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Abstract. Information about protein sequences of an- 
cestral organisms is important for identifying critical 
amino acid substitutions that have caused the functional 
change of proteins in evolution. Using computer simu- 
lation, we studied the accuracy of ancestral amino acids 
inferred by two currently available methods (maximum- 
parsimony [MP] and maximum-likelihood [ML] meth- 
ods) in addition to a distance method, which was newly 
developed in this paper. All three methods give reliable 
inference when the divergence of amino acid sequences 
is low. When the extent of sequence divergence is high, 
however, the ML and distance methods give more accu- 
rate results than the MP method, particularly when the 
phylogenetic tree includes long branches. The accuracy 
of inferred ancestral amino acids does not change very 
much when a few present-day sequences are added or 
eliminated. When an incorrect model of amino acid sub- 
stitution is used for the ML and distance methods, the 
accuracy decreases, but it is still higher than that for the 
MP method. When the tree topology used is partially 
incorrect, the accuracy in the correct part of the tree is 
virtually unaffected. The posterior probability of inferred 
ancestral amino acids computed by the ML and distance 
methods is an unbiased estimate of the true probability 
when a correct substitution model is used but may be- 
come an overestimate when a simpler model is used. 
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Introduction 

To understand critical amino acid substitutions in the 
evolution of protein function, it is important to know the 
amino acid sequences of the proteins of ancestral organ- 
isms (e.g., Jermann et al. 1995; Chandrasekharan et al. 
1996). Several statistical methods have been developed 
to infer the ancestral amino acid sequences from the 
sequences of present-day species when the phylogenetic 
relationship is known (Eck and Dayhoff 1966; Libertini 
and Di Donato 1994; Schluter 1995; Yang et al. 1995; 
Koshi and Goldstein 1996). Among these methods, the 
maximum-parsimony (MP) method has been used most 
frequently. In the MP method, each amino acid site is 
considered separately, and the amino acid at each interior 
node of the tree is determined so as to make the total 
number of amino acid changes at the site minimal (Eck 
and Dayhoff 1966; Fitch 1971; Hartigan 1973; Maddison 
and Maddison 1992). Because no information about the 
branch lengths and the pattern of amino acid substitution 
is used in the MP method, the inferred ancestral se- 
quences are expected to be somewhat unreliable (e.g., 
Collins et al. 1994). To infer the ancestral sequences 
more accurately, Yang et al. (1995) introduced a maxi- 
mum-likelihood (ML) method. In this method, the 
branch lengths of the phylogenetic tree are estimated by 
the maximum-likelihood method, and the posterior prob- 
ability of each assignment of amino acids at ancestral 
nodes is computed at each site by using the Bayesian 
approach. The amino acid assignment that has the high- 
est posterior probability is chosen as the best set of an- 
cestral amino acids. 

Analyzing six mammalian lysozyme c sequences, 



S140  

1 9 c 2 11 2 

0 1 3 c 3 12 4 

c 4 13 
c 5 5 

c 6 0/~2l 4a+~ 6 

a [ - ~  0 7 t -~~ 7 
e 8 6a+b 8 

Model Tree 1 Model Tree 2 

Fig. 1. Model trees used in computer simulation. The branch lengths 
are measured in terms of the expected number of amino acid substitu- 
tions per site. The actual values of a, b, c, d, and e used are given in 
Table 1. 

Y a n g  e t  al. ( 1 9 9 5 )  s u g g e s t e d  t ha t  t he  M L  m e t h o d  g i v e s  

m o r e  a c c u r a t e  r e s u l t s  t h a n  t h e  M P  m e t h o d ,  b u t  t h e i r  c o m -  

p u t a t i o n  o f  t h e  a c c u r a c y  d e p e n d e d  o n  a n u m b e r  o f  a s -  

s u m p t i o n s  a b o u t  t h e  a m i n o  a c i d  f r e q u e n c i e s  a n d  s u b s t i -  

t u t i o n  pa t t e rn .  I n  p r a c t i c e ,  t h e i r  a s s u m p t i o n s  m a y  n o t  

h o l d ,  so  t he  a c c u r a c y  o f  t h e  a n c e s t r a l  a m i n o  a c i d s  in -  

f e r r e d  b y  t he  M L  a n d  M P  m e t h o d s  r e m a i n s  u n c l e a r .  W e  

h a v e  t h e r e f o r e  s t u d i e d  t h e  a c c u r a c y  o f  i n f e r r e d  a n c e s t r a l  

a m i n o  a c i d s  b y  u s i n g  c o m p u t e r  s i m u l a t i o n .  In  t h e  p r o c e s s  

o f  t h i s  s t u d y ,  h o w e v e r ,  w e  c a m e  to r e a l i z e  tha t  t h e  b r a n c h  

l e n g t h  e s t i m a t i o n  in  t he  M L  m e t h o d  is  t i m e - c o n s u m i n g  

a n d  t ha t  t h i s  e s t i m a t i o n  c a n  b e  d o n e  m u c h  m o r e  e f f i -  

c i e n t l y  b y  u s i n g  a l e a s t  s q u a r e s  m e t h o d .  W e  t h e r e f o r e  

d e v e l o p e d  a d i s t a n c e  m e t h o d  o f  i n f e r r i n g  a n c e s t r a l  s e -  

q u e n c e s ,  in  w h i c h  t he  b r a n c h  l e n g t h s  a re  e s t i m a t e d  b y  t h e  

l e a s t  s q u a r e s  m e t h o d  a n d  t h e  a n c e s t r a l  a m i n o  a c i d s  a r e  

i n f e r r e d  b y  t h e  B a y e s i a n  a p p r o a c h .  I n  t h i s  p a p e r  w e  f i r s t  

p r e s e n t  o u r  r e s u l t s  o f  c o m p u t e r  s i m u l a t i o n  c o n c e r n i n g  

t h e  M L  a n d  M P  m e t h o d s  a n d  t h e n  d i s c u s s  t h e  n e w  d i s -  

t a n c e  m e t h o d  o f  i n f e r e n c e  o f  a n c e s t r a l  a m i n o  a c i d s  a n d  

i ts  e f f i c i e n c y .  

Computer Simulation 

In this computer simulation, we considered two different model trees, 
each with eight protein sequences (Fig. 1). Jones et al.'s (1992) em- 
pirical model (JTT model) of amino acid substitution was used to 
simulate the evolutionary change of amino acid sequences. The method 
of our computer simulation was as follows. First, a random sequence of 
100 amino acids at node 0 in Fig. 1 was generated with the expected 
frequency of each amino acid equal to its equilibrium frequency speci- 
fied by the JTT model. This sequence then evolved according to the 
predetermined branching pattern of the model tree. Random amino acid 
substitutions (mutations) were introduced following the JTT model, 
with the expected number of substitutions per amino acid site for a 
branch being equal to the branch length assigned. Thus, the ancestral 
protein sequences at all interior nodes and the "present-day" se- 
quences at all exterior nodes were generated and recorded. 

Once the eight present-day sequences were generated, we used the 
MP and ML methods to infer the ancestral sequences at all interior 
nodes, assuming that the unrooted topology was known. We used our 
own computer program for the MP method but Yang (1995)'s program 
CODEML of the PAML package for the ML method. At each amino 

acid site, the ancestral amino acids were inferred for all interior nodes 
simultaneously, and they were compared with the ancestral amino acids 
recorded in the simulation. In the MP method, several evolutionary 
pathways (sets of inferred amino acids for all interior nodes) that were 
equally parsimonious were often obtained. When there were n equally 
parsimonious pathways, the accuracy of pathway reconstruction (infer- 
ence) was defined as 1/n if the correct pathway was included. The 
accuracy of the inferred amino acid at each interior node was also 
computed. This accuracy was defined as re~n, where m is the number of 
parsimonious pathways in which the correct amino acid was obtained 
at the particular interior node examined. In the ML method, only the 
pathway that had the highest posterior probability (called the best path- 
way) was considered. The accuracy of the ML pathway reconstruction 
was defined to be 1 if the best pathway was correct; otherwise it was 
0. The accuracy of inferred amino acid for a given interior node was 
defined as 1 if the amino acid in the best pathway was correct for the 
node; otherwise it was 0. For both the MP and ML methods, 200 
replicate simulations were conducted, unless otherwise mentioned. 

The average accuracy for the entire sequence can be computed by 
considering all sites, all variable sites, or all parsimony informative 
sites (Kumar et al. 1993). However, since the ancestral amino acids at 
nonparsimony informative sites were almost always correctly inferred 
by both methods, we present only the average accuracies for parsimony 
informative sites in this paper. These accuracies are obviously lower 
than those for all variable sites or all sites. 

Tree Topologies and Levels of Sequence Divergence. Table 1 shows 
the average accuracies of inferred amino acids by the MP and ML 
methods for the two different model trees (Fig. 1). In both model trees, 
we considered three levels of sequence divergence, and the expected 
number of substitutions per site between two most distantly related 
sequences was 0.2, 0.6, and 1.2 for the low, intermediate, and high 
levels of sequence divergence, respectively. It is clear that for both 
model trees the average accuracy of amino acid reconstruction is lower 
for an interior node located close to the tree root than for an interior 
node close to the exterior nodes, as expected. When the level of se- 
quence divergence is low, however, even the nodes closest to the root 
have an accuracy of 90% or higher. Therefore, the amino acid recon- 
struction for a node is quite accurate. However, when the level of 
sequence divergence is high, the accuracy is rather low, particularly 
when the MP method is used. 

The accuracy of pathway reconstruction is obviously lower than 
that of amino acid reconstruction for individual nodes because in this 
case the amino acids for all interior nodes must be correct. This is 
particularly so when the level of"~equence divergence is high. When 
this level is low, however, the accuracy is only slightly lower than that 
for individual nodes. 

The accuracy of inferred ancestral amino acids is always higher in 
the ML method than in the MP method. However, the difference in 
accuracy between the two methods is smaller in model tree 1 than in 
tree 2. In the former tree, the difference is nearly the same for different 
levels of sequence divergence, whereas in the latter the difference is 
substantial for the high level of sequence divergence. This difference is 
probably caused by the fact that in the MP method no consideration is 
given to branch lengths, and thus the accuracy of inferring amino acid 
change from node to node is low. Note that some branches in tree 2 are 
much longer than the branches in tree 1. 

Effects of Branch Lengths. We have seen that the accuracy of 
inferred ancestral amino acids is affected by the level of sequence 
divergence. However, the pattern and extent of the effect of branch 
lengths are unclear. We therefore studied the accuracy at interior node 
12 of model tree 1 by changing branch length e (from interior node 12 
to exterior node 8; see Fig. 1). In this study, all other branch lengths 
were the same as those in the case of high sequence divergence. The 
results obtained are shown in Fig. 2. When branch length e is 0, exterior 
node 8 converges to interior node 12, and thus the accuracy at node 12 
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Table  1. Average accuracies of inferred ancestral amino acids by the maximum-parsimony,  maximum-likel ihood,  and distance methods for 
different model  trees and different levels of sequence divergence a 

Divergence Low 

MP ML D 

Tree 1 Tree 2 

I n t e ~ e d i a t e  High Low Intermediate High 

MP ML D MP ML D MP ML D MP ML D MP ML 

Node 9 99 99 99 96 97 97 84 87 87 98 99 99 95 97 97 87 91 91 

10 99 99 99 96 97 97 84 87 87 97 99 99 92 96 96 85 90 90 

11 99 99 99 96 97 97 84 87 87 97 99 99 90 95 95 81 88 88 
12 99 99 99 96 97 97 84 87 86 96 98 98 88 94 93 78 86 85 

13 97 98 98 90 92 92 77 81 81 94 98 96 86 92 92 73 83 83 

14 97 98 98 90 92 92 77 82 81 93 97 95 84 89 89 68 79 78 
Pathway 93 94 94 77 82 81 47 55 55 83 92 90 65 79 77 43 64 63 

a The percent accuracies for parsimony informative sites are given. MP: maximum-pars imony method. ML: maximum-likel ihood method. D: 

distance method. In model tree 1, we used branch lengths a = 0.02 (amino acid substitutions per site), b = 0.03, c = d = e = 0.05; a = 0.1, 

b = 0.1, c = d = e = 0.1; and a = 0.1, b = 0.2, c = d = e = 0.3 for the low, intermediate, and high levels of  sequence divergence, respectively. 
In model tree 2, b = 4a, and a = 0.01, 0.03, and 0.06 were used for the low, intermediate, and high levels of sequence divergence, respectively 

for the ML method becomes 1.00. In the case of the MP method, 

however, the accuracy is 0.94. The reason for this is that in the MP 

method amino acid substitutions are assumed to occur for each branch 

even if  the branch length is 0. This is clearly incorrect and therefore 

lowers the accuracy. In both methods, the accuracy decreases as the 

branch length increases, and when e is 0.9, it becomes 0.78 and 0.73 for 
the ML and MP methods, respectively. 

Effects of the Number of Sequences Used. When we reconstruct a 
protein sequence of the common ancestor for a group of organisms, will  

the accuracy depend on the number of sequences used? One would 

expect that the accuracy will  increase with the number of sequences 
used, because more information is available. We studied this problem 

by el iminating or adding one or two present-day sequences for model 

tree 1. 
Let us first consider the case of el imination of one sequence from 

model tree 1. All  branch lengths except e were assumed to be the same 

as those in the case of high sequence divergence. For various values of 
branch length e, we compared the accuracies of inferred amino acids 

for the case where sequence 8 was included or excluded in the recon- 

struction (see Fig. 3A). Figure 4A shows that the accuracy for interior 

node 14 decreases when sequence 8 is excluded but the decrease is 

small when e is large. This is reasonable because as e increases se- 
quence 8 becomes less informative for the inference of ancestral amino 

acids at interior node 14. However,  the effect of exclusion of sequence 

8 is generally small. Even when e is as small  as 0.1, which is one-third 
of branch length d (from interior node 12 to exterior node 7), the 

decrease of the accuracy for interior node 14 is only 0.07 for both the 

MP (from 0.78 to 0.71) and ML (from 0.84 to 0.77) methods. The effect 
of el imination of sequence 8 on the accuracies for other interior nodes 

(e.g., see the result  for interior node 11 in Fig. 4A) is even smaller, 

since sequence 8 is distantly related to them. 
We now consider the case of addition of two sequences to model  

tree 1 (Fig. 3B). The two sequences added are denoted by 7' and 8'. 
The branch lengths from interior node 12 to exterior nodes 7, 7 ' ,  8, and 
8' were all assumed to be h, whereas all other branch lengths were the 
same as those in the case of high divergence. We compared the accu- 

racies of ancestral sequences for the case where sequences 7' and 8' are 
included or excluded in the reconstruction. Figure 4B shows that the 

accuracy for interior node 12 increases when sequences 7'  and 8' are 

included, and the amount of increase is greater when h is large than 
when h is small. The reason for this difference is that when h is small, 

sequences 7, 7 ' ,  8, and 8' are the same for most  amino acid sites, and 

the two additional sequences do not provide extra information. When h 
is large, however, the two sequences give useful information for the 
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acids and branch length e. Model  tree 1 is used with branch lengths 
a = 0.1, b = 0.2, a n d c  = d = 0.3. 

inference of ancestral amino acids. Nevertheless, the effect of addition 

of two sequences is generally small. Even when h is as large as 1.0, the 
accuracy of inferred amino acids for node 12 increases only by 0.09 

(from 0.55 to 0.64 for the MP method; Fig. 4B). The effect on the 

accuracies for other interior nodes is even smaller (e.g., see the result 
for node 11 in Fig. 4B). Therefore, at least in this situation, use of two 

additional sequences does not increase the accuracy very much. We did 
not study this effect for the ML method, because it required an enor- 

mous amount of computer time. However,  we believe that the effect of 
additional two sequences will  be similar for both the ML and MP 
methods, as in the case of Fig. 4A. 

These results suggest that addition or elimination of one or a few 
present-day sequences does not change the accuracy of inferred ances- 
tral sequences very much. 

Effects of Substitution Models. To reconstruct ancestral sequences 
by the ML method, a model of amino acid substitution is required, 
whereas no such model is needed for the MP method. Since we usually 

do not know the real pattern of amino acid substitution for a given 

protein, we will  have to use an available model even if  it may not be 

an appropriate one. Therefore, it is important to know the accuracy of 
the ML method when an incorrect model is used. To study this prob- 

lem, we used the J T r  model  to generate the present-day sequences and 
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Fig. 3. Model trees used for studying the effects of the number of 
present-day sequences on the accuracies of inferred ancestral amino 
acids. A A model tree to show the elimination of sequence 8. The 
branch lengths used are a = 0.1, b = 0.2, and c = d = 0.3. B A model 
tree to show the addition of two sequences 7' and 8'. The branch 
lengths used are a = 0.1, b = 0.2, and c = 0.3. The lengths from 
interior node 12 to exterior nodes 7, 7', 8, and 8' are all h. 

applied the JTT, Dayhoff (Dayhoff et al. 1978), or Poisson (equal 
probability of any amino acid change) model to infer the ancestral 
sequences. The average accuracies of inferred evolutionary pathways 
are given in Table 2. The ML reconstruction with the JTT model is only 
slightly more accurate than that with the Dayhoff model. The substi- 
tution (transition) matrix for the JTT model is based on a large data set 
of amino acid substitutions and is somewhat different from that for the 
Dayhoff model. Yet, the accuracy of inferred amino acids is nearly the 
same for the two models. This suggests that minor differences in sub- 
stitution model do not affect the results seriously. The very simple 
Poisson model, which is clearly unrealistic, gives accuracies which are 
somewhat lower than those for the TIT and Dayhoff models. However, 
even this model gives better results than the MP method particularly in 
model tree 2. From these results, we may conclude that the effect of 
differences in substitution model in the ML method is relatively small 
but that the correct substitution model gives the best results as ex- 
pected. 

Effects of Wrong Topologies. To reconstruct the ancestral se- 
quences from present-day sequences, we have to know the phyloge- 
netic relationship (tree topology) of the sequences. However, the tree 
topology is not always well established. It is therefore interesting to 
know whether we can still obtain reliable ancestral sequences when a 
wrong topology is used. Of course, it is meaningless to reconstruct the 
ancestral sequence of an interior node that does not exist in the real 
phylogeny. We therefore examined the accuracy of inferred amino 
acids only for the correct part of the tree when the branching pattern of 
other parts of the tree is incorrect. For this purpose, we generated the 
present-day sequences according to model tree 2 (Fig. 1) with the high 
level of sequence divergence, interchanged sequences 2 and 3, and then 
reconstructed ancestral amino acids by using this partially incorrect 
topology. We assessed the accuracies for all the nodes other than node 
9. For both the ML and MP methods, the accuracy for interior node 10 
decreased a little (by less than 0.05), but the accuracies for other inte- 
rior nodes were hardly affected. We obtained similar results when we 
interchanged sequences 5 and 6 in model tree 2 or sequences 2 and 3 
in model tree 1 (data not shown). These results show that even when the 
topology is not entirely correct, the inferred amino acids are still reli- 
able for the correct part of the tree. 

Distribution of the Number of Equally Parsimonious Pathways. In 
the MP method, it is difficult to identify the correct pathway when there 
are many equally parsimonious pathways. To have some idea of the 
number of equally parsimonious pathways the MP method generates, 
we studied the distribution of this number. For a set of amino acid 

sequences, let N(i) be the number of sites that have i equally parsimo- 
nious pathways. The proportion of sites that have i pathways is then 
given by 

M 

f(i) = N ( i ) / Z  N(i) 
i = l  

(1) 

where M is the largest value of i observed. Chandrasekharan et al. 
(1996) used the proportion of sites having a single MP pathway If(l)] 
as a measure of the reliability of MP reconstruction. However, the MP 
reconstruction with a single pathway is not necessarily correct. Let n(i) 
be the number of sites that have i equally parsimonious pathways when 
the correct pathway is included. The probability of including the correct 
pathway at a site that has i pathways is then given by 

g(i) = n(i)/N(i) (2) 

Note that N(i), n(i), f(i), and g(i) can be defined for all sites, variable 
sites, or parsimony informative sites. 

Figure 5A-C shows the distributions off(i) and g(i) for parsimony 
informative sites when model tree 1 is used with the low, intermediate, 
and high levels of sequence divergence. When the level of sequence 
divergence is low, f(1) is over 90% and g(i) is nearly 1 irrespective of 
i. When the divergence level is high, f(1) becomes about 50%, and in 
this case g(i) is close to 75% irrespective of i. These results indicate that 
when sequence divergence is low the correct pathway is almost always 
included in the parsimonious pathways identified, but for a high diver- 
gence level the correct pathway may not be included whether the num- 
ber of pathways is small or large. The same results were obtained for 
model tree 2 as well. 

Distribution of the Posterior Probability of the Best ML Pathway. 
In the ML method, the best pathway is determined by computing the 
posterior probability (p). As the extent of sequence divergence in- 
creases, the probability is expected to decrease, and the inferred an- 
cestral amino acids become unreliable. This can be seen by examining 
the distribution ofp  values. For a set of amino acid sequences, let K(x) 
be the number of sites whose p is within the probability interval (x, x 
+ 0.05), where x = 0, 0.05, 0.10 . . . . .  0.95. The proportion of sites 
whose p is within the interval (x, x + 0.05) is therefore given by 

0 . 9 5  

u(x) = K ( x ) / Z  K(x) (3) 
a---O 

It is also important to know whether thep value obtained by the ML 
method is equal to the true probability of the best pathway. Let k(x) be 
the number of sites whose p is within the interval (x, x + 0.05] when the 
best pathway is correct. Then, the probability that the best pathway is 
correct when the p value is within the interval (x, x + 0.05) is given by 

v(x) = k(x)/K(x) (4) 

If the posterior probability p computed in the ML method is an unbi- 
ased estimator of the true probability of the best pathway, v(x) should 
be approximately equal to x + 0.025. Note that K(x), k(x), u(x), and v(x) 
can again be defined for all sites, variable sites, or parsimony infor- 
mative sites. 

Figure 6A-C shows the distributions of u(x) and v(x) for parsimony 
informative sites when model tree 1 is used with the low, intermediate, 
and high levels of sequence divergence. For the case of low sequence 
divergence, u(0.95) is 81%, but it decreases as the divergence level 
increases and becomes 3% for the case of high divergence. This indi- 
cates that when the divergence level is high most of the best pathways 
chosen are not very reliable. However, v(x) is still very close to x + 
0.025. Therefore, the posterior probability of the best pathway is a good 
estimator of the true accuracy. Note that v(x) is subject to large sam- 
pling errors when u(x) is very small, as is clear from Fig. 6A. 
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Fig. 4. Effects of elimination or addition of 
present-day sequences on the accuracy of inferred 
amino acids. A Decrease of the accuracy due to 
elimination of sequence 8. The model tree used is 
shown in Fig. 3A. B Increase of the accuracy due 
to the addition of sequences 7' and 8'. The model 

tree used is shown in Fig. 3B. 

Table 2. Average accuracies of pathway (set of ancestral amino acids) reconstructions when various substitution models are used" 

Tree 1 Tree 2 

Sequence divergence Low Intermediate High Low Intermediate High 

MP 93 77 47 83 65 43 
ML-P 93 77 48 90 75 60 
ML-D 94 82 54 91 77 64 
ML-JTI" 94 82 55 92 79 64 

a The percentage accuracies for parsimony informative sites are given. Present-day sequences were generated by the JTT model, and the ancestral 
amino acids were inferred by the MP method or the ML method with the Poisson (ML-P), Dayhoff (ML-D), or J'Fr (ML-JqT) model 
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Fig. 5. Distribution of the proportion of sites 
that have i equally parsimonious pathways 
(f[i]; shown by bars) and the distribution of 
the probability of including the correct 
pathway when there are i equally parsimonious 
pathways (g[i]; shown by dots). The 
distributions are for the parsimony informative 
sites when model tree 1 is used with the (A) 
low, (B) intermediate, and (C) high levels of 
sequence divergence. In each case, 1,000 
replicate simulations were conducted. 

However, when a wrong model of amino acid substitution is used 
in the ML method, the posterior probability p may be a biased estima- 
tor. We investigated this problem by using a model that is simpler or 
more complex than the real substitution model in ML reconstruction. 
We first used the Poisson model in ML reconstruction when the pres- 
ent-day sequences were generated according to the JTT model. The 
distributions of u(x) and v(x) for the case of high divergence level are 
presented in Fig. 6D. We can see that v(x) is smaller than x + 0.025, 
which means p gives an overestimate under a simpler model. And the 
extent of overestimation is high when p is around 0.6~.8. We then 
simulated sequence evolution according to the Poisson model but in- 
ferred ancestral amino acids under the JTT model. The distributions of 
u(x) and v(x) for this case indicate that p gives an underestimate when 
it is around 0.7 (Fig. 6E). Because it is usually difficult to know the real 
pattern of amino acid substitution for a given protein, the posterior 
probability computed may give a biased estimate. Therefore, we must 
be careful in the interpretation of p values in ML reconstruction. 

Distance Method 

We have seen that the ML method generally gives more reliable re- 
constructions of ancestral amino acids than the MP method and that this 

is primarily due to the fact that in the ML method the branch lengths are 
taken into account. Unfortunately, estimation of branch lengths by the 
ML method is time-consuming, and in our experience it often gives 
zero branch lengths. However, branch lengths need not be estimated by 
the ML method; they can be estimated by various statistical methods 
including the least squares (LS) method. We therefore propose that 
branch lengths be estimated by the LS method but that the ancestral 
amino acids be inferred by the same posterior probability method as 
used by Yang et al. (1995). 

To explain this method (distance method), let us consider an un- 
rooted tree of five sequences (Fig. 7). In the inference of ancestral 
sequences we must assume that the topology of the tree is known, but 
the branch lengths are to be estimated. One problem with the standard 
LS method of branch length estimation (e.g., Rzhetsky and Nei 1993) 
is that some branch length estimates may become negative. We there- 
fore suggest that the ordinary LS method with the constraint of non- 
negative branches be used (e.g., Lawson and Hanson 1974; Felsenstein 
1995). 

Once all the branch lengths are estimated, we can compute the 
probability of observing the data for each amino acid site in the fol- 
lowing way. We denote the amino acids of the five exterior nodes of the 
tree (Fig. 7) by the vector x = (xl, x2, x3, x4, xs) and the amino acids 
at the three interior nodes by the vector y = (Yl, Y2, Y3)- If we use a 
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Fig. 6. Distribution of the proportion of sites whose p values are 
within the probability interval (x, x + 0.05] (u[x]; shown by bars) and 
the distribution of the probability that the best pathway at a site is 
correct when the p value is within (x, x + 0.05) (v[x]; shown by dots). 
The diagonal line shows the prediction of v(x) ( =x + 0.025) when p is 
an unbiased estimator. A-C Same distributions when the JTT model is 
used for generating the present-day sequences and inferring ancestral 
amino acids. Model tree 1 was used with the (A) low, (B) intermediate, 
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and (C) high levels of sequence divergence. D Same distributions when 
the JTT model is used to generate the present-day sequences but the 
Poisson model is used to infer ancestral amino acids and the level of 
sequence divergence is high. E Same distributions when the Poisson 
model is used to generate the present-day sequences, whereas the JTT 

model is used to infer ancestral amino acids and the level of sequence 
divergence is high. All the plots are for parsimony informative sites. In 

each case, 500 replicate simulations were conducted. 

xa 

3 bYs  
Fig. 7. A model tree for explaining the distance method, x]-xs: pres- 
ent-day amino acids. Yl-Y3: ancestral amino acids, bl-b7: branch 

lengths. 

time-reversible model of amino acid substitution, we can start the evo- 
lutionary change of amino acids at any node, but here we use Yl as the 
starting amino acid. The probability of observing data x is given by 

f(x;b) =Zf(y) f (x ly ;b)  

= ~ Z Z [~y~Pyl x, (bl)Py,x2 (b2)eyty2 (b6)Py2x3 (b3) 
Yl Y2 Y3 

Py2y3(b7)Py3x,(b4)Py3xs(b5)] (5) 

where b = (bl, b2, b3, ha, bs, b6, bT) is the vector of estimated branch 
lengths of the tree and Po(b,) is the probability of change from amino 
acid i to amino acid j when the branch length b k is given. Note that 
Pij(bk) can be computed by the method described by Dayhoff et al. 
(1978). In equation (5), f(y) is the prior probability of y, which is given 

by 

f(y) = ary,Py,y: (b6)Py2y 3 (b7) (6) 

where 7ry~ is assumed to be equal to the relative frequency of amino 

acid Yl as is usually done. The other element of equation (5) is f(xly;b), 
which is the conditional probability of observing data x, given the 

ancestral amino acids y, and is given by 

f(xly;b)=Py,x,(b,)Py,x2(b~ePy2x~(b3)Py3x,(b4)Py3x,(bs) (7) 

Although equation (5) has a form similar to the likelihood function of 

Felsenstein (1981) or Yang et al. (1995), it is not used to estimate any 
parameter. It is just probability of observing data x, when the substi- 
tution model and branch lengths are known. Here, we are particularly 
interested in estimating y and use the Bayesian approach to compute 
the following posterior probability for each set of ancestral amino acids 

Y], Y2, and Y3 (evolutionary pathway). 

f(y)f(xly;b) 
f(ylx;b) = f(x;b) (8) 

There are 20 different kinds of amino acids so that theoretically Yl, 
Y2, and Y3 can each take 20 different character states. In practice, the 
amino acids that are not observed at the amino acid site under consid- 
eration are unlikely to have ever appeared at the site. In fact, if we 
consider such amino acids,f(ylx;b) is usually vanishingly small. There- 
fore, we exclude them from consideration to speed up the computation. 
This procedure is adopted in Yang et al.'s method (1995) as well. 

At any rate, if we compute f(ylx;b) for all combinations of amino 
acids y~, Y2, and Y3, we will know the set of amino acids that have the 



highest posterior probability. We can then infer that these amino acids 
are the ancestral amino acids. If this is done for all sites of the amino 
acid sequences under consideration, we can determine the ancestral 
sequence at each interior node. 

In the above formulation we considered a tree for five sequences, 
but the same method can be used for any number of sequences. 

We conducted a computer simulation to examine the accuracy of 
ancestral amino acids inferred by this distance method. The simulation 
of sequence evolution was the same as that described before. After the 
present-day sequences were generated, we computed pairwise distances 
between the sequences by using the amino acid gamma distance with 
the shape parameter of c~ = 2.4 (Ota and Nei 1994) and estimated 
branch lengths by using the LS method with the constraint of nonneg- 
ative branches. In practice, we used Felsenstein's (1995) FITCH algo- 
rithm to estimate the branch lengths. Once the branch length estimates 
were obtained, we inferred the ancestral amino acids and assessed the 
accuracies of the amino acids obtained. Here we used the gamma 
distance with a = 2.4, because it is very close to the true distance 
(equivalent to PAMs of Dayhoff et al. 1978) for sequence divergence 
under the JTT model (J. Zhang, unpublished). Our simulation results 
showed that the accuracy of inferred ancestral sequences by this new 
distance method is virtually the same as that obtained by the ML 
method for every case examined (Table 1). We also compared the 
computational time required for the inference of ancestral amino acid 
sequences by the ML and distance methods. This computational time 
depends on the number, length, and divergence level of the sequences 
used. For example, in the case of the computer simulation for model 
tree 2 (eight sequences) with the intermediate level of sequence diver- 
gence, the distance method was about 10 times faster than the ML 
method. In an analysis of 20 sequences of abalone sperm lysin (Lee et 
al. 1995), we found that the distance method was about 200 times faster 
than the ML method. 

It is obvious that the distance method can also be used for inferring 
ancestral nucleotides when DNA sequence data are given. In this case 
we can use any substitution model that is time-reversible, as long as 
evolutionary distances are estimable (e.g., Yang 1994; Rzhetsky and 
Nei 1995). 

Discussion 

Substitution Model 

Although information on branch lengths is important for 

improving the accuracy of  inferred amino acids, use of 

an appropriate substitution model also contributes to the 

improvement. Cao et al. (1994) and Adachi and Ha- 

segawa (1995) have shown that the JTT model better fits 

actual data when it is modified so as to make the equi- 

librium amino acid frequencies equal to the observed 

frequencies. This modified model is called the JTT-f 

model. Collins et al. (1994) also suggested that when the 

observed amino acid frequencies of  the present-day se- 

quences are different from the equilibrium values speci- 

fied by the model used, the amino acid frequencies of 

inferred ancestral sequences may be different from those 

of the present-day sequences. We therefore recommend 

that in general the JTT-f  model be used in actual data 

analysis. This model is incorporated into Yang's  (1995) 

PAML program package and our program of the distance 

method. 
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Other Methods of Ancestral Sequence Reconstruction 

Besides the MP, ML, and distance methods discussed in 

this paper, there are a few other methods available for 

reconstructing ancestral amino acid or nucleotide se- 

quences, though they are not used very often. Libertini 

and Di Donato (1994) introduced the inferential method, 

which is essentially the same as the MP method. In this 

method, however, amino acid sequences are reverse- 

translated into nucleotide sequences to carry out the re- 

construction. This is expected to decrease the reliability 

of  inferred amino acids, because the accuracy of inferred 

ancestral nucleotides is expected to be relatively low and 

the reverse-translation introduces ambiguity due to re- 

dundancy of the genetic code. Libertini and Di Donato 

(1994)'s computer simulation also showed that the in- 

ferred ancestral amino acid sequences by their method 

are not as reliable as the inferred nucleotide sequences. 

Assuming a probabilistic model of  character state 

change, Maddison (1995) also presented a method of  

computing the accuracy of  inferred ancestral states by 

the MP method. However,  his method does not take into 

account  branch lengths, so the applicabil i ty of  his 

method may be limited. 

Schluter (1995) developed a likelihood method to re- 

construct ancestral sequences. This method is different 

from Yang et al. 's (1995). In Schluter's method, the sub- 

stitution model is assumed to be unknown, and the pa- 

rameters in the model are estimated by maximizing the 

likelihood function of observing the present-day amino 

acids at a given site. The ancestral states that give the 

highest likelihood, conditional on the estimated substi- 

tution parameters, are regarded to be the best reconstruc- 

tions. Since in this method the substitution parameters 

are estimated by using information at a single site, sto- 

chastic errors are expected to be very large, and this 

would make the inference of  ancestral states unreliable. 

However,  if a site is subject to positive selection and the 

substitution pattern is very different from a general 

model such as the JTT model, Schluter 's method may 

give better results since it is free from the assumption 

about the substitution model. At present, the reliability of 

this method remains unclear. 

After completion of  our simulation work, Koshi and 

Goldstein (1996) published a Bayesian method for an- 

cestral sequence reconstruction, which is similar to Yang 

et al. 's (1995) method. Generally speaking, Koshi and 

Goldstein's method is expected to perform well, since it 

also takes into account both the branch lengths and the 

substitution pattern. However,  there are some differences 

between this method and Yang et al. 's method. The ma- 

jor  one is that in Koshi and Goldstein's method, the tree 

topology and branch lengths are estimated by the neigh- 

bor-joining method (Saitou and Nei 1987), whereas in 

Yang et al. 's method, the topology is predetermined and 

branch lengths are estimated by the ML method. Another 

difference is that in Koshi and Goldstein's method, re- 
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cons t ruc t i on  of  a m i n o  acids  is done  node  by  node  r a the r  

t han  for  all in ter ior  nodes  s imu l t aneous ly  as in the  case  

o f  the  ML,  MP,  and  d i s t ance  me thods  we cons ide red .  

A l t h o u g h  the  s imu l t aneous  r econs t ruc t i on  g ives  the  s a m e  

resu l t s  as those  ob ta ined  n o d e  by  node  in m o s t  cases ,  

t hey  are not  a lways  the  s a m e  (Yang  et al. 1995). K o s h i  

a n d  G o l d s t e i n  (1996)  a lso  c o n d u c t e d  some  c o m p u t e r  

s imula t ions  to inves t iga te  the  re l iabi l i ty  o f  thei r  m e t h o d .  

The  resul ts  ob ta ined  are gene ra l ly  cons i s t en t  wi th  our  

resul ts .  However ,  they d id  no t  c o m p a r e  the accuracy  o f  

the i r  m e t h o d  wi th  the M P  me thod .  The  mode l  tree and  

the  subs t i tu t ion  mode l  u sed  in the i r  s imula t ion  were  dif-  

f e r en t  f rom ours. In m o s t  o f  the i r  s imula t ions ,  they  as- 

s u m e d  that  bo th  the tree t o p o l o g y  and  b r a n c h  l eng ths  are  

k n o w n .  In our  s imula t ion  for  the  M L  and  d is tance  m e t h -  

ods,  the  topo logy  was  a s s u m e d  to be  known ,  bu t  the  

b r a n c h  lengths  were  es t imated .  

Reconstructions at Sites Under Positive Selection 

W e  are usual ly  in te res ted  in  k n o w i n g  ances t ra l  a m i n o  

ac ids  at si tes where  the a m i n o  ac id  changes  have  a f fec ted  

the  p ro te in  funct ion .  It  is pos s ib l e  tha t  at  these  si tes the  

pa t t e rn  of  a m i n o  acid subs t i t u t ion  is d i f fe rent  f r o m  the  

J T T  or  D a y h o f f  mode l ,  and  th i s  d i f fe rence  m a y  in t roduce  

some  bias  in our  e s t ima tes  o f  the  pos te r ior  p robab i l i t i e s  

(p  va lues )  of  the in fe r red  a m i n o  acids.  Howeve r ,  ou r  

c o m p u t e r  s imula t ion  sugges t s  tha t  the  accuracy  o f  in-  

f e r red  amino  acids wou ld  no t  b e  affected very  much ,  and  

e v e n  w h e n  an incor rec t  subs t i tu t ion  m o d e l  is used  the  

M L  and  d is tance  m e t h o d s  g ive  more  re l iab le  resul ts  t h a n  

the  M P  method .  Neve r the l e s s ,  it is adv i sab le  to use  the  

M P  m e t h o d  in add i t ion  to the  M L  or d i s tance  me thod .  I f  

the  M P  method ,  w h i c h  does  no t  a s sume  any  subs t i tu t ion  

mode l ,  g ives  the same in fe r red  amino  acids as those  ob-  

t a ined  by  the M L  or  d i s t ance  me thod ,  the resul t s  w o u l d  

be  m o r e  reassur ing.  

Program availability: A c o m p u t e r  p r o g r a m  for  i n fe r r ing  

ances t ra l  amino  acid s e q u e n c e s  by  us ing  the d i s t ance  

m e t h o d  is ava i lab le  upon  reques t .  
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