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1. Introduction

Intuitively, a projective polyhedron is the drawing of a combinatorial polyhedron
in the projective 3-dimensional space P

3; and two are considered to be the same
if they differ by a projective isometry. If the combinatorial polyhedron is regular
(as symmetric as possible) and all of its symmetries are realized by geometric
isometries of the ambient space, then the projective polyhedron is called regular.
In this paper and its sequel [2] we center our attention on the case where each
face lies on a projective plane, leaving the case of non planar faces for further
studies [3].

It is surprising that in the literature of geometric regular polyhedra there is
no systematic study of them in terms of projective geometry; in spite of the fact
that Coxeter in [6] took the projective geometry approach for the study of elliptic
honeycombs, but that was it. This is the program we start, or retake from Coxeter,
with this paper. One may think of it as mainly motivated by the question: what
and who are the analogues in projective space of the classic regular euclidean
polyhedra?

For each regular projective polyhedron, its natural double cover in the 3-sphere
can be seen as a regular euclidean polyhedron in R

4. Conversely, a bounded regular
euclidean polyhedron in R

4 projects to a projective one. So, in principle, the study
of these objects is equivalent. However, we found it easier to visualize and to work
with them in P

3; moreover, we think it is the natural approach to the classification
problem. This belief is validated by the fact that using this approach one of the
authors classified (in the sense of Grünbaum [11]) all regular projective polyhedra
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in P
3 (see [3]), giving as a corollary the classification of regular polyhedra in R

4.
From the euclidean point of view, a lot of work about these objects and closely

related ones has been done, mainly by Coxeter [5, 7, . . . ], Grünbaum [11], Dress
[9, 10], McMullen [13], McMullen–Schulte [14] and Schulte–Wills [16, 17]. This
brief list would have to grow considerably (see, e.g. [12]) if we were not focused
on polyhedra which are geometrically regular. In particular, the first interesting
examples are Coxeter’s regular skew polyhedra in R

4 [5], whose “halves” or pro-
jective versions we describe and characterize. Therefore, let us emphasize what,
besides the approach, is new in this paper.

After establishing general terminology and some basic facts about regular pro-
jective polyhedra in general, we prove that those with planar faces are determined
by three parameters, which are rational if the polyhedron is finite. Then, we ob-
tain a diophantine trigonometric equation [4], called the waist equation, on these
three parameters and another, the waist, which is a necessary condition for their
existence. The integer solutions of this equation give rise to the projected (and
hence to) Coxeter’s regular skew polyhedra, yielding a new proof of their unique-
ness. The program is similar to Coxeter’s in [5], but with a different equation.
Some rational solutions are presented and correspond to tori with self intersec-
tions (polyhedra of the Kepler–Poinsot type); combinatorially, they are described
in [8], but their geometric realization appears explicitly here for the first time.
In [2] the waist equation is exploited further, it turns out that not all rational
solutions of the waist equation come from finite regular projective polyhedra, but
they play a key role for their classification. Also, “taking the opposite” is a new,
intrinsically projective, construction introduced in this paper. Given a bounded
polyhedron in R

4, projecting it, taking the opposite and lifting it back gives an-
other polyhedron in R

4. In [2], this construction is studied in more generality
and detail. Here, we use it for a brief description of Grünbaum’s polyhedra in
R

3 [11], but, for the sake of brevity, we don’t digress on its obvious and implicit
applications to other polyhedra to obtain new ones. Finally, we should remark
that our description of the projected Coxeter’s {4, 6} is interesting, projectivelly
natural and, to the best of our knowledge, new. Combinatorially, it generalizes
naturally to regular polyhedra whose group of automorphisms is the symmetric
group Sn, see [1].

2. Definitions

Although some definitions and general arguments may be carried out in the greater
generality of incidence polytopes, we shall restrict to polyhedra. Also, we don’t
digress into the general notion of projective polyhedra but go directly to the regular
ones. However, it should be remarked that our implicit definition of projective
polyhedra is analogous to that of Grünbaum in [12] for euclidean spaces.
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2.1. Regular projective polyhedra

A combinatorial polyhedron P consists of a graph, called its 1-skeleton and denot-
ed Sk1(P), together with a collection of cycles, called the faces of P , satisfying
some additional properties stated below. First, the 1-skeleton is connected and has
no loops; but double edges should be allowed in view of our projective geometry
interest, because there, two points may be joined by two different segments. For
each vertex v define a graph called the vertex figure of v, whose vertices are the
edges incident to v with two of them adjacent if there is a face containing them.
The second condition is that all the vertex figures are cycles. Observe that this
implies that each edge is in two faces, and that these conditions are the combina-
torial translation of asking that when the faces are viewed as 2-cells attached to
the 1-skeleton one obtains a connected surface.

A flag is any incident triplet (vertex, edge, face). A combinatorial polyhedron
P is said to be regular if its group of automorphisms, Aut(P), acts transitively on
the set of all flags. In particular, this implies that all faces of a regular polyhedron
are cycles of the same length, p say, and that all the vertices have the same degree,
q say. The ordered pair {p, q} is called the Schläfli symbol of P .

The n-dimensional projective space P
n, also known as elliptic space, is the

n-dimensional sphere Sn with antipodes identified. Its metric, as well as other
geometric notions, come from this identification. Thus, its group of isometries is
Iso(Pn) = PO(n + 1) = O(n + 1)/{I,−I}, where I is the identity matrix. For
any pair of points in P

n there are exactly two line segments joining them. Such
segments, which together form a line, will be called opposite. Given a projective
subspace Π of P

n, its polar space is the set of points of maximal distance π/2 from
Π; it is also a projective subspace of dimension n− 1.

A projective graph is a finite set of points in P
n, called vertices, together with a

set of line segments, called edges, joining some pairs of these vertices. Clearly, there
is an underlying combinatorial graph with no loops and, at most, double edges.
Given a projective graph G, the opposite graphGop has the same vertices as G, and
for each edge we choose the opposite segment between the corresponding vertices.
Thus, Gop is combinatorially isomorphic to G, but in general it is a different
projective graph. A linear map g : G → P

n of a graph G to P
n is a surjective

graph homomorphism (in the sense that vertices go to vertices and edges to edges)
to a projective graph. Clearly, any linear map has an opposite linear map onto the
opposite graph.

A regular projective polyhedron P consists of a regular combinatorial polyhedron
Pc together with a linear map

g : Sk1(Pc) → P
n

for which there exists an injective homomorphism

γ : Aut(Pc) → Iso(Pn),
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such that for every ρ ∈ Aut(Pc) we have

g ◦ ρ = γ(ρ) ◦ g.
Two regular projective polyhedra are called equivalent (and will be regarded

as being the same) if their combinatorial polyhedra are isomorphic and if there
exists an isometry of P

n making the linear maps commute with the isomorphism.
A regular projective polyhedron P in P

n is degenerate if its associated projective
graph g(Sk1(Pc)) lies in a non trivial projective subspace, that is, if it can be
considered as a projective polyhedron in P

k with k < n.
There is an important class of regular projective polyhedra which we call Pla-

tonic because they resemble their euclidean analogues. Consider a projective graph
in P

3 with a distinguished collection of cycles, each of which lies in a projective
plane and bounds there a topological disk. If the union of these closed planar disks
is a surface, we have a combinatorial polyhedron with a geometric realization. It
is a Platonic projective polyhedron if it is combinatorially regular and every au-
tomorphism may be realized by an isometry of the ambient space. The obvious
examples are the platonic solids thinking of projective space as euclidean space
plus a plane at infinity. Of course, they will be projectively different according to
their “size” or radius, which is the distance of a vertex to the center of symmetry,
which can take values from 0 to π/2.

2.2. Relation to euclidean polyhedra

We will see how regular projective polyhedra are in natural correspondence to
bounded regular euclidean polyhedra one dimension higher.

Given a regular projective polyhedron P in P
n as above, we can lift it to a

regular euclidean polyhedron P̃ in R
n+1 as follows. Let π : Sn → P

n be the natural
double cover. The inverse image under π of the projective graph G = g(Sk1(Pc))
is a “geodesic” graph G̃ in Sn, and we have a double cover π : G̃ → G. Let H
be the pullback of π by g, that is, the vertices (and edges) of H are pairs (α, β)
with α ∈ Sk1(Pc) and β ∈ G̃ such that g(α) = π(β). H is a double cover of
Sk1(Pc) on which we have a natural collection of cycles as follows. For every face
of Pc, consider its cycle in Sk1(Pc). It lifts to either two isomorphic cycles in H
or to a single one of twice its length. Declare both of them, or it, as the case
may be, as distinguished cycles of H. It is easy to see that these cycles satisfy
the properties of being faces of a polyhedron P̃c, except, possibly, that it may not
be connected (corresponding to whether H̃ and G̃ are not connected); in this case
let P̃c be one component. Clearly, P̃c comes equipped with a map of its vertices
to R

n+1. And moreover, by the construction we have an injective homomorphism
γ̃ : Aut(P̃c) → O(n + 1) (which covers γ : Aut(Pc) → Iso(Pn)). These are the
ingredients of a regular euclidean polyhedron (in McMullen’s terminology, [13], a
faithful realization of a regular incidence-polyhedron; see also [9]).

Conversely, consider a bounded regular euclidean polyhedron P̃ in R
n+1; it

consists of a regular combinatorial polyhedron P̃c, an injective homomorphism
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γ̃ : Aut(P̃c) → O(n + 1) and a compatible non-trivial map of its vertices to R
n+1

(see [13] and [9]). Since P̃ is bounded, then up to a scalar factor we may assume its
vertices lie on the unit sphere Sn. Now, the 1-skeleton may be mapped uniquely
to a rectilinear graph, then projected out to Sn from the origin and down to
P

n to obtain a linear map to P
n. Two cases must be considered. First, if the

antipodal map, −I, is not a symmetry of P̃, then a regular projective polyhedron
P is obtained by the simple composition with the projection (for example the
tetrahedron). And second, if the antipodal map −I is a symmetry of P̃, then
define the combinatorial polyhedron Pc to be the quotient P̃c/{I,−I} observing
that its 1-skeleton and automorphism group map naturally to P

n.

3. Planar polyhedra

To fix ideas and to illustrate the projective approach, in this section we briefly
describe the projective polyhedra in P

2, which, according to the previous sec-
tion, correspond to the finite regular polyhedra in R

3. Starting from the Platonic
solids and projecting them down to P

2, a quick glance at their projective graphs
and their opposites suggests the construction of four more, corresponding to the
Kepler–Poinsot polyhedra. Their opposite polyhedra yield 9 more which lift to
Grünbaum’s polyhedra with skew faces [11].

a: b: c:

d: e:

Figure 1. The 1-skeletons of the projected Platonic Solids.

Consider the five platonic solids in R
3 and project them, as in 1.1, to P

2. Let
us denote them [[3, 3]], [[4, 3]], [[3, 4]], [[5, 3]] and [[3, 5]]. Their 1-skeletons are drawn
respectively in Figure 1 by stereographic projection to R

2 and thus the boundary
has to be antipodally identified.
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Observe that on the graph (e) we may take the pentagons that surround each
vertex as faces for a new polyhedron, which we denote [[5, 5/2]]. (The precise
meaning of the notation we are using will be given in Lemma 1 of Section 4.1).
Now, observe that (a) and (b) are opposite graphs and that (c) is opposite to itself.
The opposite graphs of (d) and (e) are respectively (f) and (g) of Figure 2.

f: g:

Figure 2. The opposite graphs of Sk1[[5, 3]] and Sk1[[3, 5]].

Consider the five outermost vertices on the graph (f). They form a regular
polygon of type [[5/2]] (a “pentagram”), with all such pentagrams as faces we obtain
the polyhedron [[5/2, 3]]. Finally, on the graph (g) we may take the pentagrams
around each vertex to obtain [[5/2, 5]], or the big triangles (obtained by fixing one
edge and one of its sides then at its ends skip the next edge on the same side
and take the following one) to get the polyhedron [[3, 5/2]]. The last four we have
encountered lift to the stellated polyhedra of Kepler–Poinsot.

Given any regular projective polyhedron P , we may obtain another one Pop,
called its opposite, by keeping the same combinatorial and group information but
taking the opposite linear map of the 1-skeleton. For example, [[3, 3]]op has the
graph (b) as 1-skeleton, but its faces are the cycles of length three; they don’t
bound disks (and so will be called essential), but, as Grünbaum has pointed out
[11], they deserve to be considered as polyhedra, and indeed satisfy the definition.
Observe that the lift to R

3 of [[3, 3]]op has the 1-skeleton of the cube but its faces
are the “equatorial hexagons” or Petrie-polygons; it is the Petrie polyhedron of
the cube. Finally, the opposites of the 9 projective polyhedra we have described
above complete the list of regular projective polyhedra in P

2. Their lifts are the
18 bounded regular euclidean polyhedra in R

3, [11].

4. Regular polygons in P
3

A polygon L in P
n is a projective graph which is combinatorially a cycle and it is

regular if there exists a compatible inclusion of its combinatorial automorphisms as
isometries of the ambient space. It is degenerate if it lies in a non-trivial projective
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subspace. The simplest regular polygons lie in the projective line P
1. They are

classified by rational numbers p/q (where in such expressions we always assume
p and q are relatively prime) with p/q > 1 as follows. Let [[p/q]]1 consist of p
successive segments in P

1 of length (q/p)π. Recall that the length of P
1 is π so

that [[p/q]]1 is combinatorially a cycle of length p which winds q times around the
projective line. Observe that the opposite of [[p/q]]1 is [[p/(p− q)]]1.

Let L be a regular polygon in P
n. If we fix a flag, that is a vertex v and

an incident edge e, we obtain canonical generators of the dihedral group Aut(L).
These are ρ0 and ρ1, where ρ1 fixes the vertex v and transposes its two edges,
and ρ0 fixes e as a segment but transposes its two vertices. Without confusion
we may consider ρ0 and ρ1 as isometries of P

n, and they satisfy the relations
ρ2

0 = ρ2
1 = (ρ0ρ1)p = id, where p is the length of the cycle and id is the identity of

P
n.

4.1. Planar polygons

In the projective plane P
2, the canonical generators ρ0 and ρ1 of a non degenerate

regular polygon L, are reflections along lines �0 and �1. These lines meet at a
point, called the center of symmetry, at a rational angle of the form (q/p)π with
q/p < 1/2. The distinguished vertex v of L lies in �1 at a distance r from the
center (with 0 < r < π/2); r is called the radius. Finally, the distinguished edge
of L (going from v to ρ0(v)) may cross �0 orthogonally or it may be the opposite
segment that passes through the polar point of �0. Let us denote the first case
by [[p/q ; r]]. It is a projective version of the classic euclidean {p/q} and will be
called an inessential regular polygon of type [[p/q]] (see Figure 3 for a polygon of
type [[7/3]]). The other case is simply its opposite [[p/q ; r]]op, and will be called
essential because every line intersects it.

λ
µ

α
r

l1

l0

p
qπ

Figure 3. An inessential regular polygon and its basic triangle.

There are other real invariants of [[p/q ; r]], namely, the length 2λ of the edge,
the internal angle 2α between consecutive sides and the distance µ of the center
to the edge (see Figure 3). By the spherical law of cosines they are related by the
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following equations:
cos(qπ/p) = sin(α) cos(λ)

cos(r) = cos(µ) cos(λ).
(1)

Observe that [[p/q ; r]] projects from its center to a regular polygon [[p/2q]]1 in
its polar line. This projection is a combinatorial isomorphism or a double cover
according to whether p is odd or even.

4.2. Polygons in projective space

In the projective space P
3 there are two types of non-degenerate regular polygons.

They are best characterized by the “dimensions” of their group generators. Let
ρ ∈ Iso(P3) be an involution, that is ρ2 = id. Define dim(ρ) to be -1 if ρ has no
fixed point, and otherwise the maximum dimension of a pointwise fixed projective
subspace. If dim(ρ) = 2, it is a reflection along a plane and at the same time an
inversion on its polar point. If dim(ρ) = 1, it is a π-rotation along a line and also
along its polar line. And if dim(ρ) = −1, it is a π/2 translation along a pair of
polar lines; however, this case does not arise in our present context because our
involutions have fixed points.

Let L be a regular polygon in P
3 with distinguished flag v, e, and canonical

generators ρ0 and ρ1. Suppose dim(ρ0) = 2 and let Π0 be the reflection plane.
Consider the plane Π generated by the segments e and ρ1(e) (which meet at v).
Since e is orthogonal to Π0, so is Π, and therefore ρ0 and ρ1 fix Π (as a set, not
pointwise). We may conclude that L lies in Π and so it is degenerate. This leaves
us with only two possibilities when L is non-degenerate: either dim(ρ0, ρ1) = (1, 2)
and we call it skew, or dim(ρ0, ρ1) = (1, 1) and we call it a helicoid.
4.2.1. Skew polygons Consider a skew regular polygon L as above. Let �0 be the
pointwise fixed line of ρ0 that meets e at its midpoint, and let �′0 be its polar line.
Let Π1 be the reflection plane of ρ1 and let c = �0 ∩Π1, c′ = �′0 ∩Π1. Let Π be the
polar plane of c′ and observe that ρ0 and ρ1 fix it. Thus, the projection of L from
c′ to the plane Π yields a planar regular polygon, called the symmetry polygon of L
on its symmetry plane Π; it is inessential because �0 intersects its basic edge. The
type [[p/q]] of this planar polygon will be called the type of the skew polygon L.

Conversely, a skew regular polygon of type [[p/q]] is obtained from a fixed planar
polygon [[p/q ; r]], by moving the vertices alternatively over and under the plane a
fixed distance along orthogonal lines, taking the corresponding edges that intersect
the plane. If p is even this process results in a skew polygon of p sides called
antiprismatic. But if p is odd, after one turn we are on the other side of the
plane and have to turn once more yielding a polygon of 2p sides called skew
prismatic. These correspond, respectively, to the cases in which the projection to
the symmetry polygon is a single or a double cover.

Note that we have changed the classic usage of notation. The euclidean ana-
logue of our “skew of type [[p/q]]”, is the classic prismatic skew polyhedron of type
{2p/q} (p odd), whose notation is based on the fact that it is combinatorially
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Figure 4. A skew regular polygon of type [[8]] and its symmetry polygon.

of length 2p. However, we have dared to change established notation because it
seems to fit better in the general theory, see for example the uniqueness principle
(Lemma 1, below) where no assumption has to be made on the parity. The rule
of translation is simple: skew of type [[p/q]] is prismatic of length 2p if p is odd,
and antiprismatic of length p if p is even.

Observe finally, that the opposite of a skew regular polygon is again skew, and
that for a fixed type there is a two parameter family of geometrically different
regular polygons.
4.2.2. Helicoids For the sake of completeness let us finally describe the helicoids,
although we will not consider them in this paper. Suppose that L is a non-
degenerate regular polygon with dim(ρ0, ρ1) = (1, 1). Let �0 and �′0 be the polar
lines about which ρ0 is a π-rotation, and likewise define �1 and �′1 for ρ1. If �0 and
�1 meet, L is easily seen to be degenerate, so that if L is a helicoid no pair of these
four lines intersect. Then there is a pair of polar lines � and �′ which intersect the
previous four orthogonally. The projection of L from � to �′ and from �′ to � give
regular polygons in P

1 over which L may wind around several times. However,
they are of the form [[p/q]]1 and [[p′/q′]]1. These linear polygons define a type of the
helicoid, and a real number giving the distance from a vertex to � say, specifies it
geometrically.

5. Polyhedra in P
3

5.1. Generalities, definitions and notation

Let P be a regular polyhedron in P
3 with distinguished flag (v, e, f) (where, recall,

v is a vertex incident to the edge e, contained in the face f), and let ρ0, ρ1, ρ2 be
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the canonical generators of its automorphism group with respect to this flag (that
is, ρ0 fixes e and f but moves v; ρ1 fixes v and f but moves e, and ρ2 fixes v and
e but moves f). We will think of ρi as an isometry of P

3. The face f is a regular
polygon in P

3 with canonical generators ρ0 and ρ1. The type of this polygon is
the coarsest classification of such polyhedra. Later in this work we will mainly
analyse the case of polyhedra with planar faces.

There is another regular polygon associated to P , called its vertex figure,
V F (P), defined combinatorially in Section 1. Its vertices are the barycenters,
or midpoints, of the edges in Sk1(P) incident to v, and two of them are combina-
torially adjacent if their edges lie in a common face. To choose the appropriate
segment, observe that two adjacent vertices in V F (P) are the endpoints of a path
made of two half-edges meeting at v. Choose the segment that makes this triangle
homotopically trivial, that is, that defines an ordinary triangle in the plane of the
three points.

We claim that V F (P) is not a helicoid. Observe that ρ1 and ρ2 are the canonical
generators of V F (P). Since ρ1 and ρ2 fix the vertex v, all the automorphisms do.
It is not hard to see that in a helicoid the isometry that corresponds to a generating
rotation has no fixed points. Observe also that v is the center of symmetry of the
vertex figure and that if it is planar it must be inessential.

We have therefore described V F (P) as a regular polygon which is planar-
inessential or skew of type [[q1/q2]] =: [[q]], for some rational q > 2.

5.2. Planar faced regular polyhedra

Now, suppose f is planar. We may also assume it is inessential, for otherwise we
may change P for its opposite. Then, the face f is [[p1/p2 ; r]] =: [[p ; r]] for some
rational p > 2 and 0 < r < π/2.

Lemma 1 (Uniqueness principle). There is at most one regular polyhedron
with planar faces [[p ; r]] and vertex figure of type [[q]]. If it exists it is denoted by
[[p, q ; r]].

Proof. The main idea is that there is at most one way to fit copies of the prescribed
face [[p ; r]] around a vertex v in such a way that the vertex figure turns out to be
of type [[q]]. The details follow.

Let 2λ be the length of the edge in [[p ; r]], and let ν be the length of the segment
that joins inessentially two barycenters of incident edges (observe that ν must be
the length of the edge in the vertex figure). Consider the polygon [[q ;λ]] centered
at v on a plane Π′, and let 2λ′ be the length of its side.

There are three cases to analyse. First, if ν = 2λ′, the vertex figure is planar
and lies in the same plane of the face, so that the polyhedron becomes planar.
Given p and q it is easy to see that there is at most one way to choose r for this to
happen, namely when the internal angle of [[p ; r]] is equal to 2π/q. Thus we may
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simplify the notation for the polyhedron and call it [[p, q]] as we did in Section 2.
Second, if ν < 2λ′, the vertex figure must be planar and it is obtained by

moving simultaneously all the vertices of [[q ;λ]] to the same (local) side of Π′ along
orthogonal planes passing through them and v and keeping them at distance s from
v. In such a process the vertices define planar polygons of type [[q]] and the edge
shrinks until we reach ν, that polygon is the vertex figure V F .

And third, if ν > 2λ′, the vertex figure must be skew. Analogously, move the
vertices alternately to the two sides of Π′ forming skew polygons whose vertices
are at distance s from v. In this process the length of the side grows monotonically
up to the upper bound 2λ when the vertices cluster at the orthogonal line to Π′

at v. If ν < 2λ, there is a unique skew polygon, V F say, of side ν with vertices at
distance λ from its center of symmetry.

Suppose that the given data (p, q and r) produces, as above, a vertex figure. Let
f be a fixed polygon [[p ; r]] on a plane Π with distinguished flag v < e, and let �0,
�1 be its canonical symmetry lines (see Figure 3). Corresponding to the additional
data [[q]], construct the vertex figure V F with center v and with distinguished flag
corresponding to e and f . Let ρ2 be its second canonical generator (the reflection
along the plane orthogonal to Π′ and passing through e). Let ρ0 be the reflection
on the plane orthogonal to Π at �0. Finally, if V F is planar let ρ1 be the reflection
on the plane orthogonal to Π at �1, and if V F is skew let ρ1 be the π-rotation
along �1. By definition, ρ0 and ρ1 serve as canonical generators for f , while ρ1 and
ρ2 are the canonical generators for V F .

Consider the subgroup of Iso(P3) generated by ρ0, ρ1 and ρ2. The Wythoff’s
construction (cf. [7], [14]) on this group yields a combinatorial polyhedron, and its
action on the vertex v and the segment e gives a linear map of its one skeleton to
projective space. This is [[p, q ; r]]. �

A natural question that arises is to classify the [[p, q; r]] which are finite poly-
hedra. Observe also that from the proof we obtain the following.

Corollary 1. Let P be a regular non-degenerate polyhedron in P
3 with planar

face, and let ρ0, ρ1 and ρ2 be canonical generators of its group. Then
• V F (P) is planar if and only if dim(ρ0, ρ1, ρ2) = (2, 2, 2).
• V F (P) is skew if and only if dim(ρ0, ρ1, ρ2) = (2, 1, 2).

5.3. Planar-planar polyhedra

Let P be a non-degenerate regular polyhedron with planar-inessential face and
planar vertex figure. By the previous corollary the three canonical generators
are reflections in planes, and these planes meet at a point c which is fixed by the
automorphism group. Let Π be the polar plane of c. The projection of P from c to
Π is a double (or single) cover of a planar polyhedron with inessential faces. And
then it is easy to see that P is a projective embedding of one of the classic nine
(Platonic and Kepler–Poinsot) euclidean polyhedra, which depends on a radius
parameter (the distance from a vertex to c).
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6. Planar-skew polyhedra

From now on we shall assume that P is a regular polyhedron in P
3 with planar-

inessential face and skew-antiprismatic vertex figure. Then P = [[p, q ; r]] for some
0 < r < π/2 and p = p1/p2, q = q1/q2 rational numbers greater than 2. Com-
binatorially, P has Schläfli symbol {p1, q1}. Observe that q1 is even because the
vertex figure is skew antiprismatic. Likewise, p1 is even. To see this, consider a
face f and observe that because the vertex figure is skew the faces adjacent to f lie
alternatively on one side and the other of the plane of f . If we travel once around
the polygon f we must return to the starting adjacent face and thus p1 must be
even.

The combinatorial dual P∗ of P can be geometrically realized as [[q, p ; r]]. In-
deed, consider the vertex figure V F (P) around a vertex v. The centers of the faces
incident to v lie on the symmetry plane of V F (P), and naturally form a polygon
of type [[q]]. The radius of this polygon is the distance of the center of a face to
v, which is precisely r. This defines the vertices, edges and faces of P∗. Finally,
observe that its vertex figure is skew of type [[p]].

It is interesting to note that (P∗)∗ = P geometrically and not only combina-
torially, as in the classic case in R

3, or in the planar-planar case.
In the rest of this section we give examples of planar-skew polyhedra [[p, q ; r]]

with integer p and q. In the last section, we will prove they are the only ones.

6.1. Tori and euclidean planes, [[4, 4; r]]

Consider a square [[4; r]]. Its internal angle is greater than π/2, so that to match
four of them regularly around a vertex they produce a skew vertex figure of type
[[4]]. By Lemma 1, we obtain a polyhedron [[4, 4; r]] whose universal cover is the
plane tiling {4, 4}.

Lemma 2. The polyhedron P = [[4, 4; r]] is finite if and only if r/π is rational.

Proof. Consider a vertex v of P , and the four faces around it. Note that the
diagonal segment of a face is collinear with the diagonal of the opposite face at
v ; in fact, they lie on the symmetry plane of the vertex figure. If we follow this
line from v we will find vertices of P after each segment of length 2r. If r/π is
irrational they will be dense and hence infinite.

On the other hand, suppose that r = (s/k)π. Then these diagonals with
vertices of P form a linear polygon [[k/2s]]1, which has combinatorial length k if
k is odd, and k/2 if it is even. In the first case, it is the regular polyhedral torus
{4, 4}k,0 and in the second the “slanted” regular polyhedral torus {4, 4}k/2,k/2 (see,
e.g. [8]). �
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Observe that the first argument of the preceding proof holds for any planar-
skew polyhedron. Let us state this in general:

Corollary 2. If the planar-skew polyhedron [[p, q; r]] is finite then r/π is rational.
�

Observe also that the only case when the polyhedron [[4, 4 ; r]] is an embedded
torus is when r = π/2k, with integer k > 1. Otherwise the surface which it defines
has selfintersections. See Figure 5.

Figure 5. Stereographic projections of [[4, 4 ; π/6]] and [[4, 4 ; π/5]]. In the first one, the two bound-
aries are to be antipodally identified. In the second, also the outermost faces are antipodally
identified.

The natural geometric way to look at these polyhedra is with their vertices on
the quadric surface Q in P

3 defined by the equation x2
1 + x2

2 = x2
3 + x2

4, where
[x1 : x2 : x3 : x4] are homogeneous coordinates. In this quadric, the lines of
opposite rulings meet at an angle of π/2, and generate the tangent plane to Q
at their intersection point. Thus, the square [[4 ; r]] centered at this point and
with diagonals on the rules has vertices on Q. From this square proceed to build
[[4, 4 ; r]]. The diagonal lines at any given vertex become precisely the two rules of
Q. Finally, observe that [[4, 4 ; r]] is isometric (and hence equivalent) to its dual.
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6.2. The pentecaidecahedron and the decahedron

There is a dual pair [[4, 6 ;π/4]] and [[6, 4 ;π/4]] with 15 and 10 faces respectively,
hence their names. We proceed to describe the pentecaidecahedron, [[4, 6 ;π/4]].
Its dual is then constructed in the standard way.

Consider K5, the complete graph on 5 vertices. Its edge graph has 10 vertices
(one for each edge of K5) and two are adjacent if the corresponding edges are
incident, hence it is a regular graph of degree 6. For every cycle of length 4 in K5,
attach the corresponding quadrilateral face to the edge graph. It is easy to see
that this is an abstract regular polyhedron, P say, with automorphism group S5
(the symmetric group on 5 letters), and Schläfli symbol {4, 6}. Now, to describe its
natural embedding in P

3, consider the five basic vectors of R
5 as the vertices ofK5.

To each edge ofK5, there corresponds a line, which translated to the origin defines
a point in P

4. These ten lines lie in a hyperplane. Thus, the corresponding points
lie in a 3-dimensional flat which may be considered as P

3. The edges of P are
taken to be the segments of length π/3, and then the radius of each quadrilateral
turns out to be π/4. To see this, consider the same construction with K3 and K4.

Figure 6. Two views of projections of [[4, 6 ; π/4]] without one face, to see the interior. Combina-
torially, the outermost faces are to be identified with their antipodes.

Topologically, [[4, 6 ;π/4]] is a non-orientable surface of genus 7. Its euclidean
double cover is the skew {4, 6} in R

4 discovered by Coxeter in [5]. See Figure 6,
which is the stereographic projection of P

3 (with [[4, 6 ;π/4]] drawn in it) to R
3;

therefore the unit sphere has to be antipodally identified. Distances are distorted
but, at least, not the angles. The symmetries of this drawing, S4, are only a
subgroup of the original, S5, and thus it fails to be geometrically regular. If
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Figure 7. Three stages of [[4, 8 ; π/8]] projected to R3. In the last one, the outermost faces are
cut by the sphere at infinity (not drawn); thus the outermost vertices have to be identified with
their antipodes, which appear with only six faces.

one draws the faces planarly, it becomes a part (the inner half) of Schulte–Wills
embedding of {4, 6} in R

3, [16]. The analogue applies to Figure 7.

6.3. The pachyhedron and the hemipachyhedron

They are the dual pair [[4, 8 ;π/8]], [[8, 4 ;π/8]], with 144 and 72 faces respective-
ly. (“pachy” means “thick” and, in a secondary sense, “gross” which is also used
for “144”). We follow the description in [15] of [[4, 8 ;π/8]]; see also [16] and [17].
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Consider the 12-cell (see [6]), which is a self-dual polytope consisting of 12 solid oc-
tahedra, giving a 3-dimensional tiling or honeycomb of P

3. Shrink each octahedron
uniformly and insert triangular prisms with quadrilateral faces between formerly
adjacent pairs of octahedra. (These prisms will be called “waists” below.) The
quadrilaterals are the faces of [[4, 8 ;π/8]].

7. The waist equation

Let P = [[p, q ; r]] be a finite regular projective polyhedron with planar-inessential
face and skew-antiprismatic vertex figure. For the rest of this section let us call it
a skew projective polyhedron.

A combinatorial belt is a simple cyclic sequence of faces f1, f2, . . . , fc1 , such
that each face is adjacent to its neighbours through opposite edges (recall that the
faces have an even number of sides). The combinatorial waist of the polyhedron
P is the length, c1, of a belt. By regularity, every edge defines a belt and all belts
have the same length.

Now we give it a geometric meaning. Consider the plane Π orthogonal to the
common edge of f1 and f2 at its midpoint. It is orthogonal to the planes of f1

and f2 and then, it also intersects the common edge of f2 and f3 orthogonally
at its midpoint, and so on. The corresponding geometric belt is then the planar
polygon in Π with vertices at the midpoints of the edges and the segments that
contain the centers of the faces. It is therefore of type [[c]] or [[c]]op for some rational
c = c1/c2 > 2. This c is called the waist of P .

The geometric belt is inessential if and only if p1 ≡ 0mod(4). To see this,
consider a planar polygon and an edge on it. This segment defines locally two
sides. Observe that if the polygon is inessential the two adjacent edges lie on the
same side. Conversely, if it is essential then they lie on opposite sides. Recall that
the faces adjacent to a given one, say f , in the polyhedron P lie on alternating
sides of the plane of f as we travel around the polygon f . When we get to the
opposite edge we started with, we are on the same side if and only if p1 ≡ 0mod(4).
This proves the claim on the geometric belt.

Theorem 1 (The waist equation). Let P = [[p, q ; r]] be a skew projective poly-
hedron with waist c. If p1 ≡ 0mod(4), where p = p1/p2, then

cos(π/p) cos(π/c) = sin(π/q) cos(r).

Proof. Let α be half the internal angle of the face [[p ; r]], and let β be half the
dihedral angle among faces. We claim that

sin(π/q) = sin(α) sin(β). (2)

To see this, let b0, b1 and b2 be respectively the barycenters of a distinguished
flag. In the tangent space of the vertex b0, consider the infinitesimal euclidean
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tetrahedron defined by the plane of the distinguished face, the bisecting plane of
the dihedral angle at the edge, the symmetry plane of the vertex figure and an
orthogonal plane to the edge (infinitesimally close to b0), (Figure 8). Then from
the various right triangles formed, equation (2) follows.

α
q/π

β

b1

b0

b2

Figure 8. Tetrahedron in the tangent space to b0.

On the plane of the face, we have a right triangle b0, b1, b2 as in Figure 3, where
λ = d(b0, b1) and µ = d(b1, b2). Equations (1) now become

cos(π/p) = sin(α) cos(λ)
cos(r) = cos(µ) cos(λ)

(3)

Finally, consider the geometric belt of P . Since p1 ≡ 0mod(4), this polygon is
of type [[c]] with side 2µ. Thus the corresponding first equation in (1) yields

cos(π/c) = sin(β) cos(µ). (4)

The theorem follows by expressing cos(π/p) cos(π/c) in terms of equations (3) and
(4) and then using (2) and (3). �

Remark. If p1 ≡ 2mod(4), similar reasoning leads to the equation sin(π/2c) =
sin(π/q) sin(r). However, we will not use it here.

Proposition 1. Let P = [[p, q ; r]] be a skew projective polyhedron such that q1 ≡
2mod(4), where q = q1/q2. Then p = 4 and r = π/4.

Proof. Observe that the hypothesis implies that opposite faces at a vertex are
coplanar (because opposite vertices of a skew antiprismatic polygon with q1 ≡
2mod(4) sides are collinear with the center of symmetry). Let Π be the plane of a
face f . Π contains all opposing faces at the vertices of f and their corresponding
ones too, and so on. Draw a point at the barycenter of each face so obtained, and
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its p1 radii line segments. Each radius matches with an opposing one to form an
edge of a projective graph in Π which is regular (in the strongest geometric sense),
and thus is the 1-skeleton of a planar polyhedron. Since p1 is the number of edges
at a vertex of this polyhedron, and it is even, then by Section 2 this polyhedron
must be [[3, 4]]. This proves that p = 4. Moreover, 2r is the size of the edge of
[[3, 4]]. Thus r = π/4. (See Figure 6 for different views of the plane Π and the 3
faces on it.) �

Theorem 2. Let P = [[p, q ; r]] be a skew projective polyhedron with integer p,
q and waist c. Then P is one of the following: [[4, 4 ;π/k]] with integer k ≥ 3,
[[4, 6 ;π/4]], [[6, 4 ;π/4]], [[4, 8 ;π/8]] or [[8, 4 ;π/8]].

Proof. If p or q is congruent to 2 mod(4), we may assume by duality that it is q,
and then, by Proposition 2, that p = 4. Otherwise, p and q are congruent to 0
mod(4). In either case, the waist equation (Proposition 1) holds. From it, since
c ≥ 3 and cos r < 1, we obtain that cosπ/p < 2 sinπ/q. This inequality implies
that if p = 4 then q < 9; that if p = 8 then q < 7, and that there are no solutions
for p ≥ 12. It is then easy to see that the only integer solutions of the waist
equation with our congruence requirements are the following. If p = q = 4 then
r = π/c for any c ≥ 3. If p = 4 and q = 6 then c = 3 and r = π/4. If p = 4
and q = 8 then c = 3 and r = π/8. If p = 8 then q = 4, c = 4 and r = π/8.
The existence of skew projective polyhedra with such invariants was proved in
Section 5. �

Observe that the only non-embedded polyhedra of the above list are those in
the family [[4, 4 ;π/k]] with k odd. However, they lift to the embedded tori {4, 4 | k}
in R

4 (see [5] and [16]), with the projection being a combinatorial isomorphism.
For k even, [[4, 4 ;π/k]] is embedded in P

3 and lifts to its double cover {4, 4 | k}
in R

4. This is so because −I is a symmetry of {4, 4 | k} precisely when k is even.
Thus, the lifting to R

4 of the list in the preceding theorem is the same as Coxeter’s
[5].

Finally, observe that if [[p, q ; r]] is an embedded surface, then its parameters,
including the waist, must be integers.

Corollary 3. The regular projective polyhedra in P
3 with planar face and skew

vertex figure that define embedded surfaces are: [[4, 4 ;π/2k]] with integer k ≥ 2,
[[4, 6 ;π/4]], [[6, 4 ;π/4]], [[4, 8 ;π/8]] and [[8, 4 ;π/8]].
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