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1 Introduction

Soft radiation is an important topic in the context of gauge theories. In the abelian case of
QED, soft photons are physical and complicate the definition of the scattering operator. In
the non-abelian case, in particular in QCD, gauge bosons are not physical in the confining
phase, and the presence of a mass gap protects from soft singularities. However, in the
context of factorisation, which allows to obtain cross sections as a convolution of a non-
perturbative contribution and a contribution that involves massless partons, the problem
appears again. In either case, abelian and non-abelian, it is necessary to have a complete
description of the leading singular soft asymptotics in order to obtain meaningful theoretical
predictions for scattering and decay processes. This problem has been studied since the early
days of Quantum Field Theory and is nowadays textbook material. While the subleading
behaviour of scattering amplitudes in the soft limit is not necessary to obtain finite cross
sections, it is nevertheless of interest due to the ever increasing precision of measurements
at lepton and hadron colliders. First attempts at a general description in QED date back
to the seminal works of Low [1], Burnett and Kroll [2]. Later, it was understood by Del
Duca [3] that the description cannot be complete beyond tree-level without taking into
account collinear virtual states.
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Recently, there has been a surge of interest in next-to-leading power (subleading)
soft phenomena within resummation formalisms based on Soft-Collinear Effective Theory
(SCET) [4–6] (see also related studies in gravity [7–9]) and diagrammatic approaches to
QCD [10, 11]. The main goal of the studies was the inclusion of subleading effects in the
description of simple processes with a minimal number of partons, for example the Drell-Yan
process. Even in this case, there were surprises and some assumptions on the structure
of the soft expansion turned out to be wrong. For instance, the analysis of ref. [3] that
introduced collinear radiation into the picture, was shown to be incomplete.

A different motivation for studying subleading soft effects in QED with massive fermions
guided refs. [12, 13]. Here, the idea was to use soft approximations of squared matrix
elements to obtain numerically stable predictions for lepton scattering with account of soft
photons and light leptons.

Our goal in the present publication is to understand the structure of the next-to-leading-
power soft expansion at the one-loop level in QCD. On the one hand, the general expression
that we derive allows to put resummation formalisms for multi-parton processes on a firm
footing. On other hand, this expression can be used to improve the numerical stability of
matrix elements in software implementations.

In our analysis, we stress not only the importance of the Ward identity for the soft
gluon — as did the pioneers — but also of gauge-invariance of the occurring amplitudes.
This leads to astonishingly simple expressions for the building blocks of the expansion: soft
and jet operators. The cancellations that we observe remove contributions that are expected
to be present based on pure power-counting arguments, for example transverse-momentum
derivatives of amplitudes in the collinear limit, see refs. [14, 15]. Furthermore, we put
special emphasis on a deep understanding of the collinear asymptotics. As a side effect, we
obtain a novel formula for the next-to-leading power expansion of tree-level amplitudes in
the collinear limit.

The publication is organised as follows. In the next section we define the main concepts
and recall the colour/spin-space formalism that proves to be very useful in the present
context. We define spin-space operators that encapsulate all spin effects at next-to-leading
power. We also take great care to define the kinematics of the soft limit to the level of detail
required in a numerical application. In section 3, we reproduce the Low-Burnett-Kroll result
for QCD, and summarise its features that have been understood in previous studies. We
use, nevertheless, our original notation that will prove its power at the one-loop level. In
section 4, we state our main result, present a complete proof, and describe numerical tests.
Finally, in section 5, we state our result for the next-to-leading-power collinear asymptotics.
An outlook section closes the text and discusses some obvious further directions of research.

2 Definitions

2.1 Processes and amplitudes

Consider the process:

0 Ñ a1pp1` δ1, σ1, c1q` ¨ ¨ ¨`anppn ` δn, σn, cnq`gpq, σn`1, cn`1q , ai P tq, q̄, gu . (2.1)
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The momenta pi ` δi of the hard partons are defined as outgoing, and may thus have
negative energy components if the respective parton is actually incoming in the physical
process under consideration. The soft gluon with momentum q is outgoing, q0 ą 0. The
momenta are assumed on-shell:

p2i “ ppi ` δiq
2 “ m2

i , q2 “ 0 , (2.2)

where mi is the mass of parton i. The momentum shifts, δi, are introduced to ensure that
the two sets of momenta, ttpi ` δiu

n
i“1, qu and tpiu

n
i“1, both satisfy momentum conservation

by requiring:
ÿ

i

pi “ 0 ,
ÿ

i

δi ` q “ 0 . (2.3)

Notice that eqs. (2.2) and (2.3) are more restrictive than necessary for a physical process.
The additional constraints are used to define the soft limit. Contrary to the hard momenta,
pi, every component of the momentum shifts and every component of the soft-gluon
momentum is assumed to be of the order of the soft-expansion parameter λ:

pµ
i “ Op1q “ O

`

λ0
˘

" λ , δµ
i “ Opλq , qµ “ Opλq . (2.4)

Finally, pi and q are assumed well separated in angular distance. It follows from eqs. (2.2)
and (2.4) that pi is orthogonal to δi in first approximation:

pi ¨ δi “ O
`

λ2
˘

. (2.5)

The polarisation and colour state of each parton is denoted by σi and ci respectively. The
polarisation of massive partons may be defined as rest-frame spin, whereas that of massless
partons corresponds to helicity.

The results of this publication are equally valid in the case of quarks of different
flavours as well as in the presence of colour-neutral particles, as long as flavour and colour
summations have been appropriately adapted.

A scattering amplitude, Mfi, is defined through the decomposition of the scattering
matrix Sfi:

Sfi “ δfi ´ i p2πq4δp4qppf ´ piqMfi , (2.6)

where i and f stand for initial and final state, and pi and pf for their respective momenta.
Eq. (2.6) unambiguously defines the sign of Mfi, which is necessary in the context of our
study. For instance, eqs. (4.33) and (4.46) contain products of amplitudes.

The scattering amplitude, Mgptpi ` δiu, q, tσiu, tciu, g
B
s q, for the process (2.1) is given

by an expansion in the bare strong coupling constant gB
s :

Mg ”
`

gB
s qn´1

„

M p0q
g `

µ´2ϵαB
s

p4πq1´ϵ
M p1q

g ` O
´

`

αB
s

˘2
¯

ȷ

, αB
s ”

pgB
s q2

4π , (2.7)

where ϵ is the parameter of dimensional regularisation with space-time dimension d ” 4´2ϵ.
Although we work with bare quantities, we have introduced the parameter µ with unit mass
dimension in order to retain the four-dimensional mass dimension of the amplitudes. In
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what follows, we allow for massive quarks at tree level. Hence, M p0q
g may depend on mi ‰ 0.

On the other hand, the soft expansion of the one-loop amplitude M p1q
g is only provided

in the massless case. The definition of Mg is completed once we assume that the external
states are four-dimensional, which corresponds to the ‘t Hooft-Veltman scheme within the
family of dimensional-regularisation schemes.

Finally, the expansion of the reduced scattering amplitude, Mptpiu, tσiu, tciu, g
B
s q, for

the process obtained from (2.1) by removing the soft gluon and setting the momentum
shifts to zero, is given by:

M ”
`

gB
s qn´2

„

M p0q `
µ´2ϵαB

s

p4πq1´ϵ
M p1q ` O

´

`

αB
s

˘2
¯

ȷ

. (2.8)

2.2 Colour/spin-space formalism

The soft expansion of sections 3 and 4 requires manipulation of the colour state of the hard
partons already at Op1{λq. Furthermore, subleading effects at order O

`

λ0
˘

require the
manipulation of the polarisation state of the hard partons. The formulae are simplified by
the use of the colour/spin-space formalism introduced in ref. [16]. This formalism relies on
abstract basis vectors:

|c1, . . . , cm;σ1, . . . , σmy ” |c1, . . . , cmy b |σ1, . . . , σmy , (2.9)

with either m “ n` 1 or m “ n in the present case. Accordingly, we define:1∣∣∣M plq
g ptpi ` δiu, qq

E

”
ÿ

tσiu

ÿ

tciu

M plq
g ptpi ` δiu, q, tσiu tciuq |c1, . . . , cn`1;σ1, . . . , σn`1y ,

(2.10)
and similarly for the reduced scattering amplitude:∣∣∣M plqptpiuq

E

”
ÿ

tσiu

ÿ

tciu

M plqptpiu, tσiu, tciuq |c1, . . . , cn;σ1, . . . , σny . (2.11)

The soft expansion at one-loop order, eq. (4.1), involves flavour off-diagonal contributions
that are identified by a replacement of a pair of partons, i and j, in the reduced scattering
amplitude w.r.t. to the original process (2.1). The replacement does not affect the momenta
of the partons. Since we do not introduce a flavour/colour/spin-space in the present
publication, the respective reduced amplitude will be denoted by:∣∣∣M plqptpiuq

ˇ

ˇ

ˇ

aiÑãi
ajÑãj

E

. (2.12)

In order to select amplitudes with a definite polarisation and colour of parton i, we
define the following surjection operator:

Pipσ,cq |. . . , ci´1, ci, ci`1, . . . ; . . . ,σi´1,σi,σi`1, . . .y” δσσiδcci |. . . , ci´1, ci`1, . . . ; . . . ,σi´1,σi`1, . . .y ,

(2.13)
and its specialisation:

Pgpσ, cq ” Pn`1pσ, cq . (2.14)

Furthermore, we define an operator that exchanges the quantum numbers of i and j:

Ei,j |. . . , ci, . . . , cj , . . . ; . . . , σi, . . . , σj , . . .y ” |. . . , cj , . . . , ci, . . . ; . . . , σj , . . . , σi, . . .y . (2.15)
1The µ dependence for l ą 0 is implicit.

– 4 –



J
H
E
P
1
2
(
2
0
2
3
)
1
2
6

2.3 Colour operators

The leading term of the soft expansion is expressed in terms of colour-space operators Tc
i :

Tc
i

∣∣. . . , c1i, . . .D ”
ÿ

ci

T c
ai,cic1i

|. . . , ci, . . .y , (2.16)

T c
g,ab “ ifacb , T c

q,ab “ T c
ab , T c

q̄,ab “ ´T c
ba . (2.17)

The structure constants fabc are defined by
“

Ta
i ,Tb

j

‰

“ ifabc Tc
i δij , while the fundamental-

representation generators, T c
ab, are normalised with Tr

`

T aT b
˘

“ TF δ
ab.

2.4 Spin operators

The subleading term of the soft expansion is expressed in terms of spin-space operators
Kµν

i :
Kµν

i

∣∣. . . , σ1i, . . .D ”
ÿ

σi

Kµν
ai, σiσ1

i
ppiq |. . . , σi, . . .y , (2.18)

with matrices Kµν
a, σσ1 that are anti-symmetric in µ, ν and hermitian in σ, σ1:

Kµν
a, σσ1 “ ´Kνµ

a, σσ1 , Kµν ˚

a, σσ1 “ Kµν
a, σ1σ . (2.19)

For p0 ą 0, i.e. for outgoing quarks, anti-quarks and gluons, these matrices are uniquely
defined by:2

ÿ

σ1

Kµν
q,σσ1ppq ūpp,σ

1q” Jµνppq ūpp,σq´
1
2 ūpp,σqσ

µν , σµν ”
i

2 rγ
µ,γνs ,

ÿ

σ1

Kµν
q̄,σσ1ppqvpp,σ

1q”

ˆ

Jµνppq`
1
2σ

µν

˙

vpp,σq ,

ÿ

σ1

Kµν
g,σσ1ppqϵ

˚
αpp,σ

1q”

´

Jµνppqgαβ`i
`

δµ
αδ

ν
β´δ

ν
αδ

µ
β

˘

¯

ϵβ˚pp,σq`terms proportional to pα ,

(2.20)
where Jµνppq is the generator of Lorentz transformations for scalar functions of p:

Jµνppq ” i
`

pµBν
p ´ pνBµ

p

˘

, Bµ
p ”

B

Bpµ
. (2.21)

Later, we will mostly use the shorthand notations:

Jµν
i ” Jµνppiq , B

µ
i ” Bµ

pi
. (2.22)

Definitions (2.20) may be rewritten in terms of bi-spinors and polarisation vectors of
incoming partons:

ÿ

σ1

Kµν ˚

q̄,σσ1ppqupp,σ
1q“´

ˆ

Jµνppq`
1
2σ

µν

˙

upp,σq ,

2These relations are a consequence of the Lorentz transformation properties of free fields, see for example
section 5.1 of ref. [17].
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ÿ

σ1

Kµν ˚

q,σσ1ppq v̄pp,σ
1q“´

ˆ

Jµνppq v̄pp,σq´
1
2 v̄pp,σqσ

µν

˙

,

ÿ

σ1

Kµν ˚

g,σσ1ppqϵαpp,σ
1q“´

´

Jµνppqgαβ`i
`

δµ
αδ

ν
β´δ

ν
αδ

µ
β

˘

¯

ϵβpp,σq`terms proportional to pα .

(2.23)

Due to our process definition (2.1), negative-energy momenta imply incoming partons.
Hence, we define:

Kµν
a,σσ1ppq ” ´Kµν ˚

ā,σσ1p´pq “ ´Kµν
ā,σ1σp´pq for p0 ă 0 . (2.24)

Since vpp, σq “ CūT pp, σq, with C the charge conjugation matrix, the matrices for
quarks and anti-quarks fulfil:

Kµν
q̄,σσ1ppq “ Kµν

q,σσ1ppq . (2.25)

This relation is consistent with the fact that spin and helicity have the same definition for
particles and anti-particles.

For a massive-quark bi-spinor, with spin defined in the rest-frame along the third axis,
transformed with a pure boost to reach momentum p from pµ

0 ” pm,0q, one finds:

Kµν
q,σσ1 “

ϵµναi
`

p` p0
˘

α
`

p` p0
˘0

τ i
σσ1

2 , (2.26)

where τ i
σσ1 , i “ 1, 2, 3 are the three Pauli matrices.

For massless partons, helicity conservation implies that Kµν
a,σσ1 is proportional to δσσ1 .

Assuming that bi-spinors and polarisation vectors for the two helicities are related by a
momentum-independent anti-linear transformation, one finds:

Kµν
a,σσ1 “ σ δσσ1 Kµν . (2.27)

Furthermore, it follows from the definitions (2.20) that pµK
µν
a,σσ1 “ 0 for p2 “ 0. Hence:

Kµν “ ϵµναβpαrβ , ϵ0123 ” `1 , (2.28)

for some r that we assume to be lightlike.3 In particular, if massless bi-spinors are defined
along the third axis and then rotated in the direction of p ” E

`

sinpθq cospφq, sinpθq sinpφq,
cospθq

˘

“ ERzpφqRypθqẑ with the composition of rotations RzpφqRypθqRzp´φq, then:

Kµνppq “
ϵµναβ pαp̄0β

p ¨ p̄0
, p̄µ

0 ” pE, 0, 0,´Eq . (2.29)

This result is also valid for polarisation vectors defined in the spinor-helicity formalism
using the same bi-spinors:

ϵ˚µpp,˘1q ” ˘
xp˘|γµ|k˘y
?
2 xk¯|p˘y

” ˘
ūpp,˘1

2q γµ upk,˘
1
2q?

2 ūpk,¯1
2qupp,˘

1
2q
, (2.30)

3If r2
‰ 0, then the replacement r Ñ r1

” r ´ r2p{2r ¨ p does not change eq. (2.28), while r12
“ 0.
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with an arbitrary lightlike reference vector k. If either the massless bi-spinors or the
polarisation vectors include an additional phase factor, e.g. ϵ1˚pp,`1q ” exppiϕppqq ϵ˚pp,`1q,
then Kµν is modified as follows:

K 1µν “ Kµν ` iJµνϕppq . (2.31)

With the spinor-helicity-formalism polaristion vectors, direct calculation yields:

ϵµpp,`1q ϵ˚νpp,`1q iKµν “ 1 . (2.32)

However, because of (2.31), this result is valid in general. Contractions with Kµν can be
efficiently evaluated with the help of:

iKµν “
ÿ

σ

sgnpσq ϵ˚µpp, σq ϵνpp, σq , (2.33)

with the polarisation vectors (2.30) assuming k “ r and r as in eq. (2.28).
Besides the spin operator Kµν

i , our results involve a simpler spin-dependent operator
that gives the sign of the product of the helicities of parton i and gluon n` 1:

Σg,i |. . . , σi, . . . , σy ” sgnpσσiq |. . . , σi, . . . , σy . (2.34)

2.5 Splitting operators

The soft expansion at one-loop order requires the collinear expansion of tree-level amplitudes
as stated in section 4.1 and proven in section 4.4. The latter expansion is expressed in terms
of splitting operators that act non-trivially in both colour and spin space. The splitting
operators are defined as follows:

xc1, c2;σ1, σ2|Splitp0qqg Ð qpk1, k2, kq|c;σy “ ´
1

2 k1 ¨ k2
T c2

c1c ūpk1, σ1q {ϵ
˚
pk2, σ2qupk, σq ,

(2.35)

xc1, c2;σ1, σ2|Splitp0qq̄g Ð q̄pk1, k2, kq|c;σy “ `
1

2 k1 ¨ k2
T c2

cc1 v̄pk, σq {ϵ
˚
pk2, σ2q vpk1, σ1q ,

(2.36)

xc1, c2;σ1, σ2|Splitp0qqq̄ Ð gpk1, k2, kq|c;σy “ ´
1

2 k1 ¨ k2
T c

c1c2 ūpk1, σ1q {ϵpk, σq vpk2, σ2q ,

(2.37)

xc1, c2;σ1, σ2|Splitp0qgg Ð gpk1, k2, kq|c;σy “ ´
1

2 k1 ¨ k2
if c1cc2

ˆ
`

` pk1 ` kq ¨ ϵ˚pk2, σ2q ϵ
˚pk1, σ1q ¨ ϵpk, σq

´ pk2 ` kq ¨ ϵ˚pk1, σ1q ϵ
˚pk2, σ2q ¨ ϵpk, σq

` pk2 ´ k1q ¨ ϵpk, σq ϵ
˚pk1, σ1q ¨ ϵ

˚pk2, σ2q
˘

.

(2.38)
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In order to simplify the notation, for example in (4.15) and (4.19), we also define the
following operator:

Splitp0qi,n`1Ð ippi, pn`1, p
1
iq

∣∣. . . , c1i, . . . ; . . . , σ1i, . . .D “

ÿ

σici

ÿ

σn`1cn`1

@

ci, cn`1;σi, σn`1
ˇ

ˇSplitp0qaian`1 Ð a1
i
ppi, pn`1, p

1
iq
ˇ

ˇc1i;σ1i
D

ˆ |. . . , ci, . . . , cn`1; . . . , σi, . . . , σn`1y , (2.39)

where a1i is parton i corresponding to the ket on the left-hand side, and ai, aj are partons
i,j corresponding to the ket on the right-hand side of (2.39). In general a1i ‰ ai, as for
example in (4.19).

3 Low-Burnett-Kroll theorem for tree-level QCD

The leading and subleading term of the soft expansion, i.e. expansion in λ, of the tree-level
amplitude

∣∣∣M p0q
g ptpi ` δiu, q, σ, cq

E

are given by the QCD generalisation [18–20] of the
Low-Burnett-Kroll (LBK) theorem [1, 2] originally proven for QED:4∣∣∣M p0q

g ptpi`δiu, qq
E

“Sp0qptpiu,tδiu, qq
∣∣∣M p0qptpiuq

E

`Opλq , (3.1)

Pgpσ,cqSp0qptpiu,tδiu, qq“´
ÿ

i

Tc
ibSp0q

i ppi, δi, q,σq
∣∣∣M p0qptpiuq

E

, (3.2)

Sp0q
i “

pi ¨ϵ
˚

pi ¨q
`

1
pi ¨q

„ˆ

ϵ˚´
pi ¨ϵ

˚

pi ¨q
q

˙

¨δi`pi ¨ϵ
˚
ÿ

j

δj ¨Bj`
1
2Fµν

´

Jµν
i ´Kµν

i

¯

ȷ

, (3.3)

with:
xqσc|Aa

µp0q|0y “ δcaϵ˚pq, σq ,

xqσc|F a
µνp0q|0y “ δcai

`

qµϵ
˚
νpq, σq ´ qνϵ

˚
µpq, σq

˘

” δcaFµνpq, σq ,
(3.4)

where Aa
µpxq and F a

µνpxq are the gluon field and the respective field-strength tensor, while
|qσcy is a single-gluon state with momentum q, polarisation σ and colour c.

3.1 Derivation and constraints

Most of the terms in eq. (3.3) are obtained by extending the eikonal approximation to one
order higher in λ. Indeed, consider the diagram of figure 1. The leading term as well as
the first term in the square bracket of eq. (3.3) are due to the expansion of the eikonal
approximation taken with the original momentum, pi ` δi, of the hard-parton, i.e. outgoing
quark in figure 1:

ppi ` δiq ¨ ϵ
˚

ppi ` δiq ¨ q
“
pi ¨ ϵ

˚

pi ¨ q
`

1
pi ¨ q

ˆ

ϵ˚ ´
pi ¨ ϵ

˚

pi ¨ q
q

˙

¨ δi ` Opλq . (3.5)

4The sign in eq. (3.2) is a consequence of our convention for the strong coupling constant: we assume
that the quark-gluon interaction term in the Lagrangian is `gB q̄ {A

a
T aq.
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ū(pi + δi, σi)

q, σ, c

pn + δn

p1 + δ1
pi + δi + q

Figure 1. External-emission diagram that yields a contribution to the eikonal approximation in the
case of an outgoing quark.

The second term in the square bracket in eq. (3.3) is due to the expansion of the reduced
scattering amplitude represented by the shaded circle in figure 1 in δj , j “ 1, . . . , n. The
additional expansion of this amplitude in q is taken into account by the first term on the
right-hand side of:

1
2 pi ¨ q

FµνJ
µν
i “

pi ¨ ϵ
˚

pi ¨ q
q ¨ Bi ´ ϵ˚ ¨ Bi . (3.6)

The classic LBK argument that generates the second term on the right-hand side of the
above equation from the first term on the right-hand side, consists in requiring the soft
expansion to fulfil the (QED) Ward identity, i.e. transversality of the amplitude with respect
to the soft-gluon momentum. This accounts for emissions from the internal off-shell lines,
i.e. diagrams that do not have the structure of figure 1.

While spin effects can be obtained by explicit calculation of the expression for figure 1
and similarly for anti-quarks and gluons, there is a simpler argument that allows to
understand the result. From figure 1, we conclude that the external wave function, i.e.
bi-spinor for quarks and anti-quarks or polarisation vector for gluons, does not depend on
q. Hence, the differential operator q ¨ Bi in eq. (3.6) should not act on it. We thus have
to subtract the action of Jµν on the external wave function. The result should, however,
still contain a gauge-invariant amplitude with n hard partons. Thus, the subtracted term
can be at most a linear combination of amplitudes with different polarisations of the
hard parton ai, which leads to the replacement of Jµν

i by Jµν
i ´ Kµν

i in eq. (3.6). The
latter difference does not contain any derivatives when acting on external wave functions
according to eqs. (2.20). This argument has the virtue of applying at higher orders as well.
In consequence, the one-loop expression for the soft operator in eq. (4.2) also only contains
the combination Jµν

i ´ Kµν
i .

The soft expansion (3.1) is strongly constrained by Lorentz covariance and gauge
invariance (Ward identity) as has been discussed in great detail previously in ref. [20], albeit
only in the case of pure gluon amplitudes. Here, we would like to stress once more that the
process-dependent input on the r.h.s. of eq. (3.1), i.e. the amplitude

∣∣∣M p0qptpiuq
D

, is gauge
invariant on its own. This is not a trivial fact, since it does not naively apply in high-energy
factorization for example, see ref. [21] and references therein. In the present case, the
issue of gauge invariance is entangled with the issue of defining momentum derivatives in
eq. (3.3). Indeed, the amplitude

∣∣∣M p0qptpiuq
D

must be on-shell, and it thus only depends on
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the spatial components of the momentum vectors. The momentum derivatives in eq. (3.3),
on the other hand, also involve the energy component. Fortunately, eq. (3.3), hence also
eq. (3.1), is consistent with on-shellness since:

˜

ÿ

j

δj ¨ Bj

¸

p2i “ 2 δi ¨ pi “ 0 , Jµν
i p2i “ 0 , (3.7)

where we have used eq. (2.5) and neglected terms of higher order in λ. An additional
difficulty arises from the fact that eq. (3.3) involves derivatives in all of the momenta pi,
whereas the amplitude

∣∣∣M p0qptpiuq
D

is only a function of n´ 1 of them due to momentum

conservation. Since extension of
∣∣∣M p0qptpiuq

D

away from momentum conservation is not
unique, eq. (3.1) must be consistent with momentum conservation. This is indeed the case,
albeit colour-conservation is required for the proof:
„

Pgpσ, cqSp0qptpiu, tδiu, qq

ȷ

momentum
derivatives

|fpP qy “
ˆ

ϵ˚ ¨
B

BP

˙

ÿ

i

Tc
i |fpP qy “ 0 , P ”

ÿ

i

pi ,

(3.8)
where |fpP qy is invariant with respect to global gauge transformations and depends on the
sum of the momenta only. The importance of this result lies in the fact that the result for
the soft expansion in eq. (3.1) remains the same even if we eliminate one of the pi momenta
in

∣∣∣M p0qptpiuq
D

by momentum conservation. In fact, one can eliminate different pi’s in

different diagrams that contribute to
∣∣∣M p0qptpiuq

D

without affecting the final result.

3.2 Squared amplitudes

While the focus of this publication lies on amplitudes, we would like to point out the
simplifications that occur in the case of squared amplitudes summed over spin and colour.
The first simplification is the lack of spin effects already noted in ref. [2]. Indeed, squaring
eq. (3.1) and keeping only terms up to Op1{λq, leaves the following contribution containing
spin operators:

´i
ÿ

ij

pµ
i q

ν

pi ¨ q

A

M p0q
ˇ

ˇ

ˇ
Ti ¨ Tj b

`

Ki,µν ´ K:
i,µν

˘

ˇ

ˇ

ˇ
M p0q

E

“ 0 . (3.9)

This contribution vanishes because of the hermiticity, (2.19), of the spin operators. The sec-
ond simplification is the possibility [22] to include subleading soft effects through momentum
shifts as follows:

A

M p0q
g ptklu, qq

ˇ

ˇ

ˇ
M p0q

g ptklu, qq
E

“

´
ÿ

i‰j

˜

ki ¨kj

pki ¨qqpkj ¨qq
´

m2
i

2
`

ki ¨q
˘2´

m2
j

2
`

kj ¨q
˘2

¸

ˆ

A

M p0qptkl`δil∆i`δjl∆juq

ˇ

ˇ

ˇ
Ti ¨Tj

ˇ

ˇ

ˇ
M p0qptkl`δil∆i`δjl∆juq

E

`O
`

λ0
˘

, (3.10)

with:

ki ” pi ` δi ,

∆i ”
1
Nij

„ˆ

1´
m2

i

`

pj ¨ q
˘

`

pj ¨ pi

˘`

pi ¨ q
˘

˙

q `
pj ¨ q

pj ¨ pi
pi ´

pi ¨ q

pi ¨ pj
pj

ȷ

,
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∆j ”
1
Nij

«˜

1´
m2

j

`

pi ¨ q
˘

`

pi ¨ pj

˘`

pj ¨ q
˘

¸

q ´
pj ¨ q

pi ¨ pj
pi `

pi ¨ q

pi ¨ pj
pj

ff

,

Nij ” 2´
m2

i

`

pj ¨ q
˘

`

pj ¨ pi

˘`

pi ¨ q
˘ ´

m2
j

`

pi ¨ q
˘

`

pi ¨ pj

˘`

pj ¨ q
˘ . (3.11)

Notice that the momenta in the reduced scattering amplitude in eq. (3.10) satisfy momentum
conservation and are on-shell up to Opλq:

ÿ

l

kl ` δil∆i ` δjl∆j “ 0 ,
`

kl ` δil∆i ` δjl∆j

˘2
“ m2

l ` O
`

λ2
˘

. (3.12)

In fact, it is possible to add corrections of O
`

λ2
˘

to these momenta to make them exactly
on-shell.

4 Soft expansion of massless one-loop QCD amplitudes

4.1 Theorem

The main result of this publication is the following next-to-leading-power-accurate soft
expansion of a one-loop massless-QCD amplitude:
ˇ

ˇ

ˇ
M p1q

g ptpi`δiu, qq
E

“

Sp0qptpiu,tδiu, qq
∣∣∣M p1qptpiuq

D

`Sp1qptpiu,tδiu, qq
∣∣∣M p0qptpiuq

D

`

ż 1

0
dx

ÿ

i

Jp1q
i px,pi, qq

∣∣∣Hp0q
g,i px,tpiu, qq

E

`
ÿ

i‰j

ÿ

ãi‰ai
ãj‰aj

S̃p1q
aiaj Ð ãiãj , ijppi,pj , qq

∣∣∣M p0qptpiuq

ˇ

ˇ

ˇ

ai Ñ ãi
aj Ñ ãj

E

`

ż 1

0
dx

ÿ

i
ai“g

J̃p1q
i px,pi, qq

∣∣∣Hp0q
q̄,i px,tpiu, qq

E

`Opλq .

(4.1)

The soft operator Sp1qptpiu, tδiu, qq is an extension of the one-loop soft current, and is given
by the expansion through O

`

λ0
˘

of the r.h.s. of:

Pgpσ, cqSp1qptpiu, tδiu, qq ` Opλq “

2 rSoft
ϵ2

ÿ

i‰j

ifabcTa
i Tb

j b

˜

´
µ2s

pδq
ij

s
pδq
iq s

pδq
jq

¸ϵ«

Sp0q
i ppi, δi, q, σq

`
ϵ

1´ 2ϵ
1

pi ¨ pj

˜

pµ
i p

ν
j ´ pµ

j p
ν
i

pi ¨ q
`
pµ

j p
ν
j

pj ¨ q

¸

Fµρpq, σq
`

Ji ´ Ki

˘ ρ

ν

ff

, (4.2)

with:

s
pδq
ij ” 2 ppi`δiq¨ppj`δjq`i0` , s

pδq
iq ” 2 ppi`δiq¨q`i0` , s

pδq
jq ” 2 ppj`δjq¨q`i0` ,

(4.3)
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rSoft ”
Γ3p1´ ϵqΓ2p1` ϵq

Γp1´ 2ϵq “ 1` Opϵq . (4.4)

For convenience, we have not expanded the factor containing spδqij , spδqiq and s
pδq
jq . A strict

expansion depends on:

sij ” 2 pi ¨ pj ` i0` , siq ” 2 pi ¨ q ` i0` , sjq ” 2 pj ¨ q ` i0` , (4.5)

and on the scalar products of δi and δj with pi, pj and q. Finally, we notice that contractions
of Kµν

i with other vectors can be conveniently evaluated with the help of eq. (2.33).
The flavour-off-diagonal soft operator is given by:

S̃p1q
aiaj Ð ãiãj , ijppi,pj , qq

∣∣∣. . . , c1i, . . . , c1j , . . . ; . . . ,σ1i, . . . ,σ1j , . . .D
“´

rSoft
ϵp1´2ϵq

˜

´
µ2sij

siqsjq

¸ϵ
ÿ

σc

ÿ

σici

ÿ

σjcj

ÿ

σ2
i c2i

ÿ

σ2
j c2j

$

’

&

’

%

T c
c2j c2i

v̄ppj ,σ
2
j q{ϵ

˚
pq,pi,σquppi,σ

2
i q for ai “ q or ãi “ q̄

T c
c2i c2j

v̄ppi,σ
2
i q{ϵ

˚
pq,pi,σquppj ,σ

2
j q for ai “ q̄ or ãi “ q

ˆ
@

ci, c
2
j ;σi,σ

2
j

ˇ

ˇSplitp0q
ai˜̃aj Ð ãi

ppi,pj ,piq
ˇ

ˇc1i;σ1i
D @

cj , c
2
i ;σj ,σ

2
i

ˇ

ˇSplitp0q
aj ˜̃ai Ð ãj

ppj ,pi,pjq
ˇ

ˇc1j ;σ1j
D

ˆ|. . . , ci, . . . , cj , . . . , c; . . . ,σi, . . . ,σj , . . . ,σy ,

(4.6)
where:

ϵ˚µpq,pi,σq” ϵ˚µpq,σq´
pi ¨ϵ

˚pq,σq

pi ¨q
qµ “ iFµνpq,σq

pν
i

pi ¨q
, ϵ˚pq,pi,σq¨q“ ϵ˚pq,pi,σq¨pi “ 0 .

(4.7)
The partons ˜̃ai and ˜̃aj are uniquely determined by flavour conservation in the splitting
processes ai˜̃aj Ð ãi and aj ˜̃ai Ð ãj . The contribution corresponds to the emission of a soft
quark-anti-quark pair, which then produces the soft gluon as depicted in figure 2. Finally,
due to chirality and angular-momentum conservation, we notice:

sgnpσiq “ sgnpσ1iq “ sgnpσ2i q “ ´sgnpσ2j q “ ´sgnpσ1jq “ ´sgnpσjq . (4.8)

The jet operator Jp1q
i px, pi, qq is given by:

Pgpσ,cqJp1q
i px,pi, qq“

Γp1`ϵq
1´ϵ

ˆ

´
µ2

siq

˙ϵ
`

xp1´xq
˘´ϵ

ÿ

σ1c1

ϵ˚µpq,pi,σqϵνppi,σ
1qPgpσ

1, c1q

ˆ

„ˆ

Tc
iTc1

i `
1
x
if cdc1Td

i

˙

b
`

px´2qgµν`
`

1`2dimpaiq
˘

xiKµν
i

˘

ȷ

“
Γp1`ϵq
1´ϵ

ˆ

´
µ2

siq

˙ϵ
`

xp1´xq
˘´ϵ

ϵ˚pq,pi,σq¨ϵppi,´σq
ÿ

c1

Pgp´σ,c
1q

ˆ

„ˆ

Tc
iTc1

i `
1
x
if cdc1Td

i

˙

b
`

´2`x
`

1`Σg,i

˘˘

ȷ

,

(4.9)
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Figure 2. Flavour-off-diagonal contributions described by the operator (4.6).

where dimpaiq is the mass dimension of the wave function of parton i, dimpqq “ dimpq̄q “ 1{2

and dimpgq “ 0. The second equality follows from eqs. (2.27) and (2.32):

ϵ˚µpq, pi, σqϵνppi, σ
1q iKµν

ai,σiσ1
i
ppiq “ ´σδ´σσ1 σiδσiσ1

i
ϵ˚pq, pi, σq ¨ ϵppi,´σq , (4.10)

because ϵ˚pq, pi, σq has helicity σ as a polarisation vector for q and helicity ´σ as a
polarisation vector for pi. This can be proven in the rest-frame of q ` pi, where a clockwise
rotation around q is equivalent to an anti-clockwise rotation around pi.

The jet operator of a gluon, ai “ g, is not symmetric w.r.t. the gluons i and n` 1. On
the other hand it is given by the same expression as that of the (anti-)quark up to the
factor depending on dimpaiq. In fact, because of eq. (2.27), the spin-dependent parts of the
(anti-)quark and gluon jet operators are numerically identical. This is not a coincidence,
but rather a consequence of a hidden supersymmetry. Indeed, if the quark field transformed
with the adjoint representation of the gauge group, then it could belong to the same
superfield as the gluon, and the diagrams that enter the calculation of the jet operator for
a quark and for a gluon would be related by supersymmetry. The missing symmetry of the
gluon jet operator, on the other hand, is restored in the convolution with the symmetric
collinear-gluon amplitude (4.14).

The flavour-off-diagonal jet operator J̃p1q
i px, pi, qq is given by:

J̃p1q
i px,pi, qq |. . . , c1i, . . . , c1; . . . ,σ1

i, . . . ,σ
1y

“
Γp1`ϵq
1´ϵ

ˆ

´
µ2

siq

˙ϵ
`

xp1´xq
˘´ϵ

ÿ

cci

ˆ

T c
q T

ci
q `xif cdciT d

q

˙

c1c1
i

ÿ

σσi

ϵ˚µpq,pi,σqϵ
˚
νppi,σiq

ˆ
`

p1´2xqgµν
1`2 iKµν

q ppiq
˘

´σ1σ1
i

|. . . , ci, . . . , c; . . . ,σi, . . . ,σy

“
Γp1`ϵq
1´ϵ

ˆ

´
µ2

siq

˙ϵ
`

xp1´xq
˘´ϵ

ÿ

cci

ˆ

T c
q T

ci
q `xif cdciT d

q

˙

c1c1
i

δ´σ1σ1
i

ÿ

σσi

δσσiϵ
˚pq,pi,σq¨ϵ

˚ppi,σiq

ˆ
`

´2x`1`sgnpσiσ
1q
˘

|. . . , ci, . . . , c; . . . ,σi, . . . ,σy .

(4.11)

The operator transforms a state with ai “ q, an`1 “ q̄ into a state with ai “ an`1 “ g. The
sign of the r.h.s. of eq. (4.11) is a consequence of our convention:

vpp, σq “ ´upp,´σq , (4.12)
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see eq. (4.71). We point out that there is a crossing-like relation between Ji and J̃i which
becomes apparent by comparing the r.h.s. of (4.11) with xJip1{x, pi, qq at vanishing ϵ.

The collinear-gluon amplitude |Hp0q
g,i px, tpiu, qqy is defined as follows for ai P tq, q̄u:

Pgpσ, cq
∣∣∣Hp0q

g,i px, tpiu, qq
E

”

p1´ xq´ dimpaiqPgpσ, cq
∣∣∣∆M p0q

g px, tpiu, qq
E

´
1
x

q ¨ ϵ˚ppi, σq

q ¨ pi
Tc

i

∣∣∣M p0qptpiuq

E

, (4.13)

and as follows for ai “ g:

Pipσi, ciqPn`1pσn`1, cn`1q
∣∣∣Hp0q

g,i px, tpiu, qq
E

”

p1´ xq´ dimpaiqPipσi, ciqPn`1pσn`1, cn`1q
∣∣∣∆M p0q

g px, tpiu, qq
E

´
1
x

q ¨ ϵ˚ppi, σn`1q

q ¨ pi
Pipσi, ciqTcn`1

i

∣∣∣M p0qptpiuq

E

´
1

1´ x

q ¨ ϵ˚ppi, σiq

q ¨ pi
Pipσn`1, cn`1qTci

i

∣∣∣M p0qptpiuq

E

,

(4.14)

where:∣∣∣∆M p0q
g,i px, tpiu, qq

E

” lim
lKÑ0

„ ∣∣∣M p0q
g ptkiu

n
i“1, kgq

E

´ Splitp0qi,n`1Ð ipki, kg, piq

∣∣∣M p0qptpiuq

E

ȷ

,

(4.15)
is the subleading term of the expansion of the tree-level soft-gluon emission amplitude in
the limit of the soft gluon collinear to parton i as specified by the following configuration:

kg ” xpi ` lK ´
l2K
2x

q

pi ¨ q
, with lK ¨ pi “ lK ¨ q “ 0 , (4.16)

ki ” p1´ xqpi ´ lK ´
l2K

2p1´ xq

q

pi ¨ q
, and kj ” pj ` O

`

l2K
˘

, j ‰ i . (4.17)

For ai “ g, we further require that the gluon polarisation vector in the amplitude for the
subtraction term and hence also in the splitting operator in (4.15) be defined with reference
vector q yielding the helicity sum:

ÿ

σ

ϵµppi, σqϵ
˚
νppi, σq “ ´gµν `

piµqν ` piνqµ

pi ¨ q
. (4.18)

Without this requirement, the collinear-gluon amplitude depends on the additional reference
vector. Notice that the subtraction in (4.15) removes not only the leading collinear-singular
asymptotics, but also part of the regular O

`

l0K
˘

term. The additional term in eq. (4.14)
w.r.t. (4.13) is necessary in order to retain symmetry w.r.t. to the exchange of the gluons i
and n` 1.

The collinear-quark amplitude |Hp0q
q̄,i px, tpiu, qqy is given by:∣∣∣Hp0q

q̄,i px, tpiu, qq
E

”

`

xp1´ xq
˘´1{2 lim

lKÑ0

„ ∣∣∣∣M p0q
q̄ ptkiu

n
i“1, kgq

ˇ

ˇ

ˇ

aiÑq

F

´ Splitp0qi,n`1Ð ipki, kg, piq

∣∣∣M p0qptpiuq

E

ȷ

,

(4.19)
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where xc1, . . . , c;σ1, . . . , σ|M p0q
q̄ ptkiu

n
i“1, kgq |aiÑq̄y is the amplitude for the process:

0 Ñ a1pk1, σ1, c1q ` ¨ ¨ ¨ ` qpki, σi, ciq ` ¨ ¨ ¨ ` anpkn, σn, cnq ` q̄pkg, σn`1, cn`1q . (4.20)

If there is more than one massless quark flavour, then the last term in eq. (4.1) includes
summation over flavours.

The collinear convolutions, i.e. integrals over x, in eq. (4.1) are evaluated explicitly in
section 4.3.

4.2 Collinear amplitudes

Although eq. (4.1) involves convolutions of jet operators with collinear amplitudes, the
x-integrals can be performed analytically which yields an expression in terms of tree-level
amplitudes independent of x. In order to derive the relevant formulae, we first list the
properties of the collinear amplitudes.

Gauge invariance and Ward identity. By construction,
∣∣∣∆M p0q

g,i px, tpiu, qq
E

defined
in eq. (4.15) is gauge invariant, since it only involves gauge invariant amplitudes. However,
it does not satisfy the naive Ward identity w.r.t. to the gluon with momentum xpi. If we
denote by s the scalar polarisation, i.e. ϵ˚pp, σ “ sq “ p, then:

lim
lKÑ0

Pgpσ “ s, cq

„ ∣∣∣M p0q
g ptkiu

n
i“1, kgq

E

´ Splitp0qi,n`1Ð ipki, kg, piq

∣∣∣M p0qptpiuq

E

ȷ

“

p1´ xqdimpaiqTc
i

∣∣∣M p0qptpiuq

E

. (4.21)

The result is entirely due to the second term in the square bracket. It follows that the
collinear-gluon amplitudes defined in eqs. (4.13) and (4.14) satisfy the Ward identity:

Pgpσ “ s, cq
∣∣∣Hp0q

g,i px, tpiu, qq
E

“ 0 . (4.22)

Evaluation for arbitrary x. The limit in the definition (4.15) can be obtained directly
from Feynman diagrams as follows:

Pipσi, ciqPgpσ, cq
∣∣∣∆M p0q

g,i px, tpiu, qq
E

“

„

Pipσi, ciqPgpσ, cq
∣∣∣M p0q

g ptp1, . . . , p1´ xqpi, . . . , pnu, xpiq

E

ȷ

non-singular
diagrams

´ δσi,´siσ

ÿ

c1i

T c
ai,cic1i

»

—

—

—

—

—

—

—

–

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ū
`

p1´ xqpi, σi

˘

{ϵ˚ppi, σq{q

2 pi ¨ q

B

Būi
if ai “ q

{q{ϵ
˚
ppi, σqv

`

p1´ xqpi, σi

˘

2 pi ¨ q

B

Bvi
if ai “ q̄

p2x´ 1qq
pi ¨ q

¨
B

Bϵ˚i
if ai “ g

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Pipσi, c
1
iq

∣∣∣M p0qptpiuq

E

,

(4.23)
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where si “ 1{2 if either ai “ q or ai “ q̄, and si “ 1 if ai “ g. The derivatives B{Bψi ,
ψi P tūi, vi, ϵ

˚
i u, remove the wave function ψi of parton i in the amplitude. The collinear-

quark amplitude is obtained similarly:

Pipσi, ciqPgpσ, cq
∣∣∣Hp0q

q̄,i px, tpiu, qq
E

“

`

xp1´ xq
˘´1{2

„

Pipσi, ciqPgpσ, cq
∣∣∣M p0q

q̄ ptp1, . . . , p1´ xqpi, . . . , pnu, xpiq

E ˇ

ˇ

ˇ

aiÑq

ȷ

non-singular
diagrams

´ δσi,´σ

ÿ

c1i

T
c1i
cic

2q
pi ¨ q

¨
B

Bϵ˚i
Pipσi, c

1
iq

∣∣∣M p0qptpiuq

E

.

(4.24)

Small-x expansion.

Pgpσ, cq
∣∣∣Hp0q

g,i px, tpiu, qq
E

“

´
ÿ

j‰i

Tc
j b

„ˆ

1
x
` dimpaiq

˙ˆ

pj ¨ ϵ
˚
i

pj ¨ pi
´
q ¨ ϵ˚i
q ¨ pi

˙

`
Fi µν

2 pj ¨ pi

´

´ i
`

pµ
j B

ν
i ´ pν

j B
µ
i

˘

` Jµν
j ´ Kµν

j

¯

`
iqµϵ

˚
i ν

q ¨ pi
Kµν

i

ȷ ∣∣∣M p0qptpiuq

E

` Opxq ,

(4.25)

where:
ϵ˚i ” ϵ˚ppi, σq , Fµν

i ” i
`

pµ
i ϵ

ν ˚
i ´ pν

i ϵ
µ˚
i

˘

. (4.26)

The above result can be obtained similarly to eq. (3.3) by extending the eikonal approxima-
tion of eq. (4.23) for soft-gluon emission from partons j ‰ i with δk “ ´δki xpi and q “ xpi.
Subsequently requiring the Ward identity to be satisfied introduces the term:

´
ÿ

j‰i

Tc
j ϵ

˚
i ¨ pBi ´ Bjq . (4.27)

Spin effects for partons j ‰ i are restored as discussed in section 3. Finally, contributions
due to soft-gluon emission from parton i are given explicitly in eqs. (4.13) and (4.14), while
spin effects can be determined from eq. (4.23).

Dependence on x. It follows from the definitions eqs. (4.13), (4.14) together with
eq. (4.23) evaluated in Feynman gauge that the collinear-gluon amplitudes are not only
rational in x but can be reduced by partial fractioning to the form:∣∣∣Hp0q

g,i px, tpiu, qq
E

“

ˆ

1
x
` dimpaiq

˙ ∣∣∣Sp0q
g,i ptpiu, qq

E

`

∣∣∣Cp0q
g,i ptpiu, qq

E

`
x

1´ x

∣∣∣S̄p0q
g,i ptpiu, qq

E

`
ÿ

I

ˆ

1
xI ´ x

´
1
xI

˙ ∣∣∣Rp0q
g,i,Iptpiuq

E

` x
∣∣∣Lp0q

g,i ptpiu, qq
E

, (4.28)

where the sum in the second line is taken over subsets:

I Ă t1, . . . , nuztiu , 2 ď |I| ă n´ 2 , (4.29)
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b(−PI − xpi)

g(xpi)aj , j ∈ I

.
.
.

i
(PI+xpi)2

M
(0)
I

b̄(PI + xpi)

ai((1− x)pi)

aj , j /∈ I, j 6= i

.
.
.−iM

(0)
I

Figure 3. Class of diagrams that yields a residue contribution to the collinear-gluon amplitude.
Detailed description in text following eq. (4.33).

with:
xI ” ´

P 2
I ` i0`

2 pi ¨ PI
, PI ”

ÿ

jPI

pj . (4.30)

The soft-pole and constant contributions, |Sp0q
g,i ptpiu, qqy and |Cp0q

g,i ptpiu, qqy, follow from
eq. (4.25):

Pgpσ,cq
∣∣∣Sp0q

g,i ptpiu, qq
E

“´
ÿ

j‰i

Tc
j

ˆ

pj

pj ¨pi
´

q

q ¨pi

˙

¨ϵ˚ppi,σq
∣∣∣M p0qptpiuq

E

, (4.31)

Pgpσ,cq
∣∣∣Cp0q

g,i ptpiu, qq
E

“ (4.32)

´
ÿ

j‰i

Tc
jb

ˆ

piµϵ
˚
νppi,σq

pj ¨pi

`

pµ
j B

ν
i ´p

ν
j B

µ
i `iJ

µν
j ´iKµν

j

˘

`
qµϵ

˚
νppi,σqq

q ¨pi
iKµν

i

˙ ∣∣∣M p0qptpiuq

E

.

The residue contributions, |Rp0q
g,i,Iptpiuqy, correspond to poles5 of internal propagators

that carry momentum PI ` x pi in the first term on the r.h.s. of eq. (4.23) as illustrated
in figure 3:

A

c1, . . . , cn`1;σ1, . . . ,σn`1

ˇ

ˇ

ˇ
R

p0q
g,i,Iptpiuq

E

“

`

1´xI

˘´dimpaiq 1
2pi ¨PI

ÿ

σc

M
p0q
I ptpiu,tσiu,tciu,σ,cqĎM

p0q
I ptpiu,tσiu,tciu,σ,cq . (4.33)

M
p0q
I ptpiu, tσiu, tciu, σ, cq and ĎM

p0q
I ptpiu, tσiu, tciu, σ, cq are the tree-level amplitudes for the

respective processes:

0 Ñ
ÿ

jPI

ajppj , σj , cjq ` gpxI pi, σn`1, cn`1q ` bp´PI ´ xI pi, σ, cq and (4.34)

0 Ñ
ÿ

jRI
j‰i

ajppj , σj , cjq ` aipp1´ xIq pi, σi, ciq ` b̄pPI ` xI pi,´σ, cq , (4.35)

5If massive colour-neutral particles, e.g. electroweak gauge bosons, were included in the theory then the
value of xI would have to be modified to include the mass of the intermediate particle.
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where parton b is determined by flavour conservation, while b̄ is its anti-particle. If the
flavour constraint cannot be met, then the contribution for the given I vanishes by definition.

The anti-soft-pole contribution, |S̄p0q
g,i ptpiu, qqy, is given by:

∣∣∣S̄p0q
g,i ptpiu, qq

E

“Ei,n`1

$

&

%

ř

j‰i Splitp0qj,n`1Ðjppj ,pi,pjq

∣∣∣M p0qptpiuq

ˇ

ˇ

ˇ

ai Ñg
aj Ñ ãj

E

for ai P tq, q̄u ,∣∣∣Sp0q
g,i ptpiu, qq

E

for ai “ g ,

(4.36)
where the splitting operator corresponds to the transition ajai Ð ãj . The result for
ai P tq, q̄u is given by (4.33) in the special case |I| “ n´ 2 where:

lim
xIÑ1

A

. . . , c1i, c
1
j ; . . . , σ1i, σ1j

ˇ

ˇ

ˇ
M

p0q
Ij

ptpiuq

E

“

A

. . . , c1i, . . . , c
1
j , . . . ; . . . , σ1i, . . . , σ1j , . . .

ˇ

ˇ

ˇ
M p0qptpiuq

ˇ

ˇ

ˇ

ai Ñ g
aj Ñ ãj

E

, (4.37)

lim
xIÑ1

`

1´ xI

˘1´dimpaiq

`

´ PIj ´ xIpi

˘2

A

cj , ci, c
1
j ;σj , σi, σ

1
j

ˇ

ˇ

ˇ

ĎM
p0q
Ij

ptpiuq

E

“

lim
xIÑ1

`

1´ xI

˘1´dimpaiq
@

cj , ci;σj , σi

ˇ

ˇSplitp0qajai Ð ãj
ppj , p1´ xIq pi, pjq

ˇ

ˇc1j , σ
1
j

D

“

@

cj , ci;σj , σi

ˇ

ˇSplitp0qajai Ð ãj
ppj , pi, pjq

ˇ

ˇc1j , σ
1
j

D

, (4.38)

with:
Ij ” t1, . . . , nuzti, ju , PIj “ ´pi ´ pj , ãj ” b . (4.39)

In principle, the result for ai “ g can be obtained with the above method as well. However,
the second equality in (4.38) does not apply for aj “ ãj “ g:

lim
xIÑ1

`

1´ xI

˘ @

cj , ci;σj , σi

ˇ

ˇSplitp0qgg Ð gppj , p1´ xIq pi, pjq
ˇ

ˇc1j , σ
1
j

D

‰

@

cj , ci;σj , σi

ˇ

ˇSplitp0qgg Ð gppj , pi, pjq
ˇ

ˇc1j , σ
1
j

D

. (4.40)

Instead, the three splitting operators (2.35), (2.36) and (2.38) yield eikonal factors. Moreover,
in order to obtain the complete anti-soft pole contribution, it is still necessary to include
the contribution of the last term in eq. (4.14). These difficulties may be overcome by using
the symmetry of the collinear-gluon amplitude w.r.t. the exchange of the gluons i and n` 1,
which straightforwardly yields (4.36).

Finally, the linear contribution, |Lp0q
g,i ptpiu, qqy, vanishes for ai P tq, q̄u, while for ai “ g

it is again determined by the symmetry of the collinear-gluon amplitude w.r.t. the exchange
of the gluons i and n` 1:∣∣∣Lp0q

g,i ptpiu, qq
E

“

∣∣∣S̄p0q
g,i ptpiu, qq

E

´

∣∣∣Sp0q
g,i ptpiu, qq

E

`

∣∣∣C̄p0q
g,i ptpiu, qq

E

´

∣∣∣Cp0q
g,i ptpiu, qq

E

`
1
2
ÿ

I

ˆ

1
xI

`
1

1´ xI

˙

´ ∣∣∣Rp0q
g,i,Iptpiuq

E

´

∣∣∣R̄p0q
g,i,Iptpiuq

E¯

,
(4.41)
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where:

∣∣∣C̄p0q
g,i ptpiu, qq

E

“ Ei,n`1
∣∣∣Cp0q

g,i ptpiu, qq
E

,
∣∣∣R̄p0q

g,i,Iptpiu, qq
E

“ Ei,n`1
∣∣∣Rp0q

g,i,Iptpiu, qq
E

.

(4.42)

The x-dependence of the collinear-quark amplitude is given by:

∣∣∣Hp0q
q̄,i px, tpiu, qq

E

“
1
x

∣∣∣Sp0q
q̄,i ptpiuq

E

`

∣∣∣Cp0q
q̄,i ptpiu, qq

E

`
x

1´ x

∣∣∣S̄p0q
q̄,i ptpiuq

E

`
ÿ

I

ˆ

1
xI ´ x

´
1
xI

˙ ∣∣∣Rp0q
q̄,i,Iptpiuq

E

.

(4.43)

The soft-pole and anti-soft pole contributions are given by a similar expression to (4.36) for
the case ai P tq, q̄u:

∣∣∣Sp0q
q̄,i ptpiuq

E

“
ÿ

j‰i

Splitp0qj,n`1Ð jppj , pi, pjq

∣∣∣M p0qptpiuq

ˇ

ˇ

ˇ

ai Ñ q
aj Ñ ãj

E

, (4.44)

∣∣∣S̄p0q
q̄,i ptpiuq

E

“ Ei,n`1
ÿ

j‰i

Splitp0qj,n`1Ð jppj , pi, pjq

∣∣∣M p0qptpiuq

ˇ

ˇ

ˇ

ai Ñ q̄
aj Ñ ãj

E

. (4.45)

The splitting operator in eq. (4.44) corresponds to the transition aj q̄ Ð ãj , while that
in eq. (4.45) to ajq Ð ãj . The constant contribution, |Cp0q

q̄,i ptpiu, qqy, corresponds to the
subleading term of the soft-anti-quark expansion of the collinear-quark amplitude. An
expression for this term analogous to the LBK theorem is not yet known. Hence, it has
to be evaluated by using the direct expression eq. (4.24) at a single convenient point. The
residue contributions are obtained in analogy to eq. (4.33):

A

c1, . . . , cn`1;σ1, . . . ,σn`1

ˇ

ˇ

ˇ
R

p0q
q̄,i,Iptpiuq

E

“

`

xIp1´xIq
˘´1{2 1

2pi ¨PI

ÿ

σc

M
p0q
I ptpiu,tσiu,tciu,σ,cqĎM

p0q
I ptpiu,tσiu,tciu,σ,cq . (4.46)

M
p0q
I ptpiu, tσiu, tciu, σ, cq and ĎM

p0q
I ptpiu, tσiu, tciu, σ, cq are now the tree-level amplitudes

for the respective processes:

0 Ñ
ÿ

jPI

ajppj , σj , cjq ` q̄pxI pi, σn`1, cn`1q ` bp´PI ´ xI pi, σ, cq and

0 Ñ
ÿ

jRI
j‰i

ajppj , σj , cjq ` qpp1´ xIq pi, σi, ciq ` b̄pPI ` xI pi,´σ, cq .
(4.47)
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4.3 Collinear convolutions

The convolution of the jet operator with the collinear-gluon amplitude can be evaluated
explicitly using eqs. (4.9), (4.10) and (4.28):

Pgpσ,cq

ż 1

0
dxJp1q

i px,pi, qq
∣∣∣Hp0q

g,i px,tpiu, qq
E

“
rΓ

ϵp1´ϵqp1´2ϵq

ˆ

´
µ2

siq

˙ϵ

ϵ˚pq,pi,σq¨ϵppi,´σq
ÿ

c1

Pgp´σ,c
1q

"

Tc1

i Tc
i

„

´
1´2ϵ
1`ϵ p1´3ϵ`p1`ϵqΣg,iq

∣∣∣Sp0q
g,i

E

`p1´3ϵ´p1´ϵqΣg,iq

∣∣∣S̄p0q
g,i

E

`p2´3ϵ`ϵΣg,iq

´∣∣∣Cp0q
g,i

E

`dimpaiq

∣∣∣Sp0q
g,i

E¯

´
ϵ

2 p3´Σg,iq

∣∣∣Lp0q
g,i

E

(4.48)

`
ÿ

I

ϵ

2x2Ip1´xIq

`

2xI´2xI Σg,i´p2´xI´xI Σg,iq2F1p1,1´ϵ,3´2ϵ,1{xIq
˘

∣∣∣Rp0q
g,i,I

E

ȷ

`Tc
iTc1

i

„

1´ϵ
1`ϵ p3´3ϵ`p1`ϵqΣg,iq

∣∣∣Sp0q
g,i

E

`
ϵ

2p3´Σg,iq

∣∣∣S̄p0q
g,i

E

´
1
2p4´3ϵ`ϵΣg,iq

´∣∣∣Cp0q
g,i

E

`dimpaiq

∣∣∣Sp0q
g,i

E¯

`
ϵ

2p3´2ϵqp5´3ϵ´p1´ϵqΣg,iq

∣∣∣Lp0q
g,i

E

`
ÿ

I

ϵ

2x2I

`

xI`xI Σg,i`p2´xI´xI Σg,iq2F1p1,1´ϵ,3´2ϵ,1{xIq
˘

∣∣∣Rp0q
g,i,I

E

ȷ*

,

where:
rΓ “

Γ2p1´ ϵqΓp1` ϵq

Γp1´ 2ϵq . (4.49)

After expansion in ϵ, eq. (4.48) exhibits singularities, which originate from the endpoints
of the integration at x “ 0 and x “ 1. The coefficient of the ϵ-pole for (anti-)quarks and
gluons is provided in eqs. (4.80), (4.82) and (4.83) in section 4.4. Notice that while the
endpoint divergences in the convolution do not present an obstacle in this context, similar
divergences do pose a problem in SCET. There, the convolutions typically involve operators
that have already undergone renormalisation and, as a result, are defined within the confines
of four-dimensional spacetime (for a detailed discussion see for example section 7 of ref. [23]).
Consequently, convolutions in SCET often require supplementary regularisation techniques,
as demonstrated in ref. [24].

In order to approximate a finite remainder of a one-loop amplitude in the ’t Hooft-
Veltman scheme with eq. (4.1), it is sufficient to know the O

`

ϵ0
˘

term of the Laurent
expansion of eq. (4.48):

„

Pgpσ,cqe
ϵγE

ż 1

0
dxJp1q

i px,pi, qq
∣∣∣Hp0q

g,i px,tpiu, qq
E

ȷ

Opϵ0q

“ ϵ˚pq,pi,σq¨ϵppi,´σq
ÿ

c1

Pgp´σ,c
1q

"

Tc1

i Tc
i

„ˆ

3´Σg,i´p1`Σg,iq ln
ˆ

´
µ2

siq

˙̇ ∣∣∣Sp0q
g,i

E

`

ˆ

´2Σg,i`p1´Σg,iq ln
ˆ

´
µ2

siq

˙̇ ∣∣∣S̄p0q
g,i

E

`

ˆ

3`Σg,i`2ln
ˆ

´
µ2

siq

˙̇

´∣∣∣Cp0q
g,i

E

`dimpaiq

∣∣∣Sp0q
g,i

E¯

´
1
2p3´Σg,iq

∣∣∣Lp0q
g,i

E
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´
ÿ

I

1
xI

ˆ

1`Σg,i´p2´xI´xI Σg,iq ln
ˆ

1´ 1
xI

˙̇ ∣∣∣Rp0q
g,i,I

E

ȷ

`Tc
iTc1

i

„ˆ

2Σg,i`p3`Σg,iq ln
ˆ

´
µ2

siq

˙̇ ∣∣∣Sp0q
g,i

E

`
1
2p3´Σg,iq

∣∣∣S̄p0q
g,i

E

´
1
2

ˆ

9`Σg,i`4ln
ˆ

´
µ2

siq

˙̇

´∣∣∣Cp0q
g,i

E

`dimpaiq

∣∣∣Sp0q
g,i

E¯

`
1
6p5´Σg,iq

∣∣∣Lp0q
g,i

E

`
ÿ

I

1
2xI

ˆ

5´2xI`p1´2xIqΣg,i´2p1´xIqp2´xI´xI Σg,iq ln
ˆ

1´ 1
xI

˙̇ ∣∣∣Rp0q
g,i,I

E

ȷ*

,

(4.50)

where we have removed the Euler-Mascheroni constant γE as would be done in the
MS scheme.

The convolution of the flavour-off-diagonal jet operator with the collinear-quark ampli-
tude can be evaluated explicitly using eqs. (4.11) and (4.43):

Pipσi, ciqPgpσ,cq

ż 1

0
dx J̃p1q

i px,pi, qq
∣∣∣Hp0q

q̄,i px,tpiu, qq
E

“
rΓ

p1´ϵqp1´2ϵq

´

´
µ2

siq

¯ϵ

ϵ˚pq,pi,σq¨ϵ
˚ppi,σiq

ÿ

σ1c1

ÿ

c1
i

Pip´σ
1, c1iqPn`1pσ

1, c1q

"

pT ci
q T

c
q qc1c1

i

„

2σiσ
1
∣∣∣Sp0q

q̄,i

E

`

´

1´p2´ϵqσiσ
1

ϵ
`

1
2p3´2ϵq

¯ ∣∣∣S̄p0q
q̄,i

E

`

´

σiσ
1´

1
2p3´2ϵq

¯ ∣∣∣Cp0q
q̄,i

E

`
ÿ

I

1
xI

´

2x2
I´p1`2xIqσiσ

1`
1

2p3´2ϵq
`xIp1´2xI`2σiσ

1q2F1p1,1´ϵ,2´2ϵ,1{xIq

¯ ∣∣∣Rp0q
q̄,i,I

E

ȷ

`pT c
q T

ci
q qc1c1

i

„

´

2σiσ
1´

1`2σiσ
1

ϵ

¯ ∣∣∣Sp0q
q̄,i

E

`

´

σiσ
1´

1
2p3´2ϵq

¯ ∣∣∣S̄p0q
q̄,i

E

`

´

σiσ
1`

1
2p3´2ϵq

¯ ∣∣∣Cp0q
q̄,i

E

`
ÿ

I

1
xI

´

2xI´2x2
I´p1´2xIqσiσ

1´
1

2p3´2ϵq

`p1´xIqp1´2xI`2σiσ
1q2F1p1,1´ϵ,2´2ϵ,1{xIq

¯ ∣∣∣Rp0q
q̄,i,I

E

ȷ*

. (4.51)

The Opϵ0q term of the Laurent expansion is given by:
„

Pipσi, ciqPgpσ,cqe
ϵγE

ż 1

0
dx J̃p1q

i px,pi, qq
∣∣∣Hp0q

q̄,i px,tpiu, qq
E

ȷ

Opϵ0q

“ ϵ˚pq,pi,σq¨ϵ
˚ppi,σiq

ÿ

σ1c1

ÿ

c1
i

Pip´σ
1, c1iqPn`1pσ

1, c1q

"

pT ci
q T

c
q qc1c1

i

„

2σiσ
1
∣∣∣Sp0q

q̄,i

E

`

ˆ

19
6 ´5σiσ

1`p1´2σiσ
1q ln

ˆ

´
µ2

siq

˙˙ ∣∣∣S̄p0q
q̄,i

E

´

ˆ

1
6´σiσ

1

˙ ∣∣∣Cp0q
q̄,i

E

`
ÿ

I

ˆ

1
6xI

`

1`12x2
I´6p1`2xIqσiσ

1
˘

´xIp1´2xI`2σiσ
1q ln

ˆ

1´ 1
xI

˙˙ ∣∣∣Rp0q
q̄,i,I

E

ȷ

`pT c
q T

ci
q qc1c1

i

„

´

ˆ

3`4σiσ
1`p1`2σiσ

1q ln
ˆ

´
µ2

siq

˙˙ ∣∣∣Sp0q
q̄,i

E

´

ˆ

1
6´σiσ

1

˙ ∣∣∣S̄p0q
q̄,i

E

`

ˆ

1
6`σiσ

1

˙ ∣∣∣Cp0q
q̄,i

E

´
ÿ

I

ˆ

1
6xI

`

1´12xI`12x2
I`6p1´2xIqσiσ

1
˘

`p1´xIqp1´2xI`2σiσ
1q ln

ˆ

1´ 1
xI

˙˙ ∣∣∣Rp0q
q̄,i,I

E

ȷ*

. (4.52)
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4.4 Proof based on the expansion-by-regions method

Theorem 4.1 has been obtained by applying the expansion-by-regions method [25] (see also
refs. [26, 27], and for its application to the subleading soft-gluon expansion, see ref. [28]).
The method is anchored in dimensional regularisation, and can be used to expand Feynman
diagrams in any parameter. There are three difficulties: 1) identification of contributing
regions, 2) appearance of unregulated integrals, 3) application to a large number of diagrams.
Problem 1) has been solved for several standard expansions. The soft expansion has been
analysed most recently in refs. [12–15] albeit for soft-photon emissions. The most important
observation is the appearance of a collinear region besides the expected hard and soft regions.
Although the collinear region has been anticipated already in ref. [3], the latter analysis has
been shown to be incomplete. Irrespective of the listed publications, the identification of
contributing regions can nowadays be performed automatically with dedicated tools [29–31].
As far as problem 2) is concerned, it turns out that no unregulated integrals appear in
the soft expansion considered here. Finally, problem 3) is alleviated by organising the
contributions according to physical intuition.

The three contributing regions, hard, soft and collinear, are rather classes of regions
defined by a scaling of the loop momentum w.r.t. the expansion parameter. In each class,
an actual region is defined by a loop-momentum routing. Actually, momentum routing is
relevant in all but the hard region. The latter is defined by assuming that each component of
the loop momentum is large compared to the expansion parameter. This region is the easiest
to analyse. In fact, the respective Feynman integrands are obtained by Taylor expansion in
the momentum shifts δi and the soft-gluon momentum q. It follows immediately that the
hard-region contribution is given by the first term in eq. (4.1). This corresponds to eq. (3.1)
upon replacement of tree-level amplitudes by their one-loop counterparts.

The soft and collinear regions present more subtleties and are analysed below. One
important property should already be stressed at this point. Each region has a different d-
dimensional scaling w.r.t. to the expansion parameter. Hence, each region is gauge-invariant
on its own. We will exploit this property to make the calculations as simple as possible.
The only subtle point is that some gauges, e.g. the lightcone gauge, may generate additional
singularities and hence additional regions. These unphysical regions must cancel entirely
upon summation of the contributions in a given class due to the gauge invariance of the
original amplitude. With the choices made below, no unphysical regions appear in the
first place.

Soft regions. In any soft region, the loop momentum, l, is assumed be of the order
of the soft-gluon momentum, lµ “ Opλq. A particular soft region is defined by selecting
a pair of external partons i, j. We differentiate between flavour-diagonal, figure 5, and
flavour-off-diagonal contributions, figure 6. In principle, the soft gluon may attach anywhere
else on the visible lines in figures 5 and 6. However, a scaling argument demonstrates that
the shown topologies are the only ones that yield non-vanishing integrals after expansion,
since alternative topologies result in scaleless integrals.

The momentum routing in the pi, jq-soft region is specified in figure 4. The calculation
is conveniently performed in the Feynman gauge. The matrix element represented by the
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pi + δi + q + l pi + δi

l + q

pj + δj − l pj + δj

ql

Figure 4. Routing of the loop-momentum l

in the pi, jq-soft region.
Figure 5. Flavour-diagonal soft-region dia-
gram. Solid lines represent an arbitrary par-
ton, i.e. quark, anti-quark or gluon.

Figure 6. Flavour-off-diagonal soft-region diagrams.

pi − l
pi

q + l
q

l − pi + q

pi − l pi

q + l q

l

pi − l
pi + q

q + l

pi

q

Figure 7. Routing of the loop-momentum l in the three topologies occurring in the i-collinear region.

shaded circle is expanded in δl, l and q just as in section 3.1. In the case of flavour-off-
diagonal diagrams, the expansion is trivial and amounts to setting these parameters to zero.
Tensor integrals are reduced to scalar integrals with Passarino-Veltman reduction [32]. The
diagrams are expressed in terms of a single non-vanishing integral:

Isoft “ µ2ϵ

ż

ddl

iπd{2
ppi ` δiq ¨ ppj ` δjq

rl2 ` i0`srpl ` qq2 ` i0`srppi ` δiq ¨ pl ` qq ` i0`sr´ppj ` δjq ¨ l ` i0`s

“
rSoft
ϵ2

4spδqij

s
pδq
iq s

pδq
jq

˜

´
µ2s

pδq
ij

s
pδq
iq s

pδq
jq

¸ϵ

, (4.53)

where we have not yet expanded in δi, δj . rSoft has been defined in (4.4) while the invariants
spδq... in (4.3). The results are summarized in eqs. (4.2) and (4.6). They have all the desired
properties: they satsify the Ward identity w.r.t. to the soft-gluon momentum, they are
expressed through gauge-invariant reduced scattering amplitudes, the occurring differential
operators are consistent with on-shellness and momentum conservation. As expected, each
of these properties applies in a single pi, jq-soft region. Notice, however, that momentum
conservation requires symmetrisation w.r.t. i and j due to the fact that eq. (4.2) is written
in a non-symmetric form.
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Collinear regions. A particular collinear region is defined by selecting a parton i whose
momentum specifies the collinear direction n with n9pi. An anti-collinear direction n̄,
n̄2 “ 0, n̄✚✚9n must also be specified. In principle, the only natural choice is n̄9 q. In
the following, we will nevertheless keep n̄ generic albeit normalised to conveniently satisfy
n ¨ n̄ “ 1{2. An arbitrary vector k can now be decomposed as follows:

k “ k`n`k´n̄`kK , k˘ P R , kK ¨n “ kK ¨n̄ “ 0 , k2K ď 0 , k2 “ k`k´`k
2
K .

(4.54)
The expanded amplitude will be calculated in the lightcone gauge with gauge vector n̄.

The use of a physical gauge simplifies the analysis of the singularity structure of diagrams
and is particularly important in the study of collinear radiation. In particular, our gauge
choice yields results that do not necessitate derivatives of process-dependent scattering
amplitudes. This is at variance with ref. [15], where tests of factorisation formulae for
soft-photon radiation were performed in the Feynman gauge, which led to the appearance of
different jet operators than ours. Finally, the disappearance of n̄ from the final expressions
will serve as a test of independence from the particular physical gauge chosen.

The routing of the loop momentum l is specified in figure 7 for the three topologies
characteristic of the i-collinear region. The integration measure is given by:

ddl “
1
2 dl` dl´ dd´2lK . (4.55)

Expansion in λ is performed according to:

l` “ Op1q , lK “ O
´

λ
1{2
¯

, l´ “ Opλq . (4.56)

Propagator denominators are, therefore, approximated as follows:

pl`qq2`i0`« l`pl´`q´q`l
2
K`i0` , pl´piq

2`i0`«pl`´pi`ql´`l
2
K`i0` ,

pl´pi`qq
2`i0`«pl`´pi`qpl´`q´q`l

2
K`i0` .

(4.57)

Expansion of the actual propagators generates, of course, further terms polynomial in q´,
l´ and lK accompanied by higher powers of the propagator denominators. The part of the
integrand represented by the shaded circle in figure 7 must also be expanded according
to (4.56). Hence, this part depends non-trivially on l`, while any dependence on l´ and lK
is introduced through differential operators pl´ B{Bl´ qk1plK ¨ B{BlK qk2 with the derivatives
evaluated at vanishing l´ and lK. One can factor out pi` and q´ from the integrand
term-by-term. This is achieved by the change of variable:

l` ” x pi` , (4.58)

and the rescalings l´ Ñ q´ l´, l2K Ñ pi` q´ l
2
K. In consequence, expanded integrals are

proportional to
`

pi`q´
˘´ϵ

“
`

2pi ¨ q
˘´ϵ. Furthermore, both pi` and q´ must be present in

the propagator denominators without possibility to remove them by loop-momentum shifts,
or otherwise a given integral is scaleless.
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Figure 8. Collinear-region diagrams with soft-gluon emission from an external outgoing quark line.

1

2

2

1

Figure 9. Collinear-region diagrams with soft-gluon emission from an external outgoing gluon line.
In the last two diagrams, the soft-gluon is indicated by the label “1”, while the hard gluon by the
label “2”. These two diagrams do not contribute, however, since the external momenta are on-shell
and the resulting integrals are scaleless.

After expansion, integration over l´ can be performed by closing the integration contour
in the upper complex half-plane, and taking residues at:

l2K ` i0`

´l`
, ´q´ `

l2K ` i0`

´l`
,

l2K ` i0`

p` ´ l`
, ´q´ `

l2K ` i0`

p` ´ l`
. (4.59)

The first two of the residues contribute only for l` ă 0, while the second two only for
l` ă p`. The final integration over lK effectively only involves pd´ 2q-dimensional massive
vacuum integrals. For this reason, any contribution odd in lK vanishes.

In the case of collinear-region contributions depicted in figures 8 and 9 the loop-
momentum integration can be performed explicitly. In particular, denoting by σ,c and σi,ci

the helicity and colour of the soft-gluon and parton i respectively, one finds:

Figure 8“ rΓ

ˆ

´
µ2

siq

˙ϵ

Pipσi, ciqTc
i ϵ

˚
µpq,pi,σqūppi,σiq

„

CF ´CA

1´2ϵ
γµ

{q

2pi ¨q

´
1

1´ϵ

ˆ

2CF

1´2ϵ`
CA

ϵ

˙

γµ {̄n

2pi ¨n̄
´

2
1´ϵ

ˆ

CF

ϵ
´
CA

1`ϵ

˙

n̄µ

pi ¨n̄

ȷ

B

Būppi,σiq

∣∣∣M p0q
E

,

(4.60)

Figure 9“ rΓ

ˆ

´
µ2

siq

˙ϵ

Pipσi, ciqTc
i ϵ

˚
µpq,pi,σqϵ

˚
βppi,σiq

ˆ

"

´CA

„

1
1´2ϵ

ˆ

1
3´2ϵ

gµβqα

pi ¨q
`

1
p1´ϵqϵ

gµβn̄α

pi ¨n̄

˙

`
2

p1´ϵqp1`ϵqϵ
n̄µgβα

pi ¨n̄

ȷ

`TFnl
2

p1´ϵqp1´2ϵqp3´2ϵq
gµβqα

pi ¨q

*

B

Bϵ˚αppi,σiq

∣∣∣M p0q
E

, (4.61)

with rΓ defined in (4.49).

– 25 –



J
H
E
P
1
2
(
2
0
2
3
)
1
2
6

ν, c′

Figure 10. Subdiagrams contributing to the jet operator for an outgoing quark. Lines on the
left-hand sides of the diagrams are not amputated and are represented by propagators in the
integrand. Integration over l´, lK is included in the expressions for the diagrams.

α

ν, c′

Figure 11. Subdiagrams contributing to the jet operator for a gluon. Description as in figure 10.
A factor of 1{2 must be included in the calculation of the diagrams in order to compensate for the
symmetry of the amplitude represented by the shaded circle in figure 7.

c′

c′i

Figure 12. Subdiagrams contributing to the flavour-off-diagonal jet operator. Description as in
figure 10.

The remaining collinear-region contributions require the knowledge of the x-dependence
of the part of the integrand represented by the shaded circle in figure 7. It turns out that
no derivatives in l´, lK are needed at O

`

λ0
˘

, since contributions containing differential
operators pl´ B{Bl´ qk1plK ¨ B{BlK qk2 , 2k1 ` k2 ď 2 cancel. Hence, integration over l´, lK
only involves the subdiagrams depicted in figures 10, 11 and 12. The results are as follows:

Figure 10 ” Jν,c1

q “
Γp1` ϵq

1´ ϵ

ˆ

´
µ2

siq

˙ϵ

pxp1´ xqq´ϵ Pipσi, ciq

ˆ

Tc
iTc1

i `
1
x
if cdc1Td

i

˙

ˆ ϵ˚µpq, pi, σq ūppi, σiq
`

2gµβ ´ x γµγβ
˘

gKβ
ν , (4.62)

Figure 11 ” Jαν,c1

g “
Γp1` ϵq

1´ ϵ

ˆ

´
µ2

siq

˙ϵ

pxp1´ xqq´ϵ Pipσi, ciq

ˆ

Tc
iTc1

i `
1
x
if cdc1Td

i

˙

ˆ ϵ˚µpq, pi, σq ϵ
˚
βppi, σiq

ˆ

gµν
K gβα

K ´ x gµβgνα
K `

x

1´ x
gµα
K gβν

K

˙

, (4.63)

Figure 12 ” J̃c1c1i
“

Γp1` ϵq

1´ ϵ

ˆ

´
µ2

siq

˙ϵ

pxp1´ xqq´ϵ
´

T cT ci ` ixf cdciT d
¯

c1c1i

ˆ ϵ˚µpq, pi, σq ϵ
˚
βppi, σiq {pi

`

2x gµβ ´ γµγβ
˘

, (4.64)
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where:
gµν
K ” gµν ´

pµ
i n̄

ν ` pν
i n̄

µ

pi ¨ n̄
. (4.65)

The contributions of the residues in l´ at the points listed in (4.59) conspire to cancel unless:

x P r0, 1s . (4.66)

Since figures 8 and 9 have the structure of figure 7, one might expect that the results
presented in eqs. (4.60) and (4.61) can be obtained by integrating Jν,c1

q , Jαν,c1
g and J̃c1c1i

with
appropriate functions of x. This is indeed the case:

Figure 8 “

ż 1

0
dxJν,c1

q Tc1

i

1
pi ¨ q

ˆ

´
1
2γν{q ´

1
x
qν

˙

B

Būppi, σiq

∣∣∣M p0q
E

, (4.67)

Figure 9 “

ż 1

0
dxJαν,c1

g Tc1

i

1
pi ¨ q

ˆ

´p1´ 2xqgανqβ ´
qνgαβ

x
`
qαgνβ

1´ x

˙

B

Bϵ˚βppi, σiq

∣∣∣M p0q
E

` nl

ż 1

0
dxTr

„

J̃c1c1i

{q

pi ¨ q

ȷ

T
c2i
c1ic

1

q

pi ¨ q
¨

B

Bϵ˚ppi, σ2i q
Pipσ

2
i , c

2
i q

∣∣∣M p0q
E

. (4.68)

The choice of the helicity σ2i in the contribution proportional to nl in eq. (4.68) does not
affect the result.

The relevance of eqs. (4.67) and (4.68) becomes apparent after consultation of the
expressions for the collinear-gluon and collinear-quark amplitudes, (4.13), (4.14), (4.23)
and (4.24). Clearly, soft-gluon emissions from external lines are correctly accounted for by
the convolutions of either Jν,c1

q with |Hp0q
g,i y, or of Jαν,c1

g with |Hp0q
g,i y and J̃c1c1i

with |Hp0q
q̄,i y.

In both cases, it is still necessary to remove the external wave functions of partons i and
n ` 1 from the collinear amplitudes. The convolutions thus provide the entirety of the
contribution of the i-collinear region.

At this point we recall what has been proven in section 4.2, namely that |Hp0q
g,i y satisfies

the Ward identity w.r.t. any gluon. Hence, terms proportional to pν
i in eqs. (4.62), (4.63) and

additionally to pα
i in eq. (4.63) vanish after contraction with the collinear-gluon amplitude.

Equivalently, removing n̄-dependent terms hidden in gµν
K from Jν,c1

q and Jαν,c1
g does not

affect the i-collinear-region contribution. In consequence, our results do not depend on the
anti-collinear direction and thus the particular physical gauge used to derive them.

The result for the jet operator (4.9) for ai “ q now directly follows from eqs. (4.62)
and (2.20). In order to obtain (4.9) for ai “ g, it is necessary to first transform eq. (4.63) by
exploiting the symmetry of the collinear-gluon amplitude w.r.t. gluons i and n` 1 together
with the Jacobi identity in the form:

ˆ

T c
gT

c1

g `
1
x
if cdc1T d

g

˙

cic1i

“

ˆ

1´ x

x
T c

gT
c1i
g `

1
x
if cdc1iT d

g

˙

cic1
. (4.69)

Eq. (4.63) is then equivalent to:

Γp1` ϵq

1´ ϵ

ˆ

´
µ2

siq

˙ϵ

pxp1´ xqq´ϵ Pipσi, ciq

ˆ

Tc
iTc1

i `
1
x
if cdc1Td

i

˙

ˆ ϵ˚µpq, pi, σq ϵ
˚
βppi, σiq

´

p2´ xq gµνgβα ´ x
`

gµβgνα ´ gµαgβν
˘

¯

, (4.70)

– 27 –



J
H
E
P
1
2
(
2
0
2
3
)
1
2
6

which, together with (2.20), indeed yields (4.9). Finally, eq. (4.11) is obtained from eq. (4.64)
with the help of the replacement:

{pi
“ ´

ÿ

σi

vppi,´σiqūppi, σiq . (4.71)

Spurious-pole cancellation. Eq. (4.1) has been obtained with the expansion-by-regions
method. Each region, i.e. hard, pi, jq-soft and i-collinear, contributes spurious poles in ϵ due
to the unrestricted loop-momentum integration domain. The proof of eq. (4.1) is therefore
complete when it is shown that all spurious poles cancel. To this end, it is necessary to
independently derive an expression for the singularities of the soft-gluon-emission amplitude,
expand this result in the soft-gluon momentum and verify agreement with the first two
terms of the Laurent expansion of eq. (4.1).

The coefficients of the singular ϵ-expansion terms of an n-parton one-loop amplitude
|M p1q

n ptkiuqy are contained in the Ip1qn -operator [16, 33–36]:∣∣∣M p1q
n ptkiuq

E

“ Ip1qn ptkiuq

∣∣∣M p0q
n ptkiuq

E

` O
`

ϵ0
˘

. (4.72)

In the purely massless case, the operator reads:

Ip1qn ptkiuq “ ´
1
ϵ2

ÿ

i

Ci`
1
ϵ

ÿ

i‰j

Ti ¨Tj ln
ˆ

´
µ2

2 ki ¨ kj ` i0`

˙

`
1
2ϵ

ÿ

i

γi
0`

n´ 2
2

β0
ϵ
. (4.73)

The last term proportional to the β-function coefficient β0 is of ultraviolet origin, while
the remaining terms are due to soft and collinear singularities. Ci is either the quadratic
Casimir operator of the fundamental representation, CF “ TF pN

2
c ´ 1q{Nc, Nc “ 3, if i is a

(anti)-quark, or of the adjoint representation, CA “ 2TFNc, if i is a gluon. The anomalous
dimensions are given by:

γq
0 “ ´3CF , γg

0 “ ´β0 “ ´
11
3 CA `

4
3TFnl . (4.74)

For the setup relevant to the present publication, the pole structure reads:∣∣∣M p1q
g ptpi ` δiu, qq

E

“ Ip1qn`1
`

tpi ` δiu, q
˘

∣∣∣M p0q
g ptpi ` δiu, qq

E

` O
`

ϵ0
˘

“ Ip1qn`1
`

tpi ` δiu, q
˘

´

Sp0qptpiu, tδiu, qq
∣∣∣M p0qptpiuq

E

` Opλq
¯

` O
`

ϵ0
˘

,

(4.75)
with:

Pgpσ, cq Ip1qn`1ptpi ` δiu, qqSp0q
∣∣∣M p0q

E

“

Pgpσ, cqSp0q Ip1qn ptpiuq

∣∣∣M p0q
E

`
ÿ

j

˜

Tc
j b Sp0q

j Ip1qn ptpiuq ´ Ip1qn ptpi ` δiuqTc
j b Sp0q

j

`

˜

1
ϵ2
CAδ

cb ´
2
ϵ

ÿ

i

ifabcTa
i ln

˜

´
µ2

s
pδq
iq

¸¸

Tb
j b Sp0q

j

¸ ∣∣∣M p0q
E

. (4.76)

The r.h.s. has already been arranged to exhibit the singularities of the first term in eq. (4.1):

Sp0q
∣∣∣M p1q

E

“ Sp0q Ip1qn

∣∣∣M p0q
E

` O
`

ϵ0
˘

. (4.77)
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Moreover, we have only made explicit those arguments of the occurring operators that
require careful consideration. Further manipulation yields:

Pgpσ, cq Ip1qn`1 Sp0q
∣∣∣M p0q

E

“ Pgpσ, cqSp0q Ip1qn

∣∣∣M p0q
E

`
2
ϵ2

ÿ

i‰j

ifabcTa
i Tb

j b

˜

1` ϵ ln
˜

´
µ2s

pδq
ij

s
pδq
iq s

pδq
jq

¸¸

Sp0q
i

∣∣∣M p0q
E

´
2
ϵ

ÿ

i‰j

Tc
i Ti ¨ Tj

pµ
i p

ν
j

pi ¨ pj

iFµν

pi ¨ q

∣∣∣M p0q
E

` Opλq . (4.78)

Contrary to eq. (4.1), eq. (4.78) does not contain flavour-off-diagonal contributions.
Hence, their poles are entirely spurious. We begin the verification of spurious-pole cancella-
tion with the flavour-diagonal contributions.

Expansion of the soft operator (4.2) acting on the hard matrix element yields:

Pgpσ, cqSp1q
∣∣∣M p0q

E

“

2
ϵ2

ÿ

i‰j

ifabcTa
i Tb

j b

˜

1` ϵ ln
˜

´
µ2s

pδq
ij

s
pδq
iq s

pδq
jq

¸¸

Sp0q
i

∣∣∣M p0q
E

`
2
ϵ

ÿ

i‰j

ifabcTa
i Tb

j b
1

pi ¨ pj

˜

pµ
i p

ν
j ´ pµ

j p
ν
i

pi ¨ q
`
pµ

j p
ν
j

pj ¨ q

¸

Fµρ

`

Ji ´ Ki

˘νρ
∣∣∣M p0q

E

` O
`

ϵ0
˘

.

(4.79)
Part of the flavour-diagonal pole contributions generated by the convolution of the jet oper-
ator (4.9) with the collinear-gluon amplitude (4.28) is obtained using eqs. (4.31) and (4.32):

Pgpσ, cq

ż 1

0
dx

ÿ

i

Jp1q
i

ˆˆ

1
x
` dimpaiq

˙ ∣∣∣Sp0q
g,i

E

`

∣∣∣Cp0q
g,i

E

˙

“

´
2
ϵ

ÿ

i‰j

Tc
i Ti ¨ Tj

pµ
i p

ν
j

pi ¨ pj

iFµν

pi ¨ q

∣∣∣M p0q
E

´
2
ϵ

ÿ

i‰j

ifabcTa
i Tb

j b
1

pi ¨ pj

˜

pµ
i p

ν
j ´ pµ

j p
ν
i

pi ¨ q
`
pµ

j p
ν
j

pj ¨ q

¸

Fµρ

`

Ji ´ Ki

˘νρ
∣∣∣M p0q

E

`
1
ϵ

ÿ

i‰j

`

1´ 2 dimpaiq
˘

ifabcTa
i Tb

j b
pρ

i iFρµ

pi ¨ q

ˆ

pµ
j

pj ¨ pi
`

ˆ

pj

pj ¨ pi
´

q

q ¨ pi

˙

σ

iKσµ
i

˙ ∣∣∣M p0q
E

` O
`

ϵ0
˘

. (4.80)

If parton i is a gluon, then the soft singularity of the collinear-gluon amplitude at x “ 1
yields the remaining flavour-diagonal pole contributions. The result is conveniently obtained
by rewriting eq. (4.9) in an equivalent form using the Jacobi identity to transform the colour
operators and the last of eqs. (2.20) to transform the spin operator:

Pgpσ, cqJp1q
i px, pi, qq “

Γp1` ϵq

1´ ϵ

ˆ

´
µ2

siq

˙ϵ
`

xp1´ xq
˘´ϵ

ÿ

σ1c1

ϵ˚µpq, pi, σqϵνppi, σ
1q

ˆ

”

if cdc1Td
i b

`

´ gµν ` iKµν
i

˘

ı

Pgpσ
1, c1qEi,n`1

` terms proportional to p1´ xq . (4.81)
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Convolution using eq. (4.36) yields:

Pgpσ,cq

ż 1

0
dx

ÿ

i

`

1´2dimpaiq
˘

Jp1q
i

x

1´x

∣∣∣S̄p0q
g,i

E

“

´
1
ϵ

ÿ

i‰j

`

1´2dimpaiq
˘

ifabcTa
i Tb

jb
pρ

i iFρµ

pi ¨q

ˆ

pµ
j

pj ¨pi
`

ˆ

pj

pj ¨pi
´

q

q ¨pi

˙

σ

iKσµ
i

˙ ∣∣∣M p0q
E

`O
`

ϵ0
˘

.

(4.82)

Clearly, the sum of the r.h.s. of eqs. (4.77), (4.79), (4.80) and (4.82) is equal to the r.h.s.
of eq. (4.78) up to terms of Opλq and O

`

ϵ0
˘

. This completes the proof of eq. (4.1) for the
flavour-diagonal contributions.

Let us turn to the poles of flavour-off-diagonal contributions in eq. (4.1), and prove
that the poles generated by the flavour-off-diagonal soft operator (4.6) are cancelled by
the poles generated by the convolution of the jet operator (4.9) with the anti-soft-pole
contribution (4.36) for ai P tq, q̄u and by the convolutions of the flavour-off-diagonal jet
operator (4.11) with the soft-pole and anti-soft-pole contributions (4.44) and (4.45). These
three convolutions are given by:

ż 1

0

xdx
1´x

A

. . . , ci, . . . , c; . . . ,σi, . . . ,σ
ˇ

ˇ

ˇ
Jp1q

i

ˇ

ˇ

ˇ
S̄
p0q
g,i

E

“

1
ϵ
ϵ˚µpq,pi,σq

ÿ

j‰i

ÿ

σ1
ic

1
i

ÿ

σ1
jc1j

ÿ

σ1c1

ϵνppi,σ
1
iq
`

T
c1i
aiT

c
ai

˘

cic1

`

gµν
1´2iKµν

ai
ppiq

˘

σiσ1

@

cj , c
1;σj ,σ

1
ˇ

ˇSplitp0qajaiÐãj
ppj ,pi,pjq

ˇ

ˇc1j ;σ1j
D

ˆ

A

. . . , c1i, . . . , c
1
j , . . . ; . . . ,σ1i, . . . ,σ1j , . . .

ˇ

ˇ

ˇ
M p0qptpiuq

ˇ

ˇ

ˇ

ai Ñg
aj Ñ ãj

E

`O
`

ϵ0
˘

”
1
ϵ

ÿ

j‰i

ÿ

σ1
ic

1
i

ÿ

σ1
jc1j

J
p1,´1q
aiaj Ðgãj

A

. . . , c1i, . . . , c
1
j , . . . ; . . . ,σ1i, . . . ,σ1j , . . .

ˇ

ˇ

ˇ
M p0qptpiuq

ˇ

ˇ

ˇ

ai Ñg
aj Ñ ãj

E

`O
`

ϵ0
˘

,

(4.83)

ż 1

0
dx 1

x

A

. . . , ci, . . . , c; . . . ,σi, . . . ,σ
ˇ

ˇ

ˇ
J̃p1q

i

ˇ

ˇ

ˇ
S
p0q
q̄,i

E

“

1
ϵ
ϵ˚µpq,pi,σqϵ

˚
νppi,σiq

ÿ

j‰i

ÿ

σ1
ic

1
i

ÿ

σ1
jc1j

ÿ

σ1c1

`

T cT ci
˘

c1c1i

`

´gµν
1´2 iKµν

q ppiq
˘

´σ1σ1
i

@

cj , c
1;σj ,σ

1
ˇ

ˇSplitp0qaj q̄Ð ãj
ppj ,pi,pjq

ˇ

ˇc1j ;σ1j
D

ˆ

A

. . . , c1i, . . . , c
1
j , . . . ; . . . ,σ1i, . . . ,σ1j , . . .

ˇ

ˇ

ˇ
M p0qptpiuq

ˇ

ˇ

ˇ

ai Ñq
aj Ñ ãj

E

`O
`

ϵ0
˘

”
1
ϵ

ÿ

j‰i

ÿ

σ1
ic

1
i

ÿ

σ1
jc1j

J̃
p1,´1q
aiaj Ðqãj

A

. . . , c1i, . . . , c
1
j , . . . ; . . . ,σ1i, . . . ,σ1j , . . .

ˇ

ˇ

ˇ
M p0qptpiuq

ˇ

ˇ

ˇ

ai Ñq
aj Ñ ãj

E

`O
`

ϵ0
˘

,

(4.84)
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ż 1

0
dx x

1´x

A

. . . , ci, . . . , c; . . . ,σi, . . . ,σ
ˇ

ˇ

ˇ
J̃p1q

i

ˇ

ˇ

ˇ
S̄
p0q
q̄,i

E

“

1
ϵ
ϵ˚µpq,pi,σqϵ

˚
νppi,σiq

ÿ

j‰i

ÿ

σ1
ic

1
i

ÿ

σ1
jc1j

ÿ

σ1c1

`

T ciT c
˘

c1ic
1

`

gµν
1´2 iKµν

q ppiq
˘

´σ1
iσ

1

@

cj , c
1;σj ,σ

1
ˇ

ˇSplitp0qajqÐ ãj
ppj ,pi,pjq

ˇ

ˇc1j ;σ1j
D

ˆ

A

. . . , c1i, . . . , c
1
j , . . . ; . . . ,σ1i, . . . ,σ1j , . . .

ˇ

ˇ

ˇ
M p0qptpiuq

ˇ

ˇ

ˇ

ai Ñ q̄
aj Ñ ãj

E

`O
`

ϵ0
˘

”
1
ϵ

ÿ

j‰i

ÿ

σ1
ic

1
i

ÿ

σ1
jc1j

J̃
p1,´1q
aiaj Ð q̄ãj

A

. . . , c1i, . . . , c
1
j , . . . ; . . . ,σ1i, . . . ,σ1j , . . .

ˇ

ˇ

ˇ
M p0qptpiuq

ˇ

ˇ

ˇ

ai Ñ q̄
aj Ñ ãj

E

`O
`

ϵ0
˘

.

(4.85)
Substitution of the splitting operators listed in section 2.5 and application of the defini-
tions (2.20) of the spin operators yields:

J
p1,´1q
qq̄Ðgg “´

1
2pi ¨pj

`

T c1iT cT c1j
˘

cicj
ūppi,σiq{ϵppi,σ

1
iq{ϵ

˚
pq,pi,σq{ϵppj ,σ

1
jqvppj ,σjq ,

J p1,´1q
qgÐgq “´

1
2pi ¨pj

`

T c1iT cT cj
˘

cic1j
ūppi,σiq{ϵppi,σ

1
iq{ϵ

˚
pq,pi,σq{ϵ

˚
ppj ,σjquppj ,σ

1
jq ,

J
p1,´1q
q̄gÐgq̄ “`

1
2pi ¨pj

`

T cjT cT c1i
˘

c1jci
v̄ppj ,σ

1
jq{ϵ

˚
ppj ,σjq{ϵ

˚
pq,pi,σq{ϵppi,σ

1
iqvppi,σiq ,

J̃ p1,´1q
gqÐqg “`

1
2pi ¨pj

`

T c1jT cT ci
˘

cjc1i
ūppj ,σjq{ϵppj ,σ

1
jq{ϵ

˚
pq,pi,σq{ϵ

˚
ppi,σiqvppi,´σ

1
iq , (4.86)

J̃
p1,´1q
ggÐqq̄ “´

1
2pi ¨pj

`

T cjT cT ci
˘

c1jc1i
v̄ppj ,σ

1
jq{ϵ

˚
ppj ,σjq{ϵ

˚
pq,pi,σq{ϵ

˚
ppi,σiqvppi,´σ

1
iq ,

J̃
p1,´1q
ggÐ q̄q “´

1
2pi ¨pj

`

T ciT cT cj
˘

c1ic
1
j
ūppi,´σ

1
iq{ϵ

˚
ppi,σiq{ϵ

˚
pq,pi,σq{ϵ

˚
ppj ,σjquppj ,σ

1
jq ,

J̃
p1,´1q
gq̄Ð q̄g “´

1
2pi ¨pj

`

T ciT cT c1j
˘

c1icj
ūppi,´σ

1
iq{ϵ

˚
ppi,σiq{ϵ

˚
pq,pi,σq{ϵppj ,σ

1
jqvppj ,σjq .

Bi-spinors depending on ´σ1i are subsequently replaced by bi-spinors depending on `σ1i
according to eq. (4.12). The resulting expressions can be further simplified using:

. . . {ϵ˚pq, pi, σq ¨ ¨ ¨ “ ´
1

2pi ¨ pj
. . . {pj

{ϵ˚pq, pi, σq{pi
. . . or

. . . {ϵ˚pq, pi, σq ¨ ¨ ¨ “ ´
1

2pi ¨ pj
. . . {pi

{ϵ˚pq, pi, σq{pj
. . . ,

(4.87)

where the dots stand for the factors occurring in eqs. (4.86), and the first equality applies if
the left factor depends on pi, while the second equality applies if the left factor depends on
pj . It can now be easily verified using:

ÿ

σ2
i

vppi, σ
2
i qv̄ppi, σ

2
i q “ {pi

,
ÿ

σ2
i

uppi, σ
2
i qūppi, σ

2
i q “ {pi

,

ÿ

σ2
j

vppj , σ
2
j qv̄ppj , σ

2
i q “ {pj

,
ÿ

σ2
j

uppj , σ
2
j qūppj , σ

2
i q “ {pj

,
(4.88)
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that each pole coefficient listed in (4.86) cancels a respective pole coefficient in eq. (4.6).
This completes the proof of eq. (4.1) for the flavour-off-diagonal contributions.

4.5 Numerical tests

Although theorem (4.1) has been strictly proven in section 4.4, it is still a useful and
instructive exercise to verify the formulae of sections 4.1, 4.2 and 4.3 on actual amplitudes.
In this section, we numerically evaluate the O

`

ϵ0
˘

coefficient of the Laurent expansion
of

∣∣∣M p1q
g

E

for several processes and compare it to the result of the soft expansion. For a
stringent test, we consider processes that involve up to six hard partons, both incoming
and outgoing, multiple quark flavours and colour-neutral particles. The list can be read off
of figures 13 and 14.

Let us define the difference between the exact and the approximate amplitude:

∆LP/NLP ”
1
N

ÿ

singular
colour flows tcu

helicities tσu

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

„

A

tc, σu
ˇ

ˇ

ˇ
M

p1q
g

E

´

A

tc, σu
ˇ

ˇ

ˇ
M

p1q
g

E

LP/NLP

ȷ

Opϵ0q
”A

tc, σu
ˇ

ˇ

ˇ
M

p1q
g

Eı

Opϵ0q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (4.89)

where LP (leading power) stands for soft expansion up to Op1{λq, while NLP (next-to-
leading power) up to O

`

λ0
˘

. The sum runs over all colour-flow and helicity configurations
for which the amplitude has a soft singularity. The number of such configurations is denoted
by N . The one-loop n-particle amplitudes

∣∣∣M p1qD as well as their derivatives are calculated
with Recola [37, 38] linked to Collier [39–42] for the evaluation of tensor and scalar
one-loop integrals. For the evaluation of the one-loop pn` 1q-particle amplitudes,

∣∣∣M p1q
g

E

,
we instead link Recola to CutTools [43] for tensor reduction and OneLOop [44, 45]
for the evaluation of scalar integrals at quadruple precision. Finally, for the evaluation of
the collinear amplitudes, we use eqs. (4.23) and (4.24) implemented by calling AvH [46]
with replaced spinors and polarisation vectors of the external particles as appropriate. The
x-dependence of the collinear amplitudes is obtained at first by rational-function fitting.
Subsequently, we verify that the results agree with those obtained by direct evaluation
with the formulae from the last paragraph of section 4.2. A subtlety arises from the
fact that amplitudes for different processes are involved in the computation of (4.89).
Indeed, the global sign of the amplitudes depends on the external fermion ordering and the
algorithm used. Therefore, for the flavour-off-diagonal contributions, we have to compensate
the differences between the software tools by including appropriate signs to obtain the
correct result.

∆LP/NLP is expected to have the following behaviour:

∆LP “
`

c0 ` c1 log λ` c2 log2 λ
˘

λ` Opλ2q , (4.90)

∆NLP “
`

d0 ` d1 log λ` d2 log2 λ
˘

λ2 ` Opλ3q . (4.91)

This behaviour is reproduced for the three example processes in figure 13 as much as
numerical precision permits. Figure 14 shows, split by helicity configuration, the results for

– 32 –



J
H
E
P
1
2
(
2
0
2
3
)
1
2
6

10−5 10−3 10−1

q0/
√
s

10−8

10−6

10−4

10−2

100

∆

e−e+ → uūg + soft g

LP

NLP

10−5 10−3 10−1

q0/
√
s

uū→ uūg + soft g

10−5 10−3 10−1

q0/
√
s

uū→ uūdd̄ + soft g

Figure 13. Relative error ∆LP/NLP of the one-loop soft approximation to leading power (LP) and
subleading power (NLP). The energy, q0, of the soft gluon is normalised to the centre-of-mass energy,
?
s, of the process. The apparent breakdown of the approximation at low soft-gluon energies is due

to the limited numerical precision of the one-loop integrals in OneLOop which impacts the result
for the pn` 1q-particle amplitudes.

10−5 10−3 10−1

q0/
√
s

10−7

10−5

10−3

10−1

∆

σ3 = σ4 6= σ5

LP

NLP

10−5 10−3 10−1

q0/
√
s

other helicity configurations

uū→ g(σ3)g(σ4) + soft g(σ5)

Figure 14. Plots analogous to figure 13 except that the helicity sum is restricted to a specific setup
in the left plot, and the right plot contains all other helicity configurations.

the process:
qpσ1q ` q̄pσ2q Ñ gpσ3q ` gpσ4q ` gpq, σ5q, (4.92)

where q is the soft momentum, and hard-momentum and colour dependence are suppressed
for brevity. For most configurations, the test results show a strong improvement between
LP and NLP in line with figure 13. However, in the case σ3 “ σ4 ‰ σ5, the improvement
is less pronounced while still remaining consistent with (4.91). This spin configuration
is distinguished by the fact that it does not contain any logarithms containing the soft
momentum through next-to-leading power. For example, the flavour-diagonal soft-region
contribution is proportional to the tree-level amplitude of the process:

qpσ1q ` q̄pσ2q Ñ gpσ3q ` gpσ4q, (4.93)
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which vanishes if σ3 “ σ4 due to helicity conservation. It is not hard to convince oneself that
all flavour-off-diagonal soft-region contributions vanish in full analogy. The flavour-diagonal
collinear region does not contribute because the collinear hard function is derived from the
subleading collinear behaviour of the process:

qpσ1q ` q̄pσ2q Ñ gpσ3q ` gpσ4q ` gp´σ5q, (4.94)

which follows from the full process definition (4.92) and the properties of the jet operator.
In particular, the occurrence of ´σ5 can be conveniently read off eq. (4.48). Again, this
process vanishes at tree level for σ3 “ σ4 ‰ σ5 due to helicity conservation. Finally, the
flavour-off-diagonal jet operator is only non-zero if σi “ σ5 for ai “ g, i.e. i P t3, 4u, which
is not fulfilled for the considered helicity configuration. Altogether, only the hard-region
contribution to eq. (4.1), Sp0q

∣∣∣M p1qD, is non-zero for the considered spin configuration.
While next-to-next-to-leading-power contributions to the soft expansion are not discussed
in the present publication, the behaviour observed in figure 14 shows that one can expect
soft logarithms starting to appear there, implying a less-constrained helicity structure. The
poorer numerical behaviour is not expected to pose a problem in practical applications
because for squared amplitudes summed over colour and helicity, the helicity configurations
which contain soft logarithms already at leading power dominate numerically in the soft
momentum region.

5 Next-to-leading-power collinear asymptotics at tree-level

The collinear-gluon and collinear-quark amplitude constructed in section 4.2 may be used
to derive a result for the collinear asymptotics of massless tree-level QCD amplitudes that
correctly accounts for subleading effects. We consider the collinear limit for partons i
and n` 1:

kn`1 ” xpi ` lK ´
l2K
2x

q

pi ¨ q
, with lK ¨ pi “ lK ¨ q “ 0 , (5.1)

ki ” p1´ xqpi ´ lK ´
l2K

2p1´ xq

q

pi ¨ q
, and kj ” pj ` O

`

l2K
˘

, j ‰ i . (5.2)

For ai “ an`1 “ g, the collinear expansion is given by:

Pipσi, ciqPn`1pσn`1, cn`1q
∣∣∣M p0qptkiu

n`1
i“1 q

E

“

Pipσi, ciqPn`1pσn`1, cn`1q

„

Splitp0qi,n`1Ð ipki, kn`1, piq

∣∣∣M p0qptpiuq

E

`

ˆ

1´ x2

x
`

1´ p1´ xq2

1´ x
Ei,n`1

˙ ∣∣∣Sp0q
g,i ptpiu, qq

E

`
`

p1´ xq ` xEi,n`1
˘

∣∣∣Cp0q
g,i ptpiu, qq

E

`
1
2
ÿ

I

xp1´ xq

xIp1´ xIq

ˆ

1
xI ´ x

`
1

xI ´ p1´ xq
Ei,n`1

˙ ∣∣∣Rp0q
g,i,Iptpiuq

E

ȷ

`

„

1
x

q ¨ ϵ˚ppi, σn`1q

q ¨ pi
Pipσi, ciqTcn`1

i `
1

1´ x

q ¨ ϵ˚ppi, σiq

q ¨ pi
Pipσn`1, cn`1qTci

i

ȷ ∣∣∣M p0qptpiuq

E

` OplKq , (5.3)
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with |Sp0q
g,i ptpiu, qqy, |Cp0q

g,i ptpiu, qqy and |Rp0q
g,i,Iptpiuqy defined in eqs. (4.31), (4.32) and (4.33)

respectively. The splitting function acting on |M p0qptpiuqy introduces a helicity sum for
the intermediate gluon. This sum must be consistent with eq. (4.18). We note that the
subleading collinear asymptotics requires the subleading soft asymptotics contained in
|Cp0q

g,i ptpiu, qqy.
For ai P tq, q̄u, an`1 “ g, one finds:

Pn`1pσn`1, cn`1q
∣∣∣M p0qptkiu

n`1
i“1 q

E

“

Pn`1pσn`1, cn`1q

„

Splitp0qi,n`1Ð ipki, kn`1, piq

∣∣∣M p0qptpiuq

E

`
?
1´ x

ˆˆ

1
x
`

1
2

˙ ∣∣∣Sp0q
g,i ptpiu, qq

E

`

∣∣∣Cp0q
g,i ptpiu, qq

E

`
x

1´ x

∣∣∣S̄p0q
g,i ptpiu, qq

E

`
ÿ

I

ˆ

1
xI ´ x

´
1
xI

˙ ∣∣∣Rp0q
g,i,Iptpiuq

E

˙ȷ

`

?
1´ x

x

q ¨ ϵ˚ppi, σn`1q

q ¨ pi
Tcn`1

i

∣∣∣M p0qptpiuq

E

` OplKq .

(5.4)

Finally, for ai “ q, an`1 “ q̄, one finds:∣∣∣M p0qptkiu
n`1
i“1 q

E

“ Splitp0qi,n`1Ð ipki, kn`1, piq

∣∣∣M p0qptpiuq

E

`
a

xp1´ xq

ˆ

1
x

∣∣∣Sp0q
q̄,i ptpiuq

E

`

∣∣∣Cp0q
q̄,i ptpiu, qq

E

`
x

1´ x

∣∣∣S̄p0q
q̄,i ptpiuq

E

`
ÿ

I

ˆ

1
xI ´ x

´
1
xI

˙ ∣∣∣Rp0q
q̄,i,Iptpiuq

E

˙

` OplKq . (5.5)

Since the splitting proceeds via an intermediate gluon, the occurring helicity sum must be
consistent with eq. (4.18). The contributions |Sp0q

q̄,i ptpiuqy, |S̄p0q
q̄,i ptpiuqy and |Rp0q

q̄,i,Iptpiuqy are
defined in eqs. (4.44), (4.45) and (4.46) respectively. As remarked at the end of section 4.2,
the contribution |Cp0q

q̄,i ptpiu, qqy corresponds to the subleading term of the soft-anti-quark
expansion of the collinear-quark amplitude. As we do not provide an explicit expression in
terms of |M p0qptpiuqy for this contribution, it must be evaluated by using eq. (4.24) at a
convenient point in x.

6 Summary and outlook

This publication contains two novel results. The first one is the general formula for
the approximation of a one-loop soft-gluon emission amplitude at next-to-leading power
presented in section 4. The second are the general formulae for the approximation of
tree-level amplitudes in the collinear limit at next-to-leading power presented in section 5.
Both results are limited to massless partons, but allow for the inclusion of arbitrary colour-
neutral particles. They are expressed through universal factors and process-dependent
gauge-invariant amplitudes. As such, they cannot be further simplified.
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It is interesting to note that the tree-level collinear approximations require the knowledge
of the tree-level soft approximations, while the one-loop soft approximation requires the
knowledge of both the tree-level collinear and soft approximation. We expect this pattern
to extend to higher orders, i.e. higher order soft approximations should depend on lower
order collinear approximations. In any case, extension of the results to higher orders is one
natural direction for future research.

We must point out once more that the provided next-to-leading power approximation
for a collinear quark-anti-quark pair requires the subleading soft term of the soft-anti-quark
expansion of the collinear amplitude, for which no general formula is known at present. In
practice, one can obtain the necessary result by a single evaluation of a suitably prepared
amplitude at fixed kinematics. Nevertheless, it would be much more elegant to have an
expression similar to the LBK theorem. We leave this problem to future work.

Our results should be extended to massive partons in a next step. On the one hand,
this extension should be simpler by not containing collinear regions and flavour-off-diagonal
contributions for massive partons. On the other hand, the difference between the leading
soft asymptotics for massless [47] and massive partons [48, 49] suggests that the expression
for the soft operator will be much more complex in the massive case.
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