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1 Introduction

It has long been known that ζ-regularized functional determinants of differential opera-
tors [1] may be afflicted by a multiplicative anomaly [2]. Even for commuting (elliptic)
differential operators A and B, in general detζ (A · B) ̸= detζ A · detζ B. In the mid-80s,
an explicit expression for this multiplicative anomaly was devised by Wodzicki in terms of
the so-called non-commutative residue [3, 4]. Interestingly, in cases where the eigenvalues
factorize into linear factors the discrepancy for the resulting ζ-regularized products had
been pinpointed a decade before in Shintani’s works [5, 6]. In these cases, the individual ζ

functions are Barnes multiple zetas [7] and the collective ones are the Shintani-Barnes gen-
eralizations thereof [8, 9]. The direct connection between the two approaches is enabled by
a crucial feature of the ζ-regularized products: the multiplicative anomaly between several
factors is pairwise accumulative, i.e. it is enough to compute it between all possible pair-
ings and then average the result [10–12]. Therefore, although the multiplicative anomaly
between linear factors may not be captured by Wodzicki’s formula, the converse holds: the
multiplicative anomaly between the quadratic factors in the Laplacians, for which Wodz-
icki’s formula applies, is equally captured by the multiplicative anomaly among the linear
factors. Another remarkable feature of the multiplicative anomaly between linear factors is
that, as compared to the ζ-regularized products that involve Shintani-Barnes gammas, it is
far simpler. In all known examples it reduces to an exponential of a rational function in the
coefficients of the linear factors and the logarithms of these coefficients (see, e.g. [5, 8–10]).

Motivated by these results, in this note, we revisit the computation of Casimir or
vacuum energy for higher-derivative operators on spheres since the standard calculation
seems to overlook the possible multiplicative anomaly among the factors (see, e.g., [13]
for the Paneitz operator in 4D). For concreteness, we focus on conformal powers of the
Laplacian or GJMS operators P2k [14] which happen to factorize into shifted Laplacians
on spheres Sn [15, 16], as well as on the conformally flat product space S1

β ×Sn−1 [17, 18].
The partition function on the latter geometry is dominated by the Casimir energy in
the low-temperature (β → ∞) limit, and the presence of a multiplicative anomaly leads
to an improved Casimir energy. The improvement relies on consistency: there are two
alternative factorizations in terms of shifted Laplacian and only after the inclusion of the
multiplicative anomaly one can find agreement between the partition functions and, in
consequence, between the Casimir energies. In addition, on the two torus, the universal
dependence of the Casimir energy on the central charge E0 = −c/12 is restored.

The organization of this paper is as follows. In section 2, a generalization of Sintani-
Mizuno formulas for the multiplicative anomaly of linear factors is obtained by a procedure
based on Feynman parametrization and Fock-Schwinger-DeWitt proper-time representa-
tion. In section 3, Mizuno’s result in two dimensions is extended to three and four di-
mensions, casting the answer into Bernoulli polynomials and keeping the quasi-periods in
the greatest generality. Since the explicit expressions become increasingly cluttered as the
dimensions grow, we restrict attention to particular examples in what follows. In section
4, as a preliminary exercise, the multiplicative anomaly is computed on round spheres con-
firming previous results in the literature. Then, in section 5, the background of present
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interest is addressed, namely the closed Einstein universe at finite temperature, and new
features of the Casimir energy are reported. In section 6, we highlight the role of the multi-
plicative anomaly in Shintani’s derivation of the Kronecker second limit formula. In section
7, as the main application, we examine the computation of the Casimir energy for GJMS
operators in the light again of the new features that the inclusion of the multiplicative
anomaly brings in. Summary and outlook are provided in section 8. Finally, miscellaneous
results are collected in two appendices.

2 Derivation of Shintani-Mizuno formulas via Feynman parametrization

To compute the ratio of the functional determinants, and of the corresponding
ζ−regularized products, we start with the relative zeta function

ζAB(s)− ζA(s)− ζB(s) =
∞⃗∑

m⃗=0⃗

{
1

[m⃗ · a⃗ + w]s · [m⃗ · b⃗ + z]s
− 1

[m⃗ · a⃗ + w]s − 1
[m⃗ · b⃗ + z]s

}
(2.1)

for ℜ(s) > n, with the multi-index m⃗ = (m1, m2, . . . , mn) being an n-tuple of non-negative
integers and assuming that the quasi-periods ai and bi, as well as the arguments w and
z, all have positive real parts (although this may be relaxed later, as we will see). We
now combine the factors in the first term into a single denominator by using Feynman
parametrization while the second and third terms come in for free

Γ(2s)
Γ2(s)

∫ 1

0
dv [v (1− v)]s−1

{
1

[m⃗ · (⃗a v + (1− v) b⃗) + w v + (1− v) z]2s

− 1
[m⃗ · a⃗ + w]s − 1

[m⃗ · b⃗ + z]s

}
(2.2)

Next, we introduce Fock-Schwinger-DeWitt proper-time representations for the inverse
powers

1
Γ(2s)

∫ ∞

0

dt

t
t2s e−t[m⃗·(a⃗ v+(1−v) b⃗)+w v+(1−v) z]

− 1
Γ(s)

(∫ ∞

0

dt

t
ts e−t[m⃗·⃗a+w] +

∫ ∞

0

dt

t
ts e−t[m⃗·⃗b+z]

)
(2.3)

The geometric series summation in the multi-index m⃗ produces the following Bose factors

1
Γ(2s)

∫ ∞

0

dt

t
t2s e−t[w v+(1−v) z]∏n

i=1
{
1− e−t(ai v+(1−v) bi)

}
− 1
Γ(s)

∫ ∞

0

dt

t
ts e−t w∏n

i=1 {1− e−t ai}
− 1

Γ(s)

∫ ∞

0

dt

t
ts e−t z∏n

i=1 {1− e−t bi}
(2.4)

The Bose factors are now expressed as a Taylor series in t with Bernoulli numbers1 as
1We use the convention B+

k = Bk(1), as opposed to B−
k = Bk(0), in terms of the Bernoulli polynomials.
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coefficients
∞⃗∑

l⃗=0⃗

{
n∏

i=1

B+
li

(li)!
(ai v + (1− v) bi)li−1

}{ 1
Γ(2s)

∫ ∞

0

dt

t
t2s−n+

∑n

i=1 lie−t[w v+(1−v) z]
}

−
∞⃗∑

l⃗=0⃗

{
n∏

i=1

B+
li

(li)!
ali−1

i

}{ 1
Γ(s)

∫ ∞

0

dt

t
ts−n+

∑n

i=1 li e−t w
}

(2.5)

−
∞⃗∑

l⃗=0⃗

{
n∏

i=1

B+
li

(li)!
bli−1

i

}{ 1
Γ(s)

∫ ∞

0

dt

t
ts−n+

∑n

i=1 li e−t z
}

The proper-time integrals, taken in terms of Euler gamma functions, enable the analytic
continuation in the spectral parameter s, and yield

∞⃗∑
l⃗=0⃗

{
n∏

i=1

B+
li

(li)!
(ai v + (1− v) bi)li−1

}
Γ(2s − n +

∑n
i=1 li)

Γ(2s) [w v + (1− v) z]−2s+n−
∑n

i=1 li

−
∞⃗∑

l⃗=0⃗

{
n∏

i=1

B+
li

(li)!
ali−1

i

}
Γ(s − n +

∑n
i=1 li)

Γ(s) [w]−s+n−
∑n

i=1 li (2.6)

−
∞⃗∑

l⃗=0⃗

{
n∏

i=1

B+
li

(li)!
bli−1

i

}
Γ(s − n +

∑n
i=1 li)

Γ(s) [z]−s+n−
∑n

i=1 li

The ζ-regularized products are obtained from the derivative of the ζ with respect to the
spectral parameter s at s = 0. By careful examination of the behavior as s → 0 one can
realize

ζAB(s)− ζA(s)− ζB(s) =
s

2 ×Regular+ 1
2ζA(2s)+ 1

2ζB(2s)− ζA(s)− ζB(s)+O(s3) . (2.7)

As a consistency check, direct evaluation at s = 0 results in the additive property of the
zeta function weighted by the order, 2 for AB and 1 for A and for B, of the corresponding
differential operators

ζAB(0) =
1
2 ζA(0) +

1
2 ζB(0) . (2.8)

Back to the regularized products, the overall prefactor Γ(2s)/Γ2(s) goes as s/2 and the
rest is regular at s = 0, after symmetrization with respect to v ↔ 1− v, so it is enough to
consider the limit of the latter as s → 0 to compute the derivative at zero. In addition, the
factors Γ(2s − n +

∑n
i=1 li)/Γ(2s) and Γ(s − n +

∑n
i=1 li)/Γ(s) in the limit s → 0 produce

a vanishing result unless the numerators also hit a pole, say −p with p = 0, 1, 2, . . . , n,
and gives a finite answer (−1)p/p!. Therefore the sums over li ≥ 0 are truncated by the
condition p +

∑n
i=1 li = n

−1
2
∑

li,p≥0

{
(−1)p

p!

n∏
i=1

B+
li

(li)!

} ∫ 1

0

dv

v(1− v) (2.9)

×1
2

{{
n∏

i=1
(ai v + (1− v) bi)li−1

}
[w v + (1− v) z]p +

{
(⃗a, w) ↔ (⃗b, z)

}
−
{

n∏
i=1

ali−1
i

}
[w]p −

{
n∏

i=1
bli−1

i

}
[z]p

}
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One last change of variables in the Feynman parameter 1/v − 1 = u and realizing that the
inversion u → 1/u merely interchanges (⃗a, w) ↔ (⃗b, z), cast the final result in Shintani-
Mizuno [5, 9] form

MA(A, B) = −ζ ′AB(0) + ζ ′A(0) + ζ ′B(0) (2.10)

= −1
2
∑

li,p≥0

{
(−1)p

p!

n∏
i=1

B+
li

(li)!

}
C (⃗a, z; b⃗, w | l⃗, p)

∣∣∣∣∣∣
p+
∑n

i=1 li=n

,

with

C (⃗a, w; b⃗, z | l⃗, p) =
∫ 1

0

du

u

{{
n∏

i=1
(ai + u bi)li−1

}
[w + u z]p −

{
n∏

i=1
ali−1

i

}
[w]p

}
+
{
(⃗a, w) ↔ (⃗b, z)

}
. (2.11)

This formula, which computes the multiplicative anomaly for a pair of linear factors, suf-
fices to deal with a generic number of linear factors because, as already mentioned, the
multiplicative anomaly turns out to be pairwise accumulative [10–12].

The n = 2 case corresponds to the formula put forward by Mizuno (cf. proof of Lemma
4 in [9]), whereas the original Shintani formula (cf. Proposition 1 in [5]) applies to the par-
ticular choice of the arguments w = a⃗ · x⃗ and z = b⃗ · x⃗. In that case, the polynomial
dependence on xi can be rearranged by trading the Bernoulli numbers by Bernoulli poly-
nomials in xi after summing over p. This is easily seen by going back to the Bose factors
and expanding each of them in terms of Bernoulli polynomials in xi.

One can alternatively choose to expand the whole product of Bose factors in terms of
Bernoulli polynomials of higher order,2

tn e−w t∏n
i=1 {1− e−ai t}

=
∞∑

l=0
Bn,l(w|⃗a) tl

l! , (2.12)

in which case the integral formula for the multiplicative anomaly can be written in the
following neat and compact form

MA(A,B)=− 1
2n!

∫ 1

0

du

u

{
Bn,n(w+uz | a⃗+ub⃗)−Bn,n(w | a⃗)

}
+
{
(⃗a,w)↔ (⃗b,z)

}
. (2.13)

Moreover, in our convention, the Bernoulli polynomial of higher order coincides essentially
with Barnes zeta at s = 0

Bn,n(w, a⃗)
n! = ζn(0, w|⃗a) . (2.14)

Consequently, the multiplicative anomaly becomes an average of Barnes ζ’s with respect
to the Feynman parameter u

MA(A,B)=−1
2

∫ 1

0

du

u

{
ζn(0,w+uz | a⃗+ub⃗)−ζn(0,w | a⃗)

}
+
{
(⃗a,w)↔ (⃗b,z)

}
. (2.15)

2Our convention differs slightly from the definition in [19] or [20].
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3 Previous and new results

Let us now put the formula to work, keeping the quasi-periods in the greatest generality.

3.1 1D: Friedman-Ruijsenaars formula

The n = 1 case was worked out by Friedman and Ruijsenaars [8] some time ago by exploiting
a recurrence relation and, as expected, their result matches the outcome of the Shintani-
Mizuno integral representation above

MA(A, B) = 1
2 ·
(

w

a
− z

b

)
· log a

b
(3.1)

3.2 2D: Shintani-Mizuno formula

The n = 2 case was addressed by Mizuno [9], following Shintani’s approach, and his result
was concisely written in terms of the Bernoulli polynomial of order 2 as follows

MA(A, B) = a1 b2 − a2 b1
4 a1 b1

· B2

(
a1 z − b1 w

a1 b2 − b1 a2

)
· log a1

b1
+ {1 ↔ 2} (3.2)

3.3 3D: generalized Shintani-Mizuno formula

We report here the n = 3 case for the first time, to our knowledge, obtained with MAPLE
help to compute the integrals and to concisely express the result in terms of Bernoulli
polynomials

MA(A,B) = −
{

[a1 b2 − a2 b1 + a1 b3 − a3 b1]3

12a1 b1 (a1 b2 − a2 b1)(a1 b3 − a3 b1)
·B3

(
a1 z − b1 w

a1 b2 − a2 b1 + a1 b3 − a3 b1

)
+ [a1 b2 − a2 b1 + a1 b3 − a3 b1]

24a1 b1
·B1

(
a1 z − b1 w

a1 b2 − a2 b1 + a1 b3 − a3 b1

)}
· log a1

b1
−{1↔ 2}−{1↔ 3}. (3.3)

3.4 4D: generalized Shintani-Mizuno formula

For n = 4 the answer, also new to our knowledge, becomes more involved. We introduce
some notation to write it down more compactly:

Dij = aibj − biaj

D = D12 + D13 + D14 (3.4)

MA(A, B) =
{

D4

48 a1 b1 D12 D13 D14
· B4

(
a1 z − b1 w

D

)

−D2 (D2
12 + D2

13 + D2
14 − D2)

96 a1 b1 D13 D14 D12
· B2

(
a1 z − b1 w

D

)
− D4 − D2 (D2

12 + D2
13 + D2

14)− 2DD12D13D14
2880 a1 b1 D12 D13 D14

+3(D12D13 + D12D14 + D13D14)2

1440 a1 b1 D12 D13 D14

}
· log a1

b1

+{1 ↔ 2}+ {1 ↔ 3}+ {1 ↔ 4}. (3.5)
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Since the explicit answer becomes more complicated as we increase the dimension, we
refrain from displaying it for higher dimensions, and, in what follows, we focus on particular
choices for the quasi-periods.

4 Examples: shifted Laplacian on round spheres Sn

Let us consider the factorization of the eigenvalues of the Laplacian, on (unit) spheres,
shifted by a constant. First, recall the eigenvalues and multiplicities for the (negative)
Laplacian −∇2 on the n-sphere Sn

λl = l(l + n − 1) deg(l) = (2l + n − 1)(l + n − 2)!
l! (n − 1)! . (4.1)

Notice that a shift by (n−1)2

4 − a2 factorizes the eigenvalues Λl of the shifted Laplacian
La = −∇2 + (n−1)2

4 − a2 = Da D−a into linear factors on l

Λl =
(

l + n − 1
2 + a

)(
l + n − 1

2 − a

)
. (4.2)

There is now a gracious way to connect with the regularized product of the previous
sections: we follow Dowker’s ‘central tactic’ (see, e.g. [12, 21]) in the spectral treatment
of the Laplacian on spheres which consists in taking the full sphere as the union of the
Neumann and Dirichlet problems on the hemisphere. We trade then the ‘orbital’ quantum
number l by the sum of non-negative integers m1 +m2 + . . .+mn for Neumann boundary
condition and 1+m1+m2+ . . .+mn for Dirichlet. At fixed l the combinatorics produce the
correct multiplicity: for Neumann, the counting consists of the different ways to distribute
l balls in n boxes, whereas for Dirichlet there are only l−1 balls to sort (the constant mode
corresponding to l = 0 belongs exclusively to the Neumann case)

degN (l) = (l + n − 1)!
l! (n − 1)! , degD(l) = (l + n − 2)!

(l − 1)! (n − 1)! . (4.3)

The degeneracy for the full sphere is then the sum of both degeneracies. We can address
now the multiplicative anomaly on spheres between two generic linear factors by setting all
quasi-periods to one and considering arguments n−1

2 +a and n−1
2 +b for Neumann boundary

condition and 1+ n−1
2 +a and 1+ n−1

2 +b, for Dirichlet. With these building blocks, we can
compute first the multiplicative anomaly to build up the shifted Laplacian La by setting
b = −a, i.e. MA(Da, D−a), and then the multiplicative anomaly among shifted Laplacians
La and Lb based on the accumulative and associative properties of the defects:

2 · MA(La, Lb) = MA(Da, Db) + MA(Da, D−b) + MA(D−a, Db) + MA(D−a, D−b)
−MA(Da, D−a)− MA(Db, D−b) . (4.4)

Let us mention in advance that the explicit results we will find follow the general rule
that the multiplicative anomaly for Neumann and Dirichlet boundary conditions happen
to be opposite in sign in odd dimensions, adding up to zero, whereas in even dimensions

– 7 –
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they are identical. The values for the multiplicative anomaly between linear factors that
build up the shifted Laplacians coincide with those reported by Dowker using spectral
techniques and expanding the zeta functions in terms of the shift (cf. [12], eq. 313), and
the same holds between shifted Laplacian (cf. [12], eq. 15). Interestingly, for even spheres
the same multiplicative anomaly between the linear factors in the shifted Laplacian had
been previously obtained in [22] via Wodzicki residue and, as noticed in [23], also obtained
in [24] while computing the partition function for a massive scalar in (Euclidean) de Sitter
space as a regularized product of quasinormal frequencies.

4.1 Two-sphere

All quasi-periods set to one result in a quadratic polynomial in the arguments (w, z)

MA(A, B) = (w − z)2

4 . (4.5)

The eigenvalues of the shifted Laplacian La = −∇2 + 1/4− a2 on the two-sphere are then
obtained with w = 1/2+a, z = 1/2−a and with w = 3/2+a, z = 3/2−a for Neumann and
Dirichlet boundary conditions on the Equator, respectively. Both multiplicative anomalies
turn out to be equal and the combined multiplicative anomaly between the linear factors
D±a =

√
−∇2 + 1/4± a that build up the shifted Laplacian is obtained

MA(Da, D−a) = 2 a2 . (4.6)

By contrast, the multiplicative anomaly between a pair of shifted Laplacians La and Lb

vanishes
MA(La, Lb) = 0 . (4.7)

4.2 Three-sphere

The generalized Shintani-Mizuno formula with all quasi-periods set to one yields now a
cubic polynomial in the arguments (w, z)

MA(A, B) = −(w − z)2 · (w + z − 3)
8 . (4.8)

The eigenvalues of the shifted Laplacian La = −∇2 + 1 − a2 on the three-sphere are
obtained with w = 1 + a, z = 1 − a and with w = 2 + a, z = 2 − a for Neumann and
Dirichlet boundary conditions on the Equator, respectively. The multiplicative anomaly
for Neumann b.c. turns out to be a2/2 opposite to that for Dirichlet b.c.

MA(Da, D−a)|Neu = −MA(Da, D−a)|Dir = 1
2a2, (4.9)

so that the combined multiplicative anomaly between the linear factors D±a =
√
−∇2 + 1±

a that build up the shifted Laplacian vanishes.
For the multiplicative anomaly between a pair of shifted Laplacians La and Lb we

again obtain vanishing results

MA(La, Lb)|Neu = MA(La, Lb)|Dir = 0 . (4.10)
3We are grateful to J.S. Dowker for his help in fixing few numerical coefficients and signs in a previous

version of this paper.
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4.3 Four-sphere

With all quasi-periods set to one, the generalized Shintani-Mizuno formula produces a
quartic polynomial in the arguments (w, z)

MA(A, B) = (w − z)2 · (11w2 + 14wz + 11z2 − 72w − 72z + 132)
288 . (4.11)

The eigenvalues of the shifted Laplacian La = −∇2 +9/4− a2 on the four-sphere are then
obtained with w = 3/2+a, z = 3/2−a and with w = 5/2+a, z = 5/2−a for Neumann and
Dirichlet boundary conditions on the Equator, respectively. Both multiplicative anomalies
turn out to be equal and the combined multiplicative anomaly between the linear factors
D±a =

√
−∇2 + 9/4± a that build up the shifted Laplacian is obtained

MA(Da, D−a) =
2
9a4 − 1

12a2 . (4.12)

The multiplicative anomaly between a pair of shifted Laplacians La and Lb is nontrivial
now

MA(La, Lb) =
(a2 − b2)2

24 . (4.13)

4.4 Five-sphere

All quasi-periods set to one in the generalized Shintani-Mizuno formula result now in a
quintic polynomial in the arguments (w, z)

MA(A, B) = −(w − z)2 · (w + z − 5) · (5w2 + 2wz + 5z2 − 30w − 30z + 60)
576 . (4.14)

The eigenvalues of the shifted Laplacian La = −∇2+4−a2 on the three-sphere are obtained
with w = 2+a, z = 2−a and with w = 3+a, z = 3−a for Neumann and Dirichlet boundary
conditions on the Equator, respectively.

The multiplicative anomaly for Neumann boundary conditions turns out to be the
opposite of that for Dirichlet, namely

MA(Da, D−a)|Neu = −MA(Da, D−a)|Dir = 1
18a4 − 1

12a2. (4.15)

Therefore, the combined multiplicative anomaly between the linear factors D±a =√
−∇2 + 4± a, that build up the shifted Laplacian, vanishes.

For the multiplicative anomaly between a pair of shifted Laplacians La and Lb we
obtain

MA(La, Lb)|Neu = −MA(La, Lb)|Dir =
(a2 − b2)2

96 . (4.16)

4.5 Six-sphere

With all quasi-periods set to one, the generalized Shintani-Mizuno formula produces here
a sextic polynomial in the arguments (w, z)

MA(A, B) = (w − z)2

86400
(
137w4 + 202w3z + 222w2z2 + 202wz3 + 137z4

−2250w3 − 3150w2z − 3150wz2 − 2250z3 + 14025w2 + 17850wz

+14025z2 − 40500w − 40500z + 49320
)

(4.17)
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The eigenvalues of the shifted Laplacian La = −∇2 + 25/4− a2 on the six-sphere are then
obtained with w = 5/2+a, z = 5/2−a and with w = 7/2+a, z = 7/2−a for Neumann and
Dirichlet boundary conditions on the Equator, respectively. Both multiplicative anomalies
turn out to be equal and the combined multiplicative anomaly between the linear factors
D±a =

√
−∇2 + 25/4± a that build up the shifted Laplacian is obtained

MA(Da, D−a) =
23
2700a6 − 1

36a4 + 3
320a2. (4.18)

The multiplicative anomaly between a pair of shifted Laplacians La and Lb is then

MA(La, Lb) =
(a2 − b2)2 · (2a2 + 2b2 − 5)

960 . (4.19)

5 Examples: shifted conformal Laplacian on S1
β × Sn−1

Let us now consider a temperature circle times the round sphere. This time, the conformal
Laplacian Y = −∇2+ n−2

4(n−1) R = −∂2
0−∇⃗2+ (n−2)2

4 ≡ −∂2
0+∆0 factorizes into linear factors

provided one of the quasi-periods is purely imaginary, say τ = 2π i
β . Again, considering the

Neumann and Dirichlet problems on the (n− 1)-sphere one can trade the orbital number l

by n− 1 non-negative integers m1, m2, . . . , mn−1. The same can be done with the winding
number on the temperature circle, introducing an additional counting number mn and
Neumann and Dirichlet boundary conditions on the circle.

We compute first for generic arguments (w, z) and then restrict them to get the four
combinations of boundary conditions Neumann-Neumann, Neumann-Dirichlet, Dirichlet-
Neumann and Dirichlet-Dirichlet.

A quite surprising fact will be evident from the examples below:

The standard Casimir energy for the Laplacian and for shifted Laplacians turns
out to be exactly equal to the multiplicative anomaly among the linear factors
that build them up !

5.1 Two-torus

The linear factors in this case are (m1+m2τ +w) and (m1+m2τ +z), with ℑ(τ) > 0. The
generalized Shintani-Mizuno formula for the multiplicative anomaly produces an overall
factor of iπ from the logarithm of the ratio of τ and τ = −τ , accompanied by a quadratic
polynomial in the arguments (w, z). The remarkable feature of the outcome is that it turns
out to be linear in the inverse temperature β, just as the vacuum or Casimir energy:

MA(A, B) = −β · (z + w) · (z + w − 2)
16 − β · 1

24 . (5.1)

The multiplicative anomaly among the linear factors that build up the conformal Laplacian
Y = D · D can then be worked out as the sum of the four contributions with (w, z) equal
to (0, 0), (1, 1), (τ, τ) and (1 + τ, 1 + τ) for N-N, N-D, D-N and D-D boundary conditions,
respectively,

MA(D, D) = −β · 16 . (5.2)
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More generally, let us allow for a shift in each of the linear factors D + a and D + b

MA(D + a, D + b) = −β · (a + b)2

4 − β · 16 . (5.3)

There are now two alternative ways to build up shifted conformal Laplacians depending
on where the shift is located, on the spatial (sphere) part or the temperature (circle) part.
For the spatial shift Ya = −∂2

0 + (
√
∆0 + a)2 = (D + a) · (D + a)

MA(D + a, D + a) = −β · a2 − β · 16 , (5.4)

whereas for the temperature shift Ka = −(i
√
−∂2

0 + a)2 +∆0 = (D + a) · (D − a)

MA(D + a, D − a) = −β · 16 . (5.5)

One can also compute the multiplicative anomaly among shifted conformal Laplacians by
exploiting the accumulative and associative properties (eq. (4.4))

MA(Ya, Yb) = β · (a − b)2

4 , (5.6)

and
MA(Ka, Kb) = −β · (a − b)2

4 . (5.7)

Interestingly, the multiplicative anomaly among shifted Laplacians for the particular choice
b = −a

MA(Ya, Y−a) = −MA(Ka, K−a) = β · a2 (5.8)

coincides with the multiplicative anomaly computed by Elizalde et al. via Wodzicki residue
for free massless scalars, provided one identifies the combination charge times chemical
potential with the shift eµ = a and compactifies the spatial direction to a circle V1 = 2π(cf.
eqs. 86 and 91 in [25]).

But let us return to the multiplicative anomaly for Ya = −∂2
0 + (

√
∆0 + a)2. This

linear term in β will enter the partition function and contribute to the large-β asymptotics
determining the Casimir energy. The multiplicative anomaly turns up then in the expo-
nential with an additional factor of −1

2 and should be compared with the leading behavior
dominated by the vacuum or Casimir energy −β E0. It is immediately apparent that both
are exactly equal

E0 = 1
2β

MA(D + a, D + a) = −a2

2 − 1
12 . (5.9)

The standard value for E0 is well known (see, e.g. [26]). It can easily be computed in terms
of Hurwitz zetas and their relation with Bernoulli polynomials

E0 = 1
2

( ∞∑
l=0

(l + a) +
∞∑

l=1
(l + a)

)
= ζH(−1, a)− a

2

= −B2(a)
2 − a

2 = −a2

2 − 1
12 . (5.10)
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The same happens for the temperature-shifted Laplacian Ka. The partition functions turn
out to be dominated by the vacuum energy

E0 = 1
2β

MA(D + a, D − a) = − 1
12 . (5.11)

5.2 S1
β × S3

The linear factors now are (m1 +m2 +m3 +m4τ +w) and (m1 +m2 +m3 +m4τ + z). The
formula for the multiplicative anomaly produces a quartic polynomial in the arguments
(w, z):

MA(A, B) = −β · (z + w)2 (z + w − 6)2

768 − β · (z + w) (z + w − 6)
64 − β · 19

480 (5.12)

The multiplicative anomaly among the linear factors that build up the conformal Laplacian
Y = D · D can now be worked out as the sum of the four contributions with (w, z) equal
to (1, 1), (2, 2), (1 + τ, 1 + τ) and (2 + τ, 2 + τ) for N-N, N-D, D-N, and D-D boundary
conditions, respectively,

MA(D, D) = β · 1
120 . (5.13)

Allowing for a shift in each of the linear factors D + a and D + b, we get

MA(D + a, D + b) = −β · (a + b)4

192 + β · 1
120 . (5.14)

For the spatial shift in the conformal Laplacian Ya = −∂2
0+(

√
∆0+a)2 = (D+a)·(D+a)

MA(D + a, D + a) = −β · a4

12 + β · 1
120 , (5.15)

whereas for the temperature shift Ka = −(i
√
−∂2

0 + a)2 +∆0 = (D + a) · (D − a)

MA(D + a, D − a) = β · 1
120 . (5.16)

Exploiting the accumulative properties (eq. (4.4)), the multiplicative anomaly among
shifted conformal Laplacians turns out to be

MA(Ya, Yb) = β · (a − b)2 (7a2 + 10ab + 7b2)
192 , (5.17)

and
MA(Ka, Kb) = −β · (a − b)4

192 . (5.18)

Here, we again notice that the multiplicative anomaly among shifted Laplacians for the
particular choice b = −a

MA(Ya, Y−a) = −MA(Ka, K−a) = β · a4

12 (5.19)
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coincides with the multiplicative anomaly computed by Elizalde et al. via Wodzicki residue
for free massless scalars, provided the spatial directions are compactified to the three-sphere
V3 = 2π2 (cf. eqs. 88 and 94 in [25]).

Going back to the multiplicative anomaly for Ya = −∂2
0 + (

√
∆0 + a)2, we verify again

the equality with the Casimir energy

E0 = 1
2β

MA(D + a, D + a) = −a4

24 + 1
240 . (5.20)

The standard value for E0 (see, e.g. [27]) can again be computed in terms of Hurwitz
zetas and their relation with Bernoulli polynomials. The degeneracy (l + 1)2 needs to be
expanded in powers of (l + 1 + a)

2E0 =
∞∑

l=0
(l + 1)2 (l + 1 + a) = ζH(−3, 1 + a)− 2a ζH(−2, 1 + a) + a2 ζH(−1, 1 + a)

= −B4(−a)
4 − 2a

B3(−a)
3 − a2 B2(−a)

2 = −a4

12 + 1
120 . (5.21)

The same happens for the temperature-shifted Laplacian Ka. The partition functions turn
out to be dominated by the vacuum energy

E0 = 1
2β

MA(D + a, D − a) = 1
240 . (5.22)

5.3 S1
β × S5

In this case, we need to add two more counters on the sphere to the linear factors, (m1 +
m2 + m3 + m4 + m5 + m6τ + w) and (m1 + m2 + m3 + m4 + m5 + m6τ + z), and we end
up with a sextic polynomial in the arguments (w, z) for the multiplicative anomaly:

MA(A, B) = −β · (z + w)3 (z − 10 + w)3

92160

−β · 5 (z + w)2 (z − 10 + w)2

9216

−β · 19 (z + w) (z − 10 + w)
2304

−β · 863
24192 (5.23)

To compute the multiplicative anomaly among the linear factors that build up the
conformal Laplacian Y = D · D there are four contributions with (w, z) equal to
(2, 2), (3, 3), (2+τ, 2+τ) and (3+τ, 3+τ) coming from N-N, N-D, D-N, and D-D boundary
conditions, respectively,

MA(D, D) = −β · 31
30240 . (5.24)

Allowing again for a shift in each of the linear factors D + a and D + b, we get

MA(D + a, D + b) = −β (a + b)6

23040 + β (a + b)4

2304 − 31β

30240 . (5.25)
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Now, for the spatial shift in the conformal Laplacian Ya = −∂2
0 + (

√
∆0 + a)2 = (D + a) ·

(D + a)

MA(D + a, D + a) = −β · 84a6 − 210a4 + 31
30240 , (5.26)

whereas for the temperature shift Ka = −(i
√
−∂2

0 + a)2 +∆0 = (D + a) · (D − a)

MA(D + a, D − a) = −β · 31
30240 . (5.27)

Exploiting the accumulative and associative properties (eq. (4.4)), the multiplicative
anomaly among shifted conformal Laplacians turns out to be

MA(Ya, Yb) =
β (a − b)2 (31a4 + 56a3b + 66a2b2 + 56a b3 + 31b4 − 70a2 − 100ab − 70b2)

23040 ,

(5.28)
and

MA(Ka, Kb) = −β
(
a2 − 2ab + b2 − 10

)
(a − b)4

23040 . (5.29)

As in lower dimensions, for the particular choice b = −a the multiplicative anomaly among
shifted Laplacians

MA(Ya, Y−a) = −MA(Ka, K−a) =
β
(
2a2 − 5

)
a4

720 (5.30)

may be compared with the multiplicative anomaly computed by Elizalde et al. via Wodzicki
residue for free massless scalars, provided the spatial directions are compactified to the five-
sphere V5 = π3 (cf. eqs. 96 and 97 in [25]). Curiously, the agreement is now only achieved
for the leading power.

Going back to the multiplicative anomaly for Ya = −∂2
0 + (

√
∆0 + a)2, we can verify

again the equality with the Casimir energy

E0 = 1
2β

MA(D + a, D + a) = −84a6 − 210a4 + 31
60480 . (5.31)

The standard value for E0 (see, e.g. [27]) can again be computed in terms of Hurwitz zetas
and their relation with Bernoulli polynomials, this time through a lengthier calculation.
The degeneracy (n+1)(n+2)2(n+3)

12 needs to be expanded in powers of (n + 2 + a)

2E0 =
∞∑

n=0

(n + 1 )(n + 2)2 (n + 3)
12 (n + 2 + a)

= 1
12 ζH(−5, 2 + a)− 1

3a · ζH(−4, 2 + a) + 6a2 − 1
12 · ζH(−3, 2 + a)

−a(2a2 − 1)
6 · ζH(−2, 2 + a) + a2(a2 − 1)

12 · ζH(−1, 2 + a)

= −84a6 − 210a4 + 31
30240 . (5.32)

The same happens again for the temperature-shifted Laplacian Ka. The partition functions
turn out to be dominated by the vacuum energy

E0 = 1
2β

MA(D + a, D − a) = − 31
60480 . (5.33)
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6 On Shintani’s proof of the Kronecker limit formula

Let us consider the zeta function

ξ(s, w, τ ) =
∑

m,n∈Z
|m + n τ + w|−2s , (6.1)

with τ and w complex, assuming Im(τ) > 0 and m + n τ + w ̸= 0 to avoid a null term.4

The version of the Kronecker (second) limit formula for the derivative with respect to s at
s = 0, rather than for the value at s = 1 (cf. [28]), as worked out by Shintani [6] consists
in the following closed expression for the ζ-regularized product

ξ′(0, w, τ) = − log
∣∣∣∣ϑ(w, τ)

η(τ) e
iπw(w−w̄)

τ−τ̄

∣∣∣∣2 (6.2)

where Dedekind’s eta and Jacobi’s eta functions are given by

η(τ) = eiπ τ
12

∞∏
n−1

(1− e2πiτ ), (6.3)

ϑ(w, τ) = 2eiπ τ
6 sin(πw)η(τ)

∞∏
n=1

(1− e2πi(nτ+w))(1− e2πi(nτ−w)) . (6.4)

Shintani’s approach proceeded by first splitting up the double sum

ξ(s, w, τ ) =
∑

m,n≥0

{
|m + n τ + w|−2s + |m − n τ + 1− w|−2s (6.5)

+|m − n τ + w − τ |−2s + |m + n τ + 1− w + τ |−2s
}

,

followed by splitting the regularized products on each term ‘liberating’ the Barnes’ gamma
factors and paying the price of the multiplicative anomaly5

−ξ′(0, w, τ) = − log |Γ2(w|1, τ) Γ2(1− w|1,−τ) Γ2(w − τ |1,−τ) Γ2(1− w + τ |1, τ)|2

+MA(D(w,τ), D(w,τ)) + MA(D(1−w,−τ), D(1−w,−τ))
+MA(D(w−τ,−τ), D(w−τ ,−τ)) + MA(D(1−w+τ,τ), D(1−w+τ ,τ))

= − log |Γ2(w|1, τ) Γ2(1− w|1,−τ) Γ2(w − τ |1,−τ) Γ2(1− w + τ |1, τ)|2

+ iπ
τ − τ

τ τ
· B2

(
τ w − τ w

τ − τ

)
. (6.6)

The reflection formula for Barnes double gamma (see, e.g. proposition 6.1 in [8]) came
into play here to further reduce to infinite convergent products (further recast in terms of

4The case w = Z + Z τ can be readily obtained by carefully suppressing the zero factor in the final
expression.

5The relevant anomaly is MA(D(w,τ), D(z,τ)) = τ−τ
4τ τ

· B2( τ z−τ w
τ−τ

) · (log τ − log τ). The appropriate log-
branch for opposite quasi-periods −τ and −τ requires log(−τ) = −iπ + log(τ) and log(−τ) = iπ + log(τ),
respectively.
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Jacobi theta and Dedekind eta functions)

− log |Γ2(w|1, τ) Γ2(1− w|1,−τ) Γ2(w − τ |1,−τ) Γ2(1− w + τ |1, τ)|2

= log
∏

m≥0
|(1− e2π i(w+mτ))(1− e2π i(τ−w+mτ))|2

+ {iπζ2(0, w|1, τ) + iπζ2(0, 1− w + τ |1, τ) + c.c.} . (6.7)

Let us now examine the consequence of having chosen a different splitting, locating
the m = 0 term of the initial sum in the second and fourth terms

ξ(s, w, τ ) =
∑

m,n≥0

{
|m + n τ + 1 + w|−2s + |m − n τ − w|−2s (6.8)

+|m − n τ + 1 + w − τ |−2s + |m + n τ − w + τ |−2s
}

.

For the ζ-regularized product, after ‘liberating’ the Barnes’ gamma factors and paying the
price of the multiplicative anomaly, we now obtain

−ξ′(0, w, τ) = − log |Γ2(1 + w|1, τ) Γ2(−w|1,−τ) Γ2(1 + w − τ |1,−τ) Γ2(−w + τ |1, τ)|2

+MA(D(1+w,τ), D(1+w,τ)) + MA(D(−w,−τ), D(−w,−τ))
+MA(D(1+w−τ,−τ), D(1+w−τ ,−τ)) + MA(D(−w+τ,τ), D(−w+τ ,τ))

= − log |Γ2(1 + w|1, τ) Γ2(−w|1,−τ) Γ2(1 + w − τ |1,−τ) Γ2(−w + τ |1, τ)|2

+ iπ
τ − τ

τ τ
· B2

(
−τ w − τ w

τ − τ

)
. (6.9)

Notice the subtle difference in the multiplicative anomaly, the argument of the Bernoulli
polynomial comes out with the opposite sign. The reflection formula for Barnes double
gamma produces the very same infinite convergent products (further recast in terms of
Jacobi theta and Dedekind eta functions) but different zeta prefactors

− log |Γ2(1 + w|1, τ) Γ2(−w|1,−τ) Γ2(1 + w − τ |1,−τ) Γ2(−w + τ |1, τ)|2

= log
∏

m≥0
|(1− e2π i(w+mτ))(1− e2π i(τ−w+mτ))|2

+ {iπζ2(0, 1 + w|1, τ) + iπζ2(0,−w + τ |1, τ) + c.c.} . (6.10)

Had we been a little cavalier concerning the multiplicative anomaly and not included
it in the first place, we would then have had a discrepancy for the ζ-regularized products
depending on the initial splitting.6 The apparent discrepancy would be the difference
between the Barnes zeta terms7 in the exponentials:

{iπζ2(0, w|1, τ) + iπζ2(0, 1− w + τ |1, τ) + c.c.}
−{iπζ2(0, 1 + w|1, τ) + iπζ2(0,−w + τ |1, τ) + c.c.}

= −2iπ

{
w

τ
− w

τ

}
. (6.11)

6This is very reminiscent of the two different prescriptions in the ‘one-step’ regularization of the infinite
products with two complex quasi-periods of [29]. In our particular case, the possible discrepancy in the
final answer for any choice of the splitting is cured by the multiplicative anomaly.

7The difference is easily computed due to the recurrence relation for Barnes multiple zetas (cf. eq. 1.2
in [20]) ζ2(0, w|1, τ) − ζ2(0, 1 + w|1, τ) = ζ1(0, w|τ) = 1

2 − w
τ

.
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However, by taking into consideration the additional term given by the multiplicative
anomaly we have an additional contribution

iπ
τ − τ

τ τ
· B2

(
τ w − τ w

τ − τ

)
− iπ

τ − τ

τ τ
· B2

(
−τ w − τ w

τ − τ

)
= 2iπ

{
w

τ
− w

τ

}
, (6.12)

that exactly cancels the mismatch and yields a unique answer for the ζ-regularized product,
i.e., the Kronecker second limit formula. In all, one can say that what saves the day is
precisely the role of the multiplicative anomaly.

7 Application: Casimir energy for GJMS operators

It is known that there are two alternative factorizations of the GJMS operators on S1
β×Sn−1

in terms of shifted conformal Laplacian (see, e.g., [17, 18, 30]), given by

P2k =
k∏

j=1

{
−∂ 2

o + (
√
∆0 + 2j − k − 1)2

}
=

k∏
j=1

{
−(i

√
−∂2

o + 2j − k − 1) 2 + ∆0

}
(7.1)

It is worth noticing that the factorization of the eigenvalues into linear factors is unique,
but two different pairings lead to the two alternative quadratic factorizations into shifted
conformal Laplacians.

The conventional computation of the one-loop partition function, or functional deter-
minant, yields different results for the Casimir energy under ζ-regularization. However,
in this section, we will show their equivalence once the multiplicative anomaly is properly
taken into account.

Let us first compute the accumulated Casimir energy for the shifted conformal Lapla-
cian factors and then add up the corresponding multiplicative anomaly among them. The
latter is given by the averaged multiplicative anomaly between all possible pairings by the
pairwise-accumulative property.

7.1 Two-torus

Factorization with spatial shift. The standard Casimir energy for the GJMS operator
is simply the sum of the individual ones (eq. (5.9))

E
(k)
0 =

k∑
j=1

−6(2j − k − 1)2 + 1
12 = −1

6k3 + 1
12k . (7.2)

Notice the conflict for k > 1 with the universal relation for a two-dimensional CFT where
E0 = − c

12 , since the central charge for the GJMS operators in 2D is k3 (see, e.g. [31–33]).
Let us include now the correction to the Casimir energy coming from the multiplicative

anomaly between the shifted conformal Laplacian. The multiplicative anomaly, being
pairwise accumulative, equals the average among all pairs

1
k

∑
1≤j,l≤k

MA(Y(2j−k−1), Y(2l−k−1)) . (7.3)
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Plugging in eq. (5.6), we get
MA = β ·

(1
6k3 − 1

6k

)
. (7.4)

For the GJMS operator, the improved Casimir energy becomes

Ẽ
(k)
0 = E

(k)
0 + 1

2β
MA = −k3

12 , (7.5)

restoring the universality.

Factorization with temperature shift. For the alternative factorization, the standard
Casimir energy for the GJMS operator is again the sum of the individual ones (eq. (5.11))

E
(k)
0 =

k∑
j=1

(
− 1
12

)
= − 1

12k . (7.6)

Again the result is in conflict for k > 1 with the expectation for a CFT2. Including now
the corrections to the Casimir energy coming from the multiplicative anomaly between the
shifted conformal Laplacian

1
k

∑
1≤j,l≤k

MA(K2j−k−1), K(2l−k−1)) , (7.7)

and plugging in eq. (5.7), we get instead

MA = −β ·
(1
6k3 − 1

6k

)
. (7.8)

For the GJMS operator, the improved Casimir energy becomes

Ẽ
(k)
0 = E

(k)
0 + 1

2β
MA = −k3

12 , (7.9)

restoring the universality and the agreement between the two factorizations.
We find out another remarkable fact, readily verified in this case by using eq. (5.3),

Ẽ
(k)
0 = 1

2β

1
k

∑
1≤j,l≤k

MA(D(2j−k−1), D(2l−k−1)) . (7.10)

The common value for the improved Casimir energy can also be obtained as
the multiplicative anomaly among all linear factors that build up the GJMS
operator, this decomposition being unique.

7.2 S1
β × S3

Factorization with spatial shift. The standard Casimir energy for the GJMS operator
(cf. [30]) is simply given by the sum of the individual ones (eq. (5.20))

E
(k)
0 =

k∑
j=1

−10 (2j − k − 1)4 − 1
240 = −k

(
6k4 − 20k2 + 11

)
720 . (7.11)
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We now include the corrections to the Casimir energy from the multiplicative anomaly
between the shifted conformal Laplacian. The multiplicative anomaly, being the average
among all pairs, equals

1
k

∑
1≤j,l≤k

MA(Y(2j−k−1), Y(2l−k−1)) . (7.12)

Plugging in eq. (5.17), we obtain

MA = β · k
(
k2 − 1

) (
4k2 − 11

)
360 . (7.13)

For the GJMS operator, the improved Casimir energy becomes

Ẽ
(k)
0 = E

(k)
0 + 1

2β
MA = −k3 (2k2 − 5

)
720 . (7.14)

Factorization with temperature shift. For the alternative factorization, the standard
Casimir energy for the GJMS operator is again the sum of the individual ones (eq. (5.22))

E
(k)
0 =

k∑
j=1

1
240 = k

240 . (7.15)

We now include the corrections to the Casimir energy coming from the multiplicative
anomaly between the shifted conformal Laplacian

1
k

∑
1≤j,l≤k

MA(K(2j−k−1), K(2l−k−1)) . (7.16)

Plugging in eq. (5.18), we obtain instead

MA = −β
k
(
k2 − 1

) (
2k2 − 3

)
360 . (7.17)

For the GJMS operator, the improved Casimir energy then becomes

Ẽ
(k)
0 = E

(k)
0 + 1

2β
MA = −k3 (2k2 − 5

)
720 , (7.18)

attaining agreement between the two factorizations. Again this common value for the
improved Casimir energy can also be obtained as the multiplicative anomaly (eq. (5.14))
among all linear factors that build up the GJMS operator.

To discuss yet another feature of this improved Casimir energy, we make a brief digres-
sion here. In a four-dimensional CFT, according to Cappelli and Coste [26], the Casimir
energy is related to the coefficients of the trace anomaly

Eo = 3
4

(
a + 1

2g

)
, (7.19)

where a is the type-A central charge and g is the coefficient of the total derivative in

(4π)2⟨T ⟩ = −a E4 + c W 2 + g ∇2R . (7.20)
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The total derivative term is what makes the Casimir energy scheme dependent. For free
conformal fields, the trace anomaly can be read off from the heat kernel coefficients. For
example, sticking to zeta-regularization, for the conformal Laplacian one finds

[ a , c , g ] =
[ 1
360 ,

1
120 ,

1
180

]
(7.21)

and the Casimir energy E0 = 1
240 . For the Paneitz operator, in turn,

[ a , c , g ] =
[
− 7
90 , − 1

15 ,
1
15

]
(7.22)

the standard Casimir energy E
(2)
o = −3/40 fails to comply with the Capelli-Coste relation,

whereas it surprisingly holds for the improved Casimir energy Ẽ
(2)
o = −1/30. Unfortu-

nately, even the first few heat coefficients for higher-derivative operators remain largely
unknown, and total derivative terms are usually discarded. One notable exception is
Branson’s computation for the Paneitz operator [34],8 from where we extracted the value
g = 1/15 above.9 Our prediction then is that the coefficient of the total derivative term in
the heat kernel coefficient for GJMS operators is the one related to the improved Casimir
energy via the Cappelli-Coste relation.

7.3 S1
β × S5

Factorization with spatial shift. The standard Casimir energy for the GJMS operator
is given by the sum of the individual ones (eq. (5.31))

E
(k)
0 =

k∑
j=1

−84(2j−k−1)6−210(2j−k−1)4+31
60480 =−k

(
12k6−126k4+336k2−191

)
60480 .

(7.23)
Let us include now the corrections to the Casimir energy coming from the multiplicative
anomaly between the shifted conformal Laplacian. The multiplicative anomaly, being
pairwise accumulative, equals the average among all pairs

1
k

∑
1≤j,l≤k

MA(Y(2j−k−1), Y(2l−k−1)) . (7.24)

Plugging in eq. (5.28), we get

MA = β · k
(
k2 − 1

) (
9k4 − 89k2 + 191

)
30240 . (7.25)

The improved Casimir energy for the GJMS operator then becomes

Ẽ
(k)
0 = E

(k)
0 + 1

2β
MA = −k3 (3k4 − 28k2 + 56

)
60480 . (7.26)

8Actually, he reported for the heat coefficient [ (c − a)/2 , −2 a , −3g + 2a ] = [ 1/4 , 7 , −16 ]/45 in a
basis where he traded the Euler density by his Q-curvature, which contains itself also a total derivative (cf.
Lemma 2 and the subsequent evaluation at m = 4 in [34]). To compare with the trace anomaly, the heat
coefficient must be multiplied by two because of the quartic nature of the Paneitz operator.

9The same value can also be worked out from the expression found by Gusynin [35] for quartic operators.
We are grateful to L. Casarin for bringing this paper to our attention.
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Factorization with temperature shift. For the alternative factorization, the standard
Casimir energy for the GJMS operator is again the sum of the individual ones (eq. (5.33))

E
(k)
0 =

k∑
j=1

− 31
60480 = − 31k

60480 . (7.27)

We now include the corrections to the Casimir energy coming from the multiplicative
anomaly between the shifted conformal Laplacian

1
k

∑
1≤j,l≤k

MA(K2j−k−1), K(2l−k−1)) . (7.28)

Plugging in eq. (5.29), we get instead

MA = −k
(
k2 − 1

) (
3k4 − 25k2 + 31

)
β

30240 . (7.29)

For the GJMS operator, the improved Casimir energy becomes

Ẽ
(k)
0 = E

(k)
0 + 1

2β
MA = −k3 (3k4 − 28k2 + 56

)
60480 , (7.30)

achieving the agreement between the two factorizations. We stress again that this common
value for the improved Casimir energy can also be obtained as the multiplicative anomaly
(eq. (5.25)) among all linear factors that build up the GJMS operator.

8 Summary and outlook

We have succeeded in extending the Shintani-Mizuno expression for the multiplicative
anomaly of linear factors and used it to reproduce known results for Laplacians on spheres.
Regarding thermal partition functions for different factorizations of higher-derivative oper-
ators, we have shown they agree once the multiplicative anomaly is properly included. This
yields a modified (improved) Casimir energy that dominates the zero temperature limit.
In addition, we have found out that the standard Casimir energy for (shifted) Laplacians
precisely coincides with the multiplicative anomaly among the linear factors.10 For GJMS
operators, the improved Casimir energy restores the universal relation with the central
charge in two dimensions, whereas in four dimensions it reconciles with the Cappelli-Coste
relation for the Paneitz operator. Although established for the case of scalar Laplacians
and their conformal powers (GJMS operators), this may well hold for Laplacians and
higher-derivative operators on vector, tensor, and even higher-spin fields.

Regarding the ambiguity of the Casimir energy in four (and higher even) dimensions,
it can be traced back to local finite counterterms which are the conformal primitives of the
trivial total derivatives or trivial anomalies in the trace anomaly. On the conformally flat

10Remarkably, this role of the multiplicative anomaly can already be appreciated in Kronecker limit for-
mula and the determinant of the Laplacian on the torus, as stressed in [36]. The product of the determinants
of the linear factors differs from that of the Laplacian by a multiplicative anomaly, although not captured
by Wodzicki’s formula.
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S1
β ×Sn−1 backgrounds, the universal part of the Casimir energy that depends on the type-

A central charge is already known [39], but this is only valid in a particular regularization
scheme where all trivial divergences in the trace anomaly are discarded. This scheme
certainly differs from ζ regularization, which produces a particular combination of trivial
total derivatives. In 4D the ambiguity is controlled by the coefficient g of ∇2R in the trace
anomaly, as shown by Capelli and Coste [26]

Eo = 3
4a + 3

8g . (8.1)

In 6D things are more complicated, there is a basis of six independent trivial anomalies [40]
and the universal part obtained by Herzog and Huang [39] must be supplemented by the
coefficients of these trivial total derivatives. Prompted by the result of Cappelli and Coste
in 4D, we have obtained the following extension to 6D (further details11 will be given
elsewhere [42])

Eo = −15
8 a − 5

12

(
g5 +

1
4g7 +

1
2g8 − 10g9 + g10

)
, (8.2)

where a is the 6D type-A trace anomaly coefficient and the g’s are the coefficients of the
six independent trivial anomalies M5, M6, M7, M8, M9 and M10 of [40]. Alternatively, in a
6D conformally flat background, the above basis is redundant and one can simplify further
to get, in terms of the Schouten scalar J and the Schouten tensor V , Branson’s basis (see,
e.g. [15]) for trivial total derivatives ∇2∇2J , ∇2J2 and ∇2|V |2 with coefficients γ1, γ2 and
γ3, respectively,

Eo = −15
8 a − 1

192 (8γ1 − 8γ2 + 11γ3) . (8.3)

The matching we have found between the multiplicative anomaly and Casimir energy in
4D and 6D holds whenever the Casimir energy is computed in ζ regularization and the
trivial total derivative coefficients are obtained as well via heat kernel in ζ regularization.
For GJMS operators, in particular, the heat kernel computation should produce coefficients
g’s that match the improved Casimir energy. This claim remains a prediction for other
than the conformal Laplacian or Yamabe operator, except for the Paneitz operator in 4D
where the explicit coefficients have been worked out and the matching, via Cappelli-Coste
relation, was successfully verified.

As for the physical interpretation, the Casimir energy in 4D and 6D remains ambigu-
ous due to the above-mentioned trivial total derivatives terms in the trace anomaly. We
emphasize that the equivalence we found applies to a particular regularization scheme (ζ

regularization), so that the inclusion of the multiplicative anomaly can be traced back
to the addition of a precise combination of finite local counterterms. There is certainly
no new physics in the inclusion of the multiplicative anomaly; however, if one sticks to
ζ regularization then consistency and conformity with trivial total derivatives, regardless
factorization choices, demands a proper account of the multiplicative anomaly.

11We have verified the validity of this expression in all 6D cases considered in [41], where the coefficients
g’s were computed via heat kernel, against the Casimir energies computed in [27].
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There are several instances where the role of the multiplicative anomaly seems worth
to be revisited. A prominent example is the supersymmetric version of the Casimir en-
ergy [37] that ought to be physical and connected with the central charges of the CFT. A
multiplicative anomaly might turn up in the traditional manipulation of one-loop functional
determinants, as shown in Shintani’s derivation of the Kronecker limit formula (section 6)
and the example in B, as well as with the inclusion of higher-derivative multiplets [38].

Finally, it seems natural to ask whether the multiplicative anomaly and its connection
with the CFT Casimir energy may find its place in a dual holographic counterpart.
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A Bernoulli polynomials of higher degree

Let us write down the explicit form of the first few Bernoulli polynomials of higher degree
that enter the integral formula. The generating function

tn e−w t∏n
i=1 {1− e−ai t}

=
∞∑

l=0
Bn,l(w|⃗a) tl

l! , (A.1)

determines the polynomial Bn,l(w|⃗a). The explicit expressions up to order five are the
following

B1,1(w|a) = 1
2 − w

σ1
, (A.2)

B2,2(w|a1, a2) = σ2
1 + σ2
6σ2

− σ1
σ2

w + w2

σ2
, (A.3)

B3,3(w|a1, a2, a3) = σ1σ2
4σ3

− σ2
1 + σ2
2σ3

w + 3σ1
2σ3

w2 − w3

σ3
, (A.4)

B4,4(w|a1, a2, a3, a4) = 4σ2
1σ2 + 3σ2

2 − σ4
1 + σ1σ3 − σ4

30σ4
− σ1σ2

σ4
w + σ2

1 + σ2
σ4

w2

−2σ1
σ4

w3 + w4

σ4
, (A.5)

B5,5(w|a1, a2, a3, a4, a5) = −σ1(σ2
1σ2 − 3σ2

2 + σ1σ3 − σ4)
12σ5

−4σ2
1σ2 + 3σ2

2 − σ4
1 + σ1σ3 − σ4

6σ5
w

+5σ1σ2
2σ5

w2 − 5σ2
1 + σ2
3σ5

w3 + 5σ1
2σ5

w4 − w5

σ5
. (A.6)
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where the σ′s are the elementary symmetric functions

σk =
∑

1≤r1<r2<...rk≤n

ar1ar2 . . . ark
. (A.7)

B Barnes multiple gammas and reflection formulas

Let us try to emulate Shintani’s derivation of the Kronecker limit formula in the case of
two quasi-complex periods and examine the role of the multiplicative anomaly. Consider
the zeta function

ξ(s, w|τ, σ) =
∑

m∈Z;n,l≥0
|m + n τ + l σ + w|−2s , (B.1)

with τ, σ and w complex, assuming ℑ(τ) > 0,ℑ(σ) > 0 and m+ n τ + l σ +w ̸= 0 to avoid
a null term. Splitting up the sum over integer m as

ξ(s, w|τ, σ) =
∑

m,n,l≥0

{
|m + n τ + l σ + w|−2s + |m − n τ − l σ + 1− w|−2s

}
, (B.2)

and hence the regularized products can be written in terms of Barnes gamma factors by
paying the price of the multiplicative anomaly12

−ξ′(0, w|τ, σ) = − log |Γ3(w|1, τ, σ) Γ3(1− w|1,−τ,−σ)|2

+MA(D(w,τ,σ), D(w,τ,σ)) + MA(D(1−w,−τ,−σ), D(1−w,−τ ,−σ))
= − log |Γ3(w|1, τ, σ) Γ3(1− w|1,−τ,−σ)|2

−2πi
τ(w − σ+1

2 )− (w − σ+1
2 )τ

6ττ(τ − τ)(τσ − στ)

{[
τ

(
w − σ + 1

2

)
−
(

w − σ + 1
2

)
τ

]2

−(τσ − στ)2

4 − (τ − τ)2

4

}
+
{(

τ

τ

)
↔
(

σ

σ

)}
. (B.3)

The reflection formula for Barnes double gamma (see, e.g. proposition 6.1 in [8]) comes
into play here to further reduce to infinite convergent products

− log |Γ3(w|1, τ, σ) Γ3(1− w|1,−τ,−σ)|2 (B.4)

= log
∏

m,n≥0
|1− e2π i(w+mτ+nσ)|2 + {iπζ3(0, w|1, τσ) + c.c.} .

Let us now examine the consequence of having chosen a different splitting, locating the
m = 0 term of the initial sum in the second term

ξ(s, w|τ, σ) =
∑

m,n,l≥0

{
|m + n τ + l σ + 1 + w|−2s + |m − n τ − l σ − w|−2s

}
. (B.5)

12The multiplicative anomaly MA(D(w,τ,σ), D(w,τ,σ)), as computed with the generalized Shintami-Mizuno

formula, is given by τ(w− σ+1
2 )−(w− σ+1

2 )τ

6ττ(τ−τ)(τσ−στ)

{
[τ(w − σ+1

2 ) − (w − σ+1
2 )τ ]2 − (τσ−στ)2

4 − (τ−τ)2

4

}
(log τ −

log τ) +
{(

τ
τ

)
↔
(

σ
σ

)}
.
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For the ζ-regularized product, after ‘liberating’ the Barnes’ gamma factors and paying the
price of the multiplicative anomaly, we obtain now

−ξ′(0, w|τ, σ) = − log |Γ3(1 + w|1, τ, σ) Γ3(−w|1,−τ,−σ)|2

+MA(D(1+w,τ,σ), D(1+w,τ,σ)) + MA(D(−w,−τ,−σ), D(−w,−τ ,−σ))
= − log |Γ3(1 + w|1, τ, σ) Γ3(−w|1,−τ,−σ)|2

−2πi
τ(w − σ−1

2 )− (w − σ−1
2 )τ

6ττ(τ − τ)(τσ − στ)

{[
τ

(
w − σ − 1

2

)
−
(

w − σ − 1
2

)
τ

]2

−(τσ − στ)2

4 − (τ − τ)2

4

}
+
{(

τ

τ

)
↔
(

σ

σ

)}
(B.6)

Notice the subtle difference in the multiplicative anomaly. The reflection formula
for Barnes’ double-Γ produces the very same infinite convergent products, but different
exponential prefactors

− log |Γ3(1 + w|1, τ, σ) Γ3(−w|1,−τ,−σ)|2 (B.7)
= log

∏
m,n≥0

|1− e2π i(w+mτ+nσ)|2 + {iπζ3(0, 1 + w|1, τ, σ) + c.c.} .

The apparent discrepancy would be the difference between the Barnes zeta terms13 in the
exponentials:

{iπζ3(0, w|1, τ, σ) + c.c.} − {iπζ3(0, 1 + w|1, τ, σ) + c.c.}

= iπ

{
w2

2τσ
− w2

2τσ
− τ + σ

2τσ
w + τ + σ

2τσ
w + τ2 + σ2

12τσ
− τ2 + σ2

12τσ

}
. (B.8)

Nonetheless, by taking into consideration the additional term given by the multiplicative
anomaly we have an additional contribution that exactly cancels the mismatch and yields
a unique answer for the ζ-regularized product.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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