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I. Introduction

The trigonometric addition and subtraction formulas and their relations have been
studied from the point of view of functional equations by a number of mathemati-
cians. Let us mention Wilson [13], Vietoris [11] and Vincze [12]. The mono-
graphs by Aczél [1, Section 3.2.3], by Aczél and Dhombres [2, Ch. 13] and by
Székelyhidi [10, Chap. 12] have references and detailed discussions of the clas-
sical results. All the above references deal with functions defined on abelian
groups. The functional equations f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ G, and
g(xy) = g(x)g(y) + f(x)f(y), x, y ∈ G, in which the group G need not be abelian,
were solved by Chung, Kannappan and Ng [3] during their discussion of the cosine-
sine functional equation

f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y), x, y ∈ G. (1)

We continue these investigations.
To formulate our results we introduce the following notation and assumptions

that will be used throughout the paper: G is a topological group, C(G) the algebra
of continuous, complex valued functions on G, and σ : G → G a continuous
homomorphism such that σ ◦ σ = I were I denotes the identity map.

We find the solutions f, g ∈ C(G) of each of the following versions of the



Vol. 59 (2000) On the trigonometric subtraction and addition formulas 85

addition and subtraction formulas for sine and cosine:

f(xσ(y)) =f(x)g(y)− g(x)f(y), ∀x, y ∈ G, (2)
f(xσ(y)) =f(x)g(y) + g(x)f(y), ∀x, y ∈ G, (3)
g(xσ(y)) =g(x)g(y) + f(x)f(y), ∀x, y ∈ G, (4)

(Theorems II.2, II.3 and II.4 below). The classical addition and subtraction for-
mulas, where the group G is abelian, correspond to σ = I and σ = −I respectively
(replace possibly f by if). Other examples of σ are transposition of n× n matri-
ces and reflection in a hyperplane. To solve the functional equations (2), (3) and
(4) we reduce them to the special case of σ = I where the solutions are given in
Section III.

The two classical functional equations

g(x+ y) =g(x)g(y) + f(x)f(y), ∀x, y ∈ G,
g(x− y) =g(x)g(y) + f(x)f(y), ∀x, y ∈ G,

(5)

are in our set up unified by (4) and solved simultaneously by Theorem II.4. So (4)
demonstrates the relation between the two equations in (5), and is interesting for
as well σ = I as σ = −I.

Our discussion of the addition and subtraction formulas in this general setting
is new, as are the explicit solution formulas for σ 6= ±I. We take continuity of
the solutions into account in contrast to the papers [3] and [12] that describe the
set of all solutions without specifying the continuous ones. We can of course get
all solutions, continuous or not, by considering the special instance of the discrete
topology on G.

We want to point out the following: What generalizes the subtraction formulas
from the abelian to the non-abelian case is that the map x → −x is a homo-
morphism the square of which is the identity map. We do not discuss functional
equations like f(xy−1) = · · · in the non-abelian case, because σ(y) = y−1 is an
antihomomorphism, not a homomorphism.

The related functional equation f(y−1x) = (a(x) | a(y)) was studied by Gajda
[5] and earlier by O’Connor [6].

II. The subtraction and addition formulas

Notation II.1. The set of continuous homomorphisms a : G → (C,+) will be
denoted by A(G). Those a ∈ A(G) for which a ◦ σ = a, resp. a ◦ σ = −a will be
denoted A+(G), resp. A−(G). In the classical case of σ = −I the spaces A−(G)
and A+(G) become A(G) and {0} respectively. C∗ is the multiplicative group
(C\{0}, ·) of non-zero complex numbers.
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Theorem II.2 (The sine subtraction formula). The continuous solutions f, g ∈
C(G) of

f(xσ(y)) = f(x)g(y)− g(x)f(y), ∀x, y ∈ G, (6)

are the following, where m : G → C∗ denotes a continuous homomorphism and c
and c1 complex constants:

(i) f = 0, g any function.
(ii) f = c1(m−m◦σ)/2, g = (m+m◦σ)/2 + c(m−m◦σ)/2, where m 6= m◦σ.
(iii) f = ma−, g = m(1 + ca−), where a− ∈ A−(G), and m = m ◦ σ.

Proof. Verifying that the stated pairs of functions are solutions consists in simple
computations that we leave out. To see that any solution f, g ∈ C(G) of (6) is
contained in one of the three cases we proceed as follows.

Since the right hand side of the functional equation (6) changes sign when x
and y are interchanged we see that f(xσ(y)) = −f(yσ(x)) for all x, y ∈ G. Putting
y = e we find that f ◦ σ = −f . Using this and the identity (6) we find that

f(x)[g(y)− g(σ(y))]− f(y)[g(x)− g(σ(x))]
= f(x)g(y)− g(x)f(y)− f(x)g(σ(y)) + g(σ(x))f(y)
= f(xσ(y)) + f(σ(x))g(σ(y)) − g(σ(x))f(σ(y))
= f(xσ(y)) + f(σ(x)σ(σ(y))) = f(xσ(y)) + f(σ(x)y)
= f(xσ(y)) − f(xσ(y)) = 0,

(7)

so
f(x)[g(y)− g(σ(y))] = f(y)[g(x)− g(σ(x))] for all x, y ∈ G. (8)

If f = 0 we deal with case (i). So from now on we will assume that there exists
an x0 ∈ G for which f(x0) 6= 0.

Defining g+ and g− by g± := (g ± g ◦ σ)/2 we have g = g+ + g−, and from
(8) that f(x)g−(y) = g−(x)f(y), ∀x, y ∈ G. In particular that g− = cf where
c = g−(x0)/f(x0). When we substitute this into (6) we get that

f(xσ(y)) = f(x)g+(y)− g+(x)f(y) for all x, y ∈ G, (9)

and so - replacing y by σ(y) - that

f(xy) = f(x)g+(y) + g+(x)f(y) for all x, y ∈ G. (10)

This functional equation is solved by Proposition III.1 below according to which
we have the following 4 possibilities, using the notation in Proposition III.1:

(a): f = 0 and g+ anything. This case does not occur here due to our assump-
tion that f 6= 0.

(b): g+ = m/2 and f = c1m where c1 ∈ C\{0}. Via (9) we see that f = 0, so
this case does not occur either.

(c): g+ = (m+M)/2 and f = c1(m−M) where c1 ∈ C\{0}. Since f ◦σ = −f
and g+ ◦ σ = g+ we get that m ◦ σ−M ◦σ = M −m and m ◦ σ+M ◦ σ = M +m
implying that M = m ◦ σ. Thus g+ = (m +m ◦ σ)/2 and f = c + i(m−m ◦ σ).
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Combining this with the relation g− = cf derived above, we see that we have
case (ii).

(d): g+ = m and f = ma. From g+ ◦ σ = g+ we infer that m ◦ σ = m, and
from f ◦ σ = −f that a ◦ σ = −a, i.e., that a ∈ A−(G). Combining this with the
relation g = cf derived above, we see that we have case (iii). �

Theorem II.3 (The sine addition formula). The set of solutions f, g ∈ C(G) of
the functional equation

f(xσ(y)) = f(x)g(y) + g(x)f(y), ∀x, y ∈ G, (11)

can listed as follows where m,M : G → C∗ denote continuous homomorphisms
such that m ◦ σ = m and M = M ◦ σ, and where c denotes non-zero complex
constants:

(i) f = 0 and g arbitrary.
(ii) f = m/2 and f = cm.
(iii) g = (m+M)/2 and f = c(m−M).
(iv) g = m and f = ma+, where a+ ∈ A+(G).

Proof. It is elementary to check that the cases stated in the Theorem define solu-
tions, so it is left to show that any solution f, g ∈ C(G) of (11) falls into one of
these cases.

If f = 0 then we have case (i), so we shall from now on assume that f 6= 0.
Since the right hand side of (11) is invariant under interchange of x and y we

get that f(xσ(y)) = f(yσ(x)). Taking y = e we get in particular that f = f ◦ σ.
Using (11) we get

f(x)g(y) + g(x)f(y) = f(xσ(y)) = (f ◦ σ)(xσ(y)) = f((σ(x))σ(σ(y)))
= f(σ(x))g(σ(y)) + g(σ(x))f(σ(y)) = f(x)g(σ(y)) + g(σ(x))f(y),

(12)

so f(x)[g(σ(y)) − g(y)] = f(y)[g(x)− g(σ(x))] for all x, y ∈ G. The left hand side
does not change if x is replaced by σ(x), but the right hand side does. Hence both
sides are 0. Since f 6= 0 this means that g = g ◦ σ.

Using the σ-invariance of f and g we find

f(xy) = f(xσ(σ(y)) = f(x)g(σ(y)) + g(x)f(σ(y)) = f(x)g(y) + g(x)f(y). (13)

The solutions of the functional equation f(xy) = f(x)g(y) + g(x)f(y) are written
down in Proposition III.1 below. However the solutions here have the extra in-
variance property that g = g ◦ σ and f = f ◦ σ. We work our way through the
4 possibilities (a)–(d) presented by Proposition III.1 to see what the invariance
property entails. We use the notation of Proposition III.1.

(a): f = 0. By assumption f 6= 0 so this case is excluded.
(b): g = m/2 and f = cm. Here we get that m = m◦σ, so that we have case (ii).
(c): g = (m+M)/2 and f = c(m−M). Here we get from the σ-invariance of g

and f that m+M = m ◦ σ+M ◦ σ and m−M = m ◦ σ−M ◦ σ. By addition
and subtraction we find that m = m ◦ σ and M = M ◦ σ. This is case (iii).
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(d): g = m and f = ma. Here we find that m = m◦σ. Combined with f = f ◦σ
it implies that a = a ◦ σ, i.e. that a ∈ A+(G). This is case (iv). �

Theorem II.4 below seemingly contains more solutions than found in Vietoris
[11] and Wilson [13]. Remark II.5 explains why.

Theorem II.4 (The cosh addition and the cosine subtraction formulas). The
continuous solutions f, g ∈ C(G) of

g(xσ(y)) = g(x)g(y) + f(x)f(y), ∀x, y ∈ G, (14)

are the following, where m,M : G→ C∗ denote continuous homomorphisms:
(i) g = 0, f = 0.
(ii) g = (1 + c2)−1m, f = c(1 + c2)−1m, where m = m ◦ σ, and c ∈ C\{±i}.
(iii)

g =
m+ c2M

1 + c2
and f = c

m−M
1 + c2

, (15)

where m = m ◦ σ and M = M ◦ σ and c ∈ C\{0, i,−i}
(iv) g = m(1 + ia), f = ma, where a ∈ A+(G) and m = m ◦ σ.
(v) g = m(1− ia), f = ma, where a ∈ A+(G) and m = m ◦ σ.

(vi) g = (m+m ◦ σ)/2, f = i(m−m ◦ σ)/2, where m 6= m ◦ σ.

Proof. Checking that the stated pairs of functions satisfy (14) is done by elementary
calculations, that we leave out. It is left to show that each solution f, g ∈ C(G)
of (14) falls into one of the categories (i)–(vi).

We note that g = g ◦ σ because the right hand side of (14) is invariant under
interchange of x and y.

If f = 0 then we get from (14) that g is zero or a homomorphism into C∗, so
we are in case (i) or (ii) with c = 0. We can from now on assume that there exists
an x0 ∈ G such that f(x0) 6= 0.

Using the identity (14) and that g = g ◦ σ we find that

g(x)g(y) + f(x)f(y) = g(xσ(y)) = (g ◦ σ)(xσ(y)) = g(σ(x)σ(σ(y)))
= g(σ(x))g(σ(y)) + f(σ(x))f(σ(y)) = g(x)g(y) + f(σ(x))f(σ(y)).

(16)

Comparing the left and right hand sides we see that

f(x)f(y) = f(σ(x))f(σ(y)), ∀x, y ∈ G. (17)

Letting x = y = x0 in (17) we get that f(x0) = f(σ(x0)) or f(x0) = −f(σ(x0)).
Again by (17),

f(x) =
f(σ(x0))
f(x0)

f(σ(x)) for all x ∈ G, (18)

so that either f ◦ σ = f or f ◦ σ = −f .
Suppose f ◦σ = f . Replacement of y by σ(y) in (14) yields the addition formula

g(xy) = g(x)g(y) + f(x)f(y), the solutions of which are given in Proposition III.2.
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When we analyse its solutions to find those for which f and g are σ-invariant, we
find that only the ones stated in the cases (i) through (v) of Theorem II.4 survive.

Suppose f ◦ σ = −f . Replacing y by σ(y) in (14) we find that g(xy) =
g(x)g(y)− f(x)f(y) which is the equation (23) in Proposition III.2, except that f
should be replaced by if to get the notation to match. Once again we go through
the various possibilities (a) - (e) listed in Proposition III.2. Several possibilities
will be ruled out by our assumption f 6= 0.

(a): g = 0 and f = 0 is excluded because f 6= 0.
(b): g = (1 + c2)−1m, f = ic(1 + c2)−1m, where c ∈ C\{±i}. Since g ◦ σ = g we

get m = m ◦ σ, and so f ◦ σ = f . But f ◦ σ = −f so we conclude that f = 0.
But this case is excluded.

(c):

g =
m+ c2M

1 + c2
and f = ic

m−M
1 + c2

, where c ∈ C\{0, i,−i}. (19)

From g ◦ σ = g and f ◦ σ = −f we get, respectively, that m ◦ σ + c2M ◦ σ =
m+c2M and m◦σ−M◦σ = −m+M . Since characters are linearly independent
(see, e.g., Lemma 29.41 of [7]) the last identity means that at least one of the
following four cases occur:

(1) m ◦ σ = M ◦ σ or, equivalently, m = M .
(2) m ◦ σ = m.
(3) M = M ◦ σ.
(4) m ◦ σ = M .

(1) implies that f = ic(1+c2)−1(m−M) = 0 which is excluded by assumption.
(2) implies by m ◦ σ + c2M ◦ σ = m + c2M that M = M ◦ σ and so from
m ◦ σ −M ◦ σ = −m+M that m = M . But then we are back in case (1).
(3) implies via m ◦ σ + c2M ◦ σ = m+ c2M that m = m ◦ σ which is the just
treated case (2).
(4) implies that (1 − c2)M = (1 − c2)M ◦ σ, so either M = M ◦ σ or c2 = 1.
The first possibility is case (3), so only the possibility c2 = 1 remains. We find
that g = (m + c2M)(1 + c2)−1 = (m + m ◦ σ)/2 and f = ±i(m −m ◦ σ)/2.
Possibly replacing m by m ◦ σ to get rid of the minus sign we have case (vi) of
Theorem II.4.

(d): g = m(1 + ia), f = ma, where a ∈ A(G). From g = g ◦σ and f = −f ◦σ we
find that m+ iam = m◦σ+ i(a◦σ)(m◦σ) and ma = −(m◦σ)(a◦σ), implying
that m(1 + 2ia) = m ◦ σ. With M := (m ◦ σ)/m we get that 1 + 2ia = M . For
any x ∈ G and n ∈ Z we find that 1 + 2ina(x) = M(x)n. Since exponentials
grow faster than linear functions we see that |M(x)| = 1, and then the identity
shows that a(x) = 0. But then f = ma = 0 which is excluded by assumption,
so this case does not occur.

(e): g = m(1− ia), f = ma, where a ∈ A(G). This can be treated just like case
(d), so this case does not occur either. �
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Remark II.5. If G = {xσ(x−1) ∈ G | x ∈ G} then the solutions (ii) through
(v) of Theorem II.4 all reduce to the single case (ii), i.e. to g = (1 + c2)−1, f =
c(1 + c2)−1, where c ∈ C\{±i}. This happens in the classical case where G is an
abelian group such that G = 2G and where σ = −I.

Theorem II.3 becomes uninteresting when G = {xσ(x−1) ∈ G | x ∈ G},
because f then reduces to a constant in all of its cases (i)–(iv). The above explains
why the fine structures (i) through (iv) of Theorem II.3 and (ii) through (v) of
Theorem II.4 have not been singled out before.

III. Auxiliary results on addition formulas

In this section we exhibit the solutions of the sine and cosh addition formulas
that were needed in Section II. These two trigonometric functional equations (20)
and (23) were solved by Chung, Kannappan and Ng [3, Lemma 5 and 4], but
their results were formulated differently from what we need and they did not take
continuity into account, so we present modified proofs of the solution formulas
below. For abelian G the functional equations (20) and (23) were solved in Chapter
12 of [10].

Proposition III.1. The solutions f, g ∈ C(G) of

f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ G, (20)

are the following, where m,M : G → C∗ denote continuous homomorphisms and
c a non-zero complex constant:

(a) g any function and f = 0.
(b) g = m/2 and f = cm.
(c) g = (m+M)/2 and f = c[m−M ].
(d) g = m and f = ma, where a ∈ A(G).

Proof. Checking that the stated pairs of functions satisfy (20) is done by elementary
calculations, that we leave out. It is left to show that each solution f, g ∈ C(G)
of (20) falls into one of the categories (a) - (d).

Since f = 0 is case (a) we shall in the remainder of the proof assume that
f 6= 0.

If there exists a constant α ∈ C such that g = αf , then α 6= 0 because g = 0
implies f = 0. The functional equation (20) says that m := 2αf is a continuous
homomorphism of G into C∗. Now f = m/(2α) and g = αf = m/2, so we have
case (b).

We may thus assume that f and g are linearly independent. According to
Lemma V.1 of [9] (or the proof of Lemma 5 of [3]) there exists a constant κ ∈ C
such that

g(xy) = g(x)g(y) + κ2f(x)f(y), x, y ∈ G. (21)
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Combining this with (20) we get that

(g ± κf)(xy) = (g ± κf)(x)(g ± κf)(y), (22)

so g ± κf are continuous homomorphisms of G into C∗. If κ 6= 0 we have case (c)
with m := g + κf and M := g − κf .

If κ = 0 then m := g is according to (21) a continuous homomorphism of G
into C∗. Dividing in (20) by m(xy) = m(x)m(y) we get case (d) with a := f/m.

�

Proposition III.2. The continuous solutions f, g ∈ C(G) of

g(xy) = g(x)g(y) + f(x)f(y), ∀x, y ∈ G, (23)

are the following, where m,M : G→ C∗ denote continuous homomorphisms:
(a) g = 0, f = 0.
(b) g = (1 + c2)−1m, f = c(1 + c2)−1m, where c ∈ C\{±i}.
(c)

g =
m+ c2M

1 + c2
and f =

m−M
1 + c2

, where c ∈ C\{0, i,−i}. (24)

(d) g = m(1 + ia), f = ma, where a ∈ A(G).
(e) g = m(1− ia), f = ma, where a ∈ A(G).

Proof. Checking that the stated pairs of functions satisfy (23) is done by elementary
calculations, that we leave out. It is left to show that each solution f, g ∈ C(G)
of (23) falls into one of the categories (a) - (e).

If g = 0 then so is f . This is case (a). From now on we assume g 6= 0.
If there exists a constant c ∈ C such that f = cg, then

g(xy) = (1 + c2)g(x)g(y), x, y ∈ G. (25)

Here 1 + c2 6= 0 since otherwise g = 0 which by assumption is not the case. Thus
m := (1 + c2)g is a non-zero solution of Cauchy’s functional equation χ(xy) =
χ(x)χ(y) so m is a continuous homomorphism of G into C∗. This is case (b).

From now on we can assume that f and g are linearly independent. According
to Lemma 4 of [3] (or Lemma V.3 of [9]) there exists a constant α ∈ C such that

f(xy)− f(x)g(y)− g(x)f(y) = 2αf(x)f(y), x, y ∈ G. (26)

Combining the identities (26) and (23) we find for any z ∈ C that

(g − zf)(xy) = (g − zf)(x)(g − zf)(y)− (z2 + 2αz − 1)f(x)f(y). (27)

Let λ and µ denote the two roots of the polynomial z2 + 2αz−1. Then λ 6= 0, µ =
−λ−1, and so m := g − λf and M := g + λ−1f are by (27) solutions of Cauchy’s
functional equation. Furthermore m and M are non-zero solutions, because f and
g are linearly independent. Thus m and M are continuous homomorphisms of G
into C∗.
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If λ 6= µ then we can express f and g by m and M . This is case (c). If λ and
µ coincide then λ = µ = α = ±i so g = m± if . From (26) we get in each of the
two cases α = ±i that f satisfies the sine addition formula

f(xy) = f(x)m(y) +m(x)f(y), x, y ∈ G. (28)

Dividing bym(xy) = m(x)m(y) in the identity (28) we find that a := f/m ∈ A(G).
Thus f = ma and g = m± if = m± ima = m(1± ia). So we have either case (d)
or (e). �
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