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Abstract: In this note we construct large ensembles of supersymmetry breaking solutions
arising in the context of flux compactifications of type IIB string theory. This class of so-
lutions was previously proposed in [1] for which we provide the first explicit examples in
Calabi-Yau orientifold compactifications with discrete fluxes below their respective tadpole
constraint. As a proof of concept, we study the degree 18 hypersurface in weighted projec-
tive space CP1,1,1,6,9. Furthermore, we look at 10 additional orientifolds with h1,2 = 2, 3.
We find several flux vacua with hierarchical suppression of the vacuum energy with respect
to the gravitino mass. These solutions provide a crucial stepping stone for the construction
of explicit de Sitter vacua in string theory. Lastly, we also report the difference in the
distribution of W0 between supersymmetric and non-supersymmetric minima.
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1 Introduction

Breaking supersymmetry in a controlled way in string theory is a crucial step towards
understanding its connection to our observable Universe. In this note, we identify new
supersymmetry breaking solutions within the complex structure sector of type IIB string
theory. Their contribution to the vacuum energy is positive, thereby potentially realising
the uplifting mechanism proposed in [1]. At a very basic level, these solutions do not
require the presence of additional sources like anti D3-branes to break supersymmetry.

For our analysis, we utilise recent numerical advances reported in [2] to efficiently
search for such minima in the large string dataset of Calabi-Yau compactifications. To
access this regime, we extend the modular numerical approach of [2] to tackle a slightly
modified optimisation procedure by searching directly for extrema of the scalar potential
rather than for vanishing covariant derivatives DIW = 0. As anticipated, this novel method
is able to identify both supersymmetric1 and non-supersymmetric minima.

Such minima are important not only to understand the variety of supersymmetry
breaking scenarios, but also to understand mechanisms to ‘uplift’ AdS solutions to dS.
A particular variant of the original proposal [1] is ‘winding uplift’ [3], see also [4], which
achieves exponentially small uplifts through flux choices with perturbatively flat directions.

As a proof of concept, we consider the large complex structure (LCS) regime of
Type IIB moduli stabilisation. We first report minima for the well-studied exam-
ple of degree 18 hypersurface in weighted projective space CP1,1,1,6,9. Previously non-
supersymmetric minima for this example were only obtained in the continuous flux ap-
proximation [5] and the discussion on its extension to the discrete flux case seems rather

1By abuse of terminology, we call solutions to DIW = 0 supersymmetric even if ⟨W ⟩ ̸= 0 at the minimum
and hence, the solutions do not lift to superymmetric solutions of the full theory.
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vague.2 Here we fill this gap by explicitly providing large ensembles of solutions in the
string landscape with discrete fluxes. We will compare the resulting W0 distributions for
these new vacua with their supersymmetric counterparts previously discussed in [7].

Subsequently, we study an additional 10 geometries with two and three moduli for
which we collect 250,235 solutions. In these models, we are able to demonstrate that
hierarchical suppression of the supersymmetry breaking scale is easily achieved in large
samples of vacua. Our ensemble provides a first glance at the broad landscape of non-
supersymmetric solutions and a golden opportunity to compare their statistical properties
against those for supersymmetry preserving vacua.

The rest of this note is organised as follows. In section 2 we describe the type of
solution we are searching for. In section 3 we provide our numerical results and we conclude
in section 4.

2 Class of supersymmetry breaking solutions

We are interested in the effective field theory for the complex structure sector of Type IIB
string theory in Calabi-Yau orientifold compactifications. In this setting, the action for the
complex structure moduli Zi and the axio-dilaton τ is determined by the Kähler and flux
superpotential

K(Zi, Z
i
, τ, τ) = − log

(
−i Π†(Zi) · Σ · Π(Zi)

)
− log (−i(τ − τ̄)) , (2.1)

W (Zi, τ) = (f − τh) · Σ · Π(Zi) . (2.2)

Here, f, h ∈ Z2(h1,2+1) are integer flux vectors arising from integrating the Type IIB NSNS
and RR 3-forms H3, F3 over 3-cycles. The period vector Π is determined by the prepotential
F through

Π(Zi) =


2F − ZiFi

Fi

1
Zi

 , Σ =

 0 1

−1 0

 . (2.3)

In this note, we work in the LCS regime where the pre-potential can be written as [8–10]

F = −1
6κijk Zi Zj Zk + 1

2 aij Zi Zj + bi Zi + i
2 ξ̃ − 1

(2πi)3

∑
q

n(0)
q Li3

(
e2πi qi Zi

)
. (2.4)

Here, we follow the conventions of [2] to which we refer for more details. We simply note
that all of the relevant input parameters can be readily computed using mirror symmetry,
see [11] for a recent discussion.

This work is concerned with finding local minima of the standard no-scale supergravity
scalar potential for Zi, τ induced by fluxes given by

V = eK KIJ̄ DIWDJW , DIW = ∂IW + W∂IK . (2.5)
2See also [6] for non-supersymmetric flux vacua in toroidal examples.
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Here, KIJ̄ is the inverse Kähler metric and DIW denotes the covariant derivative of the su-
perpotential. To find minima, we need to identify critical points ∂IV = 0 and subsequently
perform additional checks such as positive definiteness of the Hessian.

In a previous work [2], we considered solutions satisfying the F -flatness conditions
DIW = 0 which, looking at (2.5), lead to Minkowski vacua because ⟨V ⟩ ≡ 0. In this note,
we instead focus on solutions to ∂IV = 0 satisfying DIW ̸= 0. Our main motivation is
rooted in [1] arguing that this class of solutions can potentially be useful for dS model
building given that the vacuum energy V0 = ⟨V ⟩ > 0 is strictly positive. For a fully fledged
realisation of the mechanism of [1], one would also need to take into account Kähler moduli
which will be studied in future works. Here, we simply comment on the fact that, in
order to uplift AdS minima in either KKLT [12] or LVS [13] generically demands slightly
different uplift energies which result in additional constraints on these supersymmetry
breaking solutions. Indeed, cancelling the respective AdS scales for KKLT and LVS to first
approximation, one requires slightly different values of V0 for a successful uplift to de Sitter
with small cosmological constant

V0 ≃ |W0|2 for KKLT , V0 ≃ |W0|2

V
for LVS . (2.6)

Below, we find that the milder hierarchies for LVS can already be found in our ensemble
of solutions.

Let us reiterate that whether this uplift is successful depends on Kähler moduli sta-
bilisation which we do not consider in this work. However, we do note that a successful
uplift for the LVS has to be hierarchically suppressed with respect to the gravitino mass
as the AdS vacuum energy is similarly suppressed compared to the gravitino mass.

3 Numerical results

To demonstrate our modified search algorithm for non-SUSY vacua, we show numerical
results for 11 models with two- and three-complex structure moduli taking into account in-
stanton contributions up to degree 10. We include the well-known example of CP1,1,1,6,9[18]
for which the prepotential has been commonly discussed in the literature. Alongside this
paper, we provide the relevant details for the other geometries in the ancillary files and
sample solutions for CP1,1,1,6,9[18] in appendix A. A complete list of solutions obtained in
this paper can be found on https://github.com/ml4physics/JAXvacua.

Besides the difference in the optimisation module, we also have to carefully select
our sampling method for respective starting points of the moduli and the flux values. In
particular, the ISD± sampling strategies introduced in [2] lead to initialisations close to
supersymmetric minima to which our algorithm converges quickly rather than exploring
parameter space regions where non-supersymmetric minima are located. Hence, we use
our random initialisation for starting points and flux vectors. As pointed out before, this
choice reduces the success rate of finding such vacua. Nevertheless, we are able to identify
reasonably large ensembles of solutions with supersymmetry breaking.

– 3 –
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Figure 1. We show the distribution of vacuum energies in units of gravitino mass and the string
coupling gs for CP1,1,1,6,9[18].

3.1 Vacua for CP1,1,1,6,9[18]

First, let us look at the example of CP1,1,1,6,9[18] for which the relevant orientifold data
was summarised e.g. in [14]. Using the algorithm outlined above, we collected 77,849 vacua
with DIW ̸= 0. To allow for further analytic inspection of our solutions, we list selected
candidates with small V0 in appendix A.

The distribution of our solutions and their vacuum energy V0 in units of the gravitino
mass is shown in figure 1 where the latter is calculated using the Kähler and superpotential
from eqs. (2.1) and (2.2), i.e., M3/2 = eK/2|W |. We note that in our ensemble we identify
examples where the ratio of V0/M2

3/2 is hierarchically suppressed. These solutions are
generally speaking interesting because such hierarchical suppressions allow for room for
additional control in the EFT and are generically required for a successful de Sitter uplift
(cf. section 2). Such additional protection is strictly speaking not necessary for the sector
which we focus on in this work, i.e., the EFT derived by GPK [15] is also valid off-shell and
it is safe to use this theory also near non-SUSY minima. Having said this, when including
Kähler moduli and perturbative corrections, the validity of this EFT has to be justified
more carefully.

– 4 –
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Figure 2. Confronting supersymmetric and non-supersymmetric solutions for CP1,1,1,6,9[18]. Top:
comparison of the imaginary parts of moduli expectation values between SUSY and non-SUSY
vacua. Middle: comparing the distributions of W0 for SUSY and non-SUSY vacua. Bottom: |W0|
as a function of Nflux for both types of minima.

Next, let us compare our new solutions against their more established counterparts
satisfying DIW = 0. To this end, we collected an additional 77,849 of solutions to DIW = 0
by using the same sampling algorithm, namely uniformly sampling fluxes and initial guesses
(see also [16]). Looking at the distribution of moduli vacuum expectation values in the
top row of figure 2, we find that the SUSY breaking minima are located further inside
the Kähler cone3 in comparison to the SUSY solutions when using the random sampling
method. While we typically expect these distributions to depend on the chosen sampling

3Recall that the patch of complex structure moduli space at large complex structure is described by the
Kähler cone of the mirror dual Calabi-Yau threefold, see e.g. [11] for a recent discussion. By using the same
terminology as in [2], we simply call this space the Kähler cone.

– 5 –
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h1,1 h1,2 QD3 ♯vacua
144 2 148 17,369
120 2 124 55,068
132 2 136 32,340
128 2 132 32,771
272 2 276 33,619

h1,1 h1,2 QD3 ♯vacua
99 3 104 656
115 3 120 10,859
107 3 112 53,158
119 3 124 238
243 3 248 14,157

Table 1. Summary of our compactification manifolds with their respective Hodge numbers, tadpole
values and number of vacua. In total, we find 250, 235 solutions.

methods,4 we stress again that the sampling of input fluxes and initial guesses is exactly
the same for both types of solutions. Hence, the resulting distributions show structures
mainly inherited from the special class of solutions. In particular, in the case of DIW = 0
solutions, the ISD condition leaves an imprint on the moduli VEVs by localising the latter
close to the boundary of moduli space. This needs to be contrasted with DIW ̸= 0 which
are broadly scattered across the Kähler cone.

In fact, we can make similar observations by comparing the distribution of the VEV of
the superpotential W0 =

√
2/π⟨eK/2W ⟩ between SUSY and non-SUSY minima as shown in

the middle row of figure 2. As pointed out in [7], the DIW = 0 solutions are to first approx-
imation Gaussian distributed with the standard deviation proportional to

√
Nflux. Here,

this can be seen more clearly in the bottom row of figure 2 which shows the distribution of
|W0| as a function of Nflux. While the plot on the right shows almost no persistent correla-
tions, the one on the left is perfectly bound by ≈ 0.82·

√
Nflux. While the analysis in [7] used

ISD biased sampling as introduced in [2], we sample here all of the input parameters (fluxes
and initial guesses) from uniform distributions. Hence, this reinforces our claim that the
observed Gaussian behaviour with σ ∼

√
Nflux of the W0 distribution is largely sampling

independent. In contrast, the corresponding W0 distribution for DIW ̸= 0 vacua is clearly
much less constrained. Indeed, the ISD conditions impose stringent constraints on the F -
flat vacua,5 while general solutions with DIW ̸= 0 can come in a variety of different incarna-
tions. These differences can in the future be analysed more thoroughly using our methods.

3.2 Analysis for 10 models at h1,2 = 2, 3

Lastly, let us study a larger sample of solutions across various different orientifold models.
To this end, we selected in total 10 smooth CY orientifolds from the database of [17] with
two and three complex structure moduli. We summarise our results in table 1 where find in
total 250,235 flux vacua with DIW ̸= 0. Generally speaking we note that finding these non-
supersymmetric minima currently appears computationally more expensive, but clearly not
prohibitive. The distribution of the vacuum energy V0 in units of the squared gravitino mass

4See [2] for a comparison of sampling strategies in the context of SUSY solutions.
5Thus, some of the structures that have been observed in the distributions of vacua like in [2, 7] should

not necessarily be attributed to string theory compactifications alone, but rather to restricting to SUSY
solutions.

– 6 –
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Figure 3. We show the scatterplot of values of |W0| and vacuum energies in units of gravitino
mass for the geometries in table 1.

M2
3/2 is shown in figure 3. Similar to figure 1, we observe several vacua with hierarchically

suppressed vacuum energy which could potentially play a role in de Sitter uplifting.
Lastly, we show the behaviour of the absolute value of W0 as a function of Nflux/QD3

in figure 4. To allow for a direct comparison, we show the same plots for 1,466,383 solutions
with DIW = 0 previously constructed in [7]. As observed before in figure 2, DIW = 0
solutions show the same characteristic behaviour σ ∼

√
Nflux across all models. In contrast,

SUSY-breaking vacua with DIW ̸= 0 exhibit no noteworthy dependence on Nflux in our
ensemble. These differences will be analysed in more detail in future works.

4 Conclusions

To characterise the low energy physics coming from string theory, it is imminent to study
its solutions as broadly as possible. In this quest, we find numerical techniques crucial as
they allow us to construct such vacua using efficient implementations of a combination of
standard algorithms. In this note, we demonstrated that this approach can be extended
to the search for supersymmetry breaking solutions. In particular, solutions of this type
were proposed long ago, but so far only available in toroidal examples or in the continuous
flux approximation. Here, we were able to work with explicit Calabi-Yau orientifolds and
to obtain large ensembles of such supersymmetry breaking solutions using only moderate
computational resources.

We find several solutions where the scale of the vacuum energy is suppressed compared
to the gravitino mass, a feature which is desirable in the construction of hierarchically

– 7 –
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Figure 4. Different structures in the distributions of minima: we plot the absolute value of W0 as
a function of Nflux/QD3 for our solutions with DIW ̸= 0 in the first and third row. For a direct
comparison, we show the same plots for solutions to DIW = 0 previously constructed in [7] in the
second and fourth row.

small uplifts. For instance such suppressed uplifts would be needed in the LARGE Volume
Scenario [13].

Clearly, this work only served as a proof of concept for future, more detailed investiga-
tions of supersymmetry breaking vacua. Most prominently, in the quest for de Sitter min-
ima, it is important to include Kähler moduli stabilisation. With our modular approach,
we will be able to include this aspect in the future. Another line of further investiga-
tion is to acquire more empirical solutions to compare the observed statistical distribution
with existing approximations to these distributions in the literature [18]. Finally, it would
be interesting to compare the scales in our supersymmetry breaking solutions with those
appearing in other approaches such as in [19].
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Sol: f1 f2 f3 f4 f5 f6 h1 h2 h3 h4 h5 h6 Nflux

a 0 18 0 1 1 3 0 −7 −1 0 1 −2 28

b 0 1 1 1 −3 7 0 −3 −5 0 1 −3 24

c 0 18 3 2 4 −4 0 −7 0 0 0 1 31

d 0 8 −3 1 1 3 0 −4 −2 0 2 −5 41

e 0 11 5 0 2 −4 0 4 4 −1 2 −2 20

f 0 6 −1 −1 −6 8 0 16 −2 2 1 4 114

g 0 −10 −2 −1 0 1 0 −4 −3 1 −2 2 19

Table 2. Flux vectors of some of our solutions of CP1,1,1,6,9[18]. The individual solutions can be
found in table 3.

Sol: Z1 Z2 τ gs W0 V0

a 0.71 + 1.04i −0.69 + 2.26i −0.25 + 1.80i 0.56 −46.53 + 42.09i 7.76 · 10−4

b −3.17 + 2.54i 5.31 + 1.06i 0.19 + 3.35i 0.30 −56.89 + 72.18i 9.63 · 10−3

c 1.19 + 1.01i 2.94 + 3.86i −0.40 + 5.30i 0.19 27.11 + 119.94i 4.24 · 10−3

d 2.04 + 1.79i 1.92 + 1.38i −0.35 + 2.24i 0.45 26.01 + 76.43i 1.16 · 10−3

e −1.71 + 1.21i −0.02 + 1.16i −0.03 + 1.07i 0.94 −31.49 − 9.98i 3.25 · 10−4

f 1.81 + 1.06i −1.76 + 1.26i 0.09 + 1.60i 0.62 81.75 − 20.23i 6.66 · 10−3

g −1.00 + 1.10i 0.93 + 1.29i −0.40 + 1.14i 0.88 28.13 − 24.31i 3.39 · 10−3

Table 3. The properties of our solutions for the flux vectors (cf. table 2) for CP1,1,1,6,9[18].

Westphal for fruitful discussions. We especially thank Andres Rios-Tascon for providing
the code to compute GV and GW invariants. AS thanks the Ludwig Maximilian University
of Munich and ICISE in Quy Nhon, Vietnam, for hospitality where parts of this work have
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A Example solutions for CP1,1,1,6,9[18]

In this appendix, we provide a few example solutions for the geometry CP1,1,1,6,9[18] where
the prepotential has been studied extensively in the literature [16, 20]. The flux vectors
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and the associated solutions are listed in tables 2 and 3 respectively. We stress that the
units for the moduli quoted here are not canonically normalised. We checked the minimum
up to degree 100 in the instanton expansion.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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