natural order embedding of this poset into the lattice
of congruences of S viewed as a bounded lattice. The image of this embedding is a
complete and bounded sublattice of the congruence lattice.

The association of a Stone algebra S with its largest bounded dense extension
leads to a functor from the category of Stone algebras to the subcategory consisting
of Stone algebras with bounded dense set together with those Stone algebra maps
that preserve the zero of the dense set which is a reflector. Since this is not a full
subcategory, the reflector is not idempotent.

2. Stone algebras and the category of triples

An element x* in a bounded distributive lattice is the pseudocomplement of an
element x if x�y=0 exactly when y5x*. A Stone algebra is a bounded distribu-
tive lattice S in which every element has a pseudocomplement and x*�x**=1 for
all elements x. An element x of S is complemented if x�x*=1. The center of S is
the largest Boolean sublattice B(S) of S. It consists of the complemented elements
of S, or equivalently in the case of a Stone algebra, is the image of S under
pseudocomplementation. The dense set of S is the set D(S) of elements of S whose
pseudocomplement is 0. The dense set of S is a filter (or dual ideal) of S, and in
particular, a distributive sublattice with 1. For any distributive lattice L, F(L) will
denote its lattice of filters. If L has a 1, then F(L) is a bounded lattice.

For a Boolean algebra B and a distributive lattice with 1, we take a triple
(B, D, 8) to be a bounded homomorphism 8 : B�F(D)( from the Boolean algebra
B to F(D)(, the dual lattice of the filter lattice of D. The dual of a lattice in this
sense is the lattice obtained by reversing the order, thus interchanging the roles of
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the meet and join operations. This slight change in the definition of a triple
simplifies the construction of the corresponding Stone algebra. First we get the
Stone algebra

U={(F, b): F±8(b)}¤F(D)(×B

where U is viewed as a sublattice of F(D)(×B, and pseudo-complementation is
given by (F, b)*= (8(b*), b*). The Stone algebra associated with the triple, is the
subalgebra of U given by

S(B, D, 8)={f d�8(b), b): b � B, d � D},

where  d is the principal filter of D generated by d. This Stone algebra has dense
set {( d, 1): d � D} isomorphic to D, and center {(8(b), b): b � B} isomorphic to B.

Let S be a Stone algebra with dense set D and center B, and let 8 be the map
B�F(D) defined by 8(b)= bSD, where  b is the principal filter of S generated
by b. Then 8 is an anti-homomorphism, in particular,

8(b�c)= (b�c)SD= (( b)SD)� (( c)SD)=8(b)�8(c),

8(b�c)= (b�c)SD= (( b)SD)�(( c)SD)=8(b)�8(c).

Now the associated Stone algebra S(B, D, 8) is isomorphic to S by the map

S(B, D, 8)�S : ( d�8(b), b) � d�b

as shown in [3].
The following fundamental property of the lattice of filters is stated in [3],

(2.12).

LEMMA 2.1 (Principal Filter Lemma). If D is a distributi6e lattice with 1, then
for any filter F in the center of the lattice F(D) and any d � D, the filter  dSF is
principal.

This lemma plays a key role in the study of triples in the following way. If
8 : B�F(D)( is a bounded homomorphism, with B a Boolean algebra, then 8(b)
is in the center of F(D)( for all b � B so in particular,  dS8(b) is principal for all
d � D, b � B.

The triple construction gives a one-to-one correspondence between (isomor-
phism classes) of Stone algebras and triples. This correspondence yields a categori-
cal equivalence with a morphism of triples f : (B, D, 8)� (C, E, c) defined to be a
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pair f= (g, h), where g : B�C is a Boolean algebra homomorphism and h : D�E is
a distributive lattice with 1 homomorphism, with the property that for each b � B,
c(g(b))±h(8(b)). The homomorphism h : D�E induces the map

F(h): F(D)(�F(E)(: F �  {h(d): d � F}.

Note that F(h) is a homomorphism and F(h)( d)=Jh(d). With this notation, the
morphism (g, h) gives the diagram

.

.

where c(g(b))±F(h)(8(b)) for all b � B. The condition that (g, h) be a morphism
of triples can be stated in any of the following three equivalent ways. The
equivalence of (1) and (2) below is comment (5.9) in [3].

LEMMA 2.2. The following are equi6alent for a morphism (g, h).
(1) F(h)8(b)=cg(b)SF(h)(D) for all b � B.
(2) F(h)8(b)¤cg(b) for all b � B.
(3) cg(b)S h(d)=F(h)( dS8(b)) for all b � B, d � D.

The diagram commutes exactly when F(h)(D)=E, in other words, when F(h)
is a bounded homomorphism. In this situation, we call f= (g, h) a strong homomor-
phism of Stone algebras.

The following theorem of Chen and Grätzer (Theorem 4 in [3]) allows us to
characterize subalgebras of Stone algebras in terms of subobjects of the center and
the dense set.

THEOREM 2.3. Let S be a Stone algebra with dense set D and center B. Let E
be a sublattice of the lattice D with 1 and C a subalgebra of the Boolean algebra B,
and call the pair (C, E) admissible if e�c � E for all e � E, c � C. There is a
one-to-one correspondence between admissible pairs (C, E) and Stone subalgebras of
S. The pair (C, E) corresponds to the subalgebra {e�c : e � E, c � C}, which has
dense set E and center C.

For example, given any sublattice E of D with 1, the pair ({0, 1}, E) gives rise
to the Stone subalgebra E@{0} of S. Also, each subalgebra C of B gives rise to the
Stone subalgebra {x � S : x* � C} of S determined by the pair (C, D).
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3. Bounded dense extensions of Stone algebras

Many Stone algebras, including all finite ones, have bounded dense set. A class
of Stone algebras with bounded dense set which has recently been the object of
some attention arises from Boolean algebras. If B is any Boolean algebra,

B [2]={(x, y): x, y � B, x5y}

with component-wise operations is a Stone algebra with dense set

D={(x, 1): x � B},

which is bounded with bottom and top elements (0, 1) and (1, 1), respectively. The
Stone algebras B [2] have arisen recently in various applications, including con-
ditional event algebras ([5, 7, 21]), and the study of rough sets ([6, 17, 18]).
Stone algebras with bounded dense sets are closed under many constructions,
such as direct products and passing from a Stone algebra S to S [2]=
{(a, b): a, b � S, a5b}.

For the class of Stone algebras with bounded dense set, the triple construction
becomes much simpler. The image of the homomorphism 8 from B(S) to the lattice
F(D(S))( is now entirely contained in the sublattice of principal filters, by the
Principal Filter Lemma. Thus the map 8 may be considered as a bounded lattice
homomorphism from B(S) to D(S) itself. In other words, the natural map
Map(B, D)�Map(B, F(D)( ): a� a is a bijection, where Map(B, D) and
Map(B, F(D)( ) are the sets of bounded distributive lattice maps.

DEFINITION 3.1. A bounded triple is a triple (B, D, 8) where B is a Boolean
algebra, D is a bounded distributive lattice, and 8 : B�D is a bounded lattice
homomorphism. The Stone algebra arising from a bounded triple (B, D, 8) is

Sb (B, D, 8)={(d, b): d � D, b � B, d58(b)}

considered as a sublattice of D×B with pseudocomplement given by (d, b)*=
(8(b*), b*).

Note that the map b � (8(b), b) is an isomorphism between B and the center of
Sb (B, D, 8), and D�{(d, 1): d � D}: d � (d, 1) is an isomorphism between D and
the dense set of Sb (B, D, 8). If S is a Stone algebra with center B and dense set D,
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having a least dense element 0D , then the inverse of the isomorphism
Sb (B, D, 8)�S is the map x � (x�0D , x**).

EXAMPLE 3.2. Given an arbitrary triple (B, D, 8), then 8 : B�F(D)( is a
bounded homomorphism, and thus (B, F(D)(, 8) is a bounded triple. This gives
rise to the Stone algebra

U=Sb (B, F(D)(, 8)={(F, b): F±8(b)}¤F(D)(×B

which naturally contains

S=S(B, D, 8)={( d�8(b), b): b � B, d � D}.

Thus any Stone algebra is naturally embedded in a Stone algebra with bounded
dense set.

LEMMA 3.3. Let S= (B, D, 8) be a triple. The pair (C E), where

E={( d�8(b), 1): d � D, b � B}

C={(8(b), b): b � B}

is an admissible pair, and the subalgebra S of U determined by this pair is the smallest
subalgebra of U=Sb (B, F(D)(, 8) with bounded dense set that contains S. More-
o6er,

S={( d�8(b1 ), b2 ): d � D, b1 , b2 � B, b15b2 }.

Proof. It is easy to see that C$B is a Boolean algebra and that E is a bounded
sublattice of D(U)={(F, 1): F �F(D)}. For (C, E) to be an admissible pair in
the sense of Theorem 2.3, e�c must belong to E for e � E and c � C. Thus for
d � D and b1 , b2 � B the element ( d�8(b1 ), 1)�(8(b2 ), b2 ) must be contained in
E. But

( d�8(b1 ), 1)�(8(b2 ), b2 )= (( d�8(b1 ))S8(b2 ), 1�b2 )

= (( dS8(b2 ))�8(b1�b2 ), 1).

By the Principal Filter Lemma  d�8(b2 ) is principal, so (( d�8(b2 ))�
8(b1�b2 ), 1) is an element of E. Also note that the dense set {( d, 1): d � D} of S
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is contained in E. Thus the subalgebra determined by (C, E) is a Stone algebra with
bounded dense set containing S.

To see that (C, E) is the smallest such admissible pair, note that the dense set of
any such pair must contain {( d, 1): d � D} and a lower bound of this set. If
(F, 1) � D(U) is a lower bound for {( d, 1): d � D} then F± d for all d � D. This
implies F=D. Thus the dense set of any such pair must contain all elements of the
form

(D, 1)�(8(b), b)= (DS8(b), 1�b)= (8(b) 1).

Since E is a sublattice it is closed under meets, so ( d, 1)� (8(b), 1)= ( dS8(b), 1)
is in E.

By Theorem 2.3, the Stone subalgebra S of U determined by the pair (C, E) is
{e�c : e � E, c � C}. Thus

S={( d�8(a), 1)� (8(b), b): d � D, a, b � B}

={( d�8(a�b), b): d � D, a, b � B}

={( d�8(b1 ), b2 ): d � D, b1 , b2 � B, b15b2 }. 

Given a Stone algebra S, we have embedded it into the Stone algebra S whose
dense set is bounded. Note that if D is already bounded, S=S since in this case
each 8(b) is principal and E=D.

In the category of Stone algebras, the assignment S � S cannot be extended to
a functor with the property that f extends f, since any such extension to morphisms
does not preserve composition. To see this, consider the following example.

EXAMPLE 3.4. Let S, T, and U be the chains S=
!1

n
: n � N

"
@{0},

T=
!1

n
: n � N

"
@{t, 0}, and U=

!1
n

: n � N
"
@{u1 , u2 , 0}, as illustrated in the

diagram that follows. Let f be the bounded homomorphism from S to T that is the

identity on
!1

n
: n � N

"
. Let gi be the bounded homomorphism from T to U that is

the identity on
!1

n
: n � N

"
and takes t to ui for i=1, 2. Then g1 $ f=g2 $ f.
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Applying the operator to S gives the lattice S$T. If the assignment were
extended to the morphisms, we would have (g1 $ f)= (g2 $ f). On the other hand,
the only possibility for f : S�T$T extending f is the isomorphism of S and T.
Since both T and U are already bounded, we also have that gi=gi , i=1, 2. So we
have

S$T ���

g1

U and S$T ���

g2

U

and g1 $ f=g2 $ f if and only if g1=g2 , which is clearly not the case.

Given a Stone algebra S=S(B, D, 8), S was defined to be the smallest
subalgebra of F(D)(×B that has bounded dense set and contains S. We may ask
whether S is, in some sense, the smallest Stone algebra with bounded dense set
containing S. Before we can answer this question we need to explore a class of
extensions, the bounded dense extensions of a Stone algebra S.

DEFINITION 3.5. A bounded dense extension of a Stone algebra S is a Stone
algebra T and a Stone algebra monic g : S�T satisfying

(1) The dense set E of T has a smallest element.
(2) The algebra T is generated as a Stone algebra by g(S)@{0E }.

THEOREM 3.6. Let g : S�T be a Stone algebra monomorphism and suppose
E=D(T) is bounded. Let B=B(S), D=D(S) and C=B(T). Then g : S�T is a
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bounded dense extension if and only if
(1) The restriction g � B is an isomorphism of Boolean algebras B$C, and
(2) E={g(d)� (c�0E ): d � D, c � C}.

Proof. Assume g � B is an isomorphism of Boolean algebras B$C and E=
{g(d)� (c�0E ): d � D, c � C}. We are given that g is a Stone algebra monic and
that the dense set E of T has a smallest element. But T={e�c : e � E, c � C} so we
have

T={(g(d)� (g(b1 )�0E ))�g(b2 ): d � D, b1 , b2 � B}

is generated as a Stone algebra by g(S) and 0E .
Now assume g : S�T is a bounded dense extension, so that T is generated as a

Stone algebra by g(S) and 0E . Let A=g(B) and

F={g(d)� (g(b)�0E ): d � D, b � B}.

Then A¤C. It is easy to show that (A, F) is an admissible pair as defined in
Theorem 2.3, and that both g(S) and 0E are contained in the subalgebra of T
generated by the pair (A, F). It then follows from Theorem 2.3 and the definition
of bounded dense extension that

C=A=g(B)$B and E=F={g(d)� (c�0E ): d � D, c � C}

as desired. 

EXAMPLE 3.7. Let S=S(B, D, 8). Then S={( d�8(b1 ), b2 ): d �D, b1 , b2 �
B, b15b2 } with the map g : S�S : ( d�8(b), b) � ( d�8(b), b) is a bounded
dense extension. Certainly g is a monomorphism which restricts to an isomorphism
between the centers. The dense set E={( d�8(b), 1): d � D, b � B} of S is
bounded, having smallest element (8(0), 1)= (D, 1). Also

( d�8(b), 1)= ( d, 1)� (8(b)SD, b�1)

=g(( d, 1))� ((8(b), b)�(D, 1))

EXAMPLE 3.8. Let S=S(B, D, 8). Then S=Sb (B, S, i) with the map

g) : S�S : ( d�8(b), b) � (( d�8(b), b), b)

is a bounded dense extension. Clearly g) is a monomorphism which restricts to an
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isomorphism between the centers and D(S)$S is bounded with smallest element
((D, 0), 1). An arbitrary element of D(S) is of the form

(( d�8(b), b), 1)=g) (( d, 1))� (((8(b), b), b)�((D, 0), 1)).

DEFINITION 3.9. Let gi : S�Ti be bounded dense extensions for i=1, 2.
Then T15T2 if there exists a strong homomorphism of Stone algebras G21 : T2�T1

such that G21 $ g2=g1 , i.e. the diagram

(1)

commutes and G21 (0D(T 2 ) )=0D(T 1 ) .

We identify the two extensions when G21 is an isomorphism.

THEOREM 3.10. Gi6en a Stone algebra S, the set of all bounded dense exten-
sions of S is partially ordered by the relation 5.

Proof. We may assume the center of Ti is B and that gi � B is the identity. Let
Ei=D(Ti ). To see that the relation is an order, note that for b � B, g1 (b)=
g2 (b)=b so G21 � B is the identity on B. It is immediately clear that 5 is reflexive
and transitive. To prove antisymmetry we show that G21 is unique whenever it
exists. Since every element of Ei is of the form gi (d)� (b�0Ei

) and since G21 is a
strong homomorphism, G21 � E2 : E2�E1 by

G21 (g2 (d)� (b�0E 2
))=G21 g2 (d)� (G21 (b)�G21 (0E 2

))

=g1 (d)� (b�0E 1
).

This completely determines G21 . Thus for any two bounded dense extensions there
is at most one strong homomorphism G21 from T2 to T1 .

Now suppose T15T2 and T25T1 . Then G21 $ G12 shows that T25T2 . But so
does the identity map, so by uniqueness G21 $ G12 is the identity on T2 . Similarly
G12 $ G21 is the identity on T1 . Therefore G21 is an isomorphism and the extensions
are considered equal. 
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In the next section we will show that S is the smallest bounded dense extension
of S in this partial order. However, the following theorem enables us to show that
S is not always a subalgebra of other bounded dense extensions of S.

THEOREM 3.11. Let S=S(B, C, 8) be a Stone algebra, S=Sb (B, E, 8) the
smallest subalgebra of S(B, F(D)(, 8) containing S, and S=Sb (B, S, i) where
i : B�S is inclusion. Then there is an embedding f : S�S such that the diagram

(2)

commutes if and only if the ideal

A={b � B : 8(b*) is principal}

of B is a principal ideal.

Proof. Suppose f : S�S satisfies (2). Then

f((8(b), b))= f(g(8(b), b))

=g) ((8(b), b))

= ((8(b), b), b)

and

f(( d, 1))= f(g6 (( d, 1)))

=g) (( d, 1))

= (( d, 1), 1).

Now f((D, 1))= (s0 , 1) for some s0= (8(b0 )� d0 , b0 ) � S and (D, 1)5 ( d, 1) for
all d � D so

f((D, 1))= (s0 , 1)5 (( d, 1), 1)

for all d � D. It follows that 8(b0 )� d0=D and thus 8(b*0 )=8(b0 )*¤ d0 ,
implying by the Principal Filter Lemma that 8(b*0 ) is principal and hence that
b0 � A.
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Now let b � A. We want to show that b5b0 . Now b � A implies that
8(b)� d=D for some d � D. Then

f((D, 1))= f((8(b)� d, 1))

= f((D, 1)�((8(b), b)� ( d, 1)))

= ((D, b0 ), 1)�(((8(b), b), b)� (( d, 1), 1))

= ((D, b0�b), 1).

So b0�b=b0 and b5b0 . On the other hand, if b5b0 then b*]b*0 so 8(b*)¤
8(b*0 ) and again by the Principal Filter Lemma, 8(b*) is principal and b � A. We
have shown that A=¡b0 .

For the converse, let b0 � B be the principal generator of the ideal A and define
f : S�S by the diagram

where

f( d�8(b))= ( d�8(b), b�b0 ).

First we show that f is well defined. Note that an alternate description of A is
A={b � B :  d�8(b)=D for some d � D}. Suppose  d1�8(b1 )= d2�8(b2 ).
Then D= d2�8(b2�b*1 ) and thus b0]b2�b*1 . Similarly, b0]b1�b*2 . Since b0

contains the symmetric difference of b1 and b2 ,

b0�b1=b0�b2=b0�(b1�b2 ).

Thus f is well defined.
Now in order to show that (idB , f) is a bounded triple morphism, we need that

f(8(b))] i(b). But f(8(b))= (8(b), b�b0 �] (8(b), b)= i(b).
Finally, we check that (2) commutes.
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f(g( d�8(b), b))= f(( d�8(b), b))

= f(( d, 1)� (8(b), b))

= f(( d, 1))� (i(idB (b)), idB (b))

= (( d, 1), 1)� ((8(b), b), b)

= ((8(b)� d, b), b)

=g) ( d�8(b), b)). 

EXAMPLE 3.12. Take B to be the Boolean algebra of all finite and cofinite
subsets of an infinite set X, take D to be the chain Nop, and define 8 : B�D by
8(x)=D if x is finite, and 8(x)={1} if x is infinite. Clearly 8(b*) is principal if
and only if b is finite, so the ideal A of the theorem is a non-principal ideal. Thus
for S=S(B, D, 8) we have that S is not a subalgebra of S.

4. The lattice of bounded dense extensions

In this section we show that with the order defined in the previous section, the
set of all bounded dense extensions of a Stone algebra S is a complete bounded
distributive lattice by identifying it with a sublattice of a lattice of congruences. We
observe that S is the smallest bounded dense extension of S in this order and that
the one determined by the bounded triple (B, S, i), where i is the inclusion of the
center B in S, is the largest.

THEOREM 4.1. Let S be a Stone algebra with center B. For each lattice
congruence u of S such that u � D(S)=D, there is a bounded dense extension
gu : S�Sb (B, S/u, hu ) where hu is the natural map B�S/u : b � [b ]u and gu (s)=
[(s)u , s**) for s � S. Moreo6er, e6ery bounded dense extension can be obtained in this
way.

Proof. First recall that

S(B, S/u, hu )={(e, b): e � S/u, b � B, e5hu (b)}

and note that [s ]u5 [s** ]u so gu is well defined. Now for b � B, g(b)= ([b ]u , b**)=
([b ]u , b) and it is clear that gu is one-to-one on B. By hypothesis, gu is one-to-one
on D. It follows that gu is one-to-one.
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For s � S, s=b�d for some b � B, d � D. As a sublattice of S(B, S/u, hu ),
S/u={([s ]u , 1): s � S}. Then

gu (d)� (b�0E )= ([d ]u , 1)� (([b ]u , b)�([0]u , 1))

= ([d ]u , 1)� ([b ]u , 1)

= ([d�b ]u , 1)= ([s ]u , 1).

It follows that

D(S(B, S/u, hu ))=S/u={gu (d)� (b�0E ): d � D, b � B}

and that S(B, S/u, hu ) is a bounded dense extension of S.
For the converse, let g : S�T=S(B, E, c) be a bounded dense extension and

define u to be the congruence {(x, y): g(x)�0E=g(y)�0E }. Then we have the
diagram

where s([x ]u )=g(x)�0E . It is easy to see that s is a well-defined bounded
homomorphism and that the diagram commutes. Also g � B is an isomorphism. We
need s an isomorphism as well. Now E={g(d)� (g(b)�0E ): b � B, d � D} and

g(d)� (g(b)�0E )= (g(d)�0E )� (g(b)�0E )

=g(d�b)�0E=s([d�b ]u ).

Thus s is onto. Clearly, s is one-to-one and T$S(B, S/u, hu ). Also it is clear that
gu followed by this isomorphism is g. 

Since the congruences that arise in the previous theorem are determined largely
by their values on B the question arises whether or not the lattice of bounded dense
extensions of S can be recognized within the lattice of congruences on B. The
following examples shows this is not the case.

EXAMPLE 4.2. First we note that if u is a lattice congruence on any Stone
algebra satisfying u � D=DD , then u � B¤ker 8 where 8 : B�F(D)(: b �  bSD.
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To see this, let b, c � B. Then buc implies that (d�b)u(d�c) for all d � D. Thus
d�b=d�c for all d � D from which it follows that  bSD= cSD. Thus 8(b)=
8(c), or b(ker 8)c.

Now let S=2×3.

The relations u1 corresponding to the partition {1, b}, {x, d}, {0, b*} and u2

corresponding to the partition {1, b}, {x, d, 0, b*} are both lattice congruences on
S. Also ui � D=DD and ui � B=ker 8 for i=1, 2 where 8 : B�F(D)(: b �  bSD.
This illustrates that it is impossible to recognize the bounded dense extensions of S
within Con(B).

The following lemma shows that a map between bounded dense extensions is
determined by maps on the dense sets together with the triple maps for the bounded
dense extensions. Thus some of the advantage of the simpler maps used for
bounded triples is available for bounded dense extensions of arbitrary Stone
algebras.

LEMMA 4.3. Let S=S(B, D, 8), Ti=Sb (B, Ei , ci ), let gi : S�Ti be gi6en by
the pair gi= (idB , gi ) for i=1, 2 and let G21= (idB , g21 ). The commutati6e diagram

(3)

where gi : S�Ti is a bounded dense extension of S for i=1, 2, and G21 is a strong
homomorphism, is equi6alent to the commutati6e diagram

.

(4)

.
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where c1 , c2 , and g21 are bounded homomorphisms, g1 and g2 are monic 1-preser6ing
maps, Ei is generated by ci (B)@gi (D), i=1, 2, and (B, g2 (D)) is an admissible pair
in T2 .

Proof. Given (3), it is clear that the left triangle of (4) exactly describes the map
G21 in (3), including the property G21 (0E 2

)=0E 1
. Also the right triangle of (4) is

just the restriction of (3) to the dense sets. The fact that Ei is generated by
ci (B)@gi (D) is exactly the condition 2 of Theorem 9 that follows from the fact
that Ti is a bounded dense extension of S, i=1, 2. Finally, the property
c2 (b)�g2 (d) � g2 (D) says that (g2 (B), g2 (D)) is an admissible pair for T2 .

Given (4), (B, Ei , ci ) are bounded triples and thus correspond to Stone algebras
Ti=Sb (B, Ei , ci ) with bounded dense sets. Also g21 induces a map G21=
(idB , g21 ): T2�T1 corresponding to

Clearly G21 induces an isomorphism between the centers; it is a strong homomor-
phism since g21 : E2�E1 is bounded. Now since Ei is assumed to be generated by
ci (B)@gi (D), it follows from Theorem 9 that Ti , i=1, 2 are bounded dense
extensions of S. Also that ci (b)�gi (d) � gi (D) for all b � B, d � D, i=2 implies
that the same holds for i=1 using (4). Thus (B, gi (D)) are admissible pairs in Ti for
i=1, 2. Finally, since g1 and g2 are monic and the right triangle of (4) commutes,
it follows that g21 is an isomorphism from g2 (D) to g1 (D). We obtain the diagram

where 8i (b)={gi (d): ci (b)5gi (d)}. This diagram is a triple map if for all
b � B, F(g21 )82 (b)¤81 (b). Now

F(g21 )82 (b)= {g21 (g2 (d)): c2 (b)5g2 (d)}.
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Suppose g2 (d)]c2 (b), then g21 (g2 (d))]g21 (c2 (b)) and by commutativity of the
two triangles in (4), g1 (d)]c1 (b), that is G21 (g2 (d))=g1 (d) � 81 (b), and we have
the desired inclusion. It follows that S2$S1 where Si=S(B, gi (D), 8i ), i=1, 2,
and G21 carries T2 to T1 so that we have (3). 

THEOREM 4.4. The poset of bounded dense extensions of S=S(B, D, 8) is a
bounded distributi6e lattice with 1=S(B, S, i) and 0=S(B, S/uD , h), where uD is
the congruence defined by xuD y if and only if  xSD= ySD.

Proof. Let E(S) denote the poset of bounded dense extensions of S and let C(S)
denote the set of all lattice congruences of S, so that u � D(S)=D. Then by
Theorem 4.1, we have a bijection C(S)�E(S): u � gu where gu : S�Sb (B, S/u, h).
If u15u2 are congruences in C(S) then we get the diagram

(5)

where hi and gi are the inclusion maps into S followed by the quotient map S�S/ui

for i=1, 2 and G21 is the map S/u1�S/u2 allowed by u15u2 . Consequently the
diagram is commutative. It also follows easily from the given properties that the
left triangle consists of bounded maps and g1 and g2 are monic. It is clear that
S/ui is generated by hi (B)@gi (D) and that hi (b)�g2 (1) � g2 (D) since
S(B, D, 8)=
S. Thus we have that Sb (B, S/u1 , h1 )]S(B, S/u2 , h2 ) and E(S)$C(S)op as a
poset.

Now, the poset C(S) sits in the complete distributive lattice Con(S) of all lattice
congruences on S. In fact, C(S) is a complete lattice ideal of Con(S). To see this,
it is clear that the trivial congruence on S, DS , belongs to C(S). Also, if u15u2 and
u2 � D(S)=D, then u1 � D(S)=D. Thus u2 � C(S) implies u1 � C(S). Finally, if C is
any subcollection of C(S) then it is easy to see that (0 C) � D(S)=D since 0 C is
the transitive closure of the union of the congruences in C.

It now follows that C(S) is a complete distributive lattice and thus that E(S)$
C(S)op is also a complete distributive lattice. Since DS is the smallest element of C(S),
Sb (B, S/DS , hD ) is the largest element of E(S). Notice that Sb (B, S/DS , hD )=
Sb (B, S, i), where i : B�S is the inclusion. It is easy to see that the congruence uD

on S defined by xuD y if and only if  xSD= ySD, is the largest element in C(S)
and thus the corresponding element of E(S) is the 0 of the lattice E(S). 
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COROLLARY 4.5. S is the smallest element of E(S).

Proof. The congruence corresponding to g : S�S : s= (s�s*)�s** �
( (s�s*)�8(s**), s**) is s� t if and only if

( (s�s*)�8(s**), s**)�(D, 1)= ( (t�t*)�8(t**), t**)�(D, 1)

 (s�s*)�( s**SD)= (t�t*)�( t**SD)

( (s�s*)� s**)SD= ( (t�t*)� t**)SD

 ((s�s*)�s**)SD= ((t�t*)� t**)SD

 sSD= tSD.

This is the condition for the congruence suD t. 

5. The category of Stone algebras with bounded dense set

It is now easy to show that S � S( naturally induces a reflective functor from the
category of Stone algebras and Stone algebra homomorphisms to the subcategory
of Stone algebras with bounded dense set and strong homomorphisms.

DEFINITION 5.1. A subcategory S% of a category S is reflecti6e if there is a
functor R : S�S%, called a reflector, and a natural transformation h : IS�R from
the identity functor of S to the functor R, with the property that for any map
f : S�T in the category S with T an object of S%, there exists a unique map
f %: R(S)�T in S% such that f % $ hS= f, that is, the diagram

commutes.

THEOREM 5.2. The category Sb of Stone algebras with bounded dense set and
strong homomorphisms is a reflecti6e subcategory of the category S of Stone algebras
with Stone algebra homomorphisms, with reflector R : S�Sb gi6en by

R(S)=S( =Sb (B, S, i) and R(f)= f( = (f, f),
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together with the natural transformation

hS=g) : S�S( .

Proof. It suffices to show that for every Stone lattice homomorphism f : S�T,
with T having a bounded dense set, there exists a unique strong homomorphism
f %: S( �T with commuting diagram

(6)

that is, f % $ gS= f ([1], I.18, Theorem 2). In the case f is one-to-one this follows
immediately from Theorem 3.10, since the image of f is contained in a bounded
dense extension of S. In the general case, notice first that if f % exists it is unique
since S( is generated by gS (S) together with the zero of the dense set of S( .

Given f : S�T any Stone map between arbitrary Stone algebras, we define
f( = (f, f): S( �T( by the bounded triple map

It is easy to check that f( is a strong homomorphism and that the diagram

commutes. Now in the case that T has bounded dense set, T is a bounded dense
extension of itself and by Theorem 3.10 there is a strong map G : T( �T such that
the triangle
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commutes. Then f %=G $ f( is the desired strong homomorphism solving diagram 6.

6. Some examples

1. Let D be any distributive lattice without 0 and with 1. Let B be the two
element Boolean algebra and 8 the only bounded morphism from B to
F(D)(. Then S=S(B, D, 8) is just D with a bottom added and S is S with
a bottom adjoined to its dense set.

2. Let S be a Stone algebra, D a distributive lattice with 1, and 8 : S�F(D)(

a bounded homomorphism whose range is contained in the sublattice

(D :D)={F �F(D): FS d is principal for all d � D}

of F(D)(. Then S(S, D, 8)={( d�8(s), s): d � D, s � S} is a sublattice of
the product F(D)(×S with coordinatewise operations, which becomes a
Stone algebra with ( d�8(s), s)*= (8(s*), s*). Notice that (D :D) contains
the center of F(D)( as well as the principal filters of D.

Given a Stone algebra S=S(B, D, 8),

S( =S(B, S, i)={(s, b): s5b, s � S, b � B}

¤S×B={( d�8(b1 ), b1 , b2 ): d � D, bi � B, b15b2 }

¤F(D)(×B×B.

Now if we define

8) : B [2]�F(D)(: (b1 , b2 ) � 8(b1 )

then 8) is a bounded homomorphism of the Stone algebra B [2]=B( into
F(D)( whose image is contained in the center of F(D)(. We get
S(B [2], D, 8) )={( d�8(b1 ), b1 , b2 ): b15b2 }=S( . In other words,

S(B( , D, 8) )=S(B, D, 8).
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In fact, for any bounded homomorphism 8 : S�F(D)( into (D :D), we get
the Stone algebra S0=S(S, D, 8), which then gives rise to the Stone algebra
S1=S(S( , D, 8) ), where 8) : S( �F(D)( is given by 8) (s, b)=8(s). Iterating
this process we get an increasing chain of structures

S0¦S1¦S2¦ · · ·.

In the case where S0=S(B, D, 8) is a Stone algebra obtained using the
original triple construction, the sequence obtained is the same as the one
obtained by iterating the application of ( ) to S0 . Finally, in the case where
S0=B is a Boolean algebra, the sequence obtained is

B=B1¦B2¦B3¦ · · ·¦Bn¦ · · ·

where

Bn={(b1 , b2 , . . . , bn ): bi � B and b15b25 · · ·5bn }.

3. Let D be the lattice D=Nop×2, where N is the set of natural numbers and
2={0, 1} and let B be the four element Boolean algebra {0, 1, b, b*}. The
lattice D has two non-principal filters, namely D and {(n, 1): n � N}. Let
8 : B�F(D)( be the map given by 8(b)={(1, 0), (1, 1)}, 8(b*)=
{(n, 1): n � N}, 8(1)={(1, 1)}, and 8(0)=D. Note that 8(b) is principal and
8(b*) is not. In general, if D does not have a 0, not both 8(b) and 8(b*) can
be principal. By Theorem 3.11, since B is finite, there are embeddings
S¤S¤S( . These embeddings for S=S(B, D, 8) are depicted in the diagram
below, with S black, S black and white, and S( black, white and gray.
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4. In this example we have a pair of non-principal complementary filters in the
image of 8. Let X={1/i : i � Z} and

xi={x � X : −1/i5x for i � N,

yi={x � X : x51/i} for i � N.

Then xi@yj=X for all i, j � N. Let D be the lattice generated by
{xi , yi : i � N} in 2X. Then f={xi : i � N}, g={yi : i � N} are filters of D and
fSg={X}=0F(D) , f�g=D=1F(D) . Following is a diagram of S where
S=S(B, D, 8), B is the four element Boolean algebra {0, b, b*, 1} and 8 is
given by 8(b)= f, 8(b*)=g.
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[9] GRÄTZER, G. and SCHMIDT, E. T., On a problem of M. H. Stone, Acta Math. Acad. Sci. Hungar.

8 (1957), 455–460.



Vol. 37, 1997 Stone algebra extensions with bounded dense sets 23
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