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1. Introduction and preliminaries

Let J be an interval in R+ := (0,∞) such that J · J ⊆ J . A function f : J → R+

is said to be submultiplicative on J if the inequality f(xy) ≤ f(x)f(y) holds for
all x, y ∈ J . If the above inequality holds in reverse, then f is said to be super-
multiplicative. There are a few papers of very particular (although important)
or general nature concerning multiplicative properties of real functions. The first
paper in that subject comes from R. Cooper [2] and dates 1927. Characterizations
and applications of submultiplicative Orlicz functions are given in the monograph
of Krasnosielskii and Rutickii [13]. Gustavsson, Maligranda and Peetre studied
submultiplicative properties of the log function, giving also a general criteria for
submultiplicativity on [1,∞) ([9], Lemma 1).

Submultiplicative functions appear naturally in diverse subjects such as inter-
polation theory [1], [14] and play a significant role in the theory of operators in
Orlicz spaces [13]. Some special results are included in [3], [4], [9], [12], [17]. With
the aid of the submultiplicative function f(x) = log(x+e2) Zafran [26] constructed
a Banach algebra B such that A(T ) ⊂ B ⊂ C(T ), where A(T ) is the algebra of
absolutely convergent Fourier series, C(T ) the algebra of continuous functions on
T and T is the unit circle group, all the inclusions being proper, thereby solving
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the “dichotomy problem”. More recently, Gowers [5] uses the submultiplicative
function f(x) = log2(x + 1), x ≥ 1, to construct an infinite dimensional Banach
space not isomorphic to any of its proper subspaces; this gives a negative answer
to the celebrated “hyperplane problem” of Banach.

The purpose of this paper is to indicate a large class of real functions which are
sub- or supermultiplicative on proper intervals. We study the classes of functions
which fulfil the functional inequalities

f(xαyβ) ≤ f(x)αf(y)β ,

for all α, β ≥ 0, α+ β = 1, x, y ∈ IA, and IA = (0, A] or IA = [A,∞) with A > 0.
Following J. Matkowski ([18], p. 108), functions fulfiling the above inequality are
called geometrically convex, and geometrically concave if the reversed inequality
holds. It is easy to see that f : IA → R+ is geometrically convex if and only if the
function f̂(t) := log(f(et)) is convex on the semiaxis log IA, where log IA denotes
the respective semiaxes (−∞, logA] or [logA,∞), and log x denotes the natural
logarithm of x. Gronau and Matkowski [7], [8] studied geometrically convex prop-
erties of the gamma function Γ in the context of some functional equations, and
they obtained generalizations of Bohr–Mollerup type theorems. In 1990 Lucht
found a new constant γ determining the intervals on which Γ is geometrically
concave and geometrically convex ([16], Satz 1); this problem was treated also in
Gronau [6], pp. 68–70.

Geometrically convex [geometrically concave] functions turn out to fulfil a kind
of super[sub-]multiplicative inequalities. We give ample characterizations to these
functions as well as sufficient conditions for super- or submultiplicativity (Sec-
tion 2). The characterizations of geometrically convex and concave functions are
given in Theorem 1 (the general case) and in Theorem 2 (twice differentiable func-
tions).

Although the idea of using the transformation f 7→ f̂ is not new (cf. [10] or [7]),
it yields new and nontrivial results for classical functions. For example, Theorem 2
leads to the amazing consequences for functions of class C2: strictly increasing
functions fulfil some kind of supermultiplicativity (Theorem 3) and superadditivity
(Theorem 4). Applying Theorem 1 to the log function we obtain a new constant
determining the intervals on which this function is super- and submultiplicative
(Theorem 10); for the function Γ, we complete the above mentioned result of Lucht
concerning the constant γ (Theorem 8). Other consequences of Theorems 1 and
2 are presented in Section 3, where we give unified proofs of some classical and
new inequalities, in Section 4, dealing with inequalities for power series, and in
Section 6, devoted to inequalities for trigonometric and hyperbolic functions.

The main tools of this paper are the classical Petrovič inequality ([15], p. 197):

(P) if F is a convex function on the interval J=[0, u0], and x, y, x+y∈J, then
F (x+y) ≥ F (x)+F (y)−F (0), with the reversed inequality for concave func-
tions (these inequalities are strict for strictly convex or concave functions),

and a converse of (P) which follows easily from ([15]; Theorem 2, p. 153, and
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Theorem 3, p. 154):

Proposition 1. For a continuous function F : [a,∞) → R the following two
conditions are equivalent:

(i) F is convex on [a,∞);
(ii) for every t, s ≥ 0 and x ≥ a we have

F (t+ s+ x) + F (x) ≥ F (t+ x) + F (s+ x)

(with the reversed inequality in (ii) for F concave in (i)).

We wish to point out that in many considerations regarding sub- and super-
multiplitive functions, the right approach is to consider the domains (0, 1] and
[1,∞) separately. To begin with, some properties do not hold or become trivial
when we consider them defined at large; for instance (see [15]; Theorem 2, p. 409,
the additive and more general case; rediscovered in [17], Theorem 1.6, for the
multiplicative case):

Proposition 2. If a submultiplicative function f : R+ → R+ is differentiable at
x = 1 and f(1) = 1, then f(x) = xp for all x ∈ R+ and some p ∈ R.

Therefore, a non-power differentiable function f with f(1) = 1 can never be
sub- or supermultiplicative on R+. Nevertheless, there are many differentiable
functions f , fulfilling the condition f(1) = 1, that are submultiplicative on (0, 1]
and supermultiplicative on [1,∞), and so on. The results presented in the next
sections yield many such examples; they complete essentially the examples given
e.g. in [2], [13], [17].

The above proposition can be viewed as a limitary connection between sub-
multiplicative and power functions: it is known ([19], Lemmas 1 and 2) that if
f : R+ → R+ is submultiplicative and locally upper bounded (e.g. measurable),
then there exist constants A,B > 0 and α, β ∈ R with Axα ≤ f(x) ≤ Bxβ for
all x ∈ R+ (cf. [11]; pp. 241, 244, 250). Similar upper bounds for functions sub-
multiplicative on (0, 1] or [1,∞) only have been obtained by Cooper ([2], proof of
Theorem VI).

2. Main criteria

The theorems of this section yield conditions for a given function to be super-
or submultiplicative on a suitable interval. We have separated the differentiable
case (Theorem 2) from the general case (Theorem 1), because the characteriza-
tion of twice differentiable sub[super-]multiplicative functions, via condition (v) in
Theorem 2, is more appropriate for classical functions (see next sections).
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Recall that IA denotes the interval (0, A] or [A,∞), where A > 0. Throughout
the paper the symbol I will denote the interval I1, which is understood as (0, 1]
when the given theorem describes the case IA = (0, A], and I1 = [1,∞) for IA =
[A,∞). For a given function f : (r, s) → R and fixed real numbers x, a, t, with
x, a > 0, we define the following three auxiliary functions: f{x}, f{a}, and ft, by
the formulas f{x}(a) = f(ax)/f(a), f{a}(x) = f(ax)/f(a), and ft(x) = f(t + x),
with the domains (r/x, s/x) ∩ (r, s) (where x > 0), (r/a, s/a) (where a ∈ (r, s)),
and (r − t, s− t) (where t ∈ R), respectively.

The classical theorem of Mulholland ([15]; Lemma 1, p. 198) asserts that if
ϕ : [0,∞) → [0,∞) is continuous, strictly increasing, convex, and ϕ(0) = 0 (i.e.,
ϕ is an an Orlicz function [13]) then ϕ is geometrically convex iff ϕ is of the
form ϕ(x) = x exp(h(log x)), for x > 0, where h : R → R is continuous, convex
and increasing. Theorems 1 and 2 presented below complete this result by giv-
ing full characterization of geometrically convex functions, in terms of their both
multiplicative and monotonic properties, defined on the intervals IA.

Theorem 1. Let f : IA → R+. Consider the following four conditions:
(i) The function f is geometrically convex on IA.
(ii) For every a ∈ IA the function f{a} is supermultiplicative on I.
(iii) For every a ∈ IA and every sequence x1, . . . , xn ∈ (0, a] we have

f(a)n−1 · f((x1 · . . . · xn)/an−1) ≥ f(x1) · . . . · f(xn).

(iv) For every x ∈ I the function f{x} is
(a) nonincreasing on IA = (0, A],
(b) nondecreasing on IA = [A,∞).

Then (i) ⇒ (ii) ⇔ (iii) ⇔ (iv). The first implication is strict, and if f is contin-
uous, then (ii) ⇒ (i), and in this case all four conditions are equivalent.

These statements remain valid on replacing everywhere “convex” by “concave”,
“super” by “sub”, and “nonincreasing” by “nondecreasing” (and vice versa).

Proof. Let us consider the case IA = (0, A] and f̂ convex, since the other cases one
can prove in a similar fashion.

(i) implies (ii): by the Petrovič inequality applied to the function [0,∞) 3 t 7→
f̂(−t+ log a), where a ∈ (0, A].

(ii) and (iii) are equivalent. Obvious.
(ii) and (iv) are equivalent. Fix x ∈ I; then for a1, a2 ∈ IA with a1 ≤ a2 we

have a1 = za2 for some z ∈ I, whence, by (ii), f(a2) · f(xza2) ≥ f(xa2) · f(za2),
i.e. f{x}(a1) ≥ f{x}(a2). Thus (ii) implies(iv), and that (iv) implies (ii) is proved
similarly.

We have that (ii) does not imply (i), in general, because if F is an additive
and discontinuous function on R, then the function f(x) = exp(F (log x)), x ∈ R+,
fulfils the condition (ii) with f̂ = F nonconvex.
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If f is continuous, then, by Proposition 1 applied to the function [− logA,∞) 3
t 7→ f̂(−t), we have that (ii) implies (i). �

Remarks. 1. If f is differentiable on appropriate intervals, then the condition
(iv)(a) in the above theorem holds if and only if the function φ(x) := xf ′(x)/f(x)
is nondecreasing on (0, A]; similarly, (iv)(b) holds iff φ is nonincreasing on [A,∞)
([13], Lemma I.5.2)

2. If f̂ is strictly convex, then by the strict Petrovič inequality all inequalities
in Theorem 1 become strict.

In concrete situations we use the following corollary of Theorem 1. The word
“separately” in condition (i) below, as well as in Theorems 7, 9, 10, 12, and 13,
is justified by Proposition 2, and it means that the given inequality does not hold
on the whole semiaxis (0,∞).

Corollary 1. Let f : R+ → R+ be a nonpower function, and let A > 0.
(i) If f is geometrically convex on R+, then for every a > 0 the function f{a}

is supermultiplicative on (0, 1] and [1,∞) separately.
(ii) If f̂ has exactly one inflection point logA with f̂ strictly convex on log(0, A]

and strictly concave on log[A,∞), then f{a} is
(a) supermultiplicative on (0, 1] if and only if a ∈ (0, A];
(b) submultiplicative on [1,∞) if and only if a ∈ [A,∞)

(hence, f{A} is supermultiplicative on (0, 1] and submultiplicative on [1,∞)).
These statements remain valid on replacing everywhere “convex” by “concave”

and “super” by “sub”.

Proof. Since for every a > 0 the function f{a} is geometrically convex whenever f
is such a function, part (a) and parts “if” in (b) are immediate consequences of
Theorem 1. To prove parts “only if”, assume that f̂ is strictly convex on log(0, A]
and strictly concave on log[A,∞). It follows that for a > A the function f̂{a}

is strictly concave on log(A/a, 1] with (̂f{a})(0) = 0 whence, by the strict Petro-
vič inequality, f{a}(xy) < f{a}(x)f{a}(y) for all x, y ∈ (

√
A/a, 1) (the reversed

inequality holds for a ∈ (0, A) and x, y ∈ (1,
√
A/a)). Therefore f{a} cannot be

supermultiplicative on (0, 1] for all a > A; similarly, f{a} is non-submultiplicative
on [1,∞) for all a ∈ (0, A).

The geometrically concave case is proved in a similar way. �

Now we shall consider briefly the case of twice differentiable functions. On the
class of twice differentiable functions define the operator D by the formula

D(F ) = F ′′ · F − (F ′)2.

It is well known that such a function F , defined on an interval J = (a, b), is
log-convex on J iff D(F )(x) ≥ 0 for all x ∈ J (the reversed inequality holds for
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log-concave functions).

Theorem 2. Let A > 0, and let f : IA → R+ be twice differentiable. Then all
four conditions in Theorem 1 are equivalent to the following one:

(v) the expression δ(f(x)) := f(x) · f ′(x) + x ·D(f)(x)

is nonnegative [nonpositive, for the geometrically concave case] on IA.

Proof. The condition (iv) in Theorem 1 holds true iff φ(x) = xf ′(x)/f(x) is nonde-
creasing on IA (see Remark 1) iff δ(f(x)) ≥ 0 on IA. On the other hand, defining
the functions F+ and F− on log[A,∞) and log[1/A,∞), respectively, by the rules
F±(t) = f(e±t), we see that D(F±)(t) = xδ(f(x)), where x = e±t ∈ IA. Hence f
is geometrically convex (condition (i) in Theorem 1) iff δ(f(x)) ≥ 0 for all x ∈ IA
(condition (v) above). �

Remark 3. From the above theorem we obtain immediately that every twice dif-
ferentiable, log-convex and increasing [log-concave and decreasing, resp.] function
f is geometrically convex [geometrically concave, resp.], but, by the use of Young’s
inequality, one can easily prove that this implication is true without assuming
differentiability of f (cf. [7]; see also [6]; Lemma 1, p. 67). However, the class
of geometrically convex functions, defined on a given interval, is essentially larger
than the class of log-convex and increasing functions (defined on the same interval).
An example is furnished by the Euler gamma function Γ for which Γ̂ is convex on
log(γ,∞) for some γ ∈ (0, 1) (see Lemma 2 below) and log Γ is convex on (0,∞)
([24], Theorem 7.71 and Exercise 8(g), p. 472), but Γ is strictly decreasing on (0, 1]
([24], Theorem 7.71 and Exercise 8(c), p. 472) hence on (γ, 1).

As an immediate consequence of Theorem 2 we shall single out a large class
of functions, including many classical functions, which locally fulfil some kind
of sub- or supermultiplicativity (Theorem 3 below). The term “locally” means
that if f : (a, b) → R+, then for every t ∈ (a, b) the shifted function ft fulfils
on a right neighbourhood of the origin (depending on t) the inequality described
in Theorem 1 (iii). A more precise description of this property is given in the
following definition.

Definition 1. Let (a, b) be an interval with −∞ ≤ a < b ≤ ∞. A function
f : (a, b) → R+ is said to be locally supermultiplicative provided that for every
t ∈ (a, b) there exists At ∈ (0, b− t) such that the function (ft){At} is supermul-
tiplicative on (0, 1]; equivalently (see Theorem 1), f(At + t) · f((xy + t)/At) ≥
f(x + t) · f(y + t) for all x, y ∈ [0, At] for local supermultiplicativity, with this
inequality reversed for the corresponding notion of local submultiplicativity.

The next theorem can be now presented in a concise form.
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Theorem 3. Let (a, b) be an interval with −∞ ≤ a < b ≤ ∞. Every strictly
increasing [strictly decreasing] function f : (a, b) → R+ of class C2 is locally
super[sub-]multiplicative.

Proof. Let f be positive and strictly increasing on (a, b). For every t ∈ (a, b) we
have δ(ft(0)) = f(t) · f ′(t) > 0. Since the function x 7→ δ(ft(x)) is continuous on
(0, b − t), for every t ∈ (a, b) there exists At with δ(ft(x)) > 0 for all x ∈ [0, At].
By Theorem 2, the function f is locally supermultiplicative. The “bracketed case”
is proved similarly. �

The additive version of Theorem 3 one obtains by considering functions of the
form f = F̆ , where F̆ (x) := expF (log x). To shorten the text, we introduce the no-
tion of somewhat super[sub-]additive functions; this notion allows us to construct
many nontrivial examples of super[sub-]additive functions on [0,∞) (Theorem 4,
Example 1), completing the examples given by Rosenbaum in [23].

Definition 2. Let (a, b) be an interval with −∞ ≤ a < b ≤ ∞. A function
f : (a, b)→ R is said to be somewhat super[sub-]additive provided that the function
f̆ is locally super[sub-]multiplicative on (ea, eb), i.e. for every t ∈ (a, b) there exists
At ∈ (0, b−t) such that the function x→ Ψt(x) := ψ(x, t, At) is super[sub-]additive
on [0,∞), where

ψ(x, y, z) = f(y + log(1 + z · e−y−x))− f(y + log(1 + z · e−y)),

and x ∈ [0,∞), y ∈ (a, b), z ∈ (0, b− y).

Since f and f̆ are increasing [decreasing] simultanously, and since for F = f̆

we have F̂ = f , from Theorem 3 we get immediately

Theorem 4. Let −∞ ≤ a < b ≤ ∞, and let a function f : (a, b) → R be strictly
increasing [decreasing] and of class C2. Then f is somewhat super[sub-]additive.

Remark 4. The reader may observe that although ψ(0, t, At) = 0, the direct
verification, by means of the Petrovič inequality, if the function Ψt from Defini-
tion 2 have the additive properties stated in Theorem 4 provided that f is strictly
monotonic, becomes very labour-consuming and probably noneffective in the case
f
′ · f ′′ < 0. Indeed, for f twice diferentiable we have

(Ψt)′′(x) = Y 2 · [f ′′(X) + f
′
(X) · ex/C],

where Y = C · e−x/(1 +C · e−x), X = t+ log(1 + C · e−x), and C = At · e−t, and
so Ψt can be both convex and concave on an interval whenever f

′
and f

′′
have

different signs on that interval.
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Example 1. For f(x) = sinx we have that f is strictly increasing on the interval
(−π/2, π/2) and strictly decreasing on (π/2, 3π/2). From Theorem 4 it follows
that for every t ∈ (−π/2, π/2) there exists At ∈ (0, π/2− t) such that the function
x→ Ψt(x) = ψ(x, t, At) =

2 · sin
(

log

√
1 +Ate−te−x

1 +Ate−t

)
· cos

(
t+ log

√
(1 +Ate−te−x)(1 +Ate−t)

)
is superadditive on [0,∞), and for every t ∈ (π/2, 3π/2) there existsBt ∈ (0, 3π/2−
t) with Φt(x) := ψ(x, t, Bt) subadditive on [0,∞). We also have that f is strict-
ly concave on (0, π) and strictly convex both on (−π/2, 0) and (π, 3π/2), which
illustrates the problem described in Remark 4.

3. Applications to multiplicative inequalities

In this section we apply the results presented above to give unified proofs of some
known and new inequalities. It appears that these inequalities are nothing more
than the results of multiplicative properties of concrete functions.

Theorem 5. Let I denote the interval (0, 1] or [1,∞).
(i) For x1, . . . , xn ∈ I we have

n∏
k=1

xk + (n− 1) ≥
n∑
k=1

xk, (1)

2n−1 ·
(

1 +
n∏
k=1

xk

)
≥

n∏
k=1

(1 + xk). (2)

(ii) For every a ∈ (0, 1) and x1, . . . , xn ∈ (0, a) we have(
1
a
− 1
)n−1

·
(
an −

n∏
k=1

xk

)
≤

n∏
k=1

(1− xk); (3)

equivalently, for every ε > 0 and x1, · · · , xn ∈ (0, 1] we have(
ε

1 + ε

)n−1
·
(

1− 1
1 + ε

n∏
k=1

xk

)
≤

n∏
k=1

(
1− xk

1 + ε

)
. (4)

Putting ε = 1 in (4) we obtain

Corollary 2. For every x1, . . . , xn ∈ (0, 1] we have

2−
n∏
k=1

xk ≤
n∏
k=1

(2− xk). (5)
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The inequality (1) above is another form of the classical Weierstrass product
inequalities, and the inequality (2) is an improvement of (

∏n
k=1(1 − xk))−1 ≥∏n

k=1(1+xk) for values of xk ∈ (0, 1) near to one (see [20], p. 210); the inequalities
(3), and (4) seem to be new. Another proof of (5) is given in Example 3.

Proof of Theorem 5. (i) For the function f(x) = ex−1 we have f(1) = 1 and that
f̂(t) = et − 1 is convex on R, whence, by Theorem 1, f is supermultiplicative
both on (0, 1] and [1,∞), separately; it proves (1). To prove (2) take the function
g(x) = (1+x)/2 with x ∈ (0,∞), for which we have g(1) = 1 and δ(g(x)) = 1/4 for
all x’s; by Theorem 2, g is supermultiplicative both on (0, 1] and [1,∞), separately,
which is an equivalent form of (2).

(ii) For the function h(x) = 1 − x, where x ∈ (0, 1), we have δ(h(x)) = −1
for all x’s, whence, by Theorem 2 and Theorem 1 (parts (iii) and (ii)), we get the
desired inequalities (3) and (4). �

Remark 5. The convexity of f̂ for f(x) = ex−1, just used in the proof of the
above theorem, allows also to obtain at once the classical Young’s inequality.

Another product inequalities yields the following

Theorem 6. Let I denote the interval (0, 1] or [1,∞), let B ∈ (0,∞), and put
ξn = x1 · . . . · xn, where x1, . . . , xn ∈ I. We have

(i) If B > 1, then

Bξn + (n− 1)B ≥
n∑
k=1

Bxk . (6)

(ii) If B ∈ [1/e, 1), then (6) holds on I = (0, 1].
(iii) If B ∈ (0, 1/e), then the inequality revrsed to (6) holds for I = [1,∞).

Proof. It follows from Theorem 1 applied to the function f(x) = 2B
x−B. �

4. The case of power series

The results presented here yield simple (“at a glance” in Theorem 7) and useful
criteria for super[sub-]multiplicativity of some analytic functions.

Theorem 7. Let (ak)∞k=−∞ be a sequence of nonnegative real numbers with at
least two positive elements and

∑∞
k=−∞ ak = 1. Let Df denote the domain of the

function f defined by the formula

f(x) =
∞∑

k=−∞
akx

k.
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Then f is supermultiplicative
(i) on (0, 1], if Df ⊃ (0, 1];
(ii) on [1,∞), if Df ⊃ [1,∞);
(iii) on (0, 1] and [1,∞) separately, if Df ⊃ R+.

Proof. We have that for all k ∈ {j : aj > 0}, the functions gk(t) := ake
kt are

log-convex on R. By the result assserting that the sum of a finite number of
log-convex functions is log-convex also ([22], Theorem 13), we obtain, passing to
infinite series, that f̂ is convex. Now we apply Theorem 1, with A = a = 1, to
the cases Df ⊃ (0, 1] and Df ⊃ [1,∞), and since card{j : aj > 0} ≥ 2, from
Proposition 2 it follows that the function f cannot be supermultiplicative on R+

in the case Df ⊃ R+. �

From this theorem it follows that if f is a non-power function analytic on R\{0}
with f(1) = 1 and, for all k ∈ N we have f (k)(0) ≥ 0, then f is supermultiplicative
both on (0, 1] and [1,∞), separately. Two simple examples of such functions are
presented below.

Example 2. For the functions f(x) = (x2 + 1)/x and g(x) = (ex + e1/x)/2e,
analytic on R \ {0}, we have that f(1) = 1 = g(1), and g(x) =

∑∞
k=−∞ akx

k with
ak = (|k|!)/2e for k 6= 0 and a0 = 1/e. Hence, by Theorem 7, these functions are
supermultiplicative both on (0, 1] and [1,∞), separately only.

We shall now consider polynomials whose coefficients take both signs, positive
and negative. The lemma below shows the verification if a power series with
arbitrary signs of its coefficients is super- or submultiplicative becomes a very
complicated problem, in general. On the other hand, Theorem 2 easily applies for
trigonometric functions because these functions fulfil useful differential identities
(see Section 6).

Lemma 1. Let Wn(x) =
∑n
k=0 anx

k, where ak are arbitrary reals. Then

δ(Wn(x)) =
n∑
k=1

ak · xk−1 ·
k−1∑
j=0

(k − j)2 · aj · xj . (7)

In particular, δ(ax2 + bx+ c) = abx2 + 4acx+ bc.

Proof. For n = 1, the equality (7) is obvious. Moreover, it is not hard to check
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that the following identities hold true:

δ(Wn+1(x)) = δ(Wn(x)) + an+1 · (a1 · n2 · xn+1 + a0 · (n+ 1)2 · xn)

+
n∑

m=2

(n+ 1−m)2 · an+1 · xn+m

= δ(Wn(x)) + an+1 · xn ·
n∑

m=0

(n+ 1−m)2 · am · xm;

now the mathematical induction argument proves (7). �

From Lemma 1 and Theorem 2 we obtain immediately that a polynomial f
with positive coefficients and f(1) = 1 is supermultiplicative both on (0, 1] and
[1,∞) — a particular case of Theorem 7.

The next example shows how Theorem 2 and Lemma 1 work for concrete
polynomials.

Example 3. For f(x) = 2− x2 we have that f(x) ≥ 0 on [−
√

2,
√

2], f(1) = 1,
and (by Lemma 1) δ(f(x)) = −8x ≤ 0 for x ∈ [0, 1]. Hence, by Theorem 2, the
function f is submultiplicative on (0, 1]. This is another form of inequality (5).

5. The case of gamma, log, and zeta functions

In this section we examine the multiplicative properties of the classical Euler gam-
ma Γ, log, and the Riemann zeta ζ functions.

The first two theorems deal with the function Γ. The below auxiliary result,
interesting in its own right, is due to Lucht ([16], Satz 1; cf. [6], Lemma 1, p. 68).

Lemma 2. There exists exactly one number γ ∈ (0, 1) such that log γ is an in-
flection point of the function Γ̂, with Γ̂ strictly concave on (−∞, log γ] and strictly
convex on [log γ,∞).

The constant γ equals 0,2160987 . . . (and log γ = −1,5320198 . . . ) and it is the
positive solution of the equation

∞∑
n=1

2nx+ x2

n(n+ x)2 = C

where C is the Euler’s constant 0,577215 . . . .

The above lemma and Corollary 1(ii) yield immediately:
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Theorem 8. Let γ be the number described in Lemma 2. Then the function Γ{a}
is

(i) submultiplicative on (0, 1] if and only if a ∈ (0, γ];
(ii) supermultiplicative on [1,∞) if and only if a ∈ [γ,∞).

Hence, Γ{γ} is both submultiplicative on (0, 1] and supermultiplicative on [1,∞),
and Γ is supermultiplicative on [1,∞).

Remark 6. Since for the shifted function Γ1(x) = Γ(x + 1) we have Γ1(x) =
xΓ(x), from the identity (Γ̂1)

′′
= (Γ̂)

′′
and Lemma 2 it follows that the constant

γ has the same role for the multiplicative properties of both functions, Γ and Γ1.

Now let xmin denote the point where the function Γ reaches its only minimum
on (0,∞), i.e.

xmin = 1,4616 . . .

(see e.g. [21], p. 303), and let Γt be the shifted function, t > 0, as defined in
Section 2.

Theorem 9.
(i) For every t ≥ xmin and a > 0 we have that the functions

x 7→ (Γt){a}(x) = Γ(ax+ t)/Γ(a+ t)

are supermultiplicative both on (0, 1] and [1,∞), separately.
(ii) The function Γ is locally sub[super-]multiplicative and somewhat sub-[super-]-

additive on the interval (0, xmin] [respectively, on [xmin,∞)].

Proof. (i) Since Γ is log-convex on (0,∞) ([24], Theorem 7.71 and Exercise 8(g),
p. 472) and increasing on [xmin,∞), the function Γt shares these properties on
[0,∞). The result now follows from Remark 2 and Theorem 1.

(ii) It follows from Theorems 3 and 4. �

The function x 7→ log(a + x) was studied by Gustavsson, Maligranda and
Peetre [9], and the authors proved it is submultiplicative on [1,∞) if and only if
a ≥ a0 = 1,755069 . . . . The next theorem completes the above result to those
values of a and intervals for which the functions La(x) := log(a + x)/ log(a + 1)
are super- or submultiplicative. For this purpose let ξ denote the positive solution
of the equation log(1 + a) = a, i.e. ξ = 1,2399778876 . . . .

Theorem 10. With the above notations, the function La is:
(i) submultiplicative on (0, 1] and [1,∞) separately, for a = 1;
(ii) submultiplicative on [1,∞) if and only if a ∈ (0, ξ];
(iii) supermultiplicative on (0, 1] if and only if a ∈ [ξ,∞).

In particular, the function Lξ is supermultiplicative on (0, 1] and submultiplicative
on [1,∞).
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Proof. For the function f(x) = log x we have that the shifted function fa(x) =
f(a+ x), with a > 0, is positive if and only if x ∈ (1− a,∞). Moreover,

(a+ x)2 · δ(fa(x)) = φa(x) := a log(a+ x)− x. (8)

Part (i). If a = 1, then δ(fa(x)) ≤ 0 for all x ≥ 0. By Theorems 1, 2
and Corollary 1, for every β > 0 the function x 7→ log(1 + βx)/ log(1 + β) is
submultiplicative on (0, 1] and [1,∞) separately. Taking β = 1 we get (i).

Parts (ii) and (iii). Note first that if a < 1 [respectively, a > 1] then the domain
of f̂a equals (log(1 − a),∞) [respectively, R]. Since the function φa is decreasing
and, for every a > 0 we have limx→∞φa(x) = −∞ and φa(0) = a log a, it follows
from Theorem 2 that

(∗) f̂a is strictly concave on (log(1− a),∞) iff a < 1, and
(∗∗) f̂a has single inflection point log xa, where xa is the solution of the equation

φa(x) = 0, iff a ≥ 1 (with fa geometrically convex on (−∞, xa]).

By (∗) and Theorem 1, for every y > 1−a the function x 7→ log(a+xy)/ log(a+y)
is submultiplicative on [1,∞) whenever a ∈ (0, 1]; in particular, for y = 1, the
function La is submultiplicative on [1,∞) if a ∈ (0, 1].

Now consider the case a > 1. By (∗∗) and Corollary 1(ii), the functions
x 7→ log(a + rx)/ log(a + r) are (still) submultiplicative on [1,∞) for r ≥ xa
and supermultiplicative on (0, 1] for r ∈ (0, xa]. Putting r = 1 we get that La
is submultiplicative on [1,∞) (and supermultiplicative on (0, 1], respectively) for
those a > 1 that fulfil the condition xa ≤ 1 (and xa ≥ 1, respectively). By the
definition of xa (see (∗∗)), the function a 7→ y = xa is well defined and it is given
in the form M(a, y) := φa(y) = 0, where φa is defined in (8). Since now a > 1, we
have the deriviative dy/da = y−1[(a+ y) log(a+ y) + a] is positive; it follows that
xa ≤ 1 if and only if a ∈ (1, ξ] (and xa ≥ 1 if and only if a ∈ [ξ,∞), respectively).
We thus have proved parts “if” both for (ii) and (iii). Parts “only if” hold true by
virtue of Corollary 1(ii). �

The last theorem of this section concerns the classical Riemann zeta function
ζ(x) =

∑∞
n=1 n

−x, where x > 1.

Theorem 11. For the Riemann function ζ we have:
(i) ζ is locally submultiplicative and somewhat subadditive on (1,∞);
(ii) for every a > 1 the function ζ{a} is supermultiplicative on (1,∞);
(iii) for exery x > 1 the function ζ{x} is increasing on (1,∞); in particular,

ζ(2a)/ζ(a) ≥ π2/15 for all a ≥ 2.

Proof. Part (i) follows easily from Theorems 3 and 4. According to Euler’s formula
([25], p. 1), we have 1/ζ(x) =

∏∞
n=1 gn(x), where gn(x) = 1 − p−xn and the pn’s

denote all prime numbers, n = 1, 2, . . . . Since
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δ(gn(x)) = (1− p−xn − x · log pn) · p−xn log pn

is negative for all n’s and x > 1, from Theorem 2 it follows that the function
ζ̂(t) = −

∑∞
n=1 ĝn(t) is convex on (0,∞). Now Theorems 1 and 2 prove parts (ii)

and (iii).
Taking a = 2 and noting that ζ(4) = π4/90 and ζ(2) = π2/6, by Theorem 1(iv)

we obtain the particular part of (iii). �

6. Other classical functions

We shall now apply the results of Section 2 to show that trigonometric, cyclometric,
and hyperbolic functions satisfy multiplicative inequalities on (0, 1] or [1,∞).

Theorem 12.
(i) The functions sinx/ sin 1, sin(πx/2), cotx/ cot 1, and cot(πx/4) are sub-

multiplicative on (0, 1].
(ii) The functions tanx/tan1, and tan(πx/4) are supermultiplicative on (0, 1].
(iii) The function (2/π) · arcsinx is supermultiplicative, and for every a ∈ (0, 1)

the function arccos(ax)/ arccosa is submultiplicative on (0, 1].
(iv) The functions (4/π) · arctanx and (4/π) · arccotx are submultiplicative both

on (0, 1] and [1,∞), separately.

Proof. Parts (i) and (ii) follow directly from Theorems 1 and 2. Indeed, for x ∈
(0, 1] we have: δ(sin x) = sinx · cosx−x ≤ 0, δ(cosx) = − sinx · cosx−x ≤ 0, and
δ(tanx) = tanx+ tan3x+ tan4x− x ≥ 0. Another proof follows from Theorem 7,
since on the interval (−π/2, π/2) the functions 1

cos x , 1
sinx −

1
x , and tanx have

Maclaurin expansions with positive coefficients.
Parts (iii) and (iv) can be obtained from parts (i) and (ii). Alternatively, by

means of Theorems 1 and 2 again, for x ∈ (0, 1] we have (1−x2)3/2 · δ(arcsinx) =
arcsinx−x

√
1− x2 ≥ 0, and (1−x2)3/2 ·δ(arccosx) = −(1−x2) ·arccosx−x ·(x ·

arccosx+
√

1− x2) ≤ 0. Moreover, for x ∈ (0,∞) we have (1+x2)2 ·δ(arctanx) =
arctanx − x− x2 · arctanx ≤ 0, and (1 + x2)2 · δ(arccotx) = x2 · arccotx − x−
arccotx := Ψ(x) ≤ 0 (because Ψ is decreasing on (0,∞) and takes value −π/2 for
x = 0). �

Similar inequalities can be obtained for hyperbolic functions, e.g. applying
Theorem 7 to the functions sinhx and coshx one gets

Theorem 13. The functions (2e/(e2 − 1)) · sinhx and (2e/(e2 + 1)) · sinhx are
supermultiplicative both on (0, 1] and [1,∞), separately.
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7. Final remarks

We wish to remark that, even though the above inequalities hold for real functions,
some may be applied to holomorphic functions (i.e. their real and imaginary parts,
or their modules). For functions the domains of which contain neither (0, A] nor
[A,∞) for every A > 0, one can use proper shifts to obtain similar decompositions.
This can be done for functions such as ζ(z), Γ(z), and log(z), etc.
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