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1 Introduction

String Theory famously allows for an enormously large number of possible compactifications,
giving rise to a huge Landscape of vacua and effective lower-dimensional models. The
Swampland Program [1–5] aims at finding general criteria that distinguish effective field
theories (EFTs) that can be found within the String Theory Landscape from those which
fundamentally cannot arise from String Theory. More generally, it tries to determine which
a priori consistent EFTs allow for a UV completion in quantum gravity.1

Evidence for these criteria (often dubbed “Swampland Conjectures”) typically stems
from two different ways of reasoning: either from the bottom-up by studying general
properties of gravitational systems, usually the semi-classical physics of black holes, or by
collecting and generalizing patterns found in explicit top-down String Theory examples.
The latter approach, however, is often limited by the fact that controlled and calculable
examples are mostly only available at weak coupling and/or unbroken supersymmetry.
This of course poses the risk of extrapolating from specific properties of weakly-coupled,
supersymmetric compactifications to the whole landscape, falling victim to a “lamppost
effect”. Despite these dangers, weak coupling limits play a particularly prominent role
within the Swampland Program. It is generally believed that quantum gravity theories do
not allow for any free parameters. Therefore, coupling constants must be dynamical and
realized as the expectation values of scalar fields. This implies that every weak coupling
limit corresponds to an asymptotic boundary of the scalar field space. In particular, the
points where a coupling constant vanishes and a global symmetry would be restored lie at
infinite distance from any point in the interior of the scalar field space [1].

1One might of course be tempted to speculate whether these two questions are actually the same.
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Even though conceptually important, the often high-dimensional moduli spaces of
Calabi-Yau compactifications pose a serious challenge for string phenomenology. Large
numbers of massless (or light) scalar fields are not observed and must be stabilized if one
wants to obtain stable, realistic string theory vacua. For the complex structure moduli of
IIB or F-theory compactifications this can be achieved by introducing non-trivial three
or four-form fluxes on the Calabi-Yau manifold’s middle cohomology [6, 7]. The large
combinatorical number of such fluxes on topologically complicated Calabi-Yau manifolds
has led to statistical estimates on the enormous size of the String Theory Landscape [8, 9].
However, the intuition that any choice of fluxes, even if supported on only a small number
of cycles, can give rise to a consistent vacuum where a large number of moduli is stabilized
has recently been challenged by the “tadpole conjecture” [10]. This conjecture states that
the fluxes that are needed to stabilize a large number of moduli carry a charge that is
directly proportional to the number of stabilized moduli. As this charge contributes to the
tadpole cancellation condition and is therefore bounded from above, this statement — if
true — drastically reduces the size of the landscape of viable vacua.

For phenomenological purposes and in order to obtain a stable compactification, it is
generally desirable to stabilize all complex structure moduli by fluxes, with no (or at most
a compact) residual moduli space of unstablized moduli. On the other hand, one might
ask whether the linear scaling behavior of the tadpole conjecture persists also for partial
moduli stabilization. In this work, we therefore suggest to refine the tadpole conjecture into
a stronger and a weaker version. The stronger version states that for the stabilization of
any number, nstab, of moduli the required flux induces an M2-brane tadpole is proportional
to nstab. Instead, the weaker condition only requires that in case all complex structure
moduli of a given fourfold are to be stabilized, the required flux has to induce a tadpole of
the order of h3,1. Clearly, the weaker version is implied by the stronger one.

First evidence for the tadpole conjecture was provided by an extensive, computer-aided
search on K3×K3 backgrounds [11] where it was found that full moduli stabilization can
only be obtained within the tadpole bound at special, singular gauge-enhancement points
deep in the interior of moduli space. Yet soon after, general stabilization schemes were
found that seemingly violate the tadpole conjecture in the large complex structure regime
of general three and four-folds [12]. However, it was pointed out in [13–15] that in order
to retain control over the large complex structure expansion generically fluxes with large
charges are needed, compatible with the tadpole conjecture. Notice, that the requirement of
control over the large complex structure expansion is the same as staying sufficiently close
to the asymptotic boundary of scalar field space. Subsequently, using recent insights on
asymptotic Hodge structure, the linear scaling relation between the induced charge of the
fluxes and the number of stabilized moduli was confirmed for all strict asymptotic limits in
complex structure moduli space [16].

Consequently, and in the spirit of the discussion above, the question naturally arises if
the tadpole conjecture remains generally true even in the interior of moduli space or if it is
only a consequence of stabilizing moduli in its asymptotic regions. This is the motivating
question of this paper. Unfortunately, explicitly stabilizing a large number of moduli in the
interior of the scalar field space, far away from any asymptotic regime such as the large

– 2 –



J
H
E
P
1
2
(
2
0
2
3
)
0
2
9

complex structure region is a difficult task. The required period integrals are typically only
known for Calabi-Yau manifolds with a small number of moduli or in the large complex
structure limit and are generally expensive to compute.

Therefore, we rely on a technique that has already been used frequently in earlier
examples of explicit flux compactifications [17–23]. Calabi-Yau manifolds that exhibit a
discrete symmetry acting on their moduli spaces allow for a consistent truncation on the
invariant locus in moduli space. This requires a choice of fluxes that are invariant under the
discrete symmetry group and reduces the problem drastically in its dimensionality. Instead
of solving the vacuum (F-term) equations for all moduli explicitly, one only needs to solve
them for the relatively small subset of invariant moduli. The vacuum equations of the
non-invariant moduli are solved automatically by virtue of the discrete symmetry. Still,
a solution to the vacuum equations does not guarantee stabilization of the non-invariant
moduli since there may remain directions orthogonal to the invariant locus that are not
obstructed by the flux-induced potential. For special points along the invariant locus,
namely the Fermat point, the number of directions obstructed by invariant flux have been
counted in [23, 24] with the result that the scaling between number of stabilized moduli
and the tadpole is indeed as required by the tadpole conjecture.

In this work, we address the tadpole conjecture at generic points along the invariant locus,
away from the Fermat point. To that end, we do not directly address the moduli stabilization
problem in type IIB/F-theory but focus on Calabi-Yau fourfold compactifications of M-
theory with G4-flux. We further concentrate entirely on the complex structure sector
by restricting to primitive G4-fluxes. Thus, if the fourfold is elliptically fibered, we can
translate our results directly to 4d F-theory compactification on the same fourfold. To
exploit the symmetry arguments outlined above, we focus on a special class of fourfolds
obtained as hypersurfaces in weighted projective space. There are 3462 of such Calabi-Yau
fourfolds which typically have a very high-dimensional complex structure moduli space
h3,1 ∼ O(1000) making them ideally suited to discuss stabilization of large number of
complex structure moduli. The loci in complex structure moduli space along which there
is an enhanced discrete symmetry, on the other hand, have relatively small dimension of
h3,1

inv. ∼ O(10). Therefore the reduced moduli stabilization problem on the invariant locus
by means of invariant fluxes becomes a tractable problem.

The question pertinent to our analysis in this paper is whether a choice of G-invariant
flux, that leads to a solution to the F-term equation with W0 ≡WDaW=0 6= 0, is capable of
stabilizing a large numer of non-invariant moduli. To that end, we do not assume the vacuum
to be located at any particular point along the invariant locus. In this regard our analysis
differs from previous work [23, 24]. Of particular interest for us is the effect of the non-zero
W0 for the stabilization of the non-invariant complex structure moduli. As was noticed
already in [25], a non-zero W0 automatically obstructs half of the real deformations such
that the residual moduli space has at most real dimension h3,1. We therefore propose that
in this case the tadpole conejecture should relate the flux-induced tadpole to the number,
nstab, of real moduli that are not automatically stabilized. Still, naively a non-zero W0
yields an obstruction to all deformation away from the invariant locus. However, additional
obstructing terms can originate from the Hessian D2W which in principle can cancel an
obstruction induced by W0 6= 0 if the rank of D2W is sufficiently large.
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To see whether it is conceivable that a full cancellation takes place we perform a scan
over (a certain subset) of the hypersurface Calabi-Yau fourfolds in weighted projective space
and numerically compute the rank of D2W at a generic point along the invariant locus. As
a result we provide a lower bound on the number nstab of non-invariant directions that are
obstructed by a choice of a self-dual invariant flux leading to W0 6= 0:

nstab & 0.2 (h3,1 − h3,1
inv.) . (1.1)

Thus, for h3,1 � h3,1
inv it is possible to stabilize a large number of complex structure fields

just by solving the reduced stabilization problem along the invariant locus. We illustrate
that this is indeed possible in an explicit example where it is possible to stabilize at least
nstab = 1052 additional real moduli with a flux leading to a tadpole of Nflux = 3. This
shows explicitly that it is indeed possible to avoid the bound imposed by the strong form of
the tadpole conjecture at special loci in the interior of the moduli space.

The rest of this paper is organized as follows: in section 2 we review M-theory flux
compactifications and the tadpole conjecture. In section 3 we provide some basics of
Calabi-Yau hypersurfaces in weighted projective space and their complex structure moduli
spaces. In section 4 we challenge the tadpole conjecture by studying the stabilization of
complex structure deformations through symmetric fluxes. To illustrate the difference
between the asymptotic regions and the interior points in the moduli space, we compare
the moduli stabilization at the symmetric locus with the situation in asymptotic regimes in
section 5. Finally, we discuss our results in section 6.

2 Flux vacua and the tadpole problem

In this work we are interested in flux compactifications of M-theory/F-theory on Calabi-Yau
fourfolds Y4. The relevant flux in this case is the M-theory four-form flux, G4, which has to
be quantized such that [26]

G4 + 1
2c2(Y4) ∈ H4(Y4,Z). (2.1)

The middle cohomology for fourfolds can in general be split into a vertical part, a horizontal
part and a remainder that is neither vertical nor horizontal [27]. The horizontal part
can be generated by varying the holomorphic four-form Ω and allows for an orthogonal
decomposition as

H4
hor. = H4,0 ⊕H3,1 ⊕H2,2

hor. ⊕H
1,3 ⊕H0,4 . (2.2)

Of particular interest to us are primitive fluxes satisfying G4 ∧ J = 0 for J the Kähler form
on Y4.2 For a primitive G4-flux, the induced classical superpotential is given by [28]

W =
∫
Y4
G4 ∧ Ω , (2.3)

2In case the second Chern class of Y4 is not even, the quantization condtion (2.1) forces us to add a
vertical component to the flux. In the following we ignore any such component and only focus on the
primitive component of G4 which by (2.1) has to be integer quantized.
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which through Ω depends on the complex structure deformations Φα of Y4 of which there
are h3,1. In this work, we exclusively focus on the complex structure sector and ignore any
mixing with the Kähler sector. The F-term supersymmetry conditions

DαW = 0 , (2.4)

for the complex structure moduli are solved by self-dual four-form flux G4 = ∗G4.3 In
addition, for a consistent compactification the M2-brane tadpole needs to be cancelled. For
M-theory on four-folds the tadpole cancellation condition reads

1
2

∫
Y4
G4 ∧G4 +NM2 = 1

24χ(Y4) , (2.5)

where NM2 is the number of space-time filling M2-branes and χ(Y4) denotes the Euler-
characteristic of Y4. Since for a supersymmetric theory NM2 ≥ 0, the possible flux choices
are constrained by

Nflux ≡
1
2

∫
Y4
G4 ∧G4 ≤

χ(Y4)
24 . (2.6)

Of particular interest for us is the dimension of the locusMvac in field space along which
DαW = 0 does have a solution for a given G4 flux. More precisely, we consider the number
of directions in moduli space that are obstructed at first order, i.e., that correspond to
massive directions. In the following we refer to this number as the co-dimension ofMvac.
In [24] this statement was formulated in a mathematically more precise way and expressed
in terms of the Zariski dimension ofMvac.

In order to find this co-dimension let us assume that we found a solution to the equations
DaW = 0 at a point Φcrit in moduli space. Then the number of first-order obstructed
directions, i.e. the co-dimension ofMvac, is determined by the rank of the matrix

M =
(
DαDβW D̄ᾱDβW

DαD̄β̄W̄ D̄ᾱD̄β̄W̄

)∣∣∣∣∣
Φcrit

=
(
DαDβW gᾱβW

gαβ̄W̄ D̄ᾱD̄β̄W̄

) ∣∣∣∣
Φcrit

, (2.7)

where in the last step we used holomorphicity of W . The discussion of the rank of M
depends significantly on whether W0, i.e. the value of W at Φcrit, vanishes or not. If W0 = 0,
the rank of the matrix M is only determined by the rank of DαDβW and the residual
moduli space is complex. On the other hand, as pointed out in [25], if W0 6= 0 and the
metric gαβ̄ is non-degenerate, the residual moduli space is real and at most of dimension
h3,1. However, the actual dimension ofMvac again depends on the details of DαDβW .

In general, one would expect that the flux G4 needs to be sufficiently complicated in
order to solve the F-term conditions DαW = 0 while at the same time ensuring that DαW

is non-constant in many directions. However, such a complicated flux would typically lead
to a large contribution to the M2-brane tadpole and stabilizing many moduli may thus not
be possible within the bound (2.6). In [10] it has been conjectured that the co-dimension of

3If we want to solve all F-term equations including the Kähler direction and hence get actual supersym-
metric vacua, the condition on the fluxes is more constraining than just self-duality as has been discussed
in [29].
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Mvac, or equivalently the number, nstab, of stabilized moduli, and the flux-induced tadpole
are related linearly. In its original formulation [10] considers nstab to be the number of
stabilized complex fields. However, given our previous discussion, for W0 6= 0 it is more
natural to count real scalar fields. In particular, half of the real directions in moduli space
are automatically stabilized. Thus, in order to formulate the tadpole conjecture in a sensible
way, in the case W0 6= 0 we should only count the real directions that are stabilized in
addition to those stabilized automatically. In the following, we will therefore work with the
following form of the tadpole conjecture:

Tadpole Conjecture (Strong Form).4 The fluxes that stabilize a large number, nstab � 1,
of complex structure moduli in a smooth Calabi-Yau fourfold compactification of M-theory
lead to an M2-brane tadpole that grows at least linearly in nstab, i.e.

Nflux & αnstab , α ∼ O(1) , (2.8)

where nstab is defined as

W0 = 0 : nstab ≡ codimC (Mvac) , (2.9a)
W0 6= 0 : nstab ≡ codimR (Mvac)− h3,1 . (2.9b)

In both cases nstab can take values in {0, . . . , h3,1} with full moduli stabilization corre-
sponding to nstab = h3,1. In fact, oftentimes the tadpole conjecture is interpreted as an
obstruction to stabilize all complex structure moduli of a given Calabi-Yau fourfold. This
motivates a formulation of a weaker form of the tadpole conjecture that only applies to the
case nstab = h3,1:

Tadpole Conjecture (Weak Form). For a fixed, smooth Calabi-Yau fourfold with h3,1 � 1,
the fluxes that stabilize all complex structure moduli (i.e. nstab = h3,1) induce an M2-brane
tadpole that is bounded as

Nflux & β h3,1 , β ∼ O(1) . (2.10)

The tadpole conjecture has been investigated in various settings starting with [11]. Much
focus has been on confirming or disproving the stronger version of the tadpole conjecture
in asymptotic limits in field space [12–16]. Instead, in the following we want to study the
validity of the two forms of the tadpole conjecture away from asymptotic limits in the interior
of the moduli space. Progress in this direction has recently been made in the type IIB context
for orientifold compactifications with h1,1 = 0 [24]. Here, we focus on a class of Calabi-Yau
fourfolds that generically has h3,1 � 1 but still allows for explicit moduli stabilization at
special points in the interior of the moduli space. We introduce some basic properties of
these fourfolds in the next section before we study moduli stabilization in section 4.

4A related formulation of the tadpole conjecture for partial moduli stabilization (without distinguishing
between the cases W0 = 0 and W0 6= 0) was recently put forward in [24].
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3 Hypersurface Calabi-Yau fourfolds

In this and the following section, we focus on a simple class of Calabi-Yau fourfolds that
can be obtained as a hypersurface in a weighted projective space

P5
a1,...,a6 =

(
C6\{0}

)
/C? , (3.1)

where the C? acts on the coordinates xn=1,...,6 of C6 as

(x1, . . . , x6) ∼ (λa1x1, . . . , λ
a6x6) . (3.2)

A hypersurface in this weighted projective space can be described as the zero locus of a
polynomial P for which the Calabi-Yau condition reads

d ≡
6∑

n=1
an = degP , (3.3)

where degP is the degree of P under the re-scaling (3.2). A simple class of Calabi-Yau
fourfolds Y4 can hence be obtained from Fermat-type polynomials of the form

P0 =
6∑

n=1
xd/ann . (3.4)

For the Calabi-Yau defined by P0 = 0 to be transverse, i.e. P0 = 0 and dP0 = 0 not to have
a common solution, we have to require that each an is a divisor of d [30]. Based on these
Fermat-type Calabi-Yau four-folds we can further consider the families of CYs obtained by
deformations of P0 of the form

P = P0 +
∑
α

Φα

6∏
n=1

xαnn , (3.5)

where we sum over α = (α1, . . . , α6) subject to the constraint

6∑
n=1

αnan = d .

The complex parameters Φα can be interpreted as complex structure deformations of the
Calabi-Yau defined by P0. Notice that not all α lead to independent deformations of P0. To
single-out the independent deformations, we need to divide out the ideal of P0 generated by

〈∂xnP0〉 = 〈xd/a1−1
1 , . . . , x

d/a6−1
6 〉 . (3.6)

We denote the number of independent polynomial deformations of P0 by h3,1
poly. In general,

the C∗-action of the weighted projective space in (3.1) has fixed points on the hypersurface
{P = 0} leading to orbifold singularities. These singularities can be resolved by turning on
vevs for massless twisted states leading eventually to a smooth CY which has additional
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moduli associated to these resolution modes.5 The total number of deformations can be
obtained from the Landau-Ginzburg formula [33, 34]

tr tdJ0 t̄dJ̄0 =
d−1∑
l=0

∏
l an
d
∈Z

1− (tt̄)d−an
1− (tt̄)an

∏
l an
d
/∈Z

(tt̄)d/2−an
(
t

t̄

)d(l and mod Z−1/2)
. (3.7)

Here t is an auxiliary variable, d the degree of P as in (3.3) and an are the weights of
the weighted projective space as in (3.2). The degeneracy of states with (J0, J̄0) charges
(d−p, q) gives the Hodge number hp,q of the resolved CY fourfold. Depending on the details
of the resolution, the twisted moduli can contribute to both h3,1 or h1,1.

In this note, we will merely focus on the polynomial deformations introduced in (3.5).
Among the families of CYs given by the hypersurface {P = 0}, the Fermat-type CYs are
special since they are invariant under a discrete symmetry group G. We can write the
generators of G as g(k) =

(
g

(k)
1 , . . . , g

(k)
6

)
which act on the coordinate xn of P5

a1,...,a6 as

g(k) : xn 7→ exp
(

2πig(k)
n

an
d

)
xn . (3.8)

For the Fermat CY to be symmetric under the action of g(k) the g(k)
n further need to satisfy

6∑
n=1

g(k)
n an = 0 . (3.9)

Since the action of the generators g(k) has to be understood modulo the projective rescaling
xn → λanxn not all g(k) satisfying (3.9) are in fact independent. In section 4.2 we illustrate
this for an example with (a1, . . . , a6) = (1, 1, 1, 1, 8, 12).

The deformations of the polynomial P0 as in (3.5) are in general not G-invariant unless
6∑

n=1
αng

(k)
n

an
d
∈ Z . (3.10)

Let us denote by h3,1
inv the number of such G-invariant polynomials. We may then split the

complex scalar fields Φα into two sets

Φα → (ψa, φi) , (3.11)

where the ψa parametrize the G-invariant deformations whereas φi are the parameters
associated to polynomial deformations of P0 not invariant under G. We are particularly
interested in the locus within the deformation space of P0 defined by φi = 0. The polynomial
P in (3.5) is G-invariant along this locus to which we refer to as symmetric locus. Recall
that in addition to the polynomial deformations of P there can be further complex structure
deformations associated to the resolution of orbifold singularities. In general the group
G does not have a well-defined action on these complex structure moduli. Since in the
following we want to use the symmetry G to constrain the periods the Calabi-Yau fourfold
we restrict to the case that the resolution of the hypersurface P = 0 does not yield any
additional complex structure deformations. We hence restrict to the case h3,1 = h3,1

poly.
5Whereas for threefolds all resolution modes have a geometric interpretation [31] this is not necessarily

the case for fourfolds [32].
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The symmetric locus in moduli space. Given a CY of the type discussed above with
h3,1 = h3,1

poly we now specialize to the vicinity of the symmetric locus (ψa, φi) = (ψa, 0).
Under g ∈ G the non-invariant deformations φi transform as

φi
g→ βi(g)φi , no summation, (3.12)

for some discrete complex phases βi(g). In a similar way to the deformations, we can split
the periods of the holomorphic (4, 0)-form Ω into invariant and non-invariant periods as6

(ΠA, Π̃I) g→ (ΠA, γI(g) Π̃I) , no summation. (3.13)

Here, the γI(g) are again complex phases and the indices A and I run over a basis of
invariant and non-invariant four-cycles, respectively. Notice that the basis (ΠA, Π̃I) does
not necessarily correspond to an integer basis of periods, but for our purposes is just some
basis of periods with nice transformation properties under G. For the following discussion,
it is, however, important to note that there exists an integer basis that is compatible with
this split of the periods.

Given the transformation properties of the deformations in (3.12), we can infer the
dependence of the periods on the φi. For instance, around the locus φi = 0 we have

ΠA = πA,0(ψa) + πA,2ij (ψa)φiφj + . . . , (3.14)

where πA,2ij (ψa) is only non-zero if βi(g)βj(g) = 1 for all g ∈ G. On the other hand, the
dependence of πA,2ij on the invariant deformations ψa cannot be determined purely from
symmetry considerations. In principle, it is therefore possible that πA,2ij vanishes identically
even if βi(g)βj(g) = 1 for all g ∈ G. On the other hand, the periods Π̃I have the expansion

Π̃I = π̃I,1i (ψa)φi + π̃I,2ij (ψa)φiφj + π̃I,3ijk(ψ
a)φiφjφk + π̃I,4ijkl(ψ

a)φiφjφkφl + . . . . (3.15)

At each order in the expansions, the coefficients πA,2ij , π̃I,2ij , π̃
I,3
ijk, etc. are not all independent

but satisfy certain linear relations. To see this we notice that these terms can be associated
to the squares (cubes) of the polynomials in (3.5). But these polynomials are defined
modulo the ideal 〈∂P 〉. At a given point along the symmetric locus {φi = 0} the ideal
depends on ψa dictating the relative ψa-dependence of the different expansion coefficients
in ΠA, Π̃I . Moreover, the expansion coefficients can be arranged into representations of
the outer automorphism group of G. Invariance with respect to outer automorphism of
G requires all coefficients that lie in the same representation to have the same functional
dependence on ψa, reducing the number of independent components further.

Notice that along the symmetric locus {φi = 0} all non-invariant periods {Π̃I} vanish
as there is no constant term in the expansion (3.15) since such a term would spoil the
transformation (3.13). However, the vanishing of Π̃I does not lead to a singularity in field
space with additional massless degrees of freedoms as, e.g., there is no supersymmetric

6In principle the action of G on the periods could also be accompanied by a non-trivial Kähler transfor-
mation as pointed out in [19]. However, in the remainder of this work we only consider Kähler-covariant
expressions such that our results are independent of this subtlety.
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cycle that vanishes at the supersymmetric point. To see this, note that dP 6= 0 for generic
ψa and hence the Calabi-Yau fourfold defined by P = 0 is non-singular along the locus
{φi = 0}, indicating that the volume of all 4-cycles is non-vanishing.7 Alternatively, we can
consider the field space metric

gi̄ = −∂i∂̄
(

log
∫
Y4

Ω ∧ Ω̄
)
. (3.16)

Given the expansion of the periods in terms of the deformations, we infer that to leading
order∫

Y4
Ω ∧ Ω̄ = K(0)(ψa, ψ̄b) +K

(2)
i̄ (ψa, ψ̄b)φiφ̄̄ +

(
K

(2)
ij (ψa, ψ̄b)φiφj + c.c.

)
. (3.17)

The Kähler potential is invariant under G up to a Kähler transformation. Since K(2)
i̄ is a

function of the invariant moduli ψa only, it is invariant under G. Thus K(2)
i̄ = 0 unless the

product φiφ̄̄ is invariant under G. Similarly, K(2)
ij can only be made up of terms stemming

from the invariant periods ΠA, i.e.

K
(2)
ij (ψa, ψ̄b) = πA,2ij ηABπ̄

B,0 , (3.18)

where ηAB is the intersection form restricted to the invariant sector. From the Kähler
potential, we can derive the metric on field space along the symmetric locus

gi̄ =
K

(2)
i̄ (ψa, ψ̄b)

K(0)(ψa, ψ̄b)2 , (3.19)

which for generic K(2)
i̄ and generic values of ψa is non-degenerate and in particular does not

feature a logarithmic divergence in the φi as would be expected for a point in field space
where a supersymmetric cycle vanishes.

Setting the non-invariant deformations φi = 0, we are left with a lower-dimensional
deformation space spanned by the ψa. In certain cases, this space can be identified with the
full complex structure moduli space of the mirror X4 of Y4. To see this, let us recall that
by the Greene-Plesser construction [35] the mirror of Y4 can be obtained by quotienting the
hypersurface P = 0 by the group G, i.e. X4 = {P = 0}/G. Of course, in order to be able to
quotient by G, the hypersurface P = 0 needs to have G as one of its symmetries which is
precisely the case along {φi = 0}. The G-orbifolding renders the deformations φi massive
whereas the deformations ψa remain as massless complex structure deformations of X4.
Still, when orbifolding by G additional singularities are induced. Resolving these orbifold
singularities might again introduce additional complex structure deformations. Therefore
in general the complex structure moduli space of the mirror X4 is larger than just the
invariant locus spanned by the ψa. However, in case there are no further complex structure
deformations of X4 associated to the resolution of the orbifold singularities the symmetric
locus {φi = 0} of Y4 is identical to the complex structure moduli space of X4. This implies

7For primitive four-cycles the volume is measured by eK/2 ∫ |Ω| which can be non-zero even if all period
integrals

∫
Ω vanish as it happens e.g. at the Fermat point.
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in particular that in this case the invariant periods ΠA can be identified with the periods of
the mirror X4.

Given an integer basis of periods ΠA of X4 one might be worried whether these also
correspond to an integer basis of periods on the invariant locus on Y4 or whether an integer
basis of periods of Y4 is related to that of X4 via a rescaling by the order |G| of G. To see
that this is not case, let us take a closer look at the effect of the orbifolding. Therefore
consider the holomorphic (4, 0)-form Ω which can be chosen to be of the form (cf. [36, 37]
for the analogous CY 3-fold case)

Ω = − f(ψa)
(2πi)4

x6dx1dx2dx3dx4
∂P
∂x5

, (3.20)

for some suitable function f of the invariant deformations ψa. Using this (4, 0)-form for
both, Y4 and its mirror X4, when integrating Ω over a basis of cycles in X4 the orientifold
identifications will lead to an extra factor of |G|−1 [36, 37]. To identify the periods of Y4
with the periods of X4 we should therefore rescale Ω(X4) → |G|Ω(Y4). A rescaling of Ω
does, however, not change the physics and in particular not the quantization condition.
Therefore for each integer basis of periods on X4 there exists an equivalent integer basis of
periods on Y4 without the need to introduce extra factors of |G|.8 Notice that since the
periods of Y4 on the locus {φi = 0} are identified with the periods of X4 also K(0)(ψa, ψ̄b)
appearing in (3.17) is just the Kähler potential on the mirror X4.

To summarize, along the symmetric locus in the complex structure moduli space of Y4
the moduli field space metric is non-degenerate in the φi directions indicating no additional
degrees of freedom. On the other hand, in the special cases discussed above, the remaining
directions along the symmetric locus can be identified with the complex structure moduli
space of the mirror X4 of Y4. We will use these properties in the next section to analyze
flux vacua along this symmetric locus.

4 Moduli stabilization at the symmetric locus

We now turn to flux compactifications of M-/F-theory on the Calabi-Yau fourfold Y4
obtained as the hypersurface P = 0 in the weighted projective space P6

a1,...,a6 . Therefore let
us expand G4 = mAα

A + m̃I α̃
I in a basis of four-forms dual to the cycles labelled by (A, I)

in the previous section. The superpotential then reads

W = mAΠA + m̃IΠ̃I . (4.1)

In order to test the validity of the strong form of the tadpole conjecture introduced in
section 2, we take an approach to find solutions to DαW = 0 first employed by [17] and

8To illustrate this point consider the elliptic curve described by the cubic

Y2 : x3
1 + x3

2 + x3
3 + ψx1x2x3 = 0 .

Upon orbifolding by the G = Z3 symmetry one obtains the same topological manifold (an elliptic curve) on
which hence another integer basis of cycles with equivalent periods and intersections exists.
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subsequently used in e.g. [18–20, 23]. We therefore turn on flux only along G-invariant
cycles, i.e. m̃I = 0, such that the superpotential reads

Winv = mAΠA , (4.2)

where we used the basis of periods introduced in (3.13) and chose and integer basis out of
the G-invariant periods. Using the expansion of the ΠA periods in (3.14) one finds

∂φiW |{φi=0} = 0 , ∀i , (4.3)

and using that the Kähler potential is at least quadratic in the φi one deduces

∂φiK|{φi=0} = 0 , ∀i . (4.4)

Hence, along the symmetric locus, {φi = 0}, we automatically solve the F-term conditions
for a superpotential of the form (4.2).

Suppose we find a set of fluxes mA 6= 0 for which we can also solve the remaining
F-term constraints DaW = 0 at a generic point along the locus {φi = 0}. Let us further
assume that W0 6= 0. Given these assumptions, to determine the rank of M in (2.7) let us
focus on the block corresponding to (α, β) = (i, j) which we split as

M =
(
DiDjW 0

0 D̄ı̄D̄̄W̄

)
︸ ︷︷ ︸

≡M1

+
(

0 gı̄jW

gi̄W̄ 0

)
︸ ︷︷ ︸

≡M2

. (4.5)

We saw in the previous section that the moduli space metric at a generic point along the
locus {φi = 0} is non-degenerate. From our discussion in section 2 we recall that in the
case W0 6= 0 indeed half of the real directions in moduli space are obstructed automatically.
From the perspective of the tadpole conjecture we are thus not interested in the full rank of
M but in nstab as defined in (2.9b). Using that the number of cancellations that can occur
between M1 and M2 depends on the rank of DiDjW we can give the following lower bound
on nstab,

nstab ≥ (h3,1 − h3,1
inv)− rank(DiDjW ) . (4.6)

This bound does not yet use any assumption on the number of G-invariant moduli that are
stabilized directly. Assuming, however, that fluxes can be chosen in such a way that all
h3,1

inv invariant moduli obtain a mass, the bound (4.6) becomes stronger,

nstab ≥ h3,1 − rank(DiDjW ) . (4.7)

In the regime nstab � 1 the tadpole conjecture predicts that the G4-flux induces a large
tadpole bounded as in (2.8). To test this in the present setting, we thus require h3,1 � 1.
Luckily, the Calabi-Yau four-folds obtained as hyper-surfaces in weighted-projective space
provide a large set of examples with large h3,1. However, in order to achieve nstab � 1 we
still need to provide an upper bound on the rank of the Hessian DiDjW . Importantly,
following [23], we can again exploit the presence of the symmetry G to restrict DiDjW
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considerably since the requirement of G-invariance enforces many elements of the matrix
DiDjW to vanish identically and hence often prohibits it from having full rank.

To see this a bit more concretely, recall that for our flux choice m̃I = 0, and with the
expansion (3.14) of the periods ΠA, the second covariant derivatives of the superpotential
are given by

DiDjW = πA,2ij

(
mA + ηAB

π̄B,0πC,0(
K(0))2 mC

)
. (4.8)

Here, we used (4.4) and from (3.17) deduced

gij
∣∣
{φi=0} =

K
(2)
ij

(K(0))2 . (4.9)

Hence, a given element of the Hessian DiDjW can only be non-vanishing if πA,2ij 6= 0 for
at least one A. On the other hand, since all ΠA are G-invariant, a necessary condition for
πA,2ij to be non-zero is that

βi(g)βj(g) = 1 , ∀g ∈ G , (4.10)

where the βi(g) characterize the transformation of the φi under g ∈ G as in (3.12). In
particular, we have

βi(g0)βj(g0) 6= 1 for some g0 ∈ G ⇒ DiDjW ∝ πA,2ij = 0 . (4.11)

Moreover, we recall from the previous section that not all πA,2ij are independent but related
via the Jacobi-ideal dP of P . Therefore, moding out by dP generates linear relationships
between the elements of DiDjW that potentially reduce its rank further.

For a given Fermat-type Calabi-Yau hypersurface with known symmetry group G and
group actions βi(g), the invariant combinations (i, j) for which (4.10) is satisfied can be
determined explicitly. This yields all elements of DiDjW that are not identically zero by
symmetry reasons. Assuming that these elements are all non-vanishing and independent,
and taking into account the linear relations imposed by the Jacobi-ideal, one can use this
information to compute the maximal possible rank of DiDjW . We do this systematically
using the computer algebra system Mathematica for a large number of Fermat-type Calabi-
Yau four-folds in our dataset.9 Hereby, we restrict to hypersurfaces with h3,1 = h3,1

poly and
h3,1−h3,1

inv < 5000, resulting in a dataset of 609 different Calabi-Yau four-folds10 The results
are illustrated in figure 1.

Let us now denote the rank of the matrix DiDjW by r. We are particularly interested
in the scaling behavior of r with respect to the number of non-invariant moduli h3,1 − h3,1

inv.
From figure 1 one sees that r grows approximately linear in h3,1−h3,1

inv. More precisely, we find

r ∼ γ
(
h3,1 − h3,1

inv

)
, with γ ∈ [0.33, 0.80] . (4.12)

9Our Mathematica code and data is publicly available at [38].
10We furthermore considered only the first 3000 Fermat-type four-folds and restricted each computation

to maximally 8GB of memory. Therefore, there are a few Calabi-Yau four-folds with h3,1 − h3,1
inv < 5000 that

are not contained in our list.

– 13 –



J
H
E
P
1
2
(
2
0
2
3
)
0
2
9

1000 2000 3000 4000 5000
h3,1- hinv

3,1

1000

2000

3000

4000

rank(DiDjW)

Figure 1. Shown is the maximal rank r = rkDiDjW of the Hessian of W at a generic point
along the locus {φi = 0} in relation to h3,1 − h3,1

inv for the cases with h3,1 = h3,1
poly. 95% of the data

points lie within the shaded region bounded by the two lines with slope r = 0.80 (h3,1 − h3,1
inv) and

r = 0.33 (h3,1 − h3,1
inv). The red, solid line indicates the mean behavior of r ∼ 0.56 (h3,1 − h3,1

inv).

The latter bound on γ is satisfied for 95% of all Fermat-type four-folds we considered and
corresponds to the shaded area in figure 1. We can use this bound and (4.6) to give a
lower-bound on the number of stabilized moduli,

nstab ≥ (1− γ) (h3,1 − h3,1
inv) & 0.2 (h3,1 − h3,1

inv) . (4.13)

Accordingly, just by turning on a flux in the invariant directions, we can achieve a large
number of stabilized moduli as long as W0 6= 0. Notice that this bound is saturated if
all cancellations between the two matrices in (4.5), that are allowed by G-invariance, are
actually realized. It is conceivable that in the generic case the number of such cancellations
is considerably smaller or even zero, resulting in a much larger number of stabilized moduli
than required by this bound.

Even though here we do not attempt to calculate the exact physical masses of the
moduli, let us remark that the mass of the scalar deformations that lie the kernel of DiDjW

is set by the value of W0 whereas for the rest the actual mass depends also on DiDjW and
thus on the form of πA,2ij .11 On the other hand, the fermion mass matrix is given simply by
DiDjW such that we expect at least 0.2 (h3,1 − h3,1

inv) massless fermions.
Let us finally contrast the W0 6= 0 situation with the case in which we find a supersym-

metric vacuum W0 = 0 along the symmetric locus {φi = 0}. As discussed in section 2, in
11This implies that the mass of the scalar deformation modes is not universal, but depends on the

exact form of the periods in the vicinity of the symmetric locus. This should be contrasted with the
results of [21, 22] where it was found that the non-invariant deformations have a universal mass. To our
understanding the difference is that [21, 22] use the LCS expressions also for the non-invaraint periods which
is not justified as the symmetric locus is far away from the LCS phase.
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this case we should indeed count the number of stabilized complex scalar fields, i.e. use the
definition of nstab in (2.9a). For W0 = 0, the matrix M2 does not provide an obstruction for
any complex structure deformations. Therefore any first-order obstruction needs to arise
from DiDjW . In this case we simply have

nstab
∣∣∣
W0=0

= rk (DiDjW ) . 0.8 (h3,1 − h3,1
inv) . (4.14)

Notice that this bound assumes that all entries of DiDjW , that can be non-zero by sym-
metry considerations, are indeed non-vanishing. Thus, whereas for cases with W0 6= 0 we
can give a lower bound on nstab, for W0 = 0 we only have an upper bound on nstab for
invariant fluxes. This matches with the results of [23, 24] where it was found that in general
supersymmetric vacua at the Fermat point obtained from symmetric fluxes have a large
number of flat directions.

4.1 Consequences for the tadpole conjecture

Given the bound on the co-dimension nstab ofMvac we now want to discuss the consequences
for the tadpole conjecture of [10] reviewed and refined in section 2. As we discussed in the
previous section, the fourfold Y4 is in general smooth along the symmetric locus unless we
tune the ψa to special values. Therefore at a generic point along the symmetric locus we
meet the requirements of both, the strong and the weak version of the tadpole conjecture
(as introduced above). In its stronger form this conjecture predicts a bound as in (2.8)
relating nstab and the M2-brane tadpole induced by the choice of flux. To check the validity
of this statement in our setup we thus need to give an estimate for the tadpole generated
by turning on invariant fluxes mA. Following the discussion at the end of section 3, in
favorable cases this is equivalent to turning on generic fluxes on the mirror X4 since for
each symmetric flux on Y4 with tadpole Nflux there exists a choice of fluxes on X4 with
the same tadpole and equivalent superpotentials. The latter points follows from the fact
that the periods of Y4 and X4 are the same. Therefore the moduli stabilization problem on
the invariant locus of Y4 is equivalent, in the favorable cases, to the moduli stabilization
problem on the full complex structure moduli space of X4. Our problem thus reduces to
finding self-dual fluxes for X4 with W0 6= 0 and relatively small Nflux.

Since typically h3,1
inv � h3,1 this is a much simpler task. In particular if h3,1 . O(10) this

can be done explicitly for instance in the limit ψa →∞, i.e., the large complex structure
regime, using, e.g., the expressions derived in [12]. To find solutions to DaW = 0 for such
a small number of moduli in this regime, we expect that it is sufficient to turn on a flux
with Nflux ∼ O(10). In particular, the strong version of the tadpole conjecture itself is
consistent with such an expectation. Let us therefore assume that there exists a bound
of the form (2.8) for the h3,1

inv parameters that can marginally be satisfied. The tadpole
conjecture would then require

αh3,1
inv

?
≥ (1− γ)(h3,1 − h3,1

inv) . (4.15)

For α ∼ O(1) we notice that this cannot be satisfied for h3,1 � h3,1
inv. Among the Fermat-type

hypersurfaces there are indeed examples with h3,1/h3,1
inv ∼ O(1000) implying that (4.15)
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does not hold in general. We therefore conclude that on the symmetric locus of Y4 the
strong version of the tadpole conjecture might not hold in general. To see how this works
explicitly, we present a simple example in the next section.

As reviewed in section 2, a weaker form of the tadpole conjecture only states that there
is an obstruction to stabilize all complex structure moduli within the tadpole bound, leading
to the bound (2.10). In order to apply our results to this case, we need to ensure that if
the rank of the matrix M1 along the locus {φi = 0} is non-zero, there are no cancellations
between M1 and M2 leading to a reduction of the rank of M altogether. To check for this
possibility, let us compare the two matrices at the locus {φi = 0}:

(M1)i,j = πA,2ij (ψa)

mA + ηAB
π̄B,0(ψ̄a)πC,0(ψa)(
K(0)(ψa, ψ̄b)

)2 mC

 ,

(M2)i̄ =
K

(2)
i̄ (ψa, ψ̄b)

K(0)(ψa, ψ̄b)2

[
mAπ

A,0(ψa)
]
.

(4.16)

For generic ψa and fluxes mA we do not expect a cancellation between these two matrices.
Still, this might be the case for the special values of ψa for which DaW = 0. We notice,
however, that solving DaW = 0 along the locus {φi = 0} is completely independent of
the form of the functions πA,2ij and K(2)

i̄ . We therefore do not expect that along the locus
DaW = 0 these two functions in general conspire to lead to a decrease of the rank of
M .12 We therefore expect that indeed the rank of M is h3,1 if W0 6= 0. To scrutinize this
expectation we would need to have the exact ψa-dependence of the relevant functions for
general ψa at our disposal. To date the exact form of these functions is, however, not
known for general CYs. Therefore, at this stage we cannot conclusively show that full
moduli stabilization of a large number of moduli at the symmetric point is possible even
though our argument indicates that there should be no fundamental obstruction to achieve
that. Whereas the strong form of the tadpole conjecture turns out not be realized at the
symmetric locus, it is hence still possible that the weaker form holds.

4.2 Example: P5
1,1,1,1,8,12[24]

Let us consider a Calabi-Yau fourfold Y4 obtained as the degree-24 hypersurface in P5
1,1,1,1,8,12

determined by the zero locus of the polynomial in Fermat form

P0 = x24
1 + x24

2 + x24
3 + x24

4 + x3
5 + x2

6 = 0 . (4.17)

Naïvely, the resulting Calabi-Yau hypersurface is invariant under a G̃ = Z3
24 × Z3 × Z2

symmetry. The generators of G̃ can be found by solving (3.9), with a possible choice given by

g(1) = (−1, 1, 0, 0, 0, 0) , g(2) = (−1, 0, 1, 0, 0, 0) , g(3) = (−1, 0, 0, 1, 0, 0) ,

g(4) = (−8, 0, 0, 0, 1, 0) , g(5) = (−12, 0, 0, 0, 0, 1) ,
(4.18)

12In contrast to that, in the next section we discuss how such a cancellation can occur in asymptotic
limits.

– 16 –



J
H
E
P
1
2
(
2
0
2
3
)
0
2
9

acting on the coordinates of P5
1,1,1,1,8,12 as in (3.8). However, when taking the rescaling

invariance (3.2) of the projective coordinates into account, these five generators are not all
independent. For example, the following combinations can be seen to act trivially[

g(1)g(2)g(3)
]4
g(4) =

[
g(1)g(2)g(3)

]3
g(5) = 1 , (4.19)

implying that g(4) and g(5) are not independent but can be expressed in terms of the first
three generators. Moreover, squaring the second equation in (4.19) gives

[
g(1)g(2)g(3)

]6
= 1,

reducing one of the Z24 factors to Z6. Therefore, the actual symmetry of the Calabi-Yau
defined in (4.17) is

G = Z2
24 × Z6 , (4.20)

and is spanned by the first three generators g(1), g(2), and g(3) in (4.18).
In total the hypersurface {P0 = 0} allows for 3878 polynomial complex structure

deformations. This can be seen as follows: the space of independent deformations is spanned
by all degree-24 polynomials in the variables x1, . . . , x6, divided by the Jacobian ideal
〈∂P0〉 =

〈
x23

1 , x
23
2 , x

23
3 , x

23
4 , x

2
5, x6

〉
. A suitable basis is hence given by the monomials

xα1
1 xα2

2 xα3
3 xα4

4 , xβ1
1 x

β2
2 x

β3
3 x

β4
4 x5 , (4.21)

where
∑
i αi = 24, αi < 23 and

∑
i βi = 16. Since the number of degree-p monomials in

n+ 1 variables is ( p+nn ) we find that the total number of deformations is given by(
27
3

)
− 4− 4× 3 +

(
19
3

)
= 3878 , (4.22)

where we accounted for the over-counting of monomials that violate the condition αi < 23.
Resolving the orbifold singularities induced by the C∗-action of the projective space

introduces an exceptional divisor E but no further complex structure deformations. We
thus have (h1,1, h3,1) = (2, 3878). Out of the complex structure deformations there are two
deformations which respect the discrete symmetry. Using the generators g(1), g(2), and
g(3) of G = Z2

24 × Z6 in (4.18), one sees that they are of the form (4.21) with all powers
of x1, . . . , x4 equal. Therefore, a degree-24 hypersurface respecting the discrete symmetry
takes the form

Pinv.(ψ0,ψ1) =x24
1 +x24

2 +x24
3 +x24

4 +x3
5+x2

6−ψ0x6
1x

6
2x

6
3x

6
4−ψ1x4

1x
4
2x

4
3x

4
4x5 = 0 , (4.23)

where we only kept terms modulo the ideal 〈∂P0〉. Restricting the 3878-dimensional moduli
space to the symmetric locus, where we set all polynomial deformations of P not invariant
under G to zero, we are effectively left with a two-dimensional moduli space spanned by
(ψ0, ψ1). Notice that the hypersurface {P = 0} ⊂ P5

1,1,1,1,8,12 can be thought of as a smooth
elliptic fibration over P3.13 Since Y4 has h1,1 = 2, its mirror X4 has h3,1 = 2 such that we
can treat the symmetric locus spanned by (ψ0, ψ1) as the full complex structure moduli
space of X4 or, equivalently, as the Kähler moduli space of Y4.

13Since it is an elliptic fibration, it allows for an uplift to F-theory such that the results we obtain in this
appendix can also be lifted to the 4d case and are not a special effect of the underlying 3d M-theory.
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We take this latter perspective and analyze moduli stabilization in the large volume/large
complex structure regime where the mirror map identifies the complexified Kähler moduli
of Y4 can be identified with the invariant deformations (ψ0, ψ1) as

ba + ita = − 1
2πi log(ψa) + . . . , for ψa →∞ , a = 0, 1 . (4.24)

The dots indicate terms polynomial in 1/ψa that are suppressed in the large complex
structure limit. This two-dimensional moduli space has already been investigated in some
detail in [12, 39] in the context of flux vacua. Let us review some details. The Kähler cone
of Y4 is generated by two divisor classes D0, D1 which can be identified as

D0 = E + 4π∗H , D1 = π∗H , (4.25)

where E is the exceptional divisor, i.e. the zero section of the elliptic fibration π : T 2 → P3

and H the hyperplane class of P3. Their intersection numbers can be summarized in the
intersection polynomial

I(Y4) = 64D4
0 + 16D3

0D1 + 4D2
0D

2
1 +D0D

3
1 . (4.26)

The dual Mori cone generators C0,1 can accordingly be identified with the generic elliptic
fiber and the single Mori cone generator of P3, respectively. In addition, we have two classes
of four-cycles in Y4

[H1] = [D0.D1] , [H1] = π∗[C1] . (4.27)

Together with the point class and the class of the full Calabi-Yau we thus get the K-theory
basis

(Opt, ι!OC0(K1/2
C0 ), ι!OC1(K1/2

C1 ),OH1 ,OH1 , ,OD1 ,OD0 ,OX4) , (4.28)

where OY4 is the structure sheaf on Y4. Via mirror symmetry we can identify this basis
with an integer basis of fluxes on X4 which, following [12], we denote by

(e, e0, e1,m1, m̂
1,m1,m0,m) . (4.29)

In order to apply the analysis of [12] in the large structure regime, we also need to specify
some additional data of Y4 such as the Chern classes

K
(2)
ij = 1

24

∫
Y4
c2(Y4) ∧Di ∧Dj , K

(3)
i = ζ(3)

8π3

∫
Y4
c3(Y4) ∧Di , (4.30)

which in the present case are given by

K
(2)
00 = 91

3 , K
(2)
01 = K

(2)
10 = 91

12 , K
(2)
11 = 2 ,

K
(3)
0 = −3860 ζ(3)

(2π)3 , K
(3)
1 = −960 ζ(3)

(2π)3 .
(4.31)

Notice that c2(Y4) is even such that we do not need to introduce a vertical flux in order to
satisfy the flux-quantization condition (2.1). We want to find solutions to D0W = D1W = 0
in the large complex structure regime. As discussed in [12] to find such solutions while
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keeping the tadpole relatively small, we should set m0 = m1 = m = 0. In this case the
tadpole is simply given by

Nflux = m̂1(m1 + 2m̂1) . (4.32)

The F-term conditions now amount to [12, eqs. (6.44), (6.46)] which can be solved for t0

and t1. For consistency of the LCS approximation we require that the solutions for ti lie
sufficiently deep inside the LCS phase. For instance taking the flux choice

(e, e0, e1,m1, m̂
1,m1,m0,m) = (−61, 4, 15, 1, 1, 0, 0, 0) , (4.33)

we obtain a solution to the F-terms at

(t0, t1) ∼ (5.18, 16.77) , (4.34)

which lies within the region where we can approximate the actual moduli space geometry
by its LCS expressions.14 This flux choice contributes to the tadpole as

Nflux = 3 , (4.35)

which is well below the available tadpole

χ(Y4)
24 = 972 . (4.36)

On the other hand, the on-shell value of W is given by

|W0| =
1
2
[
m̂1(t1)2 +m1

(
2t0t1 + 4(t0)2

)]
∼ 237.79 6= 0 . (4.37)

Following our general discussion in this section, we can thus expect that through this flux
nstab is bounded by

nstab ≥ h3,1 − rk (DiDjW ) , (4.38)

where we used that the chosen flux stabilizes all invariant moduli ψ0,1.
To find the elements DiDjW that are not identically zero, we have to determine

all products of two monomials of the form (4.21) that are invariant with respect to G.
After dividing by the Jacobian ideal 〈∂P 〉, there are only two such independent, rank-48
monomials,

x12
1 x

12
2 x

12
3 x

12
4 , and x10

1 x
10
2 x

10
3 x

10
4 x5 , (4.39)

reflecting the fact that h2,2
inv = 2. Importantly, while the number of independent polynomials

is independent of the point at which 〈∂P 〉 is evaluated, it does play a role for the computation
of DiDjW . For example, at the Fermat point, i.e. ψa = 0, all monomials containing x2

5
are elements of 〈∂P 〉 and the corresponding elements of DiDjW vanish identically. On
the other hand, at a generic point in moduli space, ψa 6= 0, dividing by 〈∂P 〉 creates a
linear relationship between such monomials and other terms but does not set them to

14To see this, we note that these values for the ti correspond to values for |ψi| � 1010. Since there are no
singular loci for ψ0 > 864 and ψ1 > 256 (cf. for instance [39]) at which the LCS approximation breaks down,
we are well inside the regime of applicability of the expressions of [12].
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zero. Therefore, away from the Fermat point DiDjW can have generically additional
non-vanishing entries.

Using our Mathematica code we can go through all the possible combinations of
monomials of the form (4.21). We find that there are 2956 G-invariant combinations at the
Fermat point, while at a generic point on the symmetric locus this number is increased
to 5986. We furthermore compute the rank of the resulting matrix (DiDjW ), assuming
that all its elements are non-vanishing, and find that it is bounded by 2824. Therefore,
according to our formula (4.38) this flux choice leads to

nstab ≥ 1052 , (4.40)

while inducing a tadpole of just Nflux = 3. This example thus shows explicitly that at the
symmetric locus we can achieve

nstab
Nflux

≥ 1052
3 � 1 , (4.41)

which violates (2.8) indicating that the strong form of the tadpole conjecture is not valid at
the symmetric locus.

5 Comparison to other regimes

The validity of the tadpole conjecture has previously been under investigation in other
regimes of the complex structure deformation space such as the large complex structure
regime [12–15, 40] or even more general asymptotic limits [16]. The hall-mark of these
limits is that there is a unipotent monodromy around an asymptotic locus in moduli space
that can be exploited to analyze the moduli dependence of the Hodge star operator involved
in the self-duality constraint G4 = ∗G4. This monodromy can be associated to a continuous
shift-symmetry that is approximately realized in the vicinity of the asymptotic locus. The
shift symmetry can be made explicit by splitting the complex structure fields into a saxionic
and an axionic component which is reflected in the asymptotic form of the periods. By
contrast around the symmetric locus {φi = 0} of the families of fourfolds considered in this
work, we do not have such a shift-symmetry. Instead, the form of the periods in the vicinity
of the locus {φi = 0} is now constrained by the discrete symmetry G. Hence, the loci
considered so far in this work do not fall in the class of asymptotic loci considered in [16].

Given the decomposition of the primitive middle cohomology of Y4 as

H4 = H4,0 ⊕H3,1 ⊕H2,2
prim ⊕H

1,3 ⊕H0,4 , (5.1)

self-duality of the flux implies that at the critical point DaW = 0 the G4-flux cannot have
any (3, 1) and (1, 3) components. Since W =

∫
Ω∧G4, the condition W0 6= 0 further implies

that G4 has a component in H0,4. In [16] it was shown that if one wants to solve the F-term
condition in strict asymptotic limits using the leading expression for the periods, it is almost
irrelevant whether G4 has a (0, 4) component or not in order to achieve nstab � 1. In these
limits most of the directions in complex structure moduli are obstructed by fluxes that are
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exclusively in H2,2. More precisely, the (0, 4) component of G4 can only obstruct up to four
directions in the complex structure moduli space. This is in stark contrast to our findings
for the case of the symmetric locus: we find that a large number of non-invariant complex
structure deformations are obstructed merely by the presence of a (0, 4) component of G4
implying a non-zero W0. The comparison to the asymptotic regimes investigated in [16]
thus nicely illustrates that the physics in asymptotic regimes can differ significantly from
the physics in the deep interior of moduli space.

In order to understand this difference better, let us consider the matrix M in (2.7)
in an asymptotic regime with approximate continuous shift symmetry. In order to avoid
confusion, let us denote the complex scalar fields in this regime by Tα, α = 1, . . . , h3,1, on
which the shift symmetry acts as Tα → Tα + c for c ∈ R. In case we have such a shift
symmetry, the Kähler potential is a function of the imaginary part of Tα, i.e.

K(Tα, T̄α) = K(Tα − T̄α) . (5.2)

Again, M2 as in (4.5) naively leads to an obstruction for all complex structure deformations.
However, DαDβW contains a term

DαDβW 3 gαβW , (5.3)

with gαβ = ∂Tα∂TβK. Due to the shift symmetry we have gαβ = −gαβ̄ such that

ker
(
gαβW gᾱβW

gαβ̄W̄ gᾱβ̄W̄

)
= spanα=1,...,h3,1〈vα〉 , (5.4)

with
vα = (0, . . . , 0,ReTα, 0, . . . 0; 0, . . . , 0,ReTα, 0, . . . , 0) . (5.5)

Hence, this contribution to DαDβW cancels half of the obstructions induced by M2. In
particular, at this point there is no obsturction to changing the value of the axionic
component of Tα. On the other hand, the saxionic directions of Tα naively are obstructed
unless the metric gαβ̄ is degenerate. This reflects the fact that for W0 6= 0 half of the real
moduli are automatically stabilized and the residual moduli space is real and of maximal
dimension h3,1 [25]. However, the results of [16] imply that at a point away from the singular
locus there are further cancellations between M1 and M2 reducing the rank of M further
unless the flux is chosen suitably to have enough components in the different subspaces
of H2,2. In particular this implies that DαDβW also has almost full rank allowing for
such a cancellation. This is precisely the difference to the symmetric locus analyzed in the
previous sections where we showed that M1 in general has rank considerably smaller than
h3,1 therefore allowing us to infer that many additional directions in the field space are
automatically obstructed just by the non-vanishing of W0.

While we do not attempt to show how this cancellation works in the general asymptotic
considered in [16] let us briefly discuss this cancellation in one of the large complex structure
scenarios discussed in [12]: in the large complex structure regime, the Kähler potential (5.2)
can be conveniently expressed in terms of the intersection numbers Kαβγδ of the mirror as

K = − log
(2

3Kαβγδt
αtβtγtδ

)
. (5.6)
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Here we split Tα = bα + itα. Hence, gαβ = −gαβ̄ and the rank of the matrix in (5.4) is
indeed reduced by a factor of two. In particular, this contribution to M now only gives
a mass to the imaginary part of Tα, i.e. the saxionic part. Let us focus on the generic
scenario of [12]. In this case the superpotential is given by

W = ē+ ēαT
α + 1

2ζµ,αβm
µTαT β , (5.7)

where ζµ,αβ is a tensor that depends on the topological data of the CY fourfold and ē, ēα
and mµ are related to quantized fluxes in a certain basis. As shown in [12] the condition
DαW = 0 enforces (without taking into account any corrections to the leading order periods)

ē = −1
2eαb

α , eα = −ζµ,αβmµbβ , (Kζµ,α −Kαζµ)mµ = 0 . (5.8)

Here we introduced Kα = Kαβγδtβtγtδ and K = tαKα, as well as ζµ,α = ζµ,αβt
β and

ζµ = ζµ,αβt
αtβ . Accordingly, on-shell we find

W0 = −1
2ζµ,αβm

µtαtβ . (5.9)

The matrix M is now given by

M =
(
ζµ,αβm

µ − 2KαKβ
K2 ζµ,γδm

µtγtδ
)
⊗
(

1 0
0 1

)
− ζµ,γδm

µtγtδ

2

(
gαβ gᾱβ
gαβ̄ gᾱβ̄

)
,

with
gαβ = −gαβ̄ = −4KαKβ

K2 + 3Kαβ
K

. (5.10)

Since the second term in M does not stabilize the real part of Tα, the obstruction for these
axionic directions comes entirely from the first part. And indeed the rank of the first term in
M is essentially determined by the rank of ζµ,αβmµ in accordance with the analysis of [12].
On the other hand, generically we expect all saxions tα to get a mass from the second term
in M unless there is a cancellation. And indeed we find that there is a flat direction since

M

(
tα

−tα

)
= 0 . (5.11)

To see this, we calculate explicitly

ζµ,βm
µ − 2Kβ

K
ζµm

µ + Kβ
K
ζµm

µ = 1
K

(Kζµ,β −Kβζµ)mµ = 0 , (5.12)

where in the last step we used (5.8). Hence, in this approximation there is indeed a
flat direction which gets lifted by including polynomial corrections to the periods. Thus,
including corrections we do not expect any cancellations between the two contributions,
M1 and M2, to M anymore. As discussed in the previous section also for the case of
stabilization on the symmetric locus we do not expect such a cancellation between M1 and
M2 in general.
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6 Discussion

In this note we investigated moduli stabilization and the tadpole conjecture [10] in the
interior of the complex structure moduli space of M-theory flux-compactifications on Calabi-
Yau fourfolds. We suggested to differentiate between a strong and a weak version of the
tadpole conjecture. The strong version states that stabilizing any number nstab ≤ h3,1

of directions in moduli space requires G4-flux with an M2-brane tadpole that is directly
proportional to nstab. On the other hand, the weak version states that this only applies
to the case nstab = h3,1 implying that there is only a problem to achieve full moduli
stabilization for h3,1 � 1. Whereas there is evidence [16] that the strong tadpole conjecture
is satisfied in strict asymptotic limits in the vicinity of infinite distance points, it is a priori
not clear how these result extend to the interior of the moduli space.

In this work, we mostly focused on the case of W0 6= 0 vacua. In this case, half of the
real deformations are automatically stabilized. Therefore, we proposed that the number
nstab in the tadpole conjecture should only count additionally stabilized real directions
in moduli space. Following this convention, we proceeded to test the strong version of
the tadpole conjecture in the interior of the moduli space. To that end, we relied on a
strategy first put forward in [17] and exploited the discrete symmetry enhancement of
certain Calabi-Yau fourfolds along special loci in the interior of the moduli space. These
loci are at finite distance with respect to the moduli space metric and correspond to smooth
fourfolds. They are, hence, qualitatively different from the singular loci at which a possible
violation of the tadpole conjecture was observed in [11]. In particular, they are not expected
to give rise to any additional gauge or other massless degrees of freedom.

On the symmetric locus, the F-term equations can be solved by turning on flux that
is invariant under the discrete symmetry group. Phrased differently, it is possible to
consistently set a large number of non-invariant flux quanta to zero while still solving the
supersymmetry conditions. Still, it is important whether such a flux choice also generates
obstructions to many of the deformations orthogonal to the symmetric locus. By scanning
over a large class of Calabi-Yau fourfolds we found that an invariant flux with W0 6= 0 in fact
leads to nstab that is (at least) proportional to the number of non-invariant deformations,
cf. (4.13). On the other hand, there is no reason for the invariant flux to generate a large
M2-brane tadpole, as can be seen, for example, via mirror symmetry. Hence, one does
not expect the strong version of the tadpole conjecture to hold at the symmetric loci. We
illustrated this in an explicit example where it is possible to find consistent fluxes with
nstab/Nflux ∼ O(100), which violates the strong form of the tadpole conjecture. However,
even though we give a strict lower bound on the number of stabilized moduli, we cannot
conclusively decide if actually all of them can be stabilized. Still, we provide some arguments
for why we believe that also the weak version of the tadpole conjecture might be evaded for
W0 6= 0 vacua along the symmetric locus. We intend to revisit this issue in future work.

We can thus summarize the state of affairs in the following way: whereas in asymptotic
regions in the vicinity of points with unipotent monodromy the linear scaling predicted
of the tadpole conjecture has been confirmed [16], at other special points in field space,
namely the symmetric loci considered in this note, the bound predicted by the tadpole
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conjecture can be violated. This is consistent with the analysis of K3×K3 in [11] where it
was shown that the tadpole conjecture bound can be violated at gauge enhancement points
in the moduli space of K3×K3. The symmetric loci considered in this work can be viewed
as the analogue of these gauge enhancement point for compactifications on strict SU(4)
holonomy manifolds. The difference is that the enhanced symmetry in the latter case is
discrete and the corresponding fourfold is smooth such that there are no additional massless
degrees of freedom.

The results of this paper show that extrapolating results from the asymptotic regimes
to the interior of the moduli space may not be justified in general. Still, one might wonder
whether the strong version of the tadpole conjecture holds at generic points in the interior
of the moduli space or whether it is only possible to evade it at special loci such as the ones
discussed here. In fact, to find consistent vacua along the symmetric locus, it was crucial
that we can consistently set to zero a large number of fluxes which allowed us to find vacua
with relatively small Nflux. It is an open question whether this is still possible when moving
away from the symmetric locus or whether in absence of any symmetry generically a large
number of integer flux quanta must be non-vanishing.

In a similar spirit, it seems conceivable that in type IIB/M-theory compactifications
there is a fundamental obstruction to finding solutions that satisfy the tadpole cancellation
condition while at the same time keeping a perturbative expansion under control. This
would for instance explain why in the vicinity of asymptotic regimes in moduli space it is
very difficult to stabilize a large number of moduli using just the leading order periods,
since the asymptotic expansion of the periods can be viewed as a perturbative expansion
via mirror symmetry. On the other hand, the complex structure sector is classically exact
such that we do not need to rely on such a perturbative expansions.

The situation is different once we also take the Kähler moduli sector into account,
which is, of course, inevitable if we aim to find realistic, stable vacua.15 When including
Kähler moduli, we have to rely on a perturbative expansion in α′ since in a genuine
four-dimensional N = 1 theory (or equivalently N = 2 in three dimensions) as of now
we do not have a way to do computations that are exact in α′. Let us stress that in
this work we exclusively focused on the complex structure sector and secretly assumed
that we can treat this sector completely decoupled from the Kähler sector. However, in a
genuine N = 1 theory the Kähler and complex structure sectors do not decouple at finite
volume (see, e.g., [44] for a recent discussion in F-theory). Therefore, any discussion of
complex structure moduli stabilization is strictly speaking only valid in the large volume
or decompactification limit, unless amended by an analysis of the Kähler moduli sector.
Since such an analysis necessarily relies on a perturbative α′-expansion, we would in
general expect a tension between control over this perturbative expansion and the tadpole
cancellation condition. It might not come as a surprise that constraints arising from the
tadpole cancellation are intimately related to the validity of a perturbative expansion, most
prominently the α′-expansion. After all, in M-theory the tadpole cancellation condition is

15Kähler moduli stabilization can be avoided for special “non-geometric” world-sheet constructions with
h1,1 = 0, as discussed in [24, 41–43].
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derived from a higher-derivative term and is therefore part of the α′-expansion. The tension
between tadpole cancellation and perturbative control is essentially what was identified
as a possible obstruction to the type IIB LVS scenario [45] in [46–48]. Similarly, in the
context of the KKLT scenario [49], a tension between tadpole cancellation and the existence
of perturbatively controlled supersymmetric AdS flux vacua and potential issues with a
controlled antibrane uplift were pointed out in [29, 50–58].

Flux compactifications with W0 6= 0 play a particularly prominent role in the con-
struction of vacua à la KKLT. There, the non-vanishing, classical contribution W0 to the
superpotential gets balanced against additional, non-perturbative terms in order to achieve
also Kähler moduli stablization. In this context it is crucial that W0 takes an exponentially
small value such that control over the non-perturbative correction terms can be maintained
(see [20] for a recent construction of flux vacua with |W0| � 1). On the other hand, in
our setup we have seen that there is generally a large number of complex structure moduli
that obtain classical masses of order m ∼ |W0|. To be more specific, this is the case for
all non-invariant moduli that lie in the kernel of DiDjW . However, according to figure 1
the dimension of ker (DiDjW ) is directly proportional to the number of moduli, with an
order-one proportionality factor. Therefore, there is generally a large number of complex
structure moduli with masses comparable to those of the Kähler moduli and the size of the
non-perturbative corrections. For the moduli stabilization scenario on the symmetric locus
discussed in this work it is hence not clear if it is possible to integrate these moduli out
and to discuss Kähler moduli and complex structure moduli stabilization independently, as
originally proposed in [49] (for a related discussion of KKLT in the presence of very light
complex structure moduli see, e.g., [51, 55, 58]).

In general it would be interesting to see whether the symmetric loci discussed in this
work actually do survive as part of the moduli space even away from large volume or
whether the mixture between Kähler and complex structure sector becomes important in
the vicinity of the symmetric loci.
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