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1. Introduction

A regular polyhedron P is a flag-transitive combinatorial surface, where a flag is an
incident triplet vertex < edge < face. An euclidean realization of P is a rectilinear
drawing of its underlying graph P(1) (vertices and edges) in Rn, so that all of its
combinatorial automorphisms are realized by isometries, see [10, 8, 14]. Classic
examples in R3 are the Platonic solids, the Kepler–Poinsot polyhedra and their
Petrie-duals; and in R4 the Coxeter skew polyhedra, [3]. In R3, they have been
classified, see [10, 8, 9, 13]. In this paper, we work towards the classification of
finite regular polyhedra in R4 by completing a special, but crucial, case, namely
those for which the affine subspace generated by (the vertices of) each face is of
dimension 2 or of dimension 3 and contains the center of symmetry.

Given a finite regular polyhedron in R4, we may assume that its vertices lie in
the unit sphere S3 and then project it to projective space P3 to obtain a regular
projective polyhedron (see [4] for the first examples of this idea). Conversely,
given any projective polyhedron we can lift it to an euclidean one, see [1]. Thus
their study is equivalent. Here, we adopt the projective point of view. It has two
advantages. First, combinatorially speaking the objects are more simple, usually
“half” of their euclidean lifting. Thus the relations among them become clearer.
One example of this is the opposite operation (3.2) which leaves the combinatorics
unchanged but not the geometry. The Petrie-duals of the classic regular polyhedra
in R3 may be reinterpreted in this way (see [1]), and new euclidean polytopes arise
in all dimensions (see 3.2). And second, working in dimension 3 (although with
projective geometry) instead of dimension 4 (euclidean) makes some geometric
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arguments and constructions easier. One example of this is the definition of the
regular projective polyhedra we shall classify: those for which each face lies on
a plane —compare with the previous paragraph. For the sake of conciseness, we
shall make no further reference to the lifted euclidean polyhedra.

In [1], we defined and started to study projective polyhedra with planar faces
and skew-antiprismatic vertex-figure, and completed the “Platonic” case, when
the polyhedron is an embedded surface. Now we analyse and classify in general
the projective polyhedra with planar face and skew vertex figure. The results in
[1] are only essential for Section 3. Elsewhere, the present paper is mostly self
contained, because the main definitions (although equivalent to those of [1]) are
technically easier to work with when the role of the C-group is stressed. This is
what we presently do.

2. Preliminaries

2.1. Regular projective polytopes

Let P be a partially ordered set with rank function; minimum (which we may
assume has rank −1), and maximum of rank d+ 1. A flag is a maximal chain; and
two flags are adjacent if they only differ by one element. P is flag connected if the
graph whose vertices are its flags with edges among adjacent pairs is connected.
A proper section of P is the strict subposet of elements that lie between two given
comparable ones whose rank differs by at least 2. If d = 0, P is a polytope if it
has exactly two elements of rank 0. Recursively for d > 0, P is a polytope (called
traditionally an incidence polytope, [7, 16, 12]) if it is flag connected and every
proper section is a polytope. Its rank is d+ 1.

Polytopes of rank d + 1 can be thought of as geometric or topological objects
of dimension d. For example, polytopes of rank 2, called polygons, correspond to
combinatorial cycles, which are topological circles. The vertices are the elements
of rank 0 and the edges are those of rank 1. Polytopes of rank 3 correspond to
combinatorial surfaces (sometimes called maps), where the faces are the elements
of rank 2. They are our main object of study and, following classic terminology,
we call them polyhedra. In general, an element of rank i is called an i-face, and
those of rank d the facets.

Let P be a polytope of rank d + 1. It is called regular if its automorphism
group Γ acts transitively on flags (which is always true for d = 0, 1). Suppose from
now on that P is regular. Then, if we fix a basic flag f0 < f1 < · · · < fd (the
minimum and maximum may be neglected), we obtain nontrivial automorphisms
σ0, σ1, . . . , σd ∈ Γ defined by

σi(fj) = fj ⇐⇒ i 6= j.

These automorphisms generate Γ, so that Γ = 〈σ0, σ1, . . . , σd〉, and it is easy to
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see that they satisfy the identities

σ2
i = 1,

σiσj = σjσi for |i− j| ≥ 2.
(1)

Furthermore, they satisfy the intersection property:

〈σi|i ∈ I〉 ∩ 〈σi|i ∈ J〉 = 〈σi|i ∈ I ∩ J〉 for I, J ⊂ {0, . . . , d}. (2)

Such a group together with its ordered generators is called a C-group, the “C” is
in honor of Coxeter, see [12]. It defines the regular polytope P up to isomorphism.
Moreover, all C-groups come from regular polytopes, [16]. Its Schläfli symbol or
type is the sequence of integers {p1, p2, . . . , pd} where pi is the order of σi−1σi.

Now let us define a faithful projective realization of a regular polytope P as a
monomorphism of its C-group into the isometries of Pn, the real projective space
of dimension n,

Γ = 〈σ0, σ1, . . . , σd〉 ↪→ Iso(Pn) (3)

together with a basic pair of points b0, b1 ∈ Pn satisfying

σi(b0) = b0 ⇐⇒ i 6= 0,
σi(b1) = b1 ⇐⇒ i 6= 1,

b1 ∈ b0 ∗ σ0(b0),
(4)

where x ∗ y is the line through x and y, and we identify elements of Γ with
their corresponding isometry. By a regular projective polytope, which will also be
denoted by P , we mean a faithful projective realization of a regular polytope. It
will usually be given by (3) and a basic pair satisfying (4) where it is understood
that Γ is indeed a C-group.

Let P be a regular projective polytope as above. The point b0 is the basic
geometric vertex (corresponding to the vertex in the basic combinatorial flag),
and b1 indicates which of the two segments from b0 to σ0(b0), that together form
the projective line b0 ∗ σ0(b0), is to be considered as the basic edge. Observe that
in the definition of regular euclidean polytopes, see [14] and [8], only the basic
vertex, analogue of b0, appears because segments are unique, but in the projective
case specifying b1 is crucial. So let the basic edge e be the line segment from b0

to σ0(b0) containing b1. It satisfies σi(e) = e for i 6= 1, although σ0 transposes its
endpoints. The geometric 1-skeleton of P is then defined by the action of Γ on
e, and we can write Sk1(P) = Γ(e). Observe that in general, the combinatorial
1-skeleton P(1) need not be isomorphic as a graph to Sk1(P), see e.g. 3.0.2, but
it covers it regularly. Thus, our definition is equivalent to that of [1], but the
present one is technically easier to work with. It should also be remarked that our
definition is philosophically congruent to Grünbaum’s [11], in the sense that the
geometric 1-skeleton is “labeled” by the combinatorial one, so that repetitions are



Vol. 59 (2000) Projective polyhedra 163

allowed. However, we are presently focused on geometrically regular polyhedra
and thus the group information must be stressed.
P is non-degenerate if Γ(b0) generates Pn, that is, if the geometric vertices of

P are not contained in a flat (a projective subspace of lower dimension).
Two regular projective polytopes are equivalent (the “same” for classification

purposes) if they differ by an isometry, that is, if their C-groups are conjugate by
an isometry which sends one basic pair to the other.

An important invariant of the projective regular polytope P is its dimension
vector. An involution σ of Pn with at least one fixed point, such as our generators
σi, has a polar pair as fixed point set, that is, two projective subspaces Σ and
Σ⊥ with dim(Σ) + dim(Σ⊥) = n − 1 at distance π/2 from each other. The lines
through Σ and Σ⊥ are perpendicular to both, they cover all of Pn, and σ acts
reflecting these lines in their intersection with Σ and Σ⊥. For example, if Σ is a
hyperplane, then σ is a reflection in it and at the same time an involution in its
polar point Σ⊥. We call Σ and Σ⊥ the mirrors of σ.

In the case of a regular projective polytope P , we may distinguish one of the
mirrors of each generator as follows. For i ≥ 1, let Σi be the mirror of σi that
contains b0; and let Σ0 be the mirror of σ0 such that b1 ∈ Σ0. The dimension
vector of P is then

dim(P) = (dim(Σ0),dim(Σ1), . . . ,dim(Σd)).

Observe that the use of dim(P) in [1] is slightly different.
Using the distinguished mirrors of P , it is easy to see how to lift a projective

polytope to an euclidean one P̃ . A projective isometry σ has two liftings σ̃ and
−σ̃. If it has a distinguished mirror Σ, this lifts to a subspace Σ̃. Then, we may
choose among σ̃ and −σ̃ the one that has Σ̃ as eigenspace of eigenvalue 1. This
tells us how to lift the generators of the C-group. Any of the two liftings of the
basic point b0 completes the information for P̃ .

Observe that giving the distinguished mirror Σ0 is equivalent to giving the
basic point b1, because, by the conditions (4), b1 is the orthogonal projection of b0

to the distinguished mirror of σ0, that is, b1 = (b0 ∗ Σ⊥0 ) ∩ Σ0. Here for any two
subsets A,B ⊂ Pn, A ∗ B denotes their projective span, that is, the minimal flat
(i.e. projective subspace) that contains both. For example, if x and y are points,
x ∗ y is the line through them as before.

Finally, let us establish more geometric notation. The distance in Pn is denoted
by d( , ). The angle between two meeting lines, a plane and a line or two planes
will be denoted ∠( , ); all lie between 0 and π/2.

2.2. Planar-skew polyhedra

For the scope of this work, a regular projective polyhedron P is a faithful realization
in P3 of a regular polytope of rank 3. It is given by a C-group Γ = 〈σ0, σ1, σ2〉 ↪→
Iso(P3) together with a basic pair of points b0, b1 satisfying (4). Let Σi be the
distinguished mirror of σi, that is, bj ∈ Σi for i 6= j, and then, b1 = (b0 ∗Σ⊥0 )∩Σ0.
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P has two natural polygonal invariants: its face F(P), which is the projective
polygon 〈σ0, σ1〉 with basic pair b0, b1; and its vertex figure (or link), L(P) whose
C-group is 〈σ1, σ2〉 with basic pair b1, (b1 ∗Σ⊥1 )∩Σ1 (the orthogonal projection of
b1 on Σ1).

A regular polygon in P3 may be of three types: planar (degenerate), skew or
helicoidal, [1]. Thus, a rough classification of regular projective polyhedra is by the
types of their face and vertex figure. We say that P is a planar-skew polyhedron if
F(P) is planar and L(P) is skew.

Lemma 1. Let P be a planar-skew polyhedron.Then its dimension vector is (0, 1, 2)
or (2, 1, 2).

Proof. Since a skew polygon has dimension vector (1, 2) (see [1]), we must only rule
out the case where Σ0 is a line. Suppose that Σ0 is a line. If it did not meet Σ1,
then F(P) would be a helicoid. Thus, it intersects Σ1 and together they generate
a plane Π = Σ0 ∗ Σ1. Since σ2 commutes with σ0, we have that Σ2 is orthogonal
to Σ0 or contains Σ0. In either case, σ2 fixes the plane Π (as a set, not pointwise).
Therefore P is degenerate: all its vertices are in Π. But then its vertex figure is
not skew. Therefore dim(Σ0) is 0 or 2. �

Let P be a planar-skew polyhedron with dim(P) = (2, 1, 2), the other case
will be taken care of in 3.2. If P has finite face, which we will assume from now
on, then Σ0 and Σ1 must meet at an angle which is rational over π because the
order of σ0σ1 is finite. Let p ∈ Q be such that ∠(Σ0,Σ1) = π/p. Analogously,
if P has finite vertex figure, there exists q ∈ Q such that ∠(Σ2,Σ1) = π/q. Let
b2 := Σ0∩Σ1 (observe that b0 = Σ2∩Σ1), and define r := d(b0, b2); it is the radius
of the face. The three invariants p, q, r determine P up to equivalence, see [1], thus
it will be most useful to give it a specific notation. We will write

P = [[p, q ; r]]. (5)

The main problem we will solve is to determine for which values of p, q, r is
[[p, q ; r]] a finite polyhedron. For the moment let us make some general remarks
about their values and their geometric and combinatorial meaning.

Observe first that p > 2. Indeed, if p = 2 then Σ0 and Σ1 are orthogonal, which
implies that b1 ∈ Σ1 and thus that σ1(b1) = b1 which contradicts (4). Also q > 2,
otherwise σ0, σ1 and σ2 fix Σ2, thus Γ(b0) ⊂ Σ2 and P is degenerate so that its
vertex figure could not be skew.

The face F(P) is a regular polygon that lies in the plane Π = Σ⊥0 ∗ Σ1. Let
the irreducible expression of p be p1/p2. Suppose p1 is even. Then F(P) is a
regular polygon of p1 sides that winds p2 times arround its center of symmetry
b2 with radius r; it was denoted [[p ; r]] in [1]. If p1 is odd, then (σ0σ1)p1 is the
reflection on the plane Π and not the identity of P3. So that the face F(P) winds
2 times arround the polygon [[p ; r]]; combinatorially it is of length 2p1, although
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geometrically it “looks” to be of length p1. Let us denote it by 2[[p ; r]]. Observe, in
any case, that as the radius r approaches π/2, the face becomes a linear polygon.
More precisely, if r = π/2 then F(P) is contained in the line Π ∩ Σ2, and so P is
degenerate. Therefore, we also have that r < π/2.

Let q1/q2 be the irreducible expression of q. If q1 is even then the vertex
figure L(P) is antiprismatic of length q1, if q1 is odd it is prismatic of length 2q1.
Therefore the Schläfli symbol of P = [[p, q ; r]] is {ε(p1), ε(q1)}, where ε(n) = n if n
is even and ε(n) = 2n if n is odd.

It will be convenient to say that a rational number (such as p or q) is even (or
odd) if its irreducible numerator is.

3. Mixing and geometric operations

The basic ideas about mixing operations were introduced in [12]. Here, we need
to know the following. A regular polytope P is determined by its C-group Γ =
〈σ0, . . . , σd〉. Then one can obtain a new group Ψ by taking as its generators
certain suitably chosen products ρ0, . . . , ρm, of (or words on) the generators σi of
Γ. Hence Ψ is a subgroup of Γ. This process is called a mixing operation on (the
generators of) Γ and is denoted

µ : (σ0, . . . , σd) 7→ (ρ0, . . . , ρm) . (6)

The interesting case is when Ψ is again a C-group (satisfying (1) and (2)). Then a
polytope Q may be obtained by Wythoff’s construction on Ψ = 〈ρ0, . . . , ρm〉. We
say that Q is obtained from P by the mixing operation µ and denote it Q = µ(P)
or Q = Pµ. Well known examples are the dual of any polytope (take ρi := σd−i
in (6)), or the Petrie dual of a polyhedron defined by the operation

π : (σ0, σ1, σ2) 7→ (σ0σ2, σ1, σ2) =: (ρ0, ρ1, ρ2).

Suppose furthermore, that P is geometrically realized, in Pn say, so that we
have (3) and (4). Then Q comes with a natural inclusion ( Ψ ↪→ Iso(Pn)) as
in (3). Sometimes we can also produce naturally a basic pair (of points in Pn)
a0 = µ0(P) and a1 = µ1(P) satisfying (4) for Q. Then we say that the projective
polytope Q is obtained by the geometric operation µ (which now includes the
geometric data) and denote it Q = µ(P) or Q = Pµ. Examples are the face and
vertex figure of polyhedra, which can easily be generalized to the facet and vertex
figure of any polytope. We also have the Petrie dual with a0 = π0(P) := b0 and
a1 = π1(P) := b1, because the combinatorial π(P) has the same graph as P and
so the geometric π(P) should have the same 1-skeleton as P .
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3.1. The dual

The combinatorial dual of P , denoted by P∗, is obtained by reversing the order
of the generators (and hence inverting the partial order). Geometrically, when
the C-group of the facet has a unique fixed point, it can be used as basic vertex,
and then project it to the distinguished mirror to obtain a basic pair of points.
In our case of interest, when P = [[p, q ; r]], this is so, namely, P∗ has basic pair
b2 := Σ1 ∩ Σ0 and b∗1 := (b2 ∗ Σ⊥2 ) ∩ Σ2. From the definitions it is clear that

[[p, q ; r]]∗ = [[q, p ; r]].

3.2. The opposite polytope

The “opposite operation” was defined in [1], it can be considered as a geometric
operation. Given a regular projective polytope P in Pn, its opposite, denoted Pop,
consists of the same group and it has the same basic vertex b0, but we take as
basic edge the opposite eop of e, going from b0 to σ0(b0) the other way arround
in Pn. That is, if b1 = (b0 ∗ Σ⊥0 ) ∩ Σ0, then we take bop1 = (b0 ∗ Σ0) ∩ Σ⊥0 . The
distinguished mirror Σ0 of P is changed to its polar Σ⊥0 . Clearly (Pop)op = P .

Although P and Pop are combinatorially identical, they are geometrically dif-
ferent and when lifting them to euclidean space Rn+1 they give rise to different
polytopes, sometimes even combinatorially. In fact, projecting an euclidean poly-
tope, taking the opposite and lifting back, has the effect of changing the first
generator σ0 for its antipode −σ0. This operation gives rise to new euclidean
polytopes in all dimensions greater than 3. The “opposites” of regular simplices
are always combinatorially different, with twice as many vertices, and Schläfli sym-
bol {6, 3, . . . , 3}. The “opposites” of cubes alternate; in even dimensions they are
combinatorially the same but (for dimension greater than 2) with another real-
ization, and in odd dimensions they are combinatorially different, with half the
vertices; their Schläfli symbol remains {4, 3, . . . , 3}. The “opposites” of orthohedra
are combinatorially different, with Schläfli symbol {6, 3, . . . , 3, 4}.

Observe that a standard projective planar polygon [[p ; r]] has dimension vector
(1, 1), its basic vertex is chosen in the 1-mirror, and it avoids the polar line to its
symmetry center; that is why it was called inessential in [1]. Its opposite [[p ; r]]op

has dimension vector (0, 1), meets every projective line, and so is called essential.
The lift to R3 of the former is a planar polygon (choose one of the two copies).
And the lift of an essential polygon is skew with the origin as center of symmetry.
When p is even, it is antiprismatic and has the same length (again, choose one
component). When p is odd, it is prismatic of twice the length.

Our polyhedra [[p, q ; r]] have planar inessential faces. They are in 1-1 corre-
spondence with their opposites which have planar essential face and dimension
vector (0, 1, 2). Thus, for classification purposes it will be enough to focus on the
former. We can now define the dual of [[p, q ; r]]op as [[q, p ; r]]op.
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3.3. The polar polyhedron

This operation is defined on planar-skew polyhedra in P3. Suppose that P is
such a polyhedron, with b0, b1 its basic pair of points and Σi its distinguished
mirrors. The polyhedron of P , denoted by P⊥, consists of the same C-group as P
(therefore they are combinatorially identical), but with basic pair a0 = Σ⊥1 ∩ Σ2

and a1 = (a0 ∗Σ⊥0 )∩Σ0. It is then obtained by changing the distinguished mirror
Σ1 for its polar line Σ⊥1 .

Clearly, P⊥ is again a planar-skew polyhedron with the same dimension vector,
and (P⊥)⊥ = P . Moreover, it is easy to see that the dual and the opposite
commute with the polar.

Lemma 2. If P = [[p, q ; r]], then P⊥ = [[p̄, q̄ ; r̂]], where 1/p̄ = 1/2− 1/p, 1/q̄ =
1/2− 1/q and

cos(r̂) = cos(r)
sin(π/p) sin(π/q)
cos(π/p) cos(π/q)

.

Proof. The first part follows because polar lines meet a plane at complementary
angles. The second is obtained by analizing the tetrahedron with vertices b0, b1, b2

and b∗1 , where the three parameters have geometric meaning, observing that r̂
is the dihedral angle at the edge b0b2 of length r. The spherical-trigonometric
arguments that lead to the last equation are quite laborious and add little to the
present paper, so we omit them. �

3.4. The jj-hole polyhedron

Given a regular polyhedron P with C-group Γ = 〈σ0, σ1, σ2〉. Its j-hole polyhedron,
denoted by hj(P), is defined by the mixing operation

hj : (σ0, σ1, σ2) 7→ (σ0, (σ1σ2)j−1σ1, σ2) =: (ρ0, ρ1, ρ2) (7)

keeping the basic pair fixed. For the detailed geometric insight see [12]. Observe,
however, that the cyclic order of edges arround a vertex in P , becomes “jumping
to the jth” in hj(P). As examples, the reader may care to check that h2([[3, 5]]) =
[[5, 5/2]]; see also other non-trivial applications of h2 to the polyhedra in Section 3
of [1].

Lemma 3. Let P be a planar-skew projective polyhedron. Then, h2(P) is combi-
natorially isomorphic to an euclidean polyhedron with planar face.

Proof. Let Γ = 〈σ0, σ1, σ2〉 be the C-group of P . Since ρ1 = σ1σ2σ1 is the conjugate
of a plane reflection, it is also a plane reflection. Thus dim(h2(P)) = (2, 2, 2). The
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three reflection planes meet at a point, v say, so that the C-group Ψ of h2(P)
fixes the point v. Therefore, Ψ can be identified with a C-group acting on the
tangent space of P3 at v, which is euclidean of dimension 3. The direction from
v to b0 clearly acts as geometric vertex (it is fixed by ρ1 and ρ2 = σ2) to obtain
a faithful euclidean realization of h2(P). It has planar face because its generators
are reflections. �

Corollary 1. Let P be a planar-skew projective polyhedron with Schläfli symbol
{p, q}. Then p ≤ 10 and q ≤ 10.

Proof. We know that q is even, so h2(P) has Schläfli symbol {s, q/2} for some
s. By the preceding lemma it is isomorphic to a finite euclidean polyhedron with
planar face, and by their classification ([10, 8, 9, 13]) we have that q/2 ≤ 5. To
see that p ≤ 10, consider the dual. �

4. Antiprismatic vertex figure

The purpose of this section is to classify the finite regular projective polyhedra
with simple planar inessential face and skew antiprismatic vertex figure.

Theorem 1. The finite polyhedra P = [[p, q ; r]] with p and q even are:

[[4, 4 ;π/t]] with t ∈ Q, t > 2 ;
[[4, 6 ;π/4]], [[6, 4 ;π/4]] ;

[[4, 8 ;π/8]] , [[4, 8/3 ; 3π/8]], [[8, 8/3 ;π/4]],
[[8, 4 ;π/8]], [[8/3, 4 ; 3π/8]], [[8/3, 8 ;π/4]] ;

[[4, 10 ;π/4]], [[4, 10/3 ;π/4]], [[10, 4 ;π/4]], [[10/3, 4 ;π/4]].

Observe that the grouping by semicolons is associated with the automorphism
groups of the polyhedra. The infinite family of tori, [[4, 4 ;π/t]] , 2 < t ∈ Q , whose
combinatorics and groups are defined in [6], was described in [1]. So were the
pentacaidecahedron [[4, 6 ;π/4]] (15 faces) and the decahedron [[6, 4 ;π/4]] (10 faces),
whose automorphism group is the symmetric group on five letters. The next six
polyhedra have the automorphism group of the 12-cell, and the last four those of
the 60-cell (see [4]).

Of the “Platonic” projective polyhedra, described in [1], we have yet to mention
the dual pair pachyhedron [[4, 8 ;π/8]] (144 faces) and hemipachyhedron [[8, 4 ;π/8]]
(72 faces). The classic way to define them would be as quotients, or “halves”, of
Coxeter’s skew polyhedra in the 4 dimensional euclidean space, [3]. See also [17] for
planar face embeddings of the latter into R3; however, they are not geometrically
regular.
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4.0.1. Associated to the 12-cell The other four polyhedra with the group of the
12-cell can be obtained from the last two as follows. A dual pair as their polars

[[4, 8/3 ; 3π/8]] = [[4, 8 ;π/8]]⊥

[[8/3, 4 ; 3π/8]] = [[8, 4 ;π/8]]⊥

are inmersions of the same combinatrorial surface but with faces of three times the
radius. They could be called “great pachyhedron” and “great emipachyhedron”.

Consider the 3-hole polyhedron of the pachyhedron, which is not hard to de-
scribe geometrically as

[[8, 8/3 ;π/4]] = h3([[4, 8 ;π/8]]).

Its dual [[8/3, 8 ;π/4]] completes our list. To prove that they are combinatorially
isomorphic, observe that they are a polar pair ([[8, 8/3 ;π/4]]⊥ = [[8/3, 8 ;π/4]] by
Lemma 2).
4.0.2. Associated to the 60-cell With the automorphism group of the 60-cell,
there are two dual pairs. We shall define their representatives made of squares,
P4,10 := [[4, 10 ;π/4]] and P4,10/3 := [[4, 10/3 ;π/4]], which are combinatorially
isomorphic. Formally, they will be defined in the next section. For the moment,
let us describe them geometrically. Consider the 60-cell, a projective polytope
of rank 4 whose facets are 60 dodecahedra, called a honeycomb in [4]. Let an
edge grow on both ends. The vertices enter two facets. Stop when they are at
the barycenters. It is then a segment of length π/3. Do this for all edges of the
60-cell to obtain the geometric 1-skeleton of P4,10. Observe that it has vertices
at the barycenters of the facets with 20 edges incident to them corresponding
to, and passing through, the vertices of its dodecahedron. These edges naturally
group together to form 900 regular squares of radius π/4. They are the faces
(combinatorially and geometrically) of P4,10. At each edge there are 6 squares; in
fact, if we intersect them with a dodecahedron the edge becomes a vertex and the
squares geodesics to the 6 vertices reachable by three steps in Petrie polygons. To
make a polyhedron the squares must be formally matched in pairs at each edge. By
the way in which the squares fit arround the edge, there are only three matching
rules that can be performed regularly on all edges. They give rise to P4,10 , P4,10/3
and to 60 copies of [[4, 6 ;π/4]] . Thus, each geometric edge of P4,10 and P4,10/3
stands for 3 combinatorial edges; the surface passes three times through it.

4.1. Solutions of the waist equation

We have proved the existence part of Theorem 1. Now we prove uniqueness.
Suppose that P is a finite regular projective polyhedron with simple inessential

planar face and skew antiprismatic vertex figure. Then P = [[p, q ; r]], and we must
prove that the only possible values which p, q and r can take are those of the
theorem.
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It is not hard to see that the radius r has to be rational over π (Corollary 2 of
[1]), so that t := π/r ∈ Q, and t > 2. By hypothesis, we know that p1 and q1 are
even (recall p = p1/p2 and q = q1/q2), and from Corollary 1 we have that q1 ≤ 10
and p1 ≤ 10. Therefore, p and q must be in the set {4, 6, 8, 8/3, 10, 10/3}. Many
of the possible assignments are eliminated by Proposition 1 of [1], which implies
that if q = 6, 10 or 10/3 then p = t = 4, and its dual (interchange p and q).

Our main tool will be the waist equation (Theorem 1 of [1]), which reads as
follows. If p1 ≡ 0 mod(4) then the geometric waist c ∈ Q of P , satisfies

cos(π/p) cos(π/c) = sin(π/q) cos(π/t). (8)

Our task now is to find the rational solutions (p, q, t, c) of (8) when the pair (p, q)
takes values in the set

(4, 4), (4, 6), (4, 8), (4, 8/3), (4, 10), (4, 10/3),
(8, 4), (8, 8), (8, 8/3), (8/3, 4), (8/3, 8), (8/3, 8/3).

(9)

In [15], based on work of Conway and Jones [2], Myerson describes the complete
list of rational solutions of the trigonometric equation

cos(x1π) cos(x2π) = cos(x3π) cos(x4π). (10)

This list reads as follows:

a) 24 special solutions.
b) A family of solutions coming from the trigonometric identity sin(2θ) =

2 cos(θ) sin(θ). Namely, for each α ∈ Q, take x1 = 1/3, x2 = 1/2 − 2α,
x3 = α and x4 = 1/2− α.

c) Degenerate solutions {x1, x2} = {x3, x4}.
For each solution of (10) we may have different assignments of our variables

(p, q, t, c) giving us solutions of (8). A quick glance at the 24 special cases, elimi-
nates them because of our restrictions (9) on p and q .

From family (b), we get only 4 acceptable solutions for (p, q, t, c):

b.1: ( 4 , 8 , 8 , 3 ), b.2: ( 4 , 8/3 , 8/3 , 3 ),
b.3: ( 8 , 4 , 3 , 8/3 ), b.4: ( 8/3 , 4 , 3 , 8 ).

For the degenerate solutions (c), we have two possible assignments. One is
taking 1/q = 1/2− 1/p and t = c. The other, t = p and 1/c = 1/2− 1/q. From
the first asingment we get three infinite families, with 2 < α ∈ Q :

c.1.1: ( 4 , 4 , α , α ), c.1.2: ( 8 , 8/3 , α , α ), c.1.3: ( 8/3 , 8 , α , α ).
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Finally, from the second assignment, and eliminating the three particular cases
that already appear in the above families, we get:

c.2.1: ( 4 , 6 , 4 , 3 ), c.2.2: ( 4 , 8 , 4 , 8/3 ),
c.2.3: ( 4 , 8/3 , 4 , 8 ), c.2.4: ( 4 , 10 , 4 , 5/2 ),
c.2.5: ( 4 , 10/3 , 4 , 5 ), c.2.6: ( 8 , 4 , 8 , 4 ),
c.2.7: ( 8 , 8 , 8 , 8/3 ), c.2.8: ( 8/3 , 4 , 8/3 , 4 ),
c.2.9: ( 8/3 , 8/3 , 8/3 , 8).

This is the complete list of solutions to the waist equation (8) subject to the
restrictions (9) on (p, q). But we still have to eliminate some of the above possi-
bilities.

Observe that if (p, q, t, c) is a solution with p1, q1 ≡ 0 mod(4) coming from the
finite polyhedron P = [[p, q ;π/t]], then there must exist a solution (q, p, t, c∗) for
some c∗, corresponding to its dual P∗ = [[q, p ;π/t]]. This criterion eliminates b.3,
b.4, c.2.2 and c.2.3. But not the families c.1.2 and c.1.3 which are dual, or the
cases c.2.7 and c.2.9 which are self-dual. However, of all of these cases, only (8,
8/3, 4, 4) and (8/3, 8, 4, 4) satisfy the following.

Lemma 4. If P = [[p, q ; r]] is finite with p1 = 8 (where p = p1/p2), then its waist
is c = 4.

Proof. Consider the dual P∗ = [[q, p ; r]]. Its 2-hole polyhedron h2(P∗) is euclidean
with planar face by Lemma 3. Since p1 = 8, it has Schläfli symbol {x, 4}. Thus
it is the octahedron {3, 4}. Now observe that the 2-hole of the octahedron has
length 4 and that it corresponds to the combinatorial waist of P . Therefore the
geometric waist c must also be 4. �

Observe now that the list of feasible solutions that remains, corresponds pre-
cisely to the polyhedra of Theorem 1 to which the waist equation applies, the
remaining three are duals. This concludes the proof of Theorem 1.

Before we proceed, observe that the solutions to the waist equation give us
new information about the polyhedra, namely, the value of the waist and when
applicable, of the dual waist. The solutions which were discarded at the end,
correspond to regular infinite polyhedra with finite face, vertex figure and waist,
and which are thus not simply connected.

5. Skew-prismatic vertex figure

In Sections 6.1 and 6.2 of [12] a family of regular polyhedra in the euclidean 4-
space R4 is obtained by the “Petrie–Coxeter” mixing operation performed on the
classical regular polytopes of rank 4 in R4. The polyhedron P obtained by this
operation from the polytope Q, say, is geometrically realized by taking vertices on
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the barycenters of the edges of Q and edges along its 2-dimensional faces. The
faces of P then correspond to, are in fact the dual of, the Petrie polygons of the
facets of Q. Thus they are planar, and the vertex figure is skew prismatic (see
[12] for a detailed geometric description). Of course, these polyhedra may be
projected to P3. The main point of this section is to prove that if we also consider
the opposites of the classical polytopes, then all the “odd” projective polyhedra
arise in this way.

Let Q be a projective polytope of rank 4 in P3 given by the C-group Ψ =
〈ρ0, ρ1, ρ2, ρ3〉 ⊂ Iso(P3) and the basic pair a0, a1 ∈ P3. The Petrie–Coxeter poly-
hedron of Q, denoted P = µ(Q) is defined by the geometric operation:

µ : (ρ0, ρ1, ρ2, ρ3) 7→ (ρ1, ρ0ρ2, ρ3) =: (σ0, σ1, σ2),
b0 = µ0(Q) := a1,

b1 = µ1(Q) := (a1 ∗Π⊥1 ) ∩Π1

(11)

where Πi is the distinguished mirror of ρi in Q. It is proved in [12] that P is
combinatorially a polyhedron, and it is easy to see that it further satisfies (4).
Thus it is a projective polyhedron.

Lemma 5. Let Q be a projective polytope of rank 4 in P3. If dim(Q) = (2, 2, 2, 2)
or (0, 2, 2, 2), then dim(µ(Q)) = (2, 1, 2) and

µ(Qop) = µ(Q)⊥.

Proof. Let P = µ(Q) be the Petrie–Coxeter polyhedron of Q defined by, and with
notation as in (11) above. Since ρ0 and ρ2 commute, then σ1 = ρ0ρ2 is a π-rotation
along the line Σ1 := Π0 ∩ Π2 when dim(Π0) = 2 or the line Σ1 := Π0 ∗ Π⊥2 when
dim(Π0) = 0. Σ1 is then the distinguished mirror of σ1. The other distinguished
mirrors of P are Σ0 := Π1 and Σ2 := Π3. Therefore dim(P) = (2, 1, 2).

Now, observe that interchanging the roles of Π0 and Π⊥0 produces the inter-
change of Σ1 and Σ⊥1 , so that the Petrie–Coxeter of the opposite is the polar of
the Petrie–Coxeter, that is, µ(Qop) = P⊥. �

The classic 4-dimensional euclidean polytopes whose groups are generated by
reflections are classified, see [5]; they are denoted by symbols of the form {x, y, z}.
If we denote the corresponding projection by [[x, y, z]], then we obtain the projective
polyhedra of Table 1 as their Petrie–Coxeter and their polars. Those in the second
column are the projections of the ones described by McMullen and Schulte in [12].
The radius r in each row is the angular distance of the barycenter of the facet to
the barycenter of its edge in the corresponding polytope; and r̂, if applicable, is
then obtained by Lemma 2. Only a few easily expressed radii are explicitly given,
and it is understood that r varies from row to row.
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Theorem 2. Let P = [[p, q ; r]] be finite and such that q1 ≡ 1 mod(2) or q1 ≡
2 mod(4), where q1/q2 is the irreducible expression of q ∈ Q. Then there exists a
rank 4 regular projective polytope Q whose C-group generators are reflections and
such that P is its Petrie–Coxeter polyhedron, that is, such that µ(Q) = P.

Proof. Let q̂ = q̂1/q̂2 (its irreducible expression) be complementary to q, that
is, 1/q + 1/q̂ = 1/2. Then it is easy to see that q1 ≡ 1 mod(2) if and only if
q̂1 ≡ 2 mod(4). Therefore, changing P for its polar P⊥ if necessary, we may
assume that q1 ≡ 1 mod(2).

Q µ(Q) µ(Qop)
[[3, 3, 3]] [[4, 3 ; cos−1(1/

√
6)]] [[4, 6 ;π/4]]

[[3, 3, 4]] [[4, 4 ;π/4]] [[4, 4 ;π/4]]
[[3, 4, 3]] [[6, 3 ; r]] [[3, 6 ; r]]
[[4, 3, 3]] [[6, 3 ; r]] [[3, 6 ; r]]
[[3, 3, 5]] [[4, 5 ; r]] [[4, 10/3 ;π/4]]

[[3, 3, 5/2]] [[4, 5/2 ; r]] [[4, 10 ;π/4]]
[[5, 3, 3]] [[10, 3 ; r]] [[5/2, 6 ; r̂]]

[[5/2, 5, 5/2]] [[6, 5/2 ; r]] [[3, 10 ; r̂]]
[[5/2, 3, 3]] [[10/3, 3 ; r]] [[5, 6 ; r̂]]
[[5, 5/2, 5]] [[6, 5 ; r]] [[3, 10/3 ; r̂]]
[[5, 5/2, 3]] [[6, 3 ; r]] [[3, 6 ; r]]
[[5/2, 5, 3]] [[6, 3 ; r]] [[3, 6 ; r]]
[[3, 5, 5/2]] [[10, 5/2 ; r]] [[5/2, 10 ; r]]
[[5, 3, 5/2]] [[10, 5/2 ; r]] [[5/2, 10 ; r]]
[[5/2, 3, 5]] [[10/3, 5 ; r]] [[5, 10/3 ; r]]
[[3, 5/2, 5]] [[10/3, 5 ; r]] [[5, 10/3 ; r]]

Table 1.

To ease notation, let us use q to denote also its numerator q1, and likewise
for p; this should cause no problem, for, the context, either geometrical or com-
binatorial, tells us if it is the rational or the integer we refer to. Recall that P is
combinatorially a regular polyhedron with Schläfli symbol {p, 2q}. Let σ0, σ1, σ2

be its canonical generators. Then, the mixing operation (defined in [12] pg. 18)

µ̄ : (σ0, σ1, σ2) 7→ ((σ1σ2)q, σ0, (σ1σ2)qσ1, σ2) =: (ρ0, ρ1, ρ2, ρ3) (12)

yields a group Ψ = 〈ρ0, ρ1, ρ2, ρ3〉 that satisfies (1) because of the identity (σ1σ2)2q =
1. Clearly, µ̄ is a right inverse to µ of (11), that is µµ̄ = identity. In its full com-
binatorial generality, it is an open question if Ψ is always a C-group, that is, if it
satisfies the intersection property (2). At least, there is no proof of this in [12],
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and the author doubts it in general. However, in our case we will prove it with
geometric arguments.

Let b0, b1 be the basic pair of P , and Σi the distinguished mirror of σi. Con-
sider the prism in P3 whose vertices are those of the vertex figure L(P), that is,
〈σ1, σ2〉(b1). It is a prism whose base is a planar (inessential) regular q-gon, with q
odd. Observe that ρ0 = (σ1σ2)q is the reflection along the symmetry plane of L(P)
(let us call it Π0) that interchanges the two q-gonal faces; that ρ2 = (σ1σ2)qσ1 is
the reflection along the plane Π2 orthogonal to Π0 and to a lateral face. So that
Π0∩Π2 = Σ1 (see Figure 1.a where q = 3). Finally, let Π1 and Π3 be the reflection
planes of ρ1 = σ0 and ρ3 = σ2 respectively, i.e., Π1 := Σ0 and Π3 := Σ2; and let
ai :=

⋂
j 6=i Πj (Figure 1.b).

0
a

1a = b2a

a3

b)

0
Π

Π

0

2

a)

∑
1

1b
1b

Figure 1. a) The prismatic vertex figure. b) The basic tetrahedron

Suppose for the moment, that Ψ = 〈ρ0, ρ1, ρ2, ρ3〉 is the C-group of a combina-
torial polytope. It can then be realized in P3 by taking as basic pair a0 =: µ̄0(P)
and a1 =: µ̄1(P), so that µ̄ becomes a geometric operation. If we take Q = µ̄(P),
it is clear that dim(Q) = (2, 2, 2, 2) and that P = µ(Q), which completes the proof
of the theorem. It remains to prove that Ψ satisfies the intersection property (2).

Let ∆ be the tetrahedron with vertices ai (and faces on Πi) containing the
basic triangle b0b1b2 of P (Figure 1.b), where b2 = a3 = Σ0 ∩Σ1. We claim that if
the diameter of ∆ is less than π/2 then Ψ satisfies the intersection property. To
see this, and to fix ideas, let us prove that 〈ρ1, ρ2, ρ3〉 ∩ 〈ρ0, ρ1, ρ2〉 = 〈ρ1, ρ2〉. All
the other cases, for different subsets I and J of indices, are analogous.

Consider ω ∈ 〈ρ̂0〉 ∩ 〈ρ̂3〉 (where ρ̂i means “omit ρi”). We must prove that
ω ∈ 〈ρ1, ρ2〉. Since ω ∈ 〈ρ̂i〉 implies that ω(ai) = ai, then if the length of the
segment e from a0 to a3 contained in ∆ is not π/2, this segment is also fixed
pointwise by ω. Consider a small sphere S2 centered at a0. The group 〈ρ1, ρ2, ρ3〉
acts on this sphere, and can be considered as a group generated by three reflections
on S2, namely by the reflections on the great circles S2 ∩ Π1, S

2 ∩ Π2, S
2 ∩ Π3.

These finite groups are well understood and classified, they are either dihedral or
the groups of regular euclidean polyhedra. Now, observe that S2∩e ∈ S2∩Π1∩Π2,
so that ω fixes pointwise the antipodal pair S2 ∩ Π1 ∩ Π2. It is true for these
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finite groups that then ω can be expressed by only those two reflections, that
is, ω ∈ 〈ρ1, ρ2〉. This means geometrically that the vertices and edges of the
classic euclidean polyhedra are not “double”, which is no longer the case in higher
dimensions.

To prove that d(ai, aj) < π/2, for all i, j we will use the following simple
fact. Consider a projective triangle with angles α, β, γ and respectively opposite
sides of lengths a, b, c; if α = π/2 and γ, b < π/2 then a, c, β < π/2. From P ,
we know that d(b0, b1) < π/2 and d(a1, a3) < π/2 (in fact, since a3 = b2 and
a1 = b0 then d(a1, a3) = r, the radius of P). Since ∠b1a1a0 < π/2 (because
∠b1a1a0 + ∠b1a1a2 = π/2) then d(a1, a0) < π/2 and ∠a1a0a2 < π/2. Then,
d(a0, a2) < π/2, d(a1, a2) < π/2 (and ∠a1a2a0 < π/2). Since ∠a2a1a3 = π/q <
π/2 and ∠a1a2a3 = π/2 then d(a3, a2) < π/2. Finally, d(a0, a3) < π/2 because the
segment a0a3 lies in a right triangle with right legs less than π/2. �

6. Conclusion

Theorems 1 and 2 yield the classification of finite planar-skew polyhedra in P3.
Suppose P = [[p, q ; r]] is finite. If p and q are even (their denominators, we mean)
then P is listed in Theorem 1. If not, then Theorem 2 applies either to P or to
its dual P∗, and then, by the classification of groups generated by reflections in
R4, it, or its dual, appears in Table 1. Observe that three polyhedra, besides a
torus, appear in both theorems, and correspondingly, three duals have not been
mentioned, namely, [[3, 4 ; cos−1(1/

√
6)]], [[5, 4 ; r]] and [[5/2, 4 ; r]] for suitable r’s.

The other duality relations in Table 1 are in the same row when r̂ does not appear
because p and q are complementary (1/p + 1/q = 1/2), or in contiguous rows,
where we further know that r in one is equal to r̂ in the other.

Thus, we may conclude that, besides the infinite family of tori parametrized
by t ∈ Q, t > 2, there are 42 finite polyhedra [[p, q ; r]], which together with their
opposites are all the finite regular projective polyhedra with planar face and skew
vertex figure.
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