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Abstract: We present a systematic formalism based on a factorization theorem in soft-
collinear effective theory to describe non-global observables at hadron colliders, such as
gap-between-jets cross sections. The cross sections are factorized into convolutions of
hard functions, capturing the dependence on the partonic center-of-mass energy

√
ŝ, and

low-energy matrix elements, which are sensitive to the low scale Q0 ≪
√

ŝ characteristic of
the veto imposed on energetic emissions into the gap between the jets. The scale evolution of
both objects is governed by a renormalization-group equation, which we derive at one-loop
order. By solving the evolution equation for the hard functions for arbitrary 2 → M

jet processes in the leading logarithmic approximation, we accomplish for the first time
the all-order resummation of the so-called “super-leading logarithms” discovered in 2006,
thereby solving an old problem of quantum field theory. We study the numerical size of the
corresponding effects for different partonic scattering processes and explain why they are
sizable for pp→ 2 jets processes, but suppressed in H/Z and H/Z + jet production. The
super-leading logarithms are given by an alternating series, whose individual terms can
be much larger than the resummed result, even in very high orders of the loop expansion.
Resummation is therefore essential to control these effects. We find that the asymptotic
fall-off of the resummed series is much weaker than for standard Sudakov form factors.
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1 Introduction

Jet observables are a crucial tool to extract information about the underlying hard inter-
actions in high-energy processes and are used in a wide range of physics analyses. The
definition of an M -jet cross section involves clustering energetic radiation into jets and a
veto criterion ensuring that the remaining radiation outside the jets is soft. This veto leads
to an intricate pattern of logarithmically enhanced corrections in perturbation theory.

The simplest observable to discuss the effects of the veto are gap-between-jets cross
sections, where one vetoes radiation above a low scale Q0 in a region outside the jets,
which themselves carry large energy Q≫ Q0, with Q of order the center-of-mass energy.
For e+e− collisions with large jet radius R ∼ 1 the leading logarithmic (LL) effects in
such observables are of the form αn

s Ln, where L ∼ ln(Q/Q0). Leading logarithms arise
when soft gluons are emitted from the primary hard partons produced in the collision, but
Dasgupta and Salam observed that also soft gluons emitted off secondary emissions inside
jets produce leading-logarithmic contributions [1]. They called the large logarithms arising
from the secondary emissions non-global logarithms (NGLs), since they arise whenever an
observable vetoes soft radiation only in a restricted phase-space region rather than globally.
Even at leading-logarithmic order, the non-global contributions have a quite complicated
structure. In the large-Nc limit, they can be resummed using a dedicated parton shower or
by solving the BMS equation, a non-linear integral equation derived by Banfi, Marchesini
and Smye [2]. A generalization of this equation to finite Nc was obtained in [3] based on a
mapping between the JIMWLK [4–6] and BK [7, 8] evolution equations for small-x dynamics.
Using this approach, numerical results for NGLs at Nc = 3 were obtained in [9–11]. Over
the past few years, also the parton-shower method for performing the resummation has
been formulated at the amplitude level and extended to finite Nc [12–14], so that by now
numerical results for NGLs at Nc = 3 are also available in this framework [13–15], following
earlier approximate treatments of effects of subleading order in 1/Nc [16–18]. Recently, also
first resummations of subleading NGLs in the large-Nc limit were achieved [19–22].

At hadron colliders, there is a second mechanism that produces an interesting set of
logarithmically enhanced contributions, related to the presence of complex phase factors
with non-trivial color structure, which can prevent the cancellation of soft + collinear
contributions among real and virtual corrections. This non-cancellation leads to double-
logarithmic effects starting at four-loop order, i.e., one finds that the leading-logarithmic
terms in the perturbative series are of the form α3+n

s L3+2n. The existence of these double-
logarithmic corrections appears surprising at first sight, since they are not tied to a small
angular scale but arise in an observable that superficially only involves wide-angle soft
dynamics. Forshaw, Kyrieleis and Seymour [23], who discovered this effect, therefore called
these terms “super-leading” logarithms (SLLs). The complex phase factors responsible for
the SLLs also induce collinear factorization violation in processes with both incoming and
outgoing partons [24–26]. These effects vanish in the large-Nc limit and are not captured by
traditional probabilistic parton showers. Gap-between-jets cross sections at hadron colliders
are therefore examples of observables where traditional showers do not even capture the
leading double-logarithmic terms. Due to the complicated color structures involved, the early
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papers on SLLs have restricted themselves to the computation of the four-loop α4
sL5 term

for the qq′ → qq′ partonic contribution to dijet production [23, 27]. In later work, additional
partonic channels were analyzed, and also the five-loop α5

sL7 terms were extracted [28].
A numerical analysis for the t-channel diagrams including a partial resummation of some
higher-order contributions found that the effect of SLLs on the gaps-between-dijets cross
sections could amount to as much as 15% [29]. However, a complete phenomenological
analysis of SLLs including interference effects of different Feynman diagrams in the Born-
level amplitude has never been performed. More importantly, the all-order structure of
the SLLs remained completely unknown. In parameter regions where the SLLs give rise to
significant corrections to physical cross sections, the large double logarithms are numerically
important, and hence an all-order resummation of their contributions becomes mandatory.

In [30, 31] we have developed an effective field-theory framework for non-global observ-
ables at e+e− colliders and used it to derive factorization theorems for a variety of relevant
jet cross sections. The framework is based on soft-collinear effective theory (SCET) [32–34]
and factorizes the cross sections into hard and soft functions. The hard functions correspond
to the squared e+e− scattering amplitudes into m hard partons at fixed directions inside the
final-state jets. The soft functions are given by matrix elements of Wilson lines along these
directions. In the effective theory, the NGLs can be resummed by solving renormalization-
group (RG) equations. This approach has provided a new way to think about NGLs by
showing that they — like any other large logarithms — result from RG evolution between
two hierarchical energy scales. It has therefore reformulated this complicated problem in a
language familiar from other applications of effective field theories. Our RG equation is
structurally simpler than the non-linear BMS integral equation. Yet, its solution is still
a challenging task, since the anomalous dimension entering the evolution equation is an
operator not only in the large color space of the incoming and outgoing particles, but also
in the infinite space of particle multiplicities.

A similar factorization formula holds for hadron-collider observables [35, 36]. The main
complication is that the hard functions then also involve two incoming hard partons, and the
low-energy matrix elements contain collinear fields associated with these initial-state partons.
While these modifications seem obvious, they have profound effects on the structure of the
anomalous dimension and the associated RG evolution. In the lepton-collider case, the
individual hard functions involve collinear singularities, but the singular terms cancel among
different hard functions when adding up the contributions from different multiplicities [21].
In contrast, in the hadron-collider case the presence of the initial-state partons leads to
a non-trivial collinear RG evolution. A second important difference is the appearance of
complex phase factors in the soft anomalous dimension, which result from the exchange
of Glauber gluons.1 These cancel by color conservation for e+e− collisions, but they give
rise to non-vanishing effects for processes with two color-charged initial-state partons. The
Glauber phases spoil the cancellation of soft+ collinear terms in the evolution, which leads
to double-logarithmic corrections in higher orders — the aforementioned SLLs. Also, in the
presence of Glauber phases, the collinear anomalous dimension involves real and virtual

1In the literature, the phase terms are sometimes called Coulomb phases.
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parts with different color structures, rather than the usual parton distribution function
(PDF) evolution. In the first part of this paper, we present the factorization theorem for
non-global hadron-collider observables (section 2) and then provide a detailed derivation of
the one-loop anomalous dimension, with a particular focus on its collinear part (section 3).

By iterating the one-loop anomalous-dimension matrix n times, one can calculate
the leading-logarithmic terms at the n-th order in perturbation theory. Due to some
key properties of different parts of the anomalous dimension, only a specific subset of
contributions to these products generates the SLLs in the leading-logarithmic approximation,
as we show in section 4. In [36] we have analyzed the relevant color structures for arbitrary
partonic scattering processes in which the two colliding partons are quarks or anti-quarks
and obtained a closed formula for the SLLs at the n-th order in perturbation theory. The
result was written in terms of four color structures depending on the Born-level hard
functions for the process. Furthermore, we found that the n dependence was simple enough
that (ignoring the running of the strong coupling) the perturbative series could be resummed
into a closed-form expression. The simplest example is the scattering of two quarks with
different flavors, qq′ → qq′, mediated by a color-singlet exchange in the t-channel, with
a gap of size ∆Y at central rapidity in which the radiation is vetoed. For this case, the
resummation of the infinite tower of SLL contributions to the partonic cross section leads
to the result [36]

σ̂SLL
qq′→qq′ = −σ̂qq′→qq′

4CF

3

(
αs

π

)3
π2L3∆Y 2F2

(
1, 1; 2, 5

2 ;−w
)

, (1.1)

where σ̂qq′→qq′ is the Born cross section, and w = Ncαs
π L2 encodes the double-logarithmic

dependence. There are several general features of this result worth pointing out:

1. Using 2F2(1, 1; 2, 5
2 ; 0) = 1, one finds that the Glauber exchange mechanism yields a

first contribution already at three-loop (not four-loop) order. At this order there are
three powers of L, so the three-loop term is not “super-leading” in the strict sense
of the word. Nevertheless, the presence of the squared Glauber phase |iπ|2 implies a
sizable enhancement factor.

2. The series expansion of the hypergeometric function in the variable w has alternating
signs. As we will show, this is a general feature of the series of SLLs. For realistic
values w ≳ O(1), this leads to significant cancellations between different terms in the
series. Indeed, in the asymptotic limit w ≫ 1 one finds

2F2
(
1, 1; 2, 5

2 ;−w
)
∼ lnw

w
, (1.2)

corresponding to a fall-off of the resummed series. Interestingly, this fall-off is much
weaker than for the standard Sudakov form factor, which in the variable w takes the
form e−cw with some constant c.

3. The color factor in front of the hypergeometric function is CF ∼ Nc, so that the SLLs
are suppressed by 1/N2

c in the large-Nc limit. (Recall that Nc αs ∼ 1 remains finite in
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this limit.) This suppression can be understood by noting that the Glauber phases
are an interference effect associated with a non-trivial operator in color space, whose
contributions are thus absent in the large-Nc limit.

4. For reasonable values of parameters one finds that the variables w = Ncαs
π L2 and

wπ = Ncαs
π π2 are both of O(1). The result (1.1) then behaves like a one-loop correction

∼ αsL
Nc

to the partonic cross section. The potentially sizable effect of the complex phase
terms in double-logarithmic observables has been pointed out long ago in the context
of Drell-Yan and Higgs production [37–39]. In future work, it will be interesting to
consider the impact of higher-order terms in the variable wπ.

The quark-initiated processes considered in [36] are relatively simple, since arbitrary
products of color generators in the fundamental representation can be reduced to structures
linear in the generators. In the present paper, we discuss the general case of a hard-scattering
process with arbitrary initial-state partons (quarks, anti-quarks, gluons, or even exotic
objects transforming in different representations of SU(Nc)). In section 5, we carry out the
all-order resummation for the general case and show that (at fixed coupling αs) this leads
certain Kampé de Fériet functions, for which we provide several explicit representations.
The relevant color algebra is much more involved in the general case, but we prove in
section 6 that, for any hard process, the SLLs can be expressed in terms of seven linear
combinations of ten basic color traces. A full phenomenological analysis of SLLs is beyond
the scope of the present paper, but in section 7 we provide analytical and numerical results
for several simple partonic scattering processes, in particular the ones relevant for Z- and
Higgs-boson production, also in association with a jet. While the SLLs are numerically
suppressed in 2 → 0 and 2 → 1 partonic processes for reasons that we will elucidate, we
find numerically significant effects for 2 → 2 processes. In the latter case several color
configurations contribute to a given partonic channel, and we show that the interference
between different configurations leads to SLL effects depending on the Born-level kinematics.
As with any calculation relying on the leading double-logarithmic approximation, our results
suffer from large uncertainties due to neglected higher-order terms. An important example
of such a higher-order effect is the scale dependence of the strong coupling αs(µ). However,
we can take this particular effect into account when solving the RG equation order by order
and compare with the fixed-coupling results. Before concluding, we discuss in section 8 the
systematics of the expansion and what other single-logarithmic contributions would need to
be considered in order to obtain more accurate predictions for physical cross sections.

2 Factorization of jet cross sections at hadron colliders

In this paper, we develop an effective field-theory based approach for a systematic theoretical
description of non-global observables at hadron colliders, such as gap-between-jets cross
sections. The starting point is the factorization formula [35, 36]

σ2→M (Q0)=
∫

dx1

∫
dx2

∞∑
m=2+M

〈
Hm({n},s,x1,x2,µ)⊗Wm({n},Q0,x1,x2,µ)

〉
. (2.1)
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Here s denotes the squared center-of-mass energy, x1 and x2 are the longitudinal momentum
fractions carried by the colliding partons, and Q0 is the soft scale associated with the
veto imposed on radiation between the beam remnants and the final-state jets. The tuple
{n} = {n1, . . . , nm} collects light-like 4-vectors aligned with the directions of the initial-
state (i = 1, 2) and final-state (i = 3, . . . , m) particles. The above formula generalizes the
analogous result for e+e− colliders [30, 31], which involves hard functions Hm describing
the energetic partons inside the jets and soft functions Sm describing the soft emissions
off these hard partons. In the hadron-collider case, the hard functions of multiplicity m

also contain the two initial-state partons, and the functions Wm describe both the soft
emissions off the hard partons and the collinear dynamics associated with the initial state.
In [30, 31] we have also considered the case of narrow jets, which requires the resummation
of collinear logarithms associated with small jet opening angles. In the present paper, we
restrict ourselves to the case of large opening angles for simplicity.

The hard functions Hm describe all possible m-particle scattering processes 1 + 2→
3 + · · ·+ m, where i represents the i-th particle (i = q, q̄, g for colored partons). To keep
the notation compact, we do not indicate the different partonic configurations, but it is
understood that one must sum not only over different values of m, but over all possible
channels. The brackets ⟨. . . ⟩ denote a sum (average) over final-state (initial-state) color
and spin indices. The relevant spin/color multiplicity factors are

Ni =

 2Nc for i = q, q̄ ,

(d− 2)(N2
c − 1) for i = g ,

(2.2)

and analogously for color-neutral particles. Here d = (4− 2ϵ) is the dimension of spacetime.
Although in our discussion we only consider unpolarized hadron beams, a generalization to
fixed helicities would be straightforward.

The hard functions are obtained after imposing appropriate kinematic constraints, such
as cuts on the transverse momenta and rapidities of the leading jets. One then integrates
over the phase space of the final-state particles but for fixed directions of the outgoing
particles. To define these directions, we choose reference 4-vectors nµ

i = (1, ni) in the
laboratory frame,2 so that the associated particle momenta are given by pµ

i = Ei nµ
i . For

each light-cone vector nµ
i , we introduce a conjugate vector n̄µ

i = (1,−ni), so that ni · n̄i = 2.
The hard functions are then defined as

Hm = 1
2x1x2 s

m∏
i=3

∫
dEi Ed−3

i

c̃ϵ (2π)2 |Mm({p})⟩⟨Mm({p})|

× (2π)d 2 δ(n̄1 · ptot − x1
√

s) δ(n̄2 · ptot − x2
√

s) δ(d−2)(p⊥tot)Θhard({n}) ,

(2.3)

where ptot is the total momentum of the final-state particles and p⊥tot denotes the (d− 2)
components transverse to the beam directions n1 and n2. The energies of the incoming
partons are E1 = x1

√
s/2 and E2 = x2

√
s/2. The angular constraint Θhard({n}) ensures

2In [36] we have defined the hard functions in the partonic center-of-mass frame. However, in order to
implement experimental cuts, it is more convenient to work in the laboratory frame.
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that the hard partons cannot enter the gap or veto region. Note that some of the final-state
particles can be color neutral. In particular, we will also consider the production of Z-
or Higgs-bosons in association with M ≥ 0 jets. We stress that the amplitude in (2.3) is
squared in the sense of a density matrix. We use the color/helicity-space formalism [40],
in which the color and helicity indices of the amplitude |Mm({p})⟩ and its conjugate are
not contracted.

The symbol ⊗ in (2.1) indicates an integration over the directions {n3, . . . , nm} of the
final-state particles in the hard scattering process. These integrals must be performed after
the hard functions are combined with the low-energy matrix elements Wm, which encode
the soft and collinear dynamics in the process of interest. Following [21], we have included a
factor c̃ϵ = (eγE /π)ϵ in the denominators of the energy integrals in the definition of the hard
function, where γE is Euler’s constant. The same factor is added to the (d− 2)-dimensional
angular integrals, for which we use the measure

[dΩi] = c̃ϵ dd−2Ωi

2(2π)d−3 . (2.4)

We thus define

Hm({n}, s, x1, x2, µ)⊗Wm({n}, Q0, x1, x2, µ)

≡
m∏

i=3

∫
[dΩi]Hm({n}, s, x1, x2, µ)Wm({n}, Q0, x1, x2, µ) .

(2.5)

The factors of c̃ϵ cancel in the combination of the hard functions and angular integrals but
avoid a proliferation of γE ’s and logarithms of π at intermediate stages.

The low-energy matrix elements Wm involve soft Wilson lines Si(ni) along the directions
of all hard particles in the process (for color-neutral particles, one uses Si(ni) = 1), and
collinear fields for the two incoming partons. They are given by Fourier transforms

Wm({n},Q0,x1,x2)=
∫ ∞
−∞

dt1
2π

e−ix1t1n̄1·p1

∫ ∞
−∞

dt2
2π

e−ix2t2n̄2·p2 W̃m({n},Q0, t1, t2)

(2.6)

of matrix elements of the form

W̃m({n}, Q0, t1, t2)

=
∫

Xs

∑
P(1)

ᾱα P
(2)
β̄β
⟨H1(p1)H2(p2)| Φ̄ᾱ

1 (t1n̄1) Φ̄β̄
2 (t2n̄2)S†1(n1) . . . S†m(nm) |Xs⟩

× ⟨Xs|S1(n1) . . . Sm(nm) Φα
1 (0)Φ

β
2 (0) |H1(p1)H2(p2)⟩ θ(Q0 − E⊥out) ,

(2.7)

where H1 and H2 are the colliding hadrons. In these expressions, the fields Φi are the
gauge-invariant collinear building blocks [32, 41] in the directions of the two hadrons, as
appropriate for a given partonic channel, i.e. Φi ∈ {χi, χ̄i,Ai⊥} for a quark, anti-quark or
gluon, while Φ̄i is equal to the corresponding conjugate fields. Note that the argument
of the collinear fields indicates the spacetime point at which they are localized, whereas
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Figure 1. Pictorial representation of the factorization formula (2.1). In black, a hard function Hm

in (2.3) is shown, which is multiplied by soft Wilson lines for each hard parton (red double lines).
The color indices of the Wilson lines along the directions of the final-state particles in the amplitude
are connected (dotted lines) to the ones sourced by the particles in the conjugate amplitude. The
Wilson lines of the initial-state partons connect to the collinear fields (blue), see (2.7). We also
included a real and a virtual soft gluon, which are part of the matrix element Wm.

the argument of the soft Wilson lines indicates their direction. All soft Wilson lines are
located at the point x = 0. Since we only consider unpolarized hadron beams, the Dirac
and Lorentz indices in (2.7) are contracted with the relevant spin sums, i.e.

P(i)
ᾱα χ̄ᾱ

i (tn̄i)χα
i (0) =

(
n̄/i

2

)
ᾱα

χ̄ᾱ
i (tn̄i)χα

i (0) = χ̄i(tn̄i)
n̄/i

2 χi(0) ,

P(i)
ᾱαAᾱ

⊥c(tn̄i)Aα
⊥c(0) = (−gᾱα)(−i∂t)Aᾱ

⊥c(tn̄i)Aα
⊥c(0) = i∂tAµ

⊥i(tn̄i)A⊥iµ(0) .

(2.8)

Therefore, Wm acts as a unity matrix in helicity space. The additional derivative arising in
the gluon case ensures that the collinear matrix element corresponds to the usual definition
of the gluon PDF. The factorization theorem is depicted in figure 1, which also shows how
the color indices of the Wilson lines in Wm are connected to the hard functions and the
collinear fields (dotted lines).

In the factorization formula (2.1) the soft Wilson lines Si(ni) in (2.7) multiply the
amplitudes |Mm({p})⟩ in the hard functions (2.3), while the conjugate Wilson lines S†i (ni)
multiply the conjugate amplitude ⟨Mm({p})|. In (2.7), the jet-veto scale Q0 is defined
to be the upper limit on the total transverse momentum E⊥out =

∑
i |p⊥i | of the particles

outside of the jets, but many other kinematic restrictions could be considered. For example,
in order to be less sensitive to the underlying event and pile-up, one can instead define Q0
as the upper limit on the transverse momentum of jets inside the veto region, as was done
by the ATLAS collaboration in [42, 43]. In the leading-logarithmic approximation, one is
not sensitive to the precise definition of the observable, but only to the associated energy
scale Q0.

We note that the n1- and n2-collinear fields in (2.7) are fields obtained after the
soft-collinear decoupling transformation [32]

Φi(tn̄i)→ Si(ni) Φi(tn̄i) (2.9)
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has been applied, which explains the appearance of the soft Wilson lines S1,2 in (2.7).
However, it is important to note that the low-energy matrix elements in (2.7) are not
factorized into soft and ni-collinear fields without interactions among them, because the
low-energy effective theory still includes Glauber-gluon interactions between the soft and
collinear sectors, which break this factorization. For the case of forward scattering, the
Glauber Lagrangian was derived in [44]. The non-trivial interactions are associated with
the scale Q0, and below this scale we can match onto an effective theory that only involves
soft and collinear fields associated with the scale ΛQCD of non-perturbative physics. Since
the emissions below the scale Q0 are not restricted, we expect that the Glauber interactions
will cancel by the same mechanism which is at work for the Drell-Yan process [45–47]. In
the absence of these interactions, the collinear low-energy matrix elements reduce to the
usual collinear PDFs for quarks and gluons inside the hadron Hi, i.e.

fi(xi, µ) =
∫ ∞
−∞

dt

2π
e−ixitn̄i·pi ⟨Hi(pi)| Φ̄ᾱ

i (tn̄i)P(i)
ᾱα Φα

i (0) |Hi(pi)⟩ , (2.10)

which multiply a matrix element of soft Wilson lines. Above the scale Q0, however, such a
factorization no longer holds.

An important ingredient for the resummation of large logarithms is the RG equation
for the hard functions, which we write in the form [36]

d

d lnµ
Hm({n}, s, µ) = −

m∑
l=2+M

Hl({n}, s, µ) ⋆ ΓH
lm({n}, s, µ) . (2.11)

Here and below we omit the momentum-fraction variables for the initial-state partons in
the hard functions and anomalous-dimension coefficients, which in the convolution on the
right-hand side are combined with the standard Mellin convolutions

(f ⋆ g)(xi) =
∫

dξi

∫
dξ′i δ(xi − ξi ξ′i) f(ξi) g(ξ′i) . (2.12)

There is one such convolution for each initial-state parton. These Mellin convolutions
arise in the usual DGLAP evolution equations, and we find that in the absence of Glauber
phases the collinear part of the anomalous dimension indeed produces the standard DGLAP
evolution. Most of the discussion in this paper concerns the soft part of the anomalous-
dimension matrix, which has a trivial dependence on the momentum fractions proportional
to δ(1−ξ1) δ(1−ξ2), because soft emissions take away an insignificant fraction of longitudinal
momentum. This renders the Mellin convolutions trivial. For the discussion of soft effects,
we will thus omit the convolution symbol ⋆ when writing products of anomalous dimensions.

The evolution equation (2.11) exhibits the familiar structure of RG equations in the
presence of operator mixing. However, its solution is a highly non-trivial task even in the
leading-logarithmic approximation. The reason is that the anomalous-dimension matrix
is an operator not only in the high-dimensional color space of the initial- and final-state
particles, but also in the infinite space of particle multiplicities. This is a key feature of
our approach and reflects the intrinsic complexity of the problem at hand. The evolution
equations shows that higher-multiplicity hard functions mix with lower-multiplicity functions
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under scale evolution. At one-loop order, and written in the space of particle-multiplicities,
the anomalous-dimension matrix takes the form

ΓH({n}, s, µ) = αs

4π



V2+M R2+M 0 0 . . .

0 V2+M+1 R2+M+1 0 . . .

0 0 V2+M+2 R2+M+2 . . .

0 0 0 V2+M+3 . . .
...

...
...

... . . .


+O(α2

s) , (2.13)

where (2 + M) is the minimal number of particles for an M -jet process at a hadron collider.
The virtual-correction matrix elements Vm on the diagonal leave the number of partons
unchanged, while the real-emission operators Rm map a hard function with m partons onto
one with (m + 1) partons.3 With each higher order in perturbation theory an additional
off-diagonal in the upper right half of the matrix is filled, but the entries below the diagonal
remain zero to all orders.

By solving the RG equation (2.11) we can evolve the hard functions from their natural
scale µh ∼ Q ∼

√
ŝ, where ŝ = x1x2s is the partonic center-of-mass energy, down to the

scale µs ∼ Q0 of the low-energy dynamics. A formal solution is given by the path-ordered
exponential

U({n}, s, µh, µs) = P exp
[ ∫ µh

µs

dµ

µ
ΓH({n}, s, µ)

]
, (2.14)

which is defined by its series expansion

H(µh) ⋆ U(µh, µs) = H(µh) +
∫ µh

µs

dµ1
µ1

H(µh) ⋆ ΓH(µ1)

+
∫ µh

µs

dµ1
µ1

∫ µh

µ1

dµ2
µ2

H(µh) ⋆ ΓH(µ2) ⋆ ΓH(µ1) + . . . ,

(2.15)

where the anomalous-dimension matrices on the right-hand side are ordered in the direction
of decreasing scale values (i.e. µ2 > µ1 in the second line). In the last two equations we
have suppressed the energy and direction arguments of the various functions for simplicity.

In the following, we first present a detailed derivation of the anomalous dimension ΓH

at one-loop order (section 3). In contrast to the case of e+e− collisions, the anomalous
dimension not only contains soft contributions, but also collinear and soft+ collinear
contributions associated with the initial-state partons. The soft+ collinear parts exhibit
a logarithmic dependence on the factorization scale µ, which leads to double logarithms
upon performing the scale integrals in (2.15). This feature is the source of the SLLs.
Following our earlier work [36], we then calculate the leading double-logarithmic terms
from (2.1) and (2.15) order by order in perturbation theory, by evaluating the relevant color
traces (sections 4 and 6) and iterated scale integrals (section 5). For this calculation it is
sufficient to work with the lowest-order expressions for the low-energy matrix elements and
combine them with the expression for the RG-evolved hard functions evaluated at leading

3Recall that ΓH stands to the right of the hard functions in (2.11).
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double-logarithmic order [36]. We can thus neglect all quantum corrections at the scale
µ = Q0, so that the functions Wm are given by their tree-level expressions

Wm({n}, Q0, x1, x2, µs) = f1(x1, µs) f2(x2, µs)1+O(αs) . (2.16)

In the future, it will be very interesting to study the low-energy matrix elements Wm in
more detail. The fact that the evolution of the hard functions produces double logarithms,
but the low-energy theory naively only knows about a single scale Q0, implies that the
low-energy matrix elements must suffer from a collinear anomaly, which produces rapidity
logarithms [48, 49]. The presence of rapidity logarithms is characteristic for processes
involving Glauber gluons [44], but since the double-logarithmic terms only start at four-loop
order, these must have quite an intricate structure in our case, which waits to be explored.
A resummation of the rapidity logarithms will be required to extend our results beyond the
leading double-logarithmic approximation.

3 Derivation of the anomalous dimension

We will now derive the one-loop anomalous dimension ΓH of the hard functions. The
corresponding anomalous dimension relevant for the case of e+e− collisions was derived
in [21, 31], where in the second reference also the two-loop contribution was obtained.
An important complication present in the hadron-collider case we consider here is the
occurrence of collinear terms in the anomalous dimension. Indeed, it is these collinear terms
which in conjunction with the Glauber phases lead to the SLLs.

The anomalous dimension ΓH is related to infrared divergences in the functions Hm

and can be obtained by considering soft and collinear limits of these functions. In the
following, we will first consider the soft limit of the hard amplitudes and recapitulate the
result obtained for the e+e− case. After this, we turn to a detailed analysis of collinear
singularities. We show that for final-state partons, the singularities exactly cancel between
real and virtual corrections. For the initial-state partons, there are singularities that lead
to a collinear anomalous dimension.

3.1 Soft part of the anomalous dimension

The gap-between-jets observable at e+e− colliders is single logarithmic, and instead of the
matrix elements Wm one has matrix elements Sm which only involve soft Wilson lines.
The physics of the NGLs is driven by soft emissions and we have extracted the one-loop
anomalous dimension by considering the soft limit of the hard functions Hm, which leads
to the result [31]

V S
m = 2

∑
(ij)

∫
dΩ(nk)
4π

(Ti,L · Tj,L + Ti,R · Tj,R)W
k
ij

− 2iπ
∑
(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij ,

RS
m = −4

∑
(ij)

Ti,L ◦ Tj,R W
k
ij Θhard(nk) .

(3.1)
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A detailed derivation of this result, including the imaginary part in the second line, can
be found in [21]. For e+e− collisions, V S

m and RS
m are the full result for the entries of the

anomalous-dimension matrix (2.13), but for hadron colliders we need to add the collinear
parts computed below. The superscript S indicates that these terms are associated with
the purely soft singularities of Hm.

Let us now explain the notation in (3.1). The symbol (ij) on the sums runs over all
(unordered) pairs of parton indices with i ̸= j. The quantity W

k
ij describes the angular

dependence and is related to the soft dipole

W k
ij = ni · nj

ni · nk nj · nk
, (3.2)

which is the product of the two eikonals, summed over the spin of the emitted gluon. To
restrict the anomalous dimension (3.1) to the purely soft contributions, the collinear limits
of the soft dipole W k

ij were subtracted using

W
k
ij = W k

ij −
1

ni · nk
δ(ni − nk)−

1
nj · nk

δ(nj − nk) . (3.3)

It is understood that the angular delta distribution δ(ni−nk) only acts on the test function,
not on the coefficient multiplying it. The hard gluons in the real emission are restricted
to lie inside the jet region by the constraint Θhard(nk), while the virtual corrections are
unrestricted. We use the color-space formalism, where Ti denotes a color generator acting on
particle i. The color matrices Ti,L act on the amplitude while Tj,R multiplies the conjugate,
for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2 Hm + Hm T3 · T4 . (3.4)

The color matrices in the virtual part act on the color indices of the m partons of the
amplitude and Ti · Tj =

∑
a T a

i T a
j . This is the usual color-space notation. The color

matrices in the real emission matrix RS
m are different. They take an amplitude with m

partons and associated color indices and map it into an amplitude with (m + 1) partons,
see figure 5. Explicitly, we have

Ti,L ◦ Tj,R Hm = T a
i Hm T ã

j , (3.5)

where a and ã are the color indices of the additional emitted gluon in the amplitude and the
conjugate amplitude. In contrast to the virtual case, these color indices cannot immediately
be contracted because later emissions can attach to the new gluon.

The terms in the second line of (3.1) are purely imaginary. An imaginary part is
present whenever i and j are both incoming or both outgoing partons, the prefactor is
Πij = 1 in these cases and zero otherwise. The imaginary part can be simplified using color
conservation

∑
i Ti = 0. For concreteness, consider the process 1 + 2→ 3 + · · ·+ m. We

– 11 –



J
H
E
P
1
2
(
2
0
2
3
)
1
1
6

then have

∑
(ij)

Ti · Tj Πij = 2T1 · T2 +
m∑

i=3
Ti · (−T1 − T2 − Ti)

= 2T1 · T2 + (T1 + T2) · (T1 + T2)−
m∑

i=3
Ci (3.6)

= 4T1 · T2 + C1 + C2 −
m∑

i=3
Ci ,

where Ti · Ti = Ci 1 is the quadratic Casimir of the representation associated with leg i,
and Ci evaluates to CF for (anti-)quark legs and to CA for gluons. The constant imaginary
part arises both from the generators Ti,L acting on the amplitude and the generators Ti,R

acting on the conjugate amplitude. These terms cancel in the anomalous dimension. In
case where one or both incoming particles are color-neutral the term T1 · T2 is not present
and the Coulomb phase never contributes to the cross section. The phase terms completely
vanish and can be dropped from the anomalous-dimension matrix as we did in our previous
paper [31]. A non-trivial phase can arise if the initial state carries color, as is the case
for the partonic amplitudes relevant for hadronic collisions. Note that, after using color
conservation to rewrite the sum of the final-state Glauber phases in terms of the initial-state
color generators, the coefficient of the T1 · T2 term has doubled. In order to account for the
final-state phases, the Lagrangian of [44] needs to be adapted to our problem. For example,
an immediate consequence of (3.6) is that the coefficient of the Glauber terms must be
twice as large as in the case of forward scattering.

In e+e− collisions the soft+ collinear parts of the anomalous dimension cancel between
the real and virtual entries and one could work in terms of the unsubtracted dipoles W k

ij as
explained in [21]. For hadron collider processes, due to the presence of Glauber phases, the
soft+ collinear singularities associated with the initial state will not cancel and lead to SLLs.
Furthermore, we will also need a purely collinear anomalous dimension that corresponds, up
to the color structure, to the usual DGLAP evolution of the PDFs. To extract the collinear
pieces of the anomalous dimension, we will now first consider collinear singularities in the
virtual corrections and then collinear limits of the hard function.

3.2 Singularities in virtual corrections

The soft and collinear divergences of massless scattering amplitudes |Mm({p})⟩ are well
known [50–55]. The amplitudes can be renormalized multiplicatively through

|Mm({p}, µ)⟩ = lim
ϵ→0

Z−1({p}, µ, ϵ) |Mm({p}, ϵ)⟩ . (3.7)

The renormalization factor can be obtained from an anomalous-dimension matrix, which
up to two-loop order takes the form [50]

ΓM({p}, µ) =
∑
(ij)

Ti · Tj

2 γcusp(αs) ln
µ2

−sij
+
∑

i

γi(αs)1 , (3.8)
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where sij = 2σij pi · pj + i0 with σij = 2Πij − 1. The hard functions Hm are given by
squared amplitudes with particles along fixed directions, so that this anomalous dimension
is relevant. However, according to the definition (2.3) the hard functions are integrated
over the energies of the outgoing partons in the presence of the phase space constraints.
Since the collinear part of the anomalous dimension depends logarithmically on the energies
through the cusp logarithms, the result (3.8) does not immediately translate into a result
for the anomalous dimension of the hard functions.

We will now prove that the collinear pieces of the anomalous dimension (3.8) associated
with final-state partons cancel against collinear singularities of real-emission corrections
present in hard functions with additional collinear legs. This cancellation can be shown
to take place before the energy integrals are carried out. To simplify the notation for our
discussion, we write the hard functions in the form

Hm({n}, s, x1, x2) =
∫

dEm H̃m({p}) , (3.9)

where the “unintegrated” hard functions

H̃m({p}) = |Mm({p})⟩⟨Mm({p})| (3.10)

are simply given by the squared amplitude, and
∫

dEm collects the final-state parton energy
integrals together with the momentum-conservation and phase-space constraints on hard
radiation, see (2.3).

To discuss the collinear singularities, we rewrite the logarithmic part of the anomalous
dimension in (3.8) in the form

ln µ2

−sij
= ln 2

ni · nj
+ ln µ

2Ei
+ ln µ

2Ej
+ iπ Πij . (3.11)

The energy-dependent parts only depend on a single parton and can be simplified using
color conservation

ΓM({p}, µ) =
∑
(ij)

Ti · Tj

2 γcusp(αs)
(
ln 2

ni · nj
+ iπ Πij

)

+
∑

i

(
−Ci γcusp(αs) ln

µ

2Ei
+ γi(αs)

)
1

= ΓMs +
∑

i

ΓMc,i 1 ,

(3.12)

where ΓMc,i contains the collinear as well as the soft+ collinear singularities. Using the relation∫
dΩ(nk)
4π

W
k
ij = ln ni · nj

2 , (3.13)

where the integral is related to the ones defined in (2.4) by∫
dΩ(nk)
4π

=
∫
[dΩk] +O(ϵ) , (3.14)
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Figure 2. In the limit where partons i and j become collinear, the hard functions factorize. The
soft Wilson lines (red double lines) associated with i and j combine into a single Wilson line for the
parent parton.

we see that the soft anomalous dimension ΓMs gives rise to the collinearly subtracted version
of the virtual part V S

m of the one-loop anomalous dimension (3.1). The treatment of the
collinear part of the anomalous dimension is more subtle because it depends on the energy,
which is integrated over for final-state partons.

For later use, let us write out the divergences associated with the collinear anomalous
dimension ΓMc,i at one loop. We have

Hm({n},s)=
∑

i

∫
dEm

αs

4π

[
−Ci γ

cusp
0

( 1
2ϵ2 +

1
ϵ
ln µ

2Ei

)
+ γi

0
ϵ

]
H̃m({p})+ . . . , (3.15)

where the ellipsis denotes terms that are free of collinear singularities at one loop. The
factor of two compared to the result (3.8) arises because we get divergences from both the
amplitude and its conjugate.

3.3 Collinear limits of hard functions

To analyze the limits where two of the partons in Hm+1 become collinear, we make use of
splitting amplitude factorization

|Mm+1({p1, p2, p3, . . . , pm+1})⟩ = Sp({p1, p2}) |Mm({P, p3, . . . , pm+1})⟩+ . . . (3.16)

in the region where two partons become collinear with p1 ≈ zP and p2 ≈ (1 − z)P and
P 2 → 0. We write the collinear limit of 1 and 2 for notational convenience, but in the
application to the hard function, we will need to consider two cases: (i) both collinear
partons are in the final state and (ii) one parton is in the initial state, one in the final state.

In our factorization theorem, the hard functions are multiplied by Wilson lines along
the directions of the hard partons. In particular, the soft function for the two collinear
partons contains Wilson lines for partons 1 and 2 along the common direction nP . Since
the generators 1 and 2 commute, the Wilson lines combine into a single Wilson line with
color (T a

1 + T a
2 ),

S1(n1)S2(n2) = S1(nP )S2(nP ) = S1+2(nP ) . (3.17)
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In [21] it was shown that this implies

S1+2(nP )Sp({p1, p2}) |Mm({P, p3, . . . , pm+1})⟩

= Sp({p1, p2})SP (nP ) |Mm({P, p3, . . . , pm+1})⟩ .
(3.18)

This relation is illustrated in figure 2 and is an operator version of the usual QCD coherence,
which states that the soft emissions from two collinear partons are the same as the collinear
emissions from the parent parton. It follows immediately from charge conservation, which
implies that the color state of the partons after the decay corresponds to the color state of
the parent parton (see e.g. [52, 56])

(T a
1 + T a

2 )Sp({p1, p2}) = Sp({p1, p2})T a
P . (3.19)

Let us now first consider case (i) with a hard function Hm+1 in a kinematical situation
where two final-state partons i and j become collinear. Parameterizing the energies as
Ei = zEP and Ej = (1− z)EP and using that the measurement function is collinear safe,
we find ∫

dEm+1 =
∫ 1

0
dz [z(1− z)]d−3

∫
dEm

Ed−2
P

c̃ϵ(2π)2 . (3.20)

Note the presence of the additional factor of Ed−2
P .

The above equations imply that in the limit where i and j become collinear, the product
of hard and soft-collinear functions before the angular integrations take the form∫

dEm+1
〈
H̃m+1({p}) Wm+1({n}, Q0)

〉
−→
i∥j

∫ 1

0
dz [z(1− z)]d−3

×
∫

dEm
Ed−2

P

c̃ϵ(2π)2

〈
Sp({pi, pj}) H̃m({p}) Wm({n}, Q0)Sp†({pi, pj})

〉
.

(3.21)

Recall that, as explained after (2.7), the quantity W acts on both the amplitude and the
conjugate amplitude in the hard function, i.e. half of the Wilson lines in W act on the
left-hand side of H̃.

Explicit expressions for the tree-level splitting amplitudes can be found in (12) – (15)
of [24]. We use the fact that the product H̃m Wm is independent of the colors and spins of
partons i and j to carry out the associated sums in ⟨. . . ⟩. Then it is possible to rewrite the
result as a sum over color and spin of the parent parton P

⟨Sp({pi, pj}) H̃m Wm Sp†({pi, pj})⟩ = 4παsµ̃2ϵ 2
sij
Pi+j←P (z)⟨ H̃m Wm ⟩ , (3.22)

where sij = 2E2
P z(1 − z)ni · nj . The scale µ̃ is related to the scale µ in the MS scale

through µ̃2 = eγE /(4π)µ2. We find the spin averages of the squared splitting amplitudes,
which are commonly referred to as splitting functions Pi+j←P . Note that the product (3.21)
will be integrated over (m + 1) directions. When one integrates over the direction nj , one
encounters a collinear singularity∫

[dΩj ]
1

ni · nj
= − 1

2ϵ
+O(ϵ) = − 1

2ϵ

∫
[dΩj ] δ(ni − nj) +O(ϵ) . (3.23)
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We should thus view the splitting function as a distribution that produces a singularity
when integrating over the direction nj . The remaining angular integration over the direction
of parton i can then be reinterpreted as the integration over the direction of the parent
parton so that we are then left with the integral over the m directions relevant for the
parent hard function Hm.

To proceed we now perform the integrals over z. In the integrand, we have the
spin-averaged splitting functions, which can be found in eqs. (14) – (17) of [57], and are
given by

Pq+g←q(z) = Pq̄+g←q̄(z) = CF

[1 + z2

1− z
− ϵ(1− z)

]
,

Pg+q←q(z) = Pg+q̄←q̄(z) = Pq+g←q(1− z) ,

Pq+q̄←g(z) = Pq̄+q←g(z) = TF

[
1− 2z(1− z)

1− ϵ

]
,

Pg+g←g(z) = 2CA

[
z

1− z
+ 1− z

z
+ z(1− z)

]
.

(3.24)

Combining (3.21) and (3.22) yields the integrals∫ 1

0
dz [z(1− z)]−2ϵ 1

2 (Pq+g←q(z) + Pg+q←q(z)) = CF

(
−1

ϵ
− 3

2

)
+O(ϵ) , (3.25)

and ∫ 1

0
dz [z(1− z)]−2ϵ 1

2

(
Pg+g←g(z) +

∑
q

[Pq+q̄←g(z) + Pq̄+q←g(z)]
)

= CA

(
−1

ϵ
− 11

6

)
+ 4

6 TF nf +O(ϵ) ,

(3.26)

where we have averaged over the splittings q + g ← q and g + q ← q which are both part
of the same (m + 1)-parton configuration. The same is true for q + q̄ ← g and q̄ + q ← g.
Since the integral is symmetric under z → 1− z and the two contributions map onto each
other under this transformation, we could instead also simply only consider one of the two
channels. For g + g ← g the factor 1/2 on the left-hand side of (3.26) ensures that we do
not over-count identical particles.

Adding the integral over directions and putting things together, we find the following
result for the collinear contribution associated with a parent parton P splitting into collinear
partons i and j:∫

dEm+1
〈
H̃m+1({p})⊗Wm+1({n},Q0)

〉
−→
i∥j

∫
dEm

αs

4π

[
CP γcusp

0

( 1
2ϵ2 +

1
ϵ
ln µ

2EP

)
− γP

0
ϵ

] 〈
H̃m({p})⊗Wm({p},Q0)

〉
.

(3.27)

Note that we integrate over (m + 1) angles on the left-hand side and over m angles on
the right-hand side. The extra angular integration has been performed to get rid of the
angular δ-distribution and sets nj → ni which is identified with the parent parton direction.
Doing so, we observe that the result on the right-hand side is equal and opposite to the one
associated with virtual collinear singularities shown in (3.15) and after we sum over the
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splitting of all parent partons P , i.e. over all the (m − 2) final-state partons in the hard
function Hm, we find that the collinear singularities associated with final-state partons
exactly cancel.

Next, let us consider case (ii) where a final-state parton becomes collinear to an initial-
state parton. We can infer this splitting from time-like result (3.22) by crossing one of the
final-state momenta to the initial state. For concreteness, let us study the case where leg 1
becomes collinear to leg j by crossing pi → −p1. We also need to take into account the
difference in kinematics. The final-state collinear splittings describe the process P → pi+pj ,
where in the collinear limit pi = z P . For the initial-state splitting, we instead consider
pi → P + pj with P = ξ p1 in the collinear limit, which implies that we should substitute
z → 1/ξ in the time-like splitting functions in (3.22).4 The result is that for a space-like
splitting p1 → P + pj , with P = ξ p1 in the collinear limit, the trace in (3.21) evaluates to

⟨Sp({p1,pj})H̃m Wm Sp†({p1,pj})⟩=4παsµ̃2ϵ 2
(−s1j)

1
ξ
P1→P (ξ)⟨H̃m Wm ⟩ , (3.28)

where P1→P (ξ) are the unregularized DGLAP splitting functions. In contrast to the time-
like case, it is customary to only indicate the incoming parton 1 and the parton P entering
the hard scattering. The radiated collinear parton j can be inferred from fermion flavor
conservation. The extra factor of 1/ξ in (3.28) compared to the time-like case (3.22) will
correct the flux factor in the cross section to one relevant for the scattering of the incoming
parton P since sP 2 = ξs12.

Performing the crossing carefully and taking into account that the average factors (2.2)
change between the left- and right-hand side of (3.28) if parton P and 1 are different,
one finds that P1→P (ξ) = PP +j←1(ξ), i.e. the one-loop functional form of the DGLAP
kernels is identical to the one which arises in the time-like splitting (3.24) for the given
partonic channel.

Let us now analyze the integration measure of the hard function in the collinear
limit. We parameterize the energy of the final-state collinear particle as Ej = E1(1− ξ) =
EP (1−ξ)/ξ and rewrite the hard function as a hard function for the process with initial-state
parton P instead 1 and without the final-state parton j. The denominator in (3.28) is
s1j = −2E2

P n1 · nj (1− ξ)/ξ2. Inserting these expressions, one would naively rewrite the
contribution from (m + 1) partons as∫

dEm+1
〈
H̃m+1({p})Wm+1({n}, Q0)

〉
−→
1∥j

αs

π

(
µ

2EP

)2ϵ ∫ 1

0
dξ

(
ξ

1− ξ

)2ϵ

P1→P (ξ)
1

n1 · nj

∫
dEm

〈
H̃m({p})Wm({n}, Q0)

〉
.

(3.29)
To obtain the collinear divergence, we first extract the divergence of the angular integral
using (3.23). The splitting kernels Pq→q and Pg→g also have a soft divergence when ξ → 1.
This divergence is regularized by the d-dimensional energy integral which yields a factor of

4At higher orders, careful analytic continuation is needed to correctly reproduce the complex phases in
the amplitude when performing the crossing pi → −p1 [24]. We work at tree level.
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Figure 3. In the limit where the initial-state parton 1 and the final-state parton j become collinear,
the hard functions factorize, but in contrast to the final-state collinear limit depicted in figure 2, the
soft Wilson lines associated with 1 and j do not combine.

(1− ξ)−2ϵ in the integrand. We can isolate the divergence using the relation

(1− ξ)−1−2ϵ = − 1
2ϵ

δ(1− ξ) +
[ 1
1− ξ

]
+
+O(ϵ) . (3.30)

Doing so leads to the following result for the collinearly divergent part

∫
dEm+1

〈
H̃m+1({p})Wm+1({n},Q0,x1,x2)

〉
−→
1∥j

∫ 1

0
dξ

αs

4π

[
C1 γcusp

0 δ(1−ξ)
( 1
2ϵ2 +

1
ϵ
ln µ

2E1

)
δ1P−

2
ϵ
P1→P (ξ)

]
δ(n1−nj)

×
∫

dEm

〈
H̃m({p})Wm({p},Q0,x1,x2)

〉
,

(3.31)

where P1→P (ξ) are the splitting function from which the soft singularity has been subtracted
using (3.30). After adding the collinearly singular terms (3.15) arising in the virtual part, we
would find that the soft+ collinear pieces would cancel and we would recover the standard
MS DGLAP kernels.

However, in the above derivation there is a subtle mistake. In our argument based on
crossing, we have implicitly used relations (3.17) and (3.18) to combine Wilson lines and
simplify the color structure, but in the space-like limit 1 ∥ j the Wilson line S1 is associated
with an incoming particle, while Sj describes emissions from an outgoing line, see figure 3.
These two Wilson lines do not combine into a single outgoing Wilson line even if their
direction nP is the same. In terms of Feynman diagrams the difference between the two
Wilson lines is the sign of the i0 prescription in the associated light-cone direction, which is
of course directly related to the Glauber effects (3.6) we investigate in this paper. Since
we are unable to use (3.18), the color generators associated with the emission cannot be
commuted through the Wm+1 function, which remains in the original (m+1)-parton space.
Let us denote the color matrix associated with the splitting amplitude Sp(p1, pj) by C1→P .
Since the color structure of the splitting amplitudes cannot be simplified with (3.18), the
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Figure 4. Color structures C1→P for different collinear splittings. In the first three cases, the
color structure is given by the color generator associated with the quark-gluon vertex, appropriately
contracted with the hard function. In the last case, the color structure is given by the SU(Nc)
structure constant. The first and last example can be written as T a

1 in the color space formalism,
where a is the color index of the emitted collinear gluon.

corrected version of (3.31) then reads∫
dEm+1

〈
H̃m+1({p})Wm+1({n}, Q0, x1, x2)

〉
−→
1∥j

∫ 1

0
dξ

αs

4π

[
C1 γcusp

0 δ(1− ξ)
( 1
2ϵ2 + 1

ϵ
ln µ

2E1

)
δ1P −

2
ϵ
P1→P (ξ)

]
δ(n1 − nj)

×
∫

dEm

〈
C1→P H̃m({p̂})C†1→P Wm+1({n}, Q0, x1, x2)

〉
.

(3.32)

The matrix C1→P connects the colors of the three partons involved in the splitting and maps
from the m-parton space with momenta {p̂} = {P, p2, . . . , pj−1, pj+1, . . . , pm+1} before the
splitting to the (m + 1)-parton space with directions {n̂} = {n1, n2, . . . , nm+1} after the
splitting. We have normalized these matrices to unity for trivial Wm+1 = 1

C†1→P C1→P = 1 . (3.33)

For the q → q or g → g splittings, the matrix C1→P describes the emission of an additional
collinear gluon, which can be described in the color-space formalism. With our normalization,
we have

C1→P Hm C†1→P = Hm
1

CP
TP,L ◦ TP,R . (3.34)

The subscripts L, R indicate on which side the color generator multiplies the hard function.
For the soft terms proportional to δ(1− ξ), the normalization factor CP simply cancels the
Casimir in the prefactor.

After this discussion, we can now present the result for the full anomalous dimension,
including both the soft part and the collinear pieces associated with the initial-state collinear
singularities. At the one-loop order, we split the anomalous dimension into a soft part and
a sum of purely collinear terms

ΓH(ξ1, ξ2) = δ(1− ξ1) δ(1− ξ2)ΓS + ΓC
1 (ξ1) δ(1− ξ2) + δ(1− ξ1)ΓC

2 (ξ2) . (3.35)

To separate the soft+ collinear parts from the purely collinear ones, we introduce a reference
scale µh ∼

√
ŝ and split

ln µ

2Ei
= ln µ

µh
+ ln µh

2Ei
(3.36)
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for i = 1, 2. The large logarithms ln µ
µh

are included with the soft anomalous dimension
ΓS ≡ ΓS(µh, µ) and the remaining O(1) terms are included in ΓC

i . In the partonic center-
of-mass frame 2E1 = 2E2 =

√
ŝ so that the extra term is absent for the choice µh ∼

√
ŝ

which we adopted in our previous paper [36]. In the laboratory frame, we have instead
2E1 = x1

√
s and 2E2 = x2

√
s. To obtain the cross section, the hard functions Hm and

the soft-collinear functions Wm+1 are integrated over the momentum fractions. The above
anomalous dimension multiplies these functions in the sense of Mellin convolutions over ξ1
and ξ2. Since the soft part has trivial dependence on the momentum fractions, we have
suppressed this dependence in [36].

The real and virtual pieces of the purely collinear part ΓC
i of the one-loop anomalous-

dimension matrix (2.13) are given by

V C
i (ξi)=−2

(
γi

0−Ci γ
cusp
0 ln µh

2Ei

)
δ(1−ξi) ,

RC
i (ξi)= 2

(
2P i→P (ξi)−Ci γ

cusp
0 δiP ln µh

2Ei
δ(1−ξi)

)
Ci→P,L C†i→P,R δ(nk−ni) ,

(3.37)

where the L and R subscript indicate how the color matrices act on the hard function. Note
that the collinear real-emission operator has different channels 1→ P . For example, RC

q

acts on hard functions with initial state P , which could be a quark or gluon, and produces a
new hard function with initial-state quark. With the default choice µh ∼

√
ŝ the logarithms

in the collinear anomalous dimension operators evaluate (modulo a sign) to the rapidity
difference between the lab and the partonic center-of-mass frame. After convolution with
the PDFs, this is an order one logarithm. Furthermore, for channels in which the two
initial-state partons transform in the same color representation, the logarithms immediately
cancel for the default scale choice, as is evident from (3.12).

It is interesting that the hard evolution is not driven by the usual DGLAP kernels but
by a real part that has a non-trivial color structure and a color-diagonal virtual part. Only
if the color structure of the soft-collinear functions Wm+1 is such that the color structure
of the real emissions trivializes, the two parts will combine into the standard MS kernels.
For the same reason also the soft+ collinear pieces do not cancel out, which will lead to
double-logarithmic terms in the evolution, the SLLs.

The soft piece ΓS of the anomalous dimension can be split into the following parts [36]

V S
m = Vm + V G +

∑
i=1,2

V c
i ln µ2

µ2
h

,

RS
m = Rm +

∑
i=1,2

Rc
i ln µ2

µ2
h

.

(3.38)

The entries Rm and Vm are the collinearly subtracted real and virtual corrections, and
V G contains the Glauber phases. We have shown that final-state collinear singularities
cancel between the real and virtual pieces so that we are left with the initial-state soft-
collinear terms Rc

i and V c
i . Let us explicitly list the three ingredients. The wide-angle soft
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Figure 5. Action of the real-emission operator Rm and the virtual piece Vm on a hard function
Hm. Due to the emitted gluon (green line), the product Hm Rm defines a hard function with
(m + 1) external legs.

emissions read

Vm = 2
∑
(ij)

(
Ti,L · Tj,L + Ti,R · Tj,R

) ∫ dΩ(nk)
4π

W
k
ij ,

Rm = −4
∑
(ij)

Ti,L ◦ Tj,R W
k
ij Θhard(nk) .

(3.39)

The angular integral in the virtual terms Vm could be carried out using (3.13), but it is
convenient to keep it to make real-virtual cancellations manifest. The real emission piece,
on the other hand, generates a new parton along direction nk and the corresponding angular
integration can only be carried out at the end. The Glauber terms are given by

V G = −2iπγcusp
0

(
T1,L · T2,L − T1,R · T2,R

)
, (3.40)

and the coefficients of the cusp logarithms are

V c
i = γcusp

0 Ci 1 ,

Rc
i = −γcusp

0 Ti,L ◦ Ti,R δ(nk − ni) .
(3.41)

The action of the different parts of the soft anomalous dimension on the hard function Hm

is depicted in figures 5 and 6.

4 Color traces for the leading double-logarithmic terms

To extract the logarithmically-enhanced terms, we will now compute the evolution (2.15)
order by order. To do so, we will start with the lowest multiplicity hard function for the
given process and multiply by powers of ΓH . We will first evaluate the color structure
of these products and then perform the relevant µ-integrals. In evaluating the products,
we keep in mind the simple multiplicity matrix structure, namely that the real-emission
contributions (Rm, Rc

i and RC
i ) add an extra leg to a given hard function, while the virtual

pieces (Vm, V c
i , V G and V C

i ) keep the number of legs the same. To streamline the notation,
we will no longer write out the multiplicity indices on the anomalous dimensions and the
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Figure 6. Action of the cusp operator Rc
1 and the virtual piece V G on a hard function Hm. The

operator Rc
1 adds an additional final-state leg (dashed blue line) along the direction of the incoming

parton 1.

hard and soft functions. In multiplicity space, the hard functions are vectors which we
indicate by the notation H. The Born-level hard function only contains a lowest-order
entry, H2→M ≡ (H2+M , 0, 0, . . . ). We also combine the real and virtual pieces of the soft
anomalous dimension into the matrix notation

Γc =
∑

i=1,2
γcusp

0
[
Ci 1− Ti,L ◦ Ti,R δ(nk − ni)

]
,

V G = −2iπγcusp
0 (T1,L · T2,L − T1,R · T2,R) ,

Γ = 2
∑
(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)
∫

dΩ(nk)
4π

W
k
ij − 4

∑
(ij)

Ti,L ◦ Tj,R W
k
ij Θhard(nk) .

(4.1)
As in (2.11) and (2.15), these are matrices in multiplicity space that multiply the hard
function from the right and the order of the matrices determines the order in which they
act on the hard function. At the same time, they contain color matrices that can act on
the amplitude or the conjugate amplitude in each step, i.e. multiply the color indices of
the hard function on the left or on the right. The vector nk in (4.1) corresponds to the
direction of the emitted gluon. Each emission generates a new vector and in a product of
anomalous dimensions we will label the vectors with an index nkℓ

with ℓ = 0, 1, . . . , where
ℓ = 0 is the last emission, ℓ = 1 the second to last, and so on.

Three properties of the different components of the anomalous dimension (4.1) greatly
simplify our calculations. Color coherence, the fact that the sum of the soft emissions off
two collinear partons has the same effect as a single soft emission off the parent parton,
implies that

HΓc Γ = HΓΓc , (4.2)

in other words they commute when multiplying a hard function H

[Γc,Γ] = 0. (4.3)

To derive this relation, we note that the contributions Rm and Vm only depend on the sum
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of colors if two partons i and j become collinear, e.g.

Ti,L · Tk,RW
q
ik + Tj,L · Tk,RW

q
jk = (Ti,L + Tj,L) · Tk,RW

q
ik , (4.4)

because the associated dipoles are identical if the particles are collinear. Then one uses the
property (3.19) to transform the sum of the color generators of the collinear partons into
the color generator of the parent parton. Next, the cyclicity of the trace ensures that

⟨HΓc ⊗ 1⟩ = 0 , ⟨H V G ⊗ 1⟩ = 0 . (4.5)

The first relation is a consequence of collinear safety: the singularity associated with a
collinear real emission cancels against the one in the associated virtual correction. The
second equation describes a cancellation of complex phases between the amplitude and
its conjugate. The three properties hold for an arbitrary hard function H obtained, for
example, from the lowest-order hard function H2→M after applying the one-loop anomalous
dimension several times.

To get the leading SLLs at a given order, we want to maximize the number of insertions
Γc, but the properties (4.5) imply that we need a factor of V GΓ at the end of the evolution,
otherwise the Γc immediately vanish. The insertion of this Glauber phase breaks color
coherence [23–26]. To get a real, non-vanishing contribution to the cross section a second
insertion of V G is needed on top of this, while all remaining insertions can be due to
double-logarithmic Γc terms. Based on these considerations we concluded in [36] that the
leading SLLs arise from the color traces

Crn =
〈
H2→M (Γc)r V G (Γc)n−r V G Γ⊗ 1

〉
, (4.6)

where 0 ≤ r ≤ n. The additional p ≤ n collinear gluons, which can be emitted from the
n insertions of Γc, will be labeled by indices k1, . . . , kp (reading the insertions of Γc from
right to left) and the final wide-angle gluon emission will have direction vector nk0 . Our
normalization of the hard functions is such that their trace is equal to the contribution of
the given partonic channel to the Born-level cross section, i.e.〈

H2→M ⊗ 1
〉
= σ̂2→M . (4.7)

Note that for a given M , there are several partonic channels 1 + 2 → 3 + · · · + (2 +
M) contributing. As explained earlier, we suppress the channel indices to keep the
notation compact.

The symbol ◦ in the real-emission terms of the Γc and Γ generates an additional gluon.
There are two cases, where the associated color sum can be evaluated. First of all, if the
rest of the color structure does not act on the color index of the additional gluon, it can
immediately be summed over

Ti,L ◦ Ti,R = T a
i,L T a

i,R . (4.8)

Secondly, if the remaining color structure only contains a single color generator T c
kℓ

associated
with the emitted gluon kℓ, we can insert the explicit form of the generator and sum

Ti,L ◦ Ti,R T c
kℓ

= T a
i,L T b

i,R (−ifcba) . (4.9)

Here and below, a sum over repeated color indices is implied.
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The symbol ⊗ in (4.6) includes, in particular, integrations over the directions nkℓ
of

the emitted collinear gluons, which simply has the effect of replacing δ(nk − ni)→ 1 in the
expression for Γc. It also includes an integration over the direction nk0 , which has the effect
of adding an integral

∫ dΩ(nk0 )
4π in front of the second term in Γ. The trivial consequences of

these angular integrations are a result of the fact that the low-energy matrix elements Wm

are proportional to the trivial color structure 1 in lowest order, see (2.16).
So far, we have only considered the different pieces of the soft anomalous dimension,

but let us also briefly discuss the purely collinear part. Combining real and virtual as in
the soft case

ΓC
i (ξi) =

αs

4π

[
2
(
2P i→P (ξi)− Ciγ

cusp
0 ln µh

2Ei
δ(1− ξi) δiP

)
δ(nk − ni)Ci→P C†i→P

−2
(

γi
0 − Ciγ

cusp
0 ln µh

2Ei

)
δ(1− ξi) δiP

]
,

(4.10)

we find that also the purely collinear anomalous dimension commutes with the wide-
angle emissions

HΓC
i (ξi)Γ = HΓΓC

i (ξi) . (4.11)

As for (4.2), this property follows from (4.4) and (3.19). Furthermore, when inserted in the
last step one can perform the color sum over the emitted parton, after which the real and
virtual parts combine into the usual DGLAP kernels

⟨HΓC
i (ξi)⊗ 1⟩ = ⟨H⊗ 1⟩ αs

π
Pi→P (ξi) . (4.12)

Here the soft-collinear cusp pieces have cancelled out between the real and virtual terms. As
mentioned above, this will no longer be the case beyond the leading order due to Glauber
phases in the low-energy matrix elements. Compared to the contributions Crn, contributions
involving the collinear anomalous dimension involve fewer powers of logarithms at a given
order and we will not discuss them further in this paper, but it is interesting that in the
presence of Glauber phases the collinear evolution becomes more complicated than the one
associated with the DGLAP equations.

5 Iterated scale integrals and resummation

Expanding the path-ordered exponential in (2.14) one generates the ordered product (2.15)
of integrals over the anomalous dimension. The leading double-logarithmic terms in this
series result from the iteration of the soft anomalous dimension ΓS in (3.35), which in turn
consists of the three elements given in (4.1). For these terms the Mellin convolutions are
trivial, and we obtain the iterated integral∫ µh

µs

dµ1
µ1

∫ µh

µ1

dµ2
µ2
· · ·
∫ µh

µn−1

dµn

µn
ΓS(µh, µn) . . . ΓS(µh, µ2)ΓS(µh, µ1) . (5.1)

To obtain the series of SLLs one picks out the different components of the anomalous
dimension (Γc, V G or Γ) corresponding to the color traces in (4.6). This leads to the
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iterated integral

Irn(µh, µs) =
∫ µh

µs

dµ1
µ1

αs(µ1)
4π

∫ µh

µ1

dµ2
µ2

αs(µ2)
4π

×
∫ µh

µ2

dµ3
µ3

αs(µ3)
4π

ln µ2
3

µ2
h

· · ·
∫ µh

µn−r+1

dµn−r+2
µn−r+2

αs(µn−r+2)
4π

ln
µ2

n−r+2
µ2

h

×
∫ µh

µn−r+2

dµn−r+3
µn−r+3

αs(µn−r+3)
4π

×
∫ µh

µn−r+3

dµn−r+4
µn−r+4

αs(µn−r+3)
4π

ln
µ2

n−r+4
µ2

h

· · ·
∫ µh

µn+2

dµn+3
µn+3

αs(µn+3)
4π

ln
µ2

n+3
µ2

h

.

(5.2)
The integrals in the second and fourth line of this expression result from the (n− r) and r

insertions of Γc in (4.6), respectively.
From (2.1), (2.15) and (2.16), we find that in leading double-logarithmic approximation

the cross section for a 2→M jet process can be written in the form

σSLL
2→M (Q0) =

∑
i∈{q,q̄,g}

∫
dx1

∫
dx2 f1(x1, µs) f2(x2, µs)

∞∑
n=0

n∑
r=0

Irn(µh, µs)Crn , (5.3)

with µh ∼
√

ŝ and µs ∼ Q0. Note that the color traces depend on the partonic channels
contributing to the Born-level 2→M scattering process, Crn ≡ C

1+2→3+···+(2+M)
rn , but this

dependence is implicit in our notation. The formula for the cross section includes a sum
over all contributing partonic channels, and i = 1, 2, . . . (2 +M) refers to any of the partons
involved in the process.

5.1 Evaluation of the iterated integrals

In the strict leading double-logarithmic approximation, the running of the coupling can be
neglected in (5.2), because this is a single-logarithmic effect. Then the above expression
simplifies to [36]

Irn(µh, µs)
∣∣∣
no running

=
(

αs(µ̄)
4π

)n+3 (−4)n n!
(2n + 3)!

(2r)!
4r (r!)2 ln2n+3

(
µh

µs

)
. (5.4)

We will see that the scale ambiguity under variations of µ̄ is significant because the coupling
αs(µ̄) enters with a large power. To estimate the corresponding uncertainty, we will vary
the reference scale µ̄ in the interval between µs and µh.

The ambiguity in the choice of µ̄ can be avoided if we evaluate the ordered integrals
including the scale dependence of the running QCD coupling. At leading order, we use

∫ µh

µ

dν

ν

αs(ν)
4π

= 1
2β0

∫ 1

xµ

dx

x
,∫ µh

µ

dν

ν

αs(ν)
4π

ln ν2

µ2
h

= − 1
2β0

4π

β0 αs(µh)

∫ 1

xµ

dx

x
(1− x) ,

(5.5)
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where xµ = αs(µh)/αs(µ), and β0 is the one-loop coefficient of the QCD β-function. We
then obtain

Irn(µh, µs) =
( 1
2β0

)n+3 [ −4π

β0 αs(µh)

]n ∫ 1

xs

dx1
x1

∫ 1

x1

dx2
x2

×
∫ 1

x2

dx3
x3

(1− x3) · · ·
∫ 1

xn−r+1

dxn−r+2
xn−r+2

(1− xn−r+2)
∫ 1

xn−r+2

dxn−r+3
xn−r+3

×
∫ 1

xn−r+3

dxn−r+4
xn−r+4

(1− xn−r+4) · · ·
∫ 1

xn+2

dxn+3
xn+3

(1− xn+3)

≡
( 1
2β0

)n+3 [ −4π

β0 αs(µh)

]n

hnr(xs) ,

(5.6)

where xs = αs(µh)/αs(µs) < 1. These iterated integrals generate simple functions hnr(xs)
containing logarithms and polynomials. For the calculation of the super-leading terms up
to five-loop order one needs

h00(x) = −
ln3x

6 ,

h10(x) =
ln4x

24 −
ln2x

2 − (2 + x) ln x− 3 + 3x ,

h11(x) =
ln4x

24 + ln3x

6 + ln2x

2 + ln x + 1− x ,

h20(x) = −
ln5x

120 + ln3x

6 +
(5
4 + x

) ln2x

2 +
(
1
2 − 2x− x2

8

)
ln x− 21

16 + x + 5x2

16 ,

h21(x) = −
ln5x

120 −
ln4x

24 −
ln3x

6 +
(
−3
2 + x

) ln2x

2 −
(11

4 + 2x

)
ln x− 39

8 + 5x− x2

8 ,

h22(x) = −
ln5x

120 −
ln4x

24 −
ln3x

12 + ln2x

8 +
(9
8 + x

)
ln x + 33

16 − 2x− x2

16 . (5.7)

The approximate result (5.4) can be recovered using the leading-order expression

xs = αs(µh)
αs(µs)

≈ 1− β0 αs

2π
ln µh

µs
(5.8)

and expanding the result to O(α2n+3
s ). We will find that the numerical results obtained

using the expression (5.6) are close to the results obtained from the simpler form (5.4) with
the intermediate scale choice µ̄ = √µh µs. The simpler form is, however, more convenient
for performing the all-order resummation of the leading double logarithms.

It is straightforward to include the effects of the two-loop cusp anomalous dimension
and two-loop β-function in this analysis, which eventually would be necessary to extend our
calculation to a systematic analysis in leading order of RG-improved perturbation theory.
This is accomplished by replacing

∫ 1

y

dx

x
(1−x)→

∫ 1

y

dx

x
(1−x)

{
1+αs(µh)

4π

[(
γcusp

1
γcusp

0
−β1

β0

)
1
x
+β1

β0

lnx

1−x

]
+. . .

}
(5.9)
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for all “cusp terms” generating double logarithms in (5.6), and
∫ 1

y

dx

x
→
∫ 1

y

dx

x

[
1 + αs(µh)

4π

(
γcusp

1
γcusp

0
− β1

β0

)
1
x
+ . . .

]
(5.10)

for the two Glauber terms. In the approximation where one works with a fixed coupling
αs(µ̄), as in (5.4), one would obtain

Irn(µh, µs)
∣∣∣
no running

=
(

αs(µ̄)
4π

)n+3 [
1 + γcusp

1
γcusp

0

αs(µ̄)
4π

]n+2 (−4)n n!
(2n + 3)!

(2r)!
4r (r!)2 ln2n+3

(
µh

µs

)
.

(5.11)
To approximately take this effect into account in our numerical results presented in section 7,
we will simply replace

αs(µ̄)→
[
1 + γcusp

1
γcusp

0

αs(µ̄)
4π

]
αs(µ̄) (5.12)

in the fixed-order results. For the results obtained using a running coupling, we will
multiply the integrals Irn in (5.6) with the same factor to the (3 + n)-th power evaluated at
µ̄ =
√

QQ0, to avoid reevaluating the integrals in (5.6) according to (5.9). Numerically this
has the effect of increasing the running coupling by about six percent.

5.2 Resummation and asymptotic behavior of the super-leading logarithms

We will derive an exact, closed-form expression for the color traces Crn for an arbitrary
2→M process in section 6. While the resulting expressions for specific partonic channels
can be lengthy, we find that in all cases the dependence on r and n can be factorized in the
general form

Crn = (γcusp
0 Nc)n

[
k0 δr0 +

6∑
i=1

ki vr
i

]
, (5.13)

with γcusp
0 = 4 and process-dependent coefficients ki and parameters

v1 = 1
2 , v2 = 1 , v3,4 = 3Nc ± 2

2Nc
, v5,6 = 2 (Nc ± 1)

Nc
, (5.14)

where v3 and v5 correspond to the plus signs. These vi arise as eigenvalues of Γc acting
on the space of color structures, see section 6. Neglecting the running of the coupling, as
is formally permitted at strict double-logarithmic accuracy, we derived in (5.4) a simple
expression for the integrals Irn. Using this expression and the power-like dependence of
Crn on r, we find that the SLL contribution to the partonic cross section is given by the
double sum

σ̂SLL
2→M =

∞∑
n=0

n∑
r=0

Irn(µh, µs)Crn =
(

αs(µ̄)
4π

)3 1
6 ln3

(
µh

µs

)[
k0 Σ0(w) +

6∑
i=1

ki Σ(vi, w)
]

,

(5.15)
where

w = Nc αs(µ̄)
π

ln2
(

µh

µs

)
(5.16)
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encodes the double-logarithmic dependence, and all relevant sums can be expressed in terms
of the functions

Σ0(w) =
∞∑

n=0

(−4)n 3!n!
(2n + 3)! wn = 2F2

(
1, 1; 2,

5
2;−w

)
, (5.17)

and
Σ(v, w) =

∞∑
n=0

n∑
r=0

(−4)n 3!n!
(2n + 3)!

(2r)!
4r (r!)2 vr wn , (5.18)

which satisfy Σ0(w) = Σ(0, w) and are normalized such that

Σ0(0) = Σ(v, 0) = 1 . (5.19)

For small values w ≪ 1, one finds the Taylor series

Σ(v, w) = 1− w

5

(
1 + v

2

)
+ 4w2

105

(
1 + v

2 + 3v2

8

)
+ . . . . (5.20)

Notice that the expansion of each Σ(v, w) function in powers of w generates an alternating-
sign perturbative series. This important fact can be traced back to the sign of the cusp
logarithm in the soft anomalous dimension (3.38).

Setting n = m + r, we can extend the sum over r to infinity. Rewriting the factorials
as Pochhammer symbols (x)n = Γ(x + n)/Γ(x), we obtain the representation

Σ(v, w) =
∞∑

m=0

∞∑
r=0

(
1
)

m+r

(
1
)

m

(1
2
)

r(
2
)

m+r

(5
2
)

m+r

(−w)m (−vw)r

m! r! , (5.21)

which shows that the sum is a Kampé de Fériet function5

Σ(v, w) = 1+1F2+0
( 1 : 1, 1

2 ;
2, 5

2 : ;
− w,−vw

)
. (5.22)

The arguments in the upper line indicate the Pochhammer symbols in the numerator, and
the lower line corresponds to the ones in the denominator. A useful integral representation
of Σ(v, w) can be obtained by first performing the sum over r in (5.21) in terms of a
hypergeometric function, then using an integral representation for this function, and finally
performing the sum over m in terms of the error function erf(y). We find

Σ(v, w) =
∫ 1

0
dx

3
4
√

x

[
2

y2(x) −
√

π erf (y(x))
y3(x)

]
, (5.23)

with y(x) =
√

w
(
1 + (v − 1)x

)
. For the special case v = 1, it follows that

Σ1(w) ≡ Σ(1, w) = 3
w
− 3
√

π erf (
√

w)
2w3/2 . (5.24)

5We thank B. Ananthanarayan and Souvik Bera for pointing this out.
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Figure 7. Plot of the function Σ(v, w) for the largest parameter v5 and the smallest non-zero value
v1. The full result is shown as a solid line. The red dotted lines show the perturbative expansion up
to the eighth order in w. The blue dashed line is the large-w asymptotics shown in (5.27).

It is possible to carry out the integral in (5.23) and obtain a representation in terms of the
Owen T -function, which has an implementation in Mathematica. We obtain

Σ(v, w) = 3
2z
√

w

[
4π T

(√
2 z,

√
w

z

)
−
√

π z erf (
√

vw)√
vw

+
√

π e−w erf(z)√
w

+π erf
(√

w
)

erf(z) + 2 arccos
( 1√

v

)
− π

]
,

(5.25)

with z =
√
(v − 1 + iε)w, where the iε prescription is needed for the analytic continuation

to v < 1.
It will be useful to derive the asymptotic behavior of the function Σ(v, w) in the limit

w →∞. For Σ0(w) we find from (5.17)

Σ0(w) = 3
2w

(
ln(4w) + γE − 2

)
+ 3

4w2 +O(w−3) . (5.26)

For the general case v ̸= 0, we can derive the asymptotic behavior from (5.23), finding

Σ(v, w) = 3 arctan
(√

v − 1
)

√
v − 1w

− 3
√

π

2
√

v w3/2 +O(w−2) . (5.27)

Note that the limits v → 0 and w → ∞ do not commute, and hence one does not
recover (5.26) from (5.27). It is interesting to contrast the asymptotic form of Σ(v, w) and
Σ0(w) to the standard double-logarithmic behavior, which in the variable w translates
to e−cw, where the coefficient c of the double logarithm depends on the process under
consideration. The standard behavior leads to the exponential Sudakov suppression. The
suppression is much weaker for the SLLs. We will come back to this after we analyze the
color traces for a few simple processes.
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Figure 8. Behavior of the functions Σ(v, w) for different values of v corresponding to the eigenvalues
in (5.14). Darker colors correspond to larger values of v.

The functional form of Σ(v, w) for two different values of v is illustrated in figure 7,
where we also show the perturbative expansion up to the eighth order in w (dotted lines) and
the asymptotic form (5.27) (dashed line). Note that in the phenomenologically interesting
region w ≳ 1 the convergence of the Taylor series (5.20) is slow. In figure 8 we show
the functions Σ(v, w) for all relevant eigenvalues vi. We observe that the shape is fairly
universal. As discussed in section 7, this induces cancellations that strongly reduce the
super-leading effects in 2→ 0 and 2→ 1 processes, for which the results can be expressed
in terms of differences of Σ(vi, w) functions belonging to different eigenvalues.

6 Evaluation of the color traces

The second relation in (4.5) implies that we can replace the last two color operators under
the color trace in (4.6) by their commutator [V G,Γ]. Introducing the abbreviation

H = H2→M (Γc)r V G (Γc)n−r , (6.1)

we find after a straightforward calculation

H [V G,Γ ] = −16πfabc

∑
i,j

(δi1 − δi2)

×
{[(

T a
1 T b

2 T c
j + T c

j T a
1 T b

2

)
H + H

(
T a

1 T b
2 T c

j + T c
j T a

1 T b
2

)] ∫ dΩ(nk0)
4π

W
k0
ij

− 2
(
T a

1 T b
2 H T c

j + T c
j H T a

1 T b
2

)
W

k0
ij Θhard(nk0)

}
. (6.2)

Note that one of the two indices in the sum over i and j in Γ must be equal to 1 or 2,
corresponding to an attachment of the emitted soft gluon (with index k0) on one of the
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initial-state partons, while the second index can be arbitrary. When the above result is
inserted under the color trace in (4.6), we can use the cyclicity of the trace to move all color
generators to the right-hand side of H, and the symbol ⊗ implies that we must integrate
over the direction nk0 of the emitted gluon. We obtain〈

H V G Γ⊗ 1
〉
= −32πfabc

∑
j

〈
H
(
T a

1 T b
2 T c

j + T c
j T a

1 T b
2

) 〉
×
∫

dΩ(nk0)
4π

(
W

k0
1j −W

k0
2j

)
Θveto(nk0) ,

(6.3)

where Θveto(nk0) ≡ 1−Θhard(nk0), and we have used the fact that W
k
ii = 0 by definition.

The right-hand side still contains the integrals over the directions of the up to (M + n)
remaining partons in H, but for brevity we omit the symbol ⊗1 here and below. It is
not difficult to show that the color trace on the right-hand side of this relation vanishes if
j = 1, 2 refers to one of the initial-state partons. We thus obtain〈

H V G Γ⊗ 1
〉
= −64πfabc

∑
j>2

Jj
〈
H T a

1 T b
2 T c

j

〉
, (6.4)

where we have defined

Jj ≡
∫

dΩ(nk)
4π

(
W k

1j −W k
2j

)
Θveto(nk) . (6.5)

The fact that the angular integration is now restricted to the region outside the jets allows us
to replace the subtracted dipoles W

k
ij defined in (3.3) with the original, unsubtracted ones.

Already at this stage, we observe that all information about the phase-space restrictions
on the direction of the emitted gluon k0 is contained in the angular integrals Jj . If the
gluon is emitted from one of the hard final-state partons present in the Born process, then
nj is equal to the direction of that parton. If instead the gluon is radiated off one of the
gluons collinear to the beam, which can be obtained from any of the insertions of Γc in
the structure H defined in (6.1), then its direction nj is equal to n1 or n2. In this case, we
encounter the integral

J12 ≡ J2 = −J1 =
∫

dΩ(nk)
4π

W k
12 Θveto(nk) . (6.6)

Overall, there are thus (M +1) independent kinematic structures Jj for a 2→M jet process.
Given the result (6.4), we will now successively evaluate the effects of the various

insertions of Γc and V G contained in the original structure H in (6.1), working from right
to left.

6.1 First set of insertions of Γc

We first evaluate the action of the right-most factor of Γc in the hard function H in (6.1)
on the result shown above, assuming that (n − r) ≥ 1 (otherwise this step is skipped).
We obtain〈

HΓc V G Γ⊗1
〉
= −256πfabc

∑
j>2

Jj

∑
i=1,2

〈
H Ci T a

1 T b
2 T c

j −H Ti,L◦Ti,R T a
1 T b

2 T c
j

〉
, (6.7)
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where now
H = H2→M (Γc)r V G (Γc)n−r−1 (6.8)

contains one insertion of Γc less than before. For the term involving the ◦ symbol in (6.7)
we need to distinguish the two cases where parton j coincides with the collinear gluon k1
emitted from the explicit factor Γc, or where it is one of the remaining partons. Using the
definition of the ◦ symbol shown in (4.9), we find∑
j>2

Jj
〈
H Ti,L ◦Ti,R T a

1 T b
2 T c

j

〉
=
∑
j>2

′
Jj
〈
H T A

i T a
1 T b

2 T c
j T A

i

〉
− ifcBA Jk1

〈
H T B

i T a
1 T b

2 T A
i

〉
,

(6.9)
where the prime on the sum in the first term means that j ̸= k1. After summing over
i = 1, 2, we find that the last term on the right-hand side vanishes after contraction with
fabc. Physically, this means that the (virtual or real) gluon emitted by the insertion of Γ
does not attach to the collinear gluon emitted by the insertion of Γc. To arrive at this
result, we have used the identity

faABfbBCfcCA = Nc

2 fabc . (6.10)

Considering the first term in (6.9), our strategy is to move the color generator T A
i that

sits next to H all the way to the right, where it multiplies the second insertion of T A
i to

produce a factor Ci, yielding a contribution which cancels the first term on the right-hand
side of (6.7). The only leftover contributions are those from the commutator terms, and
we obtain 〈

HΓc V G Γ⊗ 1
〉
= −64π (4Nc)fabc

∑
j>2

′
Jj
〈
H T a

1 T b
2 T c

j

〉
. (6.11)

Surprisingly, we find that the insertion of Γc has the effect of reproducing the previous
structure (6.4) up to an overall color factor (4Nc), combined with the restriction that the
sum over j no longer contains the collinear gluon k1.

We can repeat this argument for the remaining (n − r − 1) insertions of Γc on the
right-hand side of (6.8), finding〈

H (Γc)n−r V G Γ⊗ 1
〉
= −64π (4Nc)n−r fabc

∑
j>2

′
Jj
〈
H T a

1 T b
2 T c

j

〉
, (6.12)

where now
H = H2→M (Γc)r V G . (6.13)

The prime on the sum over j now means that this sum does not include any of the collinear
gluons emitted from the (n−r) insertions of Γc. Importantly, however, the sum does include
the collinear emissions of the remaining r insertions of Γc still contained in the structure H
in (6.13).

6.2 Insertion of the second Glauber phase

A more complicated structure arises when one applies the second insertion of V G to
expression (6.12). After some algebra making use of the group-theory identity (6.10), we
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find 〈
H V G (Γc)n−r V G Γ⊗ 1

〉
= −256π2 (4Nc)n−r fabe fcde

∑
j>2

′
Jj
〈
H
(
T a

2 {T b
1 , T c

1 }T d
j − T a

1 {T b
2 , T c

2 }T d
j

)〉
,

(6.14)

where now
H = H2→M (Γc)r . (6.15)

The result involves anti-commutators of color generators, which in general cannot be
simplified using the Lie algebra of SU(Nc).

As a side remark, let us mention that if particles 1 and 2 transform in the fundamental
or anti-fundamental representation of SU(Nc), one can use the relation (for i = 1, 2)

{T a
i , T b

i } =
1

Nc
δab 1+ σi dabc T c

i , (6.16)

where σi = 1 for an initial-state anti-quark and σi = −1 for an initial-state quark, to
eliminate the anti-commutators. The d-symbol appearing on the right-hand side is totally
symmetric in its indices. The result (6.14) can then be simplified by means of the identity

fabe fcde

(
T a

2 {T b
1 , T c

1 }T d
j − T a

1 {T b
2 , T c

2 }T d
j

)
= (T1 − T2) · Tj −

Nc

2 (σ1 − σ2) dabc T a
1 T b

2 T c
j .

(6.17)
Based on this observation, we have shown in [36] that in this case, the color traces evaluate
to (only for particles 1 and 2 in the (anti-)fundamental representation)

Crn =−28−rπ2 (4Nc)n
{M+2∑

j=3
Jj
〈
H2→M

[
(T1−T2)·Tj−2r Nc

2 (σ1−σ2)dabc T a
1 T b

2 T c
j

]〉
−2(1−δr0)J12

〈
H2→M

[
CF 1+(2r−1)T1 ·T2

]〉}
. (6.18)

In the following, we will generalize this simple result to the general case, where particles 1
or 2 (or both) do not transform in the (anti-)fundamental representation.

6.3 Remaining insertions of Γc

When one applies the right-most factor of Γc in (6.15) to the color structure shown in (6.14),
additional structures are generated. In the following discussion, we assume that r ≥ 1,
otherwise this step is skipped. As in (6.9), we need to distinguish between the terms in
the sum where j is equal to the collinear gluon emitted by the new insertion of Γc, and
the remaining terms where j labels a different parton. Contrary to the discussion following
relation (6.9), we find that the contribution where j = kn−r+1 refers to the new collinear
gluon does not vanish. Instead, it produces a term involving the angular integral J12 defined
in (6.6), because the collinear gluon moves in the direction of either particle 1 or particle 2.
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After some algebra, we arrive at the result

〈
HΓc V G (Γc)n−r V G Γ⊗ 1

〉
= −256π2 (4Nc)n−r fabe fcde

{∑
j>2

′
Jj

[
6Nc

〈
H
(
T a

2 {T b
1 , T c

1 }T d
j − T a

1 {T b
2 , T c

2 }T d
j

)〉
− 4fBbg fCcg

〈
H
(
T a

2 {T B
1 , T C

1 }T d
j − T a

1 {T B
2 , T C

2 }T d
j

)〉]
+ 4J12

[
Nc

2
〈
H T a

2 {T b
1 , T c

1 } (T d
1 − T d

2 )
〉

+ fAag fDdg

〈
H T A

2 {T b
1 , T c

1 }T D
2
〉
− fBbg fDdg

〈
H T a

2 {T B
1 , T c

1 }T D
1
〉

− fCcg fDdg

〈
H T a

2 {T b
1 , T C

1 }T D
1
〉
+ (1↔ 2)

]}
. (6.19)

The primed sum over j now includes only the final-state partons contained in the resid-
ual structure

H = H2→M (Γc)r−1 . (6.20)

Note the important fact that in each term on the right-hand side the number of color
generators is still four, as in (6.14). In the terms under the sum over j, the original color
structure is reproduced times a factor 6Nc, and a second, analogous structure is generated,
which involves four rather than two f -symbols. The contribution proportional to J12 has a
more complicated form since it contains color structures in which three generators act on
the same initial-state parton.

In the result (6.19) we encounter products of four f -symbols, which can be simplified
using the notation

(F a)bc = −ifabc (6.21)

for the generators in the adjoint representation of SU(Nc) and noting the trace relations [58]

Tr
(
F aF b) = Nc δab ,

Tr
(
F aF bF c) = Nc

2 ifabc ,

Tr
(
F aF bF cF d) = δad δbc +

1
2 (δab δcd + δac δbd) +

Nc

4 (fade fbce + dade dbce) ,

(6.22)

the second of which is equivalent to (6.10). Next, we use the symmetry properties of the
anti-commutators and define the symbols

F
(2)
abcd = 1

2 (fabe fcde + face fbde) ,

F
(4)
abcd = 1

2 Tr
(
F a{F b, F c}F d) = δad δbc +

1
2 (δab δcd + δac δbd) +

Nc

4 dade dbce ,

(6.23)
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both of which are symmetric in the index pairs (b, c) and (a, d). The result (6.19) can then
be recast in the form〈

HΓc V G (Γc)n−r V G Γ⊗ 1
〉

= −256π2 (4Nc)n−r
{∑

j>2

′
Jj

[
6Nc F

(2)
abcd + 4F

(4)
abcd

] 〈
H
(
T a

2 {T b
1 , T c

1 }T d
j − (1↔ 2)

)〉
− 4J12

[
Nc

2 F
(2)
abcd + F

(4)
abcd

]〈
H
(
T a

2 {T b
1 , T c

1 } (T d
1 + T d

2 ) + (1↔ 2)
)〉}

.

(6.24)
Note that the structure F

(4)
abcd can be generated from F

(2)
abcd using the relation

F
(4)
abcd = −fBbe fCce F

(2)
aBCd . (6.25)

Let us now explore what happens when we pull out additional insertions of Γc from
the structure H and apply them to the color structures in (6.24). We will first discuss
the structures under the sum over j and then focus on the new structures multiplying J12.
Naively, one would expect that at least in these latter structures the number of generators
acting on particle 1 or 2 is increased by one under each insertion of Γc. Fortunately, we will
find that group theory is kind here and this is actually not the case.

Color traces under the sum over j

Considering the terms under the sum over j, we observe that the trace over color structures
is the same as in (6.14). The effect of the insertion of Γc is simply to replace the coefficient
according to

F
(2)
abcd → 6Nc F

(2)
abcd + 4F

(4)
abcd . (6.26)

This pattern repeats itself when we apply additional insertions of Γc. In the next step, we
find the replacement rule

6Nc F
(2)
abcd + 4F

(4)
abcd → 6Nc

[
6Nc F

(2)
abcd + 4F

(4)
abcd

]
+ 4

[
6Nc F

(4)
abcd + 4F

(6)
abcd

]
= 36N2

c F
(2)
abcd + 48Nc F

(4)
abcd + 16F

(6)
abcd ,

(6.27)

where
F

(6)
abcd = −fBbe fCce F

(4)
aBCd . (6.28)

This would seem to generate increasingly complicated tensor structures, but using the
explicit form of F

(4)
abcd in (6.23) we find that this is, in fact, not the case. Instead, we obtain

F
(6)
abcd = F

(2)
abcd −Nc δad δbc −

N2
c

8 dade dbce . (6.29)

To arrive at this result, we have defined the matrices

(Da)bc = dabc (6.30)

and used the trace relation [58]

Tr
(
F aF bDc) = Nc

2 dabc . (6.31)
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Generalizing relation (6.29) to higher orders leads to

F
(4+2n)
abcd = F

(2n)
abcd + (−Nc)n δad δbc −

1
2

(
Nc

2

)n+1
dade dbce (6.32)

for all n ∈ N. It follows that any symbol F
(2n)
abcd for n ≥ 3 can be reduced to the two symbols

in (6.23) plus terms proportional to δad δbc and dade dbce. In other words, only four color
tensors are generated by successive applications of Γc, namely

fabe fcde , dade dbce , δab δcd , δad δbc . (6.33)

There is no need to symmetrize the first and the third structure in the index pair (b, c)
because the color trace 〈

H
(
T a

2 {T b
1 , T c

1 }T d
j − (1↔ 2)

)〉
(6.34)

with which these structures are contracted already has this symmetry.
At this point, we arrive at the result

Crn = −256π2 (4Nc)n−r

[
M+2∑
j=3

Jj

4∑
i=1

c
(r)
i

〈
H2→M O

(j)
i

〉
+ terms proportional to J12

]
,

(6.35)
where the basis operators are defined as

O
(j)
1 = fabe fcde T a

2 {T b
1 , T c

1 }T d
j − (1↔ 2) ,

O
(j)
2 = dade dbce T a

2 {T b
1 , T c

1 }T d
j − (1↔ 2) ,

O
(j)
3 = T a

2 {T a
1 , T b

1}T b
j − (1↔ 2) ,

O
(j)
4 = 2C1 T2 · Tj − 2C2 T1 · Tj .

(6.36)

They are antisymmetric in the parton indices 1 and 2. From (6.14) it follows that for the
special case where r = 0 we have

c
(0)
i = δi1 . (6.37)

Applying s insertions of Γc we generate the right-hand side of (6.35) with coefficients c
(s)
i .

(We also generate terms proportional to J12, which will be discussed below.) Applying Γc

one more time, the four structures change to

O
(j)
1 → 6Nc O

(j)
1 + Nc O

(j)
2 + 4O

(j)
3 + 4O

(j)
4 ,

O
(j)
2 → 4Nc O

(j)
2 ,

O
(j)
3 → 4O

(j)
1 + 6Nc O

(j)
3 ,

O
(j)
4 → 2Nc O

(j)
4 .

(6.38)

The first relation follows from (6.26), and the remaining relations are readily derived by
repeating the derivation of (6.19) from (6.14), after replacing the overall color tensor fabe fcde
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Figure 9. Representative diagram depicting a contribution to the color trace Crn relevant for
M = 2 jet production. The soft wide-angle gluon emission mediated by Γ is shown in green, Glauber
exchanges described by V G are drawn as red dotted lines, and collinear gluon emissions governed
by Γc are represented by the dashed blue lines. The diagram shows a contribution to C4,10 which
involves r = 4 emissions (light-blue lines) before the first Glauber exchange and (n−r) = 6 emissions
between the two Glauber exchanges (dark-blue lines). The same color trace also gets contributions
involving Glauber exchanges in the conjugate amplitude and wide-angle soft emissions from other
legs of the Born-level hard function.

with dade dbce, δab δcd, and δad δbc, respectively, and making use of the trace relations in (6.22)
and (6.31). The above replacement rules lead to the recurrence relations

c
(s+1)
1 = 6Nc c

(s)
1 + 4c

(s)
3 ,

c
(s+1)
2 = Nc c

(s)
1 + 4Nc c

(s)
2 ,

c
(s+1)
3 = 4c

(s)
1 + 6Nc c

(s)
3 ,

c
(s+1)
4 = 4c

(s)
1 + 2Nc c

(s)
4 .

(6.39)

Solving this set of equations with the initial conditions in (6.37), we find

c
(r)
1 = 2r−1 [ (3Nc + 2)r + (3Nc − 2)r ] ,

c
(r)
2 = 2r−2Nc

[
(3Nc + 2)r

Nc + 2 + (3Nc − 2)r

Nc − 2 − (2Nc)r+1

N2
c − 4

]
,

c
(r)
3 = 2r−1 [ (3Nc + 2)r − (3Nc − 2)r ] ,

c
(r)
4 = 2r−1

[
(3Nc + 2)r

Nc + 1 + (3Nc − 2)r

Nc − 1 − 2N r+1
c

N2
c − 1

]
.

(6.40)

Figure 9 shows a representative example of the contributions from the operators O
(j)
i

in (6.35) for the case of a 2→ 2 hard-scattering process. The wide-angle soft gluon emitted
into the gap between the jets must be attached to one of the initial-state partons in the
Born amplitude and one of the final-state partons in the conjugate Born amplitude, or vice
versa. In the evolution from the hard scale to lower scales (inside to out in the figure), the
attachment to the initial-state parton must happen after the second Glauber exchange has
taken place. Only in this case a non-zero SLL contribution is obtained.
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Terms proportional to J12

We now return to the terms shown in the last line of (6.24), which using (6.23) can be
expressed in terms of traces of H with the four color structures

fabe fcde T a
2 {T b

1 , T c
1 }
(
T d

1 + T d
2
)
+ (1↔ 2) = fabe fcde {T b

1 , T c
1 } {T a

2 , T d
2 } −

N2
c

2 T1 · T2 ,

dade dbce T a
2 {T b

1 , T c
1 }
(
T d

1 + T d
2
)
+ (1↔ 2) = dade dbce {T b

1 , T c
1 } {T a

2 , T d
2 }+

N2
c − 4
3 T1 · T2

+ 2dade dbce

[
T a

2
(
T b

1 T c
1 T d

1
)

+ + (1↔ 2)
]

,

T a
2 {T a

1 , T b
1}
(
T b

1 + T b
2
)
+ (1↔ 2) = {T a

1 , T b
1} {T a

2 , T b
2}

+ (2C1 + 2C2 −Nc)T1 · T2 ,

C1 T2 · (T1 + T2) + (1↔ 2) = (C1 + C2)T1 · T2 + 2C1 C2 1 . (6.41)

On the right-hand side of these equations we have introduced symmetrized products of
color generators whenever more than one generator acts on the same parton. In the second
relation

(T a1 . . . T an)+ ≡
1
n!

∑
σ∈Sn

T aσ(1) . . . T aσ(n) (6.42)

denotes the symmetrized product of n color generators, where the sum is over all permu-
tations of {1, 2, . . . , n}. To derive the first and second relations we have used the second
trace identity in (6.22) and the relation [58]

Tr
(
F aF bDcDd) = 1

2 (δab δcd − δac δbd) +
N2

c − 8
4Nc

fade fbce +
Nc

4 dade dbce . (6.43)

The above structures are the “descendants” of the operator O
(j)
1 , which is the only

operator present in (6.14). After additional insertions of Γc, one also generates the operators
O

(j)
i with i = 2, 3, 4 in (6.35). Repeating the analysis for these structures, we find that O

(j)
2

has no descendants, O
(j)
3 gives rise to the first and third structures in (6.41), and O

(j)
4 leads

to the fourth structure. In the analysis for O
(j)
2 we need the trace relation (6.43).

It remains to work out what happens if we apply Γc to these four structures themselves,
which happens as soon as we act with another insertion of Γc on the structures shown in
the last line of (6.24). In essence, this maps

Si → 4
∑

i=1,2

(
Ci Si − T A

i Si T A
i

)
(6.44)

for each of the four structures in (6.41). After some lengthy algebra, we find that the set of
linearly independent color structures must be generalized to

S1 = fabe fcde {T b
1 , T c

1 } {T a
2 , T d

2 } ,

S2 = dade dbce {T b
1 , T c

1 } {T a
2 , T d

2 } ,

S3 = dade dbce

[
T a

2
(
T b

1 T c
1 T d

1
)

+ + (1↔ 2)
]

,

S4 = {T a
1 , T b

1} {T a
2 , T b

2} ,

S5 = T1 · T2 ,

S6 = 1 ,

(6.45)
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Figure 10. Representative diagram depicting a contribution to the color trace Crn, in which the
wide-angle soft gluon connects to a collinear gluon emitted from one of the initial-state partons. The
meaning of the colors is the same as in figure 9.

which are symmetric in the parton indices 1 and 2. In other words, the linear combinations
of the different structures in each line of (6.41) are broken up in their substructures. With
this generalization, we obtain the mappings

S1 → 8Nc S1 + 2Nc S2 + 8S4 + 32C1 C2 S6 ,

S2 → 4Nc S2 ,

S3 → 4Nc S3 ,

S4 → 8S1 + 8Nc S4 ,

S5 → 4Nc S5 ,

S6 → 0 ,

(6.46)

as well as
O

(j)
1 → Nc (2S1 + S2 + 2S3) + 4S4

+ 16
[
C1 + C2 −

Nc
(
N2

c + 8
)

24

]
S5 + 16C1 C2 S6 ,

O
(j)
2 → 0 ,

O
(j)
3 → 4S1 + 2Nc S4 + 4Nc (C1 + C2 −Nc)S5 ,

O
(j)
4 → −4Nc (C1 + C2)S5 − 8Nc C1 C2 S6 .

(6.47)

Therefore, most remarkably, the basis {Si} closes under repeated application of Γc.

Master formula for the color traces

At this point, we obtain the final result

Crn = −256π2 (4Nc)n−r

[
M+2∑
j=3

Jj

4∑
i=1

c
(r)
i

〈
H2→M O

(j)
i

〉
− J12

6∑
i=1

d
(r)
i

〈
H2→M Si

〉]
,

(6.48)
where the basis operators have been defined in (6.36) and (6.45). It follows from (6.14) that
the coefficients d

(r)
i vanish for r = 0. We find that these coefficients obey the recurrence
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relations
d

(s+1)
1 = 2Nc c

(s)
1 + 4c

(s)
3 + 8Nc d

(s)
1 + 8d

(s)
4 ,

d
(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d
(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d
(s+1)
4 = 4c

(s)
1 + 2Nc c

(s)
3 + 8d

(s)
1 + 8Nc d

(s)
4 ,

d
(s+1)
5 = 4 (C1 + C2)

[
4c

(s)
1 + Nc c

(s)
3 −Nc c

(s)
4

]
− 2Nc (N2

c + 8)
3 c

(s)
1 − 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d
(s+1)
6 = 8C1 C2

[
2c

(s)
1 −Nc c

(s)
4 + 4d

(s)
1

]
.

(6.49)

Taking into account the expressions for the coefficients c
(s)
i obtained in (6.40), we find that

the solutions to these relations are
d

(r)
1 = 23r−1 [ (Nc + 1)r + (Nc − 1)r ]− 2r−1 [ (3Nc + 2)r + (3Nc − 2)r ] ,

d
(r)
2 = 23r−2Nc

[(Nc + 1)r

Nc + 2 + (Nc − 1)r

Nc − 2

]
− 2r−2Nc

[(3Nc + 2)r

Nc + 2 + (3Nc − 2)r

Nc − 2

]
,

d
(r)
3 = 2r−1Nc

[
(3Nc + 2)r

Nc + 2 + (3Nc − 2)r

Nc − 2 − (2Nc)r+1

N2
c − 4

]
,

d
(r)
4 = 23r−1 [ (Nc + 1)r − (Nc − 1)r ]− 2r−1 [ (3Nc + 2)r − (3Nc − 2)r ] ,

d
(r)
5 = 2r (C1 + C2)

[
Nc + 2
Nc + 1 (3Nc + 2)r − Nc − 2

Nc − 1 (3Nc − 2)r − 2N r+1
c

N2
c − 1

]

− 2r−1Nc

3
[
(Nc + 4) (3Nc + 2)r + (Nc − 4) (3Nc − 2)r − (2Nc)r+1 ] ,

d
(r)
6 = 23r+1 C1 C2

[
(Nc + 1)r−1 + (Nc − 1)r−1 ] (1− δr0)

− 2r+1 C1 C2

[
(3Nc + 2)r

Nc + 1 + (3Nc − 2)r

Nc − 1 − 2N r+1
c

N2
c − 1

]
.

(6.50)

Figure 10 shows a representative example of the contributions from the operators Si

in (6.48) for the case of a 2→ 2 hard-scattering process. The wide-angle soft gluon emitted
into the gap between the jets must be attached to one of the final-state partons in the Born
amplitude and one of the collinear gluons emitted from one of the partons 1 or 2 in the
conjugate Born amplitude, or vice versa. The attachment to the initial-state parton must
happen after the second Glauber exchange has taken place, while the attachment to the
collinear gluon must be on a gluon emitted before the first Glauber exchange. Only in this
case a non-zero SLL contribution is obtained.

It is straightforward to express the results for the coefficients c
(r)
i and d

(r)
i in terms of

the eigenvalues vi defined in (5.14). We obtain

c
(r)
1 = (4Nc)r

[1
2 vr

3 +
1
2 vr

4

]
,

c
(r)
2 = (4Nc)r

[
− N2

c

2(N2
c − 4) vr

2 +
Nc

4(Nc + 2) vr
3 +

Nc

4(Nc − 2) vr
4

]
,

c
(r)
3 = (4Nc)r

[1
2 vr

3 −
1
2 vr

4

]
,
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c
(r)
4 = (4Nc)r

[
− Nc

N2
c − 1 vr

1 +
1

2(Nc + 1) vr
3 +

1
2(Nc − 1) vr

4

]
, (6.51)

and

d
(r)
1 = (4Nc)r

[
−1
2 vr

3 −
1
2 vr

4 + 1
2 vr

5 + 1
2 vr

6

]
,

d
(r)
2 = (4Nc)r

[
− Nc

4(Nc + 2) vr
3 −

Nc

4(Nc − 2) vr
4 + Nc

4(Nc + 2) vr
5 + Nc

4(Nc − 2) vr
6

]
,

d
(r)
3 = (4Nc)r

[
− N2

c

N2
c − 4 vr

2 + Nc

2(Nc + 2) vr
3 + Nc

2(Nc − 2) vr
4

]
,

d
(r)
4 = (4Nc)r

[
−1
2 vr

3 + 1
2 vr

4 + 1
2 vr

5 −
1
2 vr

6

]
, (6.52)

d
(r)
5 = (4Nc)r

[
N2

c

3 vr
2 −

Nc

6 (Nc + 4) vr
3 −

Nc

6 (Nc − 4) vr
4

]
+ (4Nc)r (C1 + C2)

[
− 2Nc

N2
c − 1 vr

1 + Nc + 2
Nc + 1 vr

3 −
Nc − 2
Nc − 1 vr

4

]
,

d
(r)
6 = (4Nc)r C1C2

[
− 4Nc

N2
c − 1 δr0 +

4Nc

N2
c − 1 vr

1 −
2

Nc + 1 vr
3

− 2
Nc − 1 vr

4 + 2
Nc + 1 vr

5 + 2
Nc − 1 vr

6

]
.

Final result in the diagonal basis

Armed with the results (6.51) and (6.52), we can now diagonalize the recursion matrix and
write the result for the color traces in the form

Crn = −16 (γcusp
0 π)2 (γcusp

0 Nc)n
6∑

i=0
vr

i

〈
H2→M Qi

〉
, (6.53)

where the eigenvalues vi are defined in (5.14) and we included δr0 = 0r via v0 = 0 in the
sum. The corresponding eigenoperators are given by

Q0 = J12

[ 4Nc

N2
c − 1 C1 C2 S6

]
,

Q1 =
M+2∑
j=3

Jj

[
− Nc

N2
c − 1 O

(j)
4

]
+ J12

[ 2Nc

N2
c − 1 (C1 + C2)S5 −

4Nc

N2
c − 1 C1 C2 S6

]
,

Q2 =
M+2∑
j=3

Jj

[
− N2

c

2(N2
c − 4) O

(j)
2

]
+ J12

[
N2

c

N2
c − 4 S3 −

N2
c

3 S5

]
,

Q3,4 =
M+2∑
j=3

Jj

[1
2 O

(j)
1 + Nc

4(Nc ± 2) O
(j)
2 ±

1
2 O

(j)
3 + 1

2(Nc ± 1) O
(j)
4

]

+ J12

[1
2 S1 +

Nc

4(Nc ± 2) S2 −
Nc

2(Nc ± 2) S3 ±
1
2 S4

+
(

Nc (Nc ± 4)
6 ∓ (C1 + C2)

Nc ± 2
Nc ± 1

)
S5 +

2C1 C2

Nc ± 1 S6

]
,

Q5,6 = −J12

[1
2 S1 +

Nc

4(Nc ± 2) S2 ±
1
2 S4 +

2C1 C2

Nc ± 1 S6

]
,

(6.54)
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where the subscripts 3 and 5 (4 and 6) refer to the upper (lower) signs. Note that in our
final formula the ten color traces which appeared in (6.48) have been reduced to only seven
independent color structures Qi. Along with the operator definitions (6.38) and (6.45),
this represents our final result for the coefficient functions Crn for particles transforming in
arbitrary representations of SU(Nc). The above result is equivalent to formula (6.48) in
which the coefficients Crn were expressed directly in terms of the operators Oi and Si.

In the derivation of these results, the number M of final-state particles has been kept
arbitrary. While in the early literature SLLs have only been discussed in the context
of 2 → 2 hard-scattering processes [23, 27, 28], our formulas can also be applied to the
important cases where there is a single final-state jet (M = 1) or even no final-state jet
(M = 0) [36]. In the latter case, the sums over j in (6.48) and (6.54) are absent, but the
terms proportional to J12 remain. The argument that one needs (at least) two colored
particles in the initial state to get a non-trivial effect from Glauber phases can also be
applied to the final-state particles, which explains why 2→ 2 processes have been the focus
of previous studies of SLLs. However, the collinear gluons emitted with each insertion of
Γc (after the second insertion of the Glauber phase V G) can provide the additional hard
final-state partons in the cases where M < 2. For M = 1 we need one such emission,
and hence the SLLs will first arise at four-loop order. For M = 0 we need two collinear
emissions, such that the SLLs appear starting at five-loop order. For the simple processes
with M = 0, 1 the color traces can be simplified. This will be discussed in section 7.

6.4 Simplification for QCD with quarks and gluons

In QCD, all fields transform either in the (anti-)fundamental or the adjoint representation
of the gauge group. In this case, the master formula (6.48) can be simplified because for
such a particle we can simplify

dade dbce {T b
i , T c

i }T d
i = Ri T a

i , (6.55)

where for quarks and gluons

Rq = Rq̄ =
(
N2

c − 4
)2

2N2
c

, Rg = N2
c − 4
2 . (6.56)

For the fundamental representation, this relation follows from (6.16). For the adjoint
representation, it follows from the fact that T a = F a, and hence

dbce {T b, T c} = 2dbce F b F c = Nc De (6.57)

by virtue of relation (6.31). This leads to

dade dbce {T b
i , T c

i }T d
i = Nc dade DeF d = N2

c − 4
2 F a , (6.58)

where we have used the relation [58]

Tr
(
DaDbF c) = N2

c − 4
2Nc

ifabc . (6.59)
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The structure appearing in (6.55) can be recast in the form

dade dbce {T b
i , T c

i }T d
i = 2dade dbce

(
T b

i T c
i T d

i

)
+ + N2

c − 4
6 T a

i . (6.60)

From this relation, it follows that for particles transforming in the (anti-)fundamental or
the adjoint representation of SU(Nc) we can eliminate the structure S3 in (6.45) in favor of
simpler structures. We obtain

S3 =
[

R1 + R2
2 − N2

c − 4
6

]
S5 . (6.61)

This eliminates the most complicated color structure S3 from the master formula (6.48)
and changes the coefficient of the structure S5 to

d
(r)
5 → d̄

(r)
5 ≡ d

(r)
5 + d

(r)
3

[
R1 + R2

2 − N2
c − 4
6

]
. (6.62)

Using the solutions in (6.50), we find

d̄
(r)
5 = 2r (C1 + C2)

[
Nc + 2
Nc + 1 (3Nc + 2)r − Nc − 2

Nc − 1 (3Nc − 2)r − 2N r+1
c

N2
c − 1

]

+ 2r Nc

4 (R1 + R2)
[
(3Nc + 2)r

Nc + 2 + (3Nc − 2)r

Nc − 2 − (2Nc)r+1

N2
c − 4

]

− 2r Nc

4
[
(Nc + 2) (3Nc + 2)r + (Nc − 2) (3Nc − 2)r − (2Nc)r+1 ] .

(6.63)

6.5 Initial-state partons in the fundamental representation

The general results (6.48) and (6.53) simplify drastically if particles 1 and 2 transform in the
(anti-)fundamental representation of SU(Nc), because we can then use the relation (6.16)
to reduce any symmetric product of color generators to structures involving at most one
generator for each parton. We will now discuss these simplifications in detail. For the basis
color operators O

(j)
i defined in (6.36), we obtain

O
(j)
1 = (T1 − T2) · Tj −

Nc

2 (σ1 − σ2) dabc T a
1 T b

2 T c
j ,

O
(j)
2 = N2

c − 4
Nc

(σ1 − σ2) dabc T a
1 T b

2 T c
j ,

O
(j)
3 = − 1

Nc
(T1 − T2) · Tj + (σ1 − σ2) dabc T a

1 T b
2 T c

j ,

O
(j)
4 = −N2

c − 1
Nc

(T1 − T2) · Tj .

(6.64)
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Moreover, for the non-trivial basis color operators Si in (6.45) we get

S1 = −N2
c − 1
Nc

1− N2
c − 4
2 σ1 σ2 T1 · T2 ,

S2 =
(

N2
c − 4
Nc

)2

σ1 σ2 T1 · T2 ,

S3 = (N2
c − 4)(N2

c − 6)
3N2

c

T1 · T2 ,

S4 = N2
c − 1
N2

c

1+ N2
c − 4
Nc

σ1 σ2 T1 · T2 .

(6.65)

In deriving these results we have used the trace relation (6.31) as well as the identities

daab = 0 , dabcdabd = N2
c − 4
Nc

δcd . (6.66)

It follows that we encounter only the following linear combinations of coefficients,

c
(r)
1 −

1
Nc

c
(r)
3 −

N2
c − 1
Nc

c
(r)
4 = (2Nc)r ,

−Nc

2 c
(r)
1 + N2

c − 4
Nc

c
(r)
2 + c

(r)
3 = −2r−1Nc (2Nc)r ,

−N2
c − 1
Nc

d
(r)
1 + N2

c − 1
N2

c

d
(r)
4 + d

(r)
6 = 2CF (1− δr0) (2Nc)r ,

(N2
c − 4)(N2

c − 6)
3N2

c

d
(r)
3 + d

(r)
5 = 2 (2r − 1) (2Nc)r ,

−N2
c − 4
2 d

(r)
1 +

(
N2

c − 4
Nc

)2

d
(r)
2 + N2

c − 4
Nc

d
(r)
4 = 0 ,

(6.67)

where we have used that C1 = C2 = CF = (N2
c − 1)/(2Nc). The master formula then takes

the very simple form shown in (6.18) and was first derived in [36].
In the diagonal basis, only the first three operators (associated with the lowest three

eigenvalues v0 = 0, v1 = 1
2 and v2 = 1) are non-zero, and we find

Q0 = 2J12 CF 1 ,

Q1 =
M+2∑
j=3

Jj (T1 − T2) · Tj − 2J12
(
CF 1− T1 · T2

)
,

Q2 =
M+2∑
j=3

Jj

(
−Nc

2

)
(σ1 − σ2) dabc T a

1 T b
2 T c

j − 2J12 T1 · T2 ,

Qi = 0 ; i = 3, 4, 5, 6 .

(6.68)
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7 Numerical results for simple partonic scattering processes

Using color conservation, the master formulas (6.18), (6.48) and (6.53) can be simplified for
scattering processes involving at most two hard final-state partons at Born level (M ≤ 2).
Since these processes are of great phenomenological importance, it is worthwhile to study
these simplifications in some detail and analyze the size of the SLLs for such processes. To this
end, we provide compact expressions for coefficients Crn for different partonic subprocesses
and then plot resummed and order-by-order results for the partonic cross sections.

7.1 Evaluation of the angular integrals

To get numerical results, we need to evaluate the matrix elements of the basic color structures
and the angular integrals which were defined in (6.5) as

Jj =
∫

dΩ(nk)
4π

(
W k

1j −W k
2j

)
Θveto(nk) . (7.1)

For concreteness, we will consider in the following a veto region ya < yk < yb, where
the rapidity y is defined with respect to the beam directions and particle 1 has rapidity
y1 = +∞. With this definition of the veto region, the angular integral takes the form

Jj =
∫ yb

ya

dyk

∫ 2π

0

dϕk

2π

sinh(yk − yj)
cosh(yk − yj)− cos(ϕk − ϕj)

, (7.2)

where yk and ϕk are the rapidity and azimuthal angle of the emission and yj and ϕj the
ones of the hard parton along nj . Carrying out the integrations leads to the result

Jj = − (yb − ya) sign(yj − yb) , (7.3)

since the jets cannot be inside the veto region, i.e. yj /∈ (ya, yb). This makes it clear that
the integrals Jj are invariant under boosts along the beam direction and only depend on
the rapidity difference ∆Y = yb − ya, so that they are the same in the laboratory frame
and the partonic center-of-mass frame.

Below we will consider 2 → M scattering processes with M = 0, 1, 2 color-charged
partons in the final state. For the 2 → 0 case, for which all final-state particles are
color-neutral, only the integral

J12 = J2 = ∆Y (7.4)

is relevant. For forward scattering in a 2→ 2 process, the hard final-state particles have
y3 > yb and y4 < ya, which yields

J3 = −∆Y , J4 = +∆Y . (7.5)

For backward scattering, these signs are opposite. Symmetric 2→ 1 scattering channels
such as gg → g and qq̄ → g only involve the integral J12, but for the qg → q channel also
the integral J3 arises, with J3 = −∆Y for forward scattering and the opposite sign for the
backward case.
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7.2 2 → 0 hard-scattering processes

The case where the final state does not contain any color-charged hard partons is particularly
interesting since it applies to phenomenologically relevant processes such as the production
of one or several electroweak bosons (H, γ, W±, Z0) via qq̄ scattering or gluon-gluon
fusion. Especially for Higgs and diboson production it is experimentally often necessary to
impose a jet veto to suppress background. Such jet-veto cross sections have been studied
extensively, but so far no analysis has addressed the effects of the SLLs. Without a hard
particle in the final state, the sum over j in (6.48) is absent, and color conservation implies
that T1 + T2 = 0.

For the case of qq̄ → 0 scattering, we then immediately obtain from (6.18) the sim-
ple expression

Crn = −512π2 CF (4Nc)n
(
1− 21−r

)
(1− δr0) J12

〈
Hqq̄→0

〉
, (7.6)

which vanishes for r = 0, 1. It follows that the super-leading terms start at five-loop order
in this case (n ≥ 2), in accordance with the argument given near the end of section 6.3. It
is instructive to also consider the all-order result for the SLL contribution to the partonic
cross section in the strict double-logarithmic approximation, as given in (5.15). We obtain

σ̂SLL
qq̄→0 = −σ̂qq̄→0

4CF

3

(
αs

π

)3
π2L3∆Y

[
Σ(0, w)− 2Σ

(
1
2 , w

)
+Σ(1, w)

]
, (7.7)

where αs ≡ αs(µ̄), L = ln(µh/µs), w = Nc αs(µ̄)
π L2 from (5.16), and we have used that

according to (4.7) the color trace of the hard function Hqq̄→0 is equal to the Born-level
cross section σ̂qq̄→0. The condition that the first two terms in the Taylor expansion of the
expression in rectangular brackets must vanish can be formulated as (cf. (5.20))

6∑
i=0

ki = 0 ,
6∑

i=0
ki vi = 0 , (7.8)

which is obviously satisfied in the present case.
The analysis is significantly more involved if the initial-state particles do not transform

in the (anti-)fundamental representation of SU(Nc). In this case, one needs to simplify the
color structures Si in (6.45) after replacing T2 → −T1. After a lengthy calculation, using
the relations derived in section 6.4, we find

Crn = 512π2 N2
c (4Nc)n−r 2r (1− δr0) J12

〈
Hgg→0

〉
×
{

Nc + 3
Nc + 1

[
22r−1 (Nc + 1)r − (3Nc + 2)r

]
− Nc − 3

Nc − 1
[
22r−1 (Nc − 1)r − (3Nc − 2)r

]
+ 4N r+1

c

N2
c − 1

}
,

(7.9)
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which also vanishes for r = 0, 1. In this case, the all-order result for the SLL contribution
to the partonic cross section in the strict double-logarithmic approximation is given by

σ̂SLL
gg→0 = −σ̂gg→0

2Nc

3

(
αs

π

)3
π2L3∆Y

{ 8N2
c

N2
c − 1

[
Σ(0, w)− Σ

(
1
2 , w

)]
− Nc(Nc + 3)

Nc + 1
[
Σ(0, w)− 2Σ

(
3Nc+2

2Nc
, w
)
+Σ

(
2(Nc+1)

Nc
, w
)]

+ Nc(Nc − 3)
Nc − 1

[
Σ(0, w)− 2Σ

(
3Nc−2

2Nc
, w
)
+Σ

(
2(Nc−1)

Nc
, w
)]}

= −σ̂gg→0

(
αs

π

)3
9π2L3∆Y

[
Σ(0, w)− 2Σ

(
1
2 , w

)
+ 2Σ

(
11
6 , w

)
− Σ

(
8
3 , w

)]
,

(7.10)
where the last relation holds for Nc = 3. It can easily be checked that the sum rules (7.8)
are again satisfied.

As discussed in the introduction, due to the appearance of the Glauber phases the
SLL contribution are of subleading order in large-Nc counting, which is indicated by the
prefactors CF = (N2

c − 1)/(2Nc) and Nc (instead of N3
c ) in (7.7) and (7.10). The terms

shown in the last two lines of (7.10) are multiplied by coefficients which appear to upset this
counting. However, as they should, the leading terms cancel out in the relevant combination
of Σ(v, w) functions.

In figure 11 we study the SLL contributions to the total cross sections for qq̄ → 0 (top
row) and gg → 0 (bottom row) as a function of the jet-veto scale Q0 for fixed partonic
center-of-mass energy Q = 1TeV and a gap region in rapidity with ∆Y = 2. In both
cases, the right panel shows the individual SLL contributions arising at (3 + n)-th order in
perturbation theory, with the strong coupling αs(µ̄) evaluated at the intermediate scale
µ̄ =
√

QQ0. We use the two-loop running coupling with the normalization αs(mZ) = 0.118
and include the two-loop cusp anomalous dimension according to relation (5.12). Recall that
the first contributions to 2→ 0 processes arise at five-loop order, corresponding to n = 2.
The gray line shows the all-order sum of the SLL terms. Notice the alternating-sign behavior
of the perturbative series, which is a general feature of the SLLs. For qq̄ → 0 scattering, the
individual contributions are rather small, reaching at most 1% at Q0 = 10GeV. The five-
and six-loop terms (n = 2, 3) give the biggest contributions but cancel each other to a large
extent. For gg → 0 scattering, on the other hand, the individual contributions are larger by
more than an order of magnitude, with the biggest terms arising at six-, seven- and eight-loop
order (n = 3, 4, 5). This reflects the well-known fact that the color factors in gluon-initiated
scattering processes are typically much larger than those in quark-initiated processes.

The left panels in the figure show the infinite sum of the SLL terms for three different
choices of the renormalization scale in the running coupling αs(µ̄): the high scale µ̄ = Q

(blue line), the low scale µ̄ = Q0 (red line), and the intermediate scale µ̄ =
√

QQ0 (gray
line). The shaded band between these lines serves as an estimator of the residual scale
ambiguity. The running of the coupling is a single-logarithmic effect, which is beyond the
accuracy of our calculation. Any choice for µ̄ between Q and Q0, the two physical scales of
the cross section, should be considered a valid choice. Yet, it makes sense to obtain a “best
guess” for the appropriate scale by performing the scale integrals using the running coupling
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Figure 11. Numerical results for super-leading contributions to partonic qq̄ → 0 scattering (top
row) and gg → 0 scattering (bottom row) as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy

√
ŝ = Q = 1TeV and for a central rapidity gap with ∆Y = 2. The left plots

show the resummed all-order contribution of the SLLs for three different scale choices in αs(µ̄) (red,
blue and gray lines) and with a running coupling αs(µ) used inside the scale integrals (black line),
see (5.6). The right plots show the individual contributions at (3 + n)-th order in perturbation
theory (always summed for r ≤ n) obtained with the intermediate scale choice µ̄ =

√
QQ0. The

terms with n = 0, 1 vanish for 2 → 0 processes. The gray line depicts the infinite sum over all
contributions and is the same in the left and right panels.
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αs(µ) in the integrands, as shown in (5.6). In this case we sum up the first 13 terms in the
series (0 ≤ n ≤ 12), corresponding to 15-loop order. The corresponding result is shown by
the black line, which we consider this to be our best estimate of the total contribution of
the SLLs.

In the case of qq̄ → 0 scattering one finds significant cancellations when summing up
the individual terms obtained at different orders, so that the resummed result is smaller by
roughly a factor of 2 compared with the lowest-order (five-loop) contribution. For gg → 0
scattering, on the other hand, one finds extreme cancellations, and the resummed result is
almost two orders of magnitude smaller than the dominant contributions arising at six- to
eight-loop order. In fact, the cancellations are so strong that the curves in the left-hand
plot belonging to different scale choices cross each other at scales below Q0 ≈ 25GeV. The
black line in the left plot, which is obtained by summing up the terms up to n = 12, stops
being accurate below Q0 ≈ 16GeV (as marked by the dashing), indicating that higher-order
contributions are still important for such low scale choice.

Our results suggest that SLLs play a subdominant role in processes where electroweak
bosons are produced without additional jets. We stress, however, that a careful study of
subleading logarithmic effects will be necessary to corroborate this conclusion. This is left
for future work. We also emphasize that for the gluon case one would be led to a rather
different conclusion if one estimated the SLL contributions using the five-loop result, in
which the super-leading terms first arise. For Q0 ≈ 15GeV, for example, one would then
find a correction to the Born-level cross section of approximately −10%, which is a huge
five-loop effect.

In our analysis of other partonic channels below we observe a similar pattern. The
individual contributions at fixed n, but also the cancellations among them, will always be
larger in gluon-initiated processes compared with quark-initiated ones. Due to the sum
rules in (7.8), the cancellations are strongest for the 2→ 0 processes studied above.

7.3 2 → 1 hard-scattering processes

These processes are also of great phenomenological importance since they include some
benchmark Standard Model reactions such as pp → V + jet or pp → H + jet. In this
case, the sum over j in (6.48) includes only a single term, and color conservation implies
that T3 → −T1 − T2. The relevant partonic scattering reactions are qq̄ → g, gg → g,
qg → q, and q̄g → q̄. Only for the first of these both initial-state particles transform in
the (anti-)fundamental representation of SU(Nc). In this case, it is not difficult to show
from (6.18) that the term with j = 3 gives no contribution, and we obtain

Crn = 256π2 (4Nc)n (1− δr0)
(
2−rNc +

1− 21−r

Nc

)
J12

〈
Hqq̄→g

〉
. (7.11)

Note that this result vanishes for r = 0, and hence the super-leading terms for qq̄ → g

scattering start at four-loop order (n ≥ 1). For the all-order SLL contribution to the
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partonic cross section in the double-logarithmic approximation we obtain

σ̂SLL
qq̄→g = −σ̂qq̄→g

2Nc

3

(
αs

π

)3
π2L3∆Y

×
{
Σ(0, w)− Σ

(
1
2 , w

)
− 1

N2
c

[
Σ(0, w)− 2Σ

(
1
2 , w

)
+Σ(1, w)

]}
.

(7.12)

In this case only the first sum rule in (7.8) is satisfied, which ensures that the first
contribution to the cross section arises at four-loop order.

The analysis of the remaining partonic channels is again more involved. We obtain

Crn = 256π2 (4Nc)n−r

{
J12

[
d

(r)
1
〈
H2→1 S1

〉
+ d

(r)
2
〈
H2→1 S2

〉
+ d

(r)
4
〈
H2→1 S4

〉
+
(

d̄
(r)
5

C3 − C1 − C2
2 + d

(r)
6

) 〈
H2→1

〉]

+ J3
[
c

(r)
2 (R1 −R2) + 2

(
c

(r)
3 + c

(r)
4

)
(C1 − C2)

] C3 − C1 − C2
2

〈
H2→1

〉}
,

(7.13)

where the coefficients Ri have been defined in (6.56), and the coefficient d̄
(r)
5 has been given

in (6.63). The terms shown in the last line of (7.13) are present only for the mixed channels
qg → q and q̄g → q̄. All coefficients involved vanish for r = 0, so that the super-leading
terms start at four-loop order (n ≥ 1).

It is straightforward to evaluate the relevant color traces for the different partonic
channels. For the case of qq̄ → g scattering the above expression reduces to the simple
result shown in (7.11). For gg → g scattering, we obtain

Crn = −256π2 (4Nc)n−r (1− δr0) 2r Nc

×
[(Nc − 2)(Nc + 3)

2(Nc + 1) (3Nc + 2)r − (Nc + 2)(Nc − 3)
2(Nc − 1) (3Nc − 2)r

+ 4r (Nc + 3) (Nc + 1)r−1 + 4r (Nc − 3) (Nc − 1)r−1 − 6N2+r
c

N2
c − 1

]
J12

〈
Hgg→g

〉
,

(7.14)
as well as

σ̂SLL
gg→g = −σ̂gg→g

2Nc

3

(
αs

π

)3
π2L3∆Y

{ 6N2
c

N2
c − 1

[
Σ(0, w)− Σ

(
1
2 , w

)]
− (Nc − 2)(Nc + 3)

2(Nc + 1)
[
Σ(0, w)− Σ

(
3Nc+2

2Nc
, w
)]

+ (Nc + 2)(Nc − 3)
2(Nc − 1)

[
Σ(0, w)− Σ

(
3Nc−2

2Nc
, w
)]

− Nc + 3
Nc + 1

[
Σ(0, w)− Σ

(
2(Nc+1)

Nc
, w
)]
− Nc − 3

Nc − 1
[
Σ(0, w)− Σ

(
2(Nc−1)

Nc
, w
)]}

= −σ̂gg→g

(
αs

π

)3
9π2L3∆Y

[
Σ(0, w)− 3

2 Σ
(

1
2 , w

)
+ 1

6Σ
(

11
6 , w

)
+ 1

3Σ
(

8
3 , w

)]
.

(7.15)
The SLL contribution to the total cross section for qq̄ → g (top row) and gg → g (bottom
row) are shown in figure 12, where the meaning of the curves is the same as before. We
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Figure 12. Numerical results for super-leading contributions to partonic qq̄ → g scattering (top
row) and gg → g scattering (bottom row) as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with ∆Y = 2. The meaning of the
curves is the same as in figure 11. The term with n = 0 vanishes for 2→ 1 processes.

observe a similar pattern as in the case of 2→ 0 scattering, see figure 11, where now the
dominant contributions in perturbation theory arise at four- and five-loop order (n = 1, 2)
for qq̄ → g and at five-, six-, seven- and eight-loop order (n = 2, 3, 4, 5) for gg → g. The
presence of initial-state gluons leads to larger color factors for gg → g and, therefore, the
individual contributions arising at fixed order in perturbation theory are quite large. The
level of cancellations seen after resumming the infinite series of the SLLs is milder compared
to the 2→ 0 case. As a result, the resummed contribution for qq̄ → g amounts to a negative
correction to the Born-level cross section, which can reach a few percent for low values of
Q0, about a factor 3 larger than in the case of qq̄ → 0. For gg → g the correction are also
about a factor 3 larger compared to gg → 0 but still remain at the level of a few permille.
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Figure 13. Numerical results for super-leading contributions to partonic qg → q scattering in
forward (top row) and backward scattering (bottom row) as a function of the jet-veto scale Q0, at
fixed partonic center-of-mass energy Q = 1TeV and for a central rapidity gap with ∆Y = 2. The
meaning of the curves is the same as in figure 11. The term with n = 0 vanishes for 2→ 1 processes.

Finally, for the case of qg → q (and q̄g → q̄) scattering, we find

Crn = −128π2 (4Nc)n−r (1− δr0) 2r Nc

×
{
(J12 − J3)

[
Nc (Nc + 3)
2(Nc + 1) (3Nc + 2)r − Nc (Nc − 3)

2(Nc − 1) (3Nc − 2)r − N2
c + 1

N2
c − 1 N r

c

]

+ (J12 + J3) (2Nc)r − 6J12 N r
c

}〈
Hqg→q

〉
. (7.16)
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Here the angular integral J3 = ∓∆Y contributes, where the upper (lower) sign refers to
forward (backward) scattering. For forward scattering we obtain

σ̂SLL
qg→q =−σ̂qg→q

2Nc

3

(
αs

π

)3
π2L3∆Y

{4N2
c −2

N2
c −1

[
Σ(0,w)−Σ

(
1
2 ,w

)]
−Nc(Nc+3)

2(Nc+1)
[
Σ(0,w)−Σ

(
3Nc+2

2Nc
,w
)]

+Nc(Nc−3)
2(Nc−1)

[
Σ(0,w)−Σ

(
3Nc−2

2Nc
,w
)]}

=−σ̂qg→q

(
αs

π

)3
4π2L3∆Y

[
Σ(0,w)− 17

8 Σ
(

1
2 ,w

)
+9
8Σ

(
11
6 ,w

)]}
,

(7.17)
while for backward scattering

σ̂SLL
qg→q = −σ̂qg→q

2Nc

3

(
αs

π

)3
π2L3∆Y

[
2Σ(0, w)− 3Σ

(
1
2 , w

)
+Σ(1, w)

]
. (7.18)

Figure 13 shows the SLL contributions to the total cross sections for the qg → q process
in the case of forward scattering (top row) and backward scattering (bottom row). Even
though the resummed contributions are similar in both cases and reach a few percent
for small values of Q0, we observe two crucial differences. First, for forward scattering
the cross section is enhanced by the SLLs, whereas for backward scattering it is reduced.
Secondly, the individual contributions arising at fixed order in perturbation theory show a
very different pattern in the two cases. For forward scattering, they are comparable to the
corrections to gg → g scattering (see the lower panels in figure 12) and quite large, but in
the process of resummation strong cancellations take place. For backward scattering, on
the other hand, the individual contributions are much smaller and the resummed result is
determined to a large extend by the first non-vanishing term (n = 1) in perturbation theory.
This is the first example showing that in general SLLs can affect the differential cross section
for a process in a non-trivial way and do not simply result in an overall K-factor.

7.4 2 → 2 hard-scattering processes

We now proceed to study 2→ 2 partonic scattering processes, for which the color structure
of the SLLs and their dependence on the scattering kinematics is far more complicated.
As we will show, while strong cancellations between the SLLs arising at different orders
in perturbation theory still persist, the effects obtained after resummation turn out to be
significantly larger in these cases, such that they should be included in future precision
calculations of multi-jet LHC cross sections.

We begin with 2→ 2 small-angle scattering, in which case the Born-level scattering
amplitude is dominated by a single Feynman diagram, as shown in figure 14. As a result,
the SLLs give a correction to the Born-level cross section that takes the form of a constant
K-factor, as in the cases of 2 → 0 and 2 → 1 scattering. Using the relation

∑4
i=1 Ti = 0

implied by color conservation in the master formulas (6.18) and (6.48), or in the equivalent
formula (6.53), we find that the results for the partonic channels qg → qg and q̄g → q̄g

depend on the three angular integrals J12, J3 and J4, whereas for all other 2→ 2 channels
the last two integrals only enter in the combination (J3 − J4).
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Figure 14. Tree-level Feynman diagrams dominating in small-angle scattering for the 2→ 2 partonic
scattering processes studied in this paper. The second diagram is only relevant for qq̄ → q′q̄′, if the
initial- and final-state quarks have different flavor. In all other cases the t-channel diagrams dominate.

In figures 15, 16, and 17 we show the SLL contributions to the (anti-)quark-initiated,
gluon-initiated, and quark-gluon-initiated 2→ 2 scattering cross sections, respectively, for
the case of forward scattering. In all cases, the corrections to the Born-level cross section
found after resummation are significant and exceed the 10% level for small values of Q0,
even if the coupling αs(µ̄) is evaluated at the intermediate scale µ̄ =

√
QQ0 or if a running

coupling is used. (For the choice µ̄ = Q0, the effects are still much larger.) The only
exception is qq̄ → q′q̄′ scattering, shown in the lower panels in figure 15, for which the SLL
contribution amounts to just a few percent. This can be understood by looking at the result

σ̂SLL
qq̄→q′q̄′ = −σ̂qq̄→q′q̄′

2Nc

3

(
αs

π

)3
π2L3∆Y

×
{
Σ(0, w)− Σ(1, w)− 1

N2
c

[
Σ(0, w) + 2Σ

(
1
2 , w

)
− 3Σ(1, w)

]}
.

(7.19)

By coincidence, this particular 2→ 2 process fulfills the first sum rule in (7.8) and, therefore,
starts at four-loop order, which makes it comparable to the 2 → 1 scattering processes,
see e.g. (7.12). The pattern of the SLL contributions in individual orders of perturbation
theory can differ quite substantially between different channels. For example, in both
qq̄ → gg and gg → qq̄ scattering (figure 16), the three-loop contribution (n = 0) yields the
dominant correction to the cross sections.6 In other cases, such as gg → gg and, to a lesser
extent, qg → qg scattering (figure 17), also higher-loop contributions can be very large, and
significant cancellations among them take place, so our resummation formalism is crucial to
obtain reliable results.

Once we leave the kinematic region of small-angle scattering, the calculation of the
SLL terms becomes more complicated. An interesting new feature of 2→ 2 hard-scattering

6In the strict sense of the word, these n = 0 terms are not a “super-leading” effect, even though they
result from two Glauber exchanges.
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Figure 15. Numerical results for super-leading contributions to partonic qq′ → qq′ (top row) and
qq̄ → q′q̄′ (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with ∆Y = 2. The meaning of the
curves is the same as in figure 11.

processes is that there are in general several different color configurations which contribute
to a given process. Choosing an orthonormal basis {|BI⟩} of color configurations, the
amplitudes in a given channel can be decomposed as

|M4⟩ =
∑

I

M(I)
4 |BI⟩ , (7.20)

where the coefficients M(I)
4 are functions of the kinematic invariants. The “unintegrated”

hard function (3.9) can then be represented by a matrix

(H̃4)IJ =M(I)
4 M

(J)∗
4 . (7.21)
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Figure 16. Numerical results for super-leading contributions to partonic qq̄ → gg (top row) and
gg → qq̄ (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with ∆Y = 2. The meaning of the
curves is the same as in figure 11.

The one-loop hard functions for all 2 → 2 parton processes have been compiled in [59].
The authors of [60] have extended these results to two-loop order and also provided a
Mathematica notebook to access the results. Due to the simple kinematics for 2 → 2
scattering in the partonic center-of-mass system, we find from (2.1) and (2.16) that in the
leading-logarithmic approximation the differential cross section is given by(

dσ̂

dr

)
2→2

= 1
16πŝ

〈
H̃41

〉
, (7.22)

where r = −t̂/ŝ = sin2(θ/2).
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Figure 17. Numerical results for super-leading contributions to partonic gg → gg (top row) and
qg → qg (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with ∆Y = 2. The meaning of the
curves is the same as in figure 11.

In the literature so far, SLLs were analyzed only for processes such as qq′ → qq′, which
at lowest order only involve a single color structure, shown in the first diagram in figure 14.
To illustrate the interference effects arising in the presence of multiple color structures we
study the process qq → qq, for which the amplitude receives contributions from two color
structures. They can be can chosen as

B1 ≡ ⟨{α}|B1⟩ =
1

Nc
δα3α2 δα4α1 , B2 ≡ ⟨{α}|B2⟩ =

2√
N2

c − 1
tc
α3α2 tc

α4α1 . (7.23)

These color structures are normalized such that ⟨BI |BJ⟩ = δIJ . In this basis, the tree-level,
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Figure 18. Numerical results for super-leading contributions to partonic qq → qq scattering as
a function of the jet rapidity ηJ , at fixed partonic center-of-mass energy Q = 1TeV and jet-veto
scale Q0 = 25GeV, and for a central rapidity gap with ∆Y = 2 (gray area). The left plot shows the
resummed all-order contribution of the SLLs for three different scale choices in αs(µ̄) (red, blue and
gray lines) and with a running coupling αs(µ) used inside the scale integrals (black line). The right
plot shows the SLL contributions summed up to (3 + n)-th order in perturbation theory for different
values of n, obtained with the intermediate scale choice µ̄ =

√
QQ0.

spin-averaged hard function for the qq → qq process is given by [60]7

1
4
∑
spins

H̃qq→qq

= (4παs)2 2CF

Nc r2

 Nc CF (r2 − 2r + 2)
√

N2
c−1
2

(
r3−3r2+(Nc+4)r−2

1−r

)
√

N2
c−1
2

(
r3−3r2+(Nc+4)r−2

1−r

)
(N2

c +1)r4−4r3+(N2
c +2Nc+7)r2−2(Nc+3)r+2
2(1−r)2

 .

(7.24)

(Let us note parenthetically that the color space for qg → qg is three-dimensional, while that
for gg → gg is nine-dimensional. The color bases and hard functions for all 2→ 2 processes
can be found in [60].) Not only the hard functions, but also the operators O

(j)
i and Si

are represented by matrices in this basis. The full set of matrices is listed in appendix A,
including a discussion on how to work with color structures that are not normalized. The
off-diagonal elements of these matrices correspond to interference effects, i.e. contributions
in which the color structures in the amplitude and the conjugate amplitude differ. To
obtain the coefficients Crn in (6.48), one must evaluate the traces of the products of the
hard-function matrix in (7.24) with the operator matrices given in appendix A.

7These authors did not normalize their color structures, and hence they found slightly different entries in
the matrix, see appendix A.
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Due to the matrix structure of the operators, the kinematic dependence of the SLL
contributions differs from that of the Born-level cross section. In figure 18, we show the
SLL corrections to the differential cross section for qq → qq scattering, normalized to the
Born-level cross section, for a partonic center-of-mass energy of Q = 1TeV, a jet-veto scale
Q0 = 25GeV, and a central rapidity gap with ∆Y = 2. Instead of the scattering angle
θ, we use the rapidity of the jet, ηJ = ln cot(θ/2), as the kinematic variable. Because of
the central gap (gray area in the plot), the hard jet must be restricted to |ηJ | > 1. For
illustrative purposes, however, we also plot our results inside the gap region, even though
the associated integrals Jj are only meaningful if the jet is outside this region. The right
plot shows the partial sum of the SLL terms up to order α3+n

s for different values of n,
obtained with the intermediate scale choice µ̄ =

√
QQ0. The left plot shows the effect of

changing the scale in αs(µ̄). Even though it is a small effect, the kinematic dependence on
the SLL contributions on the jet rapidity is clearly visible in the two plots.

8 Discussion

In this work, we have developed a full description of the leading double-logarithmic correc-
tions to arbitrary non-global observables at hadron colliders. While the existence of SLLs
had been known since the seminal 2006 paper [23], a systematic all-order understanding of
the subtle quantum effects responsible for the breakdown of color coherence in non-global
observables had been lacking. The insights we have obtained change this situation in both
a qualitative and a quantitative way and raise the hope that it will be possible to develop a
complete theoretical description of such effects.

Yet, much remains to be accomplished before our findings can be turned into accurate
predictions for physical cross sections for a large class of relevant collider processes. The
most pressing challenge is, perhaps, the extension of our results beyond the leading double-
logarithmic approximation. This will be necessary in order to remove the significant O(1)
scale uncertainties seen in our numerical estimates for different partonic scattering processes.
At the technical level, reaching single-logarithmic accuracy will require accounting for arbi-
trarily many insertions of all terms in the one-loop anomalous dimension in (3.35), not just
those enhanced by the cusp logarithm in (3.38). These include, in particular, the collinear
parts in (3.37), which introduce new and non-trivial color structures.8 Another important
term is the Glauber-phase operator V G, which gives rise to π2-enhanced contributions to
the cross sections, which for realistic choices of parameters are numerically not much smaller
than the double-logarithmic corrections. The structure of these terms will be discussed
briefly in section 8.1.

Perhaps the most challenging task will be to account for multiple wide-angle soft
emissions, which build up the NGLs in the cross section. In the large-Nc limit, higher-order
insertions of the corresponding operator Γ can be computed using Monte Carlo methods [35],
a technique pioneered in [1]. Recently even the subleading NGLs generated by two-loop
contributions to the soft anomalous dimension [21] have been implemented into a parton

8In addition, one needs to account for the two-loop contributions to the cusp anomalous dimension and
the β-function. This is not difficult to implement and has been sketched in (5.9) and (5.10).
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shower [22], along with the one-loop corrections to the hard functions and low-energy matrix
elements [61]. Accounting for SLLs in a Monte Carlo approach will require methods to
compute these terms for Nc = 3. As discussed in the introduction, such methods are
currently being developed, and first numerical results are available since a few years [9–15].
However, the Glauber phases have so far only been included in a framework with an
approximate treatment of color [17, 18].

On a more fundamental level, it will be important to understand the asymptotic behavior
of non-global cross sections in a detailed way, in order to include subleading logarithmic
corrections in a systematic way. While the systematics of RG-improved perturbation theory
for standard Sudakov problems is well understood, this is not the case for double-logarithmic
non-global observables, where the resummation of large logarithmic corrections cannot
be simply organized as an expansion in the exponent. This crucial complication will be
discussed in section 8.2.

In order to obtain results relevant for phenomenology it will be necessary to go from the
partonic cross sections studied in this paper to hadronic cross sections, which include a sum
over partonic channels, convolutions with the relevant parton distribution functions, and
realistic cuts. Finally, it will be crucial to understand if the loss of color coherence, which is
responsible for the existence of double-logarithmic corrections to non-global observables,
also leads to a violation of conventional collinear PDF factorization, which is the foundation
for all theoretical predictions of LHC cross sections. The authors of [62] have studied
Glauber exchanges in partonic hard-scattering cross sections and stated that the loss of
coherence extends also to many global observables. To answer the question whether PDF
factorization holds, it is important to study Glauber exchanges involving also spectator
partons. If these are non-vanishing, they amount to multi-parton interactions which violate
factorization. At least for certain observables, such effects indeed seem to be present [63–65].
A phenomenological study of factorization-violating effects due to multi-parton interactions
was performed in the recent paper [66]. A detailed study of these important open issues is
left for future work.

8.1 Glauber series

We have seen that the leading-logarithmic corrections to the cross sections for non-global
observables at hadron colliders form a series of the form

σ ∼
∞∑

n=0

[
c0,n

(
αs

π
L

)n

+ c1,n

(
αs

π
L

)(
αs

π
iπL

)2 (αs

π
L2
)n

+ . . .

]
, (8.1)

with L ∼ ln(Q/Q0)≫ 1. It requires two insertions of Glauber phases to obtain a double-
logarithmic series, which therefore starts at three-loop order in perturbation theory. It
is possible to generalize the color traces in (4.6) by including a higher (even) number
of insertions of the Glauber operator V G. This generates additional double-logarithmic
contributions at higher orders. Defining the variables

w = Nc αs(µ̄)
π

L2 , wπ = Nc αs(µ̄)
π

π2 , (8.2)
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we can write the leading logarithms in the presence of an arbitrary number of Glauber
insertions in the form

σ ∼
∞∑

n=0

[
c0,n

(
αs

π
L

)n

+ c1,n

(
αs

π
L

)
wn (wπ w) + c2,n

(
αs

π
L

)
wn (wπ w)2 + . . .

]

=
∞∑

n=0

[
c0,n

(
αs

π
L

)n

+
(

αs

π
L

) ∞∑
ℓ=1

cℓ,n wn+ℓ wℓ
π

]
.

(8.3)

For realistic values of parameters, such as Q = 1TeV and Q0 = 25GeV, the quantities
w ≈ 1.4 and wπ ≈ 1.0 both take values of O(1) for our default choice µ̄ =

√
QQ0, and

hence the infinite set of terms involving these parameters is expected to give effects which
can be as large as the one-loop prefactor. In other words, the imaginary part of the cusp
logarithm can be numerically of similar order as the real part. Referring to both the real
and imaginary parts as logarithmic terms, we see that the double-logarithmic behavior of
the sum of SLLs starts at three-loop order (n = 0, ℓ = 1). We refer to the expression shown
in the second line of the above result as the “Glauber series”. We leave a detailed analysis
of the higher-order terms in wπ for later work.

8.2 Systematics of the double-logarithmic approximation

It is a difficult open problem to understand the systematics of the resummation of large
double-logarithmic terms for non-global hadron-collider observables. The RG evolution
equation (2.11) is of the Sudakov type, meaning that the anomalous dimension ΓH contains
“cusp terms”, accompanied by one power of the logarithm ln(µ2/µ2

h) and proportional to the
cusp anomalous dimension γcusp(αs), as well as “ordinary terms” without such a logarithmic
enhancement. The complication is, of course, that in our case each term in the anomalous
dimension is an operator in color space as well as in the infinite space of parton multiplicities.
Consequently, the path-ordered exponential (2.15) does not give rise to an exponential in
the usual sense.

Conventional counting scheme with αs L = O(1)

If one adopts the conventional counting scheme, where αs L = O(1), then the Sudakov
double logarithms αs L2 ∼ 1/αs are formally larger than O(1). In simpler applications
of SCET, the resummation of Sudakov logarithms produces a perturbative series in the
exponent, such that after RG resummation the expression for an observable takes the form

σ ∼ σ0 exp
[
− 1

αs(µh)
g0(xs) + g1(xs) + αs(µh) g2(xs) + . . .

]
= σ0 exp

[
− 1

αs(µh)
g0(xs) + g1(xs)

] [
1 + αs(µh) g2(xs) + . . .

]
,

(8.4)

with xs = αs(µh)/αs(µs) as in (5.6). The function g0 involves the one-loop cusp anomalous
dimension and β-function, g1 involves the two-loop cusp anomalous dimension and β-function
and the one-loop coefficients of the remaining terms in the anomalous dimension, and so
on. Keeping only g0 in the exponent correctly reproduces the leading double-logarithmic
terms, which are formally larger than O(1), but the term proportional to g1 still gives
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rise to a modification of the cross section by an O(1) amount. The next correction term,
proportional to g2, can however be treated as a parametrically small correction to the cross
section. For this conclusion, the fact that the exact solution of the RG equation yields a
perturbative expansion in the exponent is crucial. A series expansion of the first term in
the exponential generates arbitrarily many inverse powers of the strong coupling, and in
this expanded form

σ ∼ σ0

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

1
n1!n2!n3!

[
− g0(xs)

αs(µh)

]n1

[g1(xs)]n2 [αs(µh) g2(xs)]n3 , (8.5)

it would not seem that the terms involving g2 give a small correction to the cross section,
since for n3 < n1 these contributions are enhanced by inverse powers of αs(µh).

Our problem resembles this latter situation. The integrals Irn in (5.6) involve more
and more inverse powers of αs in higher order, but the resummation of these terms does
not produce a simple exponential. In the strict double-logarithmic limit, where one neglects
the running of the coupling, the resummation yields the functions Σ0(w) and Σ(vi, w)
introduced in (5.17) and (5.22). These correspond to the exponential of the g0 term above.
Taking into account that w ∼ 1/αs in this counting scheme, it follows from (5.15) that the
SLL contribution to a cross section scales like αs lnαs, where the logarithmic enhancement
results from the presence of the function Σ0(w). The problem is that we see no reason to
expect that higher-order terms (for instance, those involving the two-loop cusp anomalous
dimension and β-function, the effects of the running of the coupling, or multiple insertions
of Γ) give a multiplicative correction to the leading result. Rather, compared with (5.15)
we expect a result of the form

(
αs(µ̄)
4π

)4
ln4
(

µh

µs

)
G(w) ∼ G∞(w) , (8.6)

with some unknown function G(w), whose asymptotic form for w →∞ we denote by G∞(w).
At any fixed order in perturbation theory, this expression features one large logarithm less
than the corresponding expression (5.15) for the SLLs. However, how large this contribution
is after resummation, relative to the sum of the SLLs, depends on the properties of this
function G∞(w). The best one can do in this case is to adopt the same approximation
scheme for the anomalous dimension ΓH as in the standard Sudakov case and hope for
the best (i.e., assume that the asymptotic properties of the resummed series of the leading
SLLs are similar to those of the resummed series of subleading SLLs). The series of the
leading double logarithms is then expected to receive corrections of O(1) from subleading
logarithmic effects, like in the Sudakov case. To calculate these effects one would need to use
the two-loop expressions for the cusp anomalous dimension and the β-function, allow for an
arbitrary number of insertions of Γ as well as V G, and also include the collinear anomalous
dimensions in (4.10). In addition, one would have to resum the rapidity logarithms in the
low-energy matrix elements Wm. Similar to the case of transverse-momentum resummation,
such logarithms must be present for consistency of the RG equations [48], but their structure
has not been explored so far.
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Counting scheme with αs L2 = O(1)

The analysis changes if one adopts a counting scheme where αs L2 = O(1). Then it is
consistent to count αs L ∼ √αs, and hence subleading logarithmic contributions such as that
in (8.6) are parametrically suppressed. Note that, since w = O(1) in this case, the function
G(w) also counts as O(1). In other words, one is not in an asymptotic regime, where this
function could develop a non-trivial behavior. In this counting scheme, the sum of the
leading double-logarithmic corrections presents the parametrically leading contribution to
the cross sections, and subleading logarithmic effects are parametrically suppressed by at
least a factor of √αs. It follows from (5.15) that the SLL contribution to a cross section
scales like α

3/2
s , whereas the subleading terms in (8.6) scale like α2

s.
Given that the relevant parameter w = Nc αs(µ̄)

π L2 ≈ 1.4 for representative values
µh = 1TeV and µs = 25GeV, it is not clear which counting scheme is more appropriate.
On the one hand, counting w = O(1) seems not unreasonable. On the other hand, we have
found that the scale ambiguity from the choice of µ̄ turns out to be an O(1) effect in our
case and does not appear to be suppressed with a factor of

√
αs(µ̄).

9 Conclusions

In this paper, we have presented a factorization formula for non-global hadron-collider
observables. It separates cross sections into hard functions and soft-collinear matrix elements.
We have provided a detailed derivation of the one-loop anomalous dimension that governs
the scale evolution of the hard functions, which forms the basis for the resummation of
large logarithms in these cross sections. In contrast to the case of non-global observables at
lepton colliders, the anomalous dimension contains non-trivial complex phases, which spoil
the cancellation of soft + collinear contributions between the real and virtual parts. As a
consequence, the renormalization-group evolution produces double-logarithmic terms, and
even the purely collinear part of the evolution kernel has a non-trivial color structure, in
contrast to the standard DGLAP evolution of parton distribution functions.

The double-logarithmic terms in the cross section are called super-leading logarithms
(SLLs). We have presented general results for the SLL terms arising in arbitrary 2→M

scattering processes, extending our earlier results for quark-initiated processes reported
in [36]. Our results have been obtained by solving the relevant evolution equations order by
order, after identifying the subset of color traces giving rise to the leading double-logarithmic
effects. We find that the structure of the resulting terms is simple enough that they can be
resummed to all orders and expressed in closed form in terms of Kampé de Fériet functions.
Our results open the door for a full phenomenological analysis of the contributions of
SLLs to some benchmark LHC cross sections. Studying the numerical size of the effects
for a number of partonic channels, we have observed several interesting features. The
SLL terms at different orders in αs alternate in sign, and the individual terms can give
rise to contributions that are much larger than the all-order sum. The same is true for
the pattern of double logarithms arising in the standard Sudakov form factor. What is
quite different in our case is the asymptotic behavior: in the Sudakov regime the cross
section gets an exponential suppression in the double-logarithmic variable w ∼ αsL2, while
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the SLLs are only suppressed by lnw/w. To find the asymptotic behavior beyond the
double-logarithmic approximation is an interesting open problem. In standard Sudakov
problems, the double-logarithmic terms give rise to a global prefactor in the cross section,
but given the complicated structure of the SLLs this will not be the case here.

For a generic 2 → M partonic process, the Glauber-phase terms first contribute at
third order in perturbation theory, since one needs two insertions of the phase terms and a
soft emission into the veto region to obtain a non-zero result. Once the phases are present,
the first SLL arises at four-loop order. For 2→ 0 and 2→ 1 processes, such as Higgs-boson
production in association with M ≤ 1 jets, the pattern is different. For 2 → 0 parton
scattering, the third- and fourth-order terms vanish and the SLLs start at the level of five
loops. For 2 → 1 processes, the third-order term vanishes. In our all-order result, this
involves a cancellation among terms with similar all-order behavior, and hence we find that
the SLLs are numerically suppressed also in higher orders. No such cancellations are present
if the Born-level hard process involves two or more partons in the final state, which then
generically leads to much larger effects. Another interesting feature that was not discussed
in the literature so far is quantum interference. In general, the SLL effects mix different
color structures in the amplitude, and as a consequence the kinematic dependence of the
effect can be different from the Born-level process, as we have illustrated using qq → qq

scattering as an example.
For 2→ 2 partonic scattering processes, the resummed contribution of the SLLs can

amount to a correction at the level of a few to several tens of percent on the cross sections,
depending on the choice of the variables Q and Q0 as well as the scale µ̄ used in the
running coupling. The next step should be a full analysis of the dijet gap-between-jets
cross section, including all partonic channels and the interference between different color
configurations. The basic ingredients for this analysis are the 2→ 2 hard functions, given
in terms of color matrices in a basis of the color space of the particular channel. The color
matrices for the 2→ 2 hard functions can be found in the literature, and after evaluating
the basic color structures in the basis of a given partonic channel, the result for the cross
section can be assembled. Such an analysis is interesting and will allow us to realistically
assess the importance of the leading SLLs for the first time, albeit with large perturbative
uncertainties.

While the systematics of the “exponentiation” of SLLs is still an open issue, we expect
that (as in standard Sudakov problems) theoretical predictions obtained in the double-
logarithmic approximation suffer from an O(1) uncertainty. Indeed, already the uncertainty
from choosing the scale in the coupling — which is a single-logarithmic effect — is of this size.
We have included the running of the coupling to 15-th order in the perturbative expansion
of the cross section and find that the effect is similar to evaluating the coupling at the
intermediate scale µ̄ =

√
QQ0. However, to achieve single-logarithmic accuracy all pieces of

the one-loop anomalous dimension in the path-ordered exponential (2.14) should be iterated
to all orders. This includes higher powers of the Glauber terms, additional emissions into
the gap, and iterating the purely collinear part of the anomalous dimension. The additional
emissions into the gap produce a complicated pattern of single-logarithmic non-global
logarithms (NGLs), which interleaves with the double-logarithmic effects of the SLLs. It
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is well known that the numerical impact of the global and non-global single logarithms is
sizeable [35, 67–69]. However, it is an interesting open question how the two effects combine.
Since the NGLs involve successively more complicated angular integrals, it will probably
not be possible to analyze them analytically, but as a first step one could analyze the
two-emission case. To achieve single-logarithmic accuracy, also a better understanding of
the low-energy theory becomes mandatory. The consistency of the RG evolution equations
implies that the low-energy theory must involve large rapidity logarithms due to a collinear
anomaly, which should be resummed as well.

There are many applications and extensions of the effective-theory formalism developed
here. An interesting phenomenological application would be a study of SLLs for Higgs-boson
production in vector-boson fusion, where a central jet veto is used to suppress the QCD
background. Another extension of the formalism be a study of small-radius jets, for which
the non-global structure associated with the jets factors off [30, 31]. However, the SLLs are
associated with radiation along the beams and would still be present. A third interesting
extension are jets at high rapidity, for which the resummation of logarithms associated with
forward scattering would become relevant. The resummation of these logarithms is obtained
from BFKL evolution [70–73] and has been implemented into a dedicated numerical code
in [74–78]. It would clearly be very useful to combine BFKL, NGL, and SLL resummations
in one coherent framework. We look forward to addressing these interesting open questions
in the future and to further develop the theory and phenomenology of non-global observables
at hadron colliders.
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A Operator matrix elements for qq → qq

Even though it seems natural to choose an orthonormal basis of color structures for
the decomposition of the amplitude in (7.20), as for example in (7.23), it is sometimes
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more convenient to work with just an orthogonal basis {|CI⟩} so as to avoid square roots
of normalization factors. One then needs to carefully keep track of those non-trivial
normalization factors, which we write out explicitly in the following. In such a basis, the
“unintegrated” hard function for generic 2→ 2 scattering is given by the matrix

⟨CI |H̃4|CJ⟩ =M(I)
4 M

(J)∗
4 ⟨CI |CI⟩⟨CJ |CJ⟩ , (A.1)

and the partonic cross section in (7.22) evaluates to

(
dσ̂

dr

)
2→2

= 1
16πŝ

1
N1N2

∑
spins

∑
I,J

⟨CI |H̃4|CJ⟩
⟨CI |CI⟩⟨CJ |CJ⟩

⟨CJ |1|CI⟩ , (A.2)

with multiplicity factors Ni given in (2.2). The normalization factors in the denominator
cancel the ones on the right-hand side of (A.1).

For qq → qq scattering an orthogonal basis could be [60]

C1 ≡ ⟨{α}|C1⟩ = δα3α2 δα4α1 , C2 ≡ ⟨{α}|C2⟩ = tc
α3α2 tc

α4α1 , (A.3)

where ⟨C1|C1⟩ = N2
c and ⟨C2|C2⟩ = CF Nc/2. In this basis the low-energy matrix element

takes the form

⟨CJ |1|CI⟩ =
(

N2
c 0
0 CF Nc

2

)
JI

, (A.4)

and the tree-level, spin-averaged hard function is given by [60]

1
4
∑
spins

⟨CI |H̃qq→qq|CJ⟩
⟨CI |CI⟩⟨CJ |CJ⟩

= (4παs)2 2CF

N2
c r2

CF (r2 − 2r + 2) r3−3r2+(Nc+4)r−2
1−r

r3−3r2+(Nc+4)r−2
1−r

(N2
c +1)r4−4r3+(N2

c +2Nc+7)r2−2(Nc+3)r+2
CF (1−r)2


IJ

.

(A.5)

To evaluate the coefficients Crn in (6.48), we also need the matrix representations

(
O

(j)
i

)
IJ
≡ ⟨CI |O(j)

i |CJ⟩ ,
(
Si
)

IJ
≡ ⟨CI |Si|CJ⟩ (A.6)

in the color basis (A.3). For the operators O
(j)
i defined in (6.36) we find

4∑
j=3

O
(j)
1 Jj = CF NcJ43

2

(
−2Nc 1
1 CF

)
,

4∑
j=3

O
(j)
2 Jj =

(
0 0
0 0

)
,

4∑
j=3

O
(j)
3 Jj = CF J43

2

(
2Nc −1
−1 −CF

)
,

4∑
j=3

O
(j)
4 Jj = C2

F NcJ43

(
2Nc −1
−1 −CF

)
,

(A.7)

– 66 –



J
H
E
P
1
2
(
2
0
2
3
)
1
1
6

where J43 = J4 − J3. The operators (6.45) multiplying the integral J12 are given by

S1 = CF

(
−2N2

c Nc − N3
c

4
Nc − N3

c
4 −1

4
(
N2

c + 2
) ) , S2 = CF

 0 (N2
c−4)2

2Nc

(N2
c−4)2

2Nc
−(N2

c−4)2

2N2
c

 ,

S3 = CF

 0 N3
c

6 −
5Nc

3 + 4
Nc

N3
c

6 −
5Nc

3 + 4
Nc
−N2

c
6 −

4
N2

c
+ 5

3

 , S4 = CF

(
2Nc

1
2
(
N2

c − 4
)

1
2
(
N2

c − 4
) 3

2Nc

)
,

S5 = CF

(
0 Nc

2
Nc
2 −1

2

)
, S6 = CF

(
N2

c
CF

0
0 Nc

2

)
. (A.8)

We note that the combinations of matrix elements in (A.7) and (A.8) are invariant under
the crossing 3↔ 4 of the final-state legs. In (A.7) both the integral J43 → J34 = −J43 and
the color matrix multiplying it pick up sign factors, which compensate in the product.
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