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charges has been identified in Yang-Mills theory by studying collinear limits or celestial
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using the commutator of the cubic order expansion of the charges with the linear (soft)
charge. Quite remarkably, this shows that this infinite-dimensional symmetry constrains
the non-linear structure of Yang-Mills theory. We provide a similar all spin proof in gravity
for the so-called global quadratic (hard) charges which form the loop wedge subalgebra
of w1y eo.
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1 Introduction

It was shown in [1] that gravity and gauge theories possess an infinite tower of symmetries
generated by increasingly subleading soft modes. For example, the negative helicity modes
organize in finite dimensional representations of the SL(2,R); component of the Lorentz
algebra (after analytic continuation to (2,2) signature). In the case of pure Yang-Mills
(YM) theory, the symmetry generators were related to the soft modes by a light-transform
and were found to obey a simple algebra [2]!

[S7? (2), S8° (2)] = —if " ShEET 4 (2). (L1)

Here p, g are half integers bigger than 1 and m,n satisfy the restriction 1 —p <m < p—1,
while m + p is restricted to be integer — and similarly for the pair (¢,n); (z,z) are complex
loop coordinates on the celestial torus 7' = S x S!, hence the name ‘loop algebra’ for (1.1).
These soft modes admit a further mode expansion? [3]

Sh(z) = Y ZPnRgna (1.2)

nez

The dictionary relating bulk asymptotic scattering states and operators in the celestial
CFT [4-6] suggests that celestial symmetries like (1.1) should also be realized on the phase
space of the theory. Progress in this direction was made in [7] where such a claim was
established in Einstein gravity. Specifically, it was shown [8] that the asymptotic Einstein
equations truncate to two towers of recursive differential equations for charges defined as
appropriate combinations of the asymptotic metric components that transform covariantly
under the homogeneous subgroup of the Weyl extension of BMSy [9]. After appropriate
regularization, half of the non-linear charges (whose linear part corresponds to the same
helicity gravitons) were shown to obey the gravitational analog of (1.1), namely a w4
algebra to linear order. Surprisingly, no restriction to the global subalgebra was necessary.
One may therefore hope that the loop algebra continues to hold upon including higher
non-linear contributions to the charges.

This paper extends the analysis of [7] to Yang-Mills theory, beyond the linear level.
In particular, we construct for each helicity an infinite tower of charges R(7s) labelled by

!Note that this is the negative helicity version of the algebra worked out in [1, 2].
2p as defined in [2] is related to the spin label s introduced below via p = 5+ 1



a Lie algebra valued function 75(z,2) € g on the celestial sphere S (alternatively on the
celestial torus). Here (z, z) are complex coordinates on S (or circle coordinates on 7). It
can be shown that 7, is an element of an SL(2,C) (or SL(2,R) x SL(2,R)) representation
of weight and spin (A, J) = (0, —s). These charges are constructed explicitly as operators
acting on the Yang-Mills Fock space and are obtained after regularization from components
of the gauge field in a large-r expansion. The latter satisfy a tower of recursive differential
equations obtained from a large-r expansion of the Yang-Mills equations

0uRs = DRy +i[AD Ry 1]5 s=0, (1.3)

where D is the covariant derivative with respect to z on S or T. In the Abelian Maxwell
theory, these evolution equations for the lowest spin charges s = 0,1 correspond to the
non-radial Bianchi identities written in the Newman-Penrose formalism [10], respectively
é(l) = —0¢) and g.bg = —0¢9.> We prove that the charges R4(7s) satisfy the algebra

[RS (7-)’ Ry (T/)] = *gngRers’ ([7—7 T/]g)v (1'4)

up to quadratic order in the creation and anihilation operators and for arbitrary functions
7on S (or T'). We label the Lie algebra bracket with a subscript g to avoid any confusion
with the quantum commutators of operators.

The global S-subalgebra (1.1) appearing in celestial holography consists of the subalgebra
generated by the 7, solution of D317, = 0. The fact that this forms a subalgebra follows
directly from the fact that D*+¥*1[r,, 7]y = 0, when D**'7, = 0 and D*+'r, = 0. The
algebra (1.1) and its modes (1.2) are recovered by choosing the smearing function on 7" to

n

. . . S _p—35
be a polynomial of degree s in z. More precisely, for 7, = 2™ 722" 2T%, we have

1+3,a

St :f ddeszr%E"*%rg(z,Z), (1.5)
T

where r¢ is the local charge aspect of spin s and 7' is a basis element for the Lie algebra g.
The main result of the present work is that (1.4) continues to hold for the local, nonlinear
charges parameterized by arbitrary functions 75(z, z). In particular, at quadratic order, the
commutator (1.4) receives contributions from the cubic component of the charges,

[Rox (1), Ry (7))? = [R31. (1), Ry (7)) +[Ryy (1), RS (7)) 4+ [R31. (1), Ry ()],
(1.6)

3The scalars ¢9, 7, ¢3 correspond to the leading order terms (in a 1/r expansion about null infinity) of
the complex tetrad components of the Maxwell field tensor

v 1 v — v — v
¢o = Fult'm”, ¢ = §F,w ("n” +m'm”), ¢2 = Fam'n”,
where, in Bondi coordinates,

1 1
£oCOr, ML — Op + 204, m"oc;(l-1—/:'2)(327 m“m;(1+22)65.



where the labels + refer to a decomposition of the vector potential into positive and negative
energy fields and R¥ is the degree k term in the charge regarded as a polynomial in the
gauge fields,

s+2

= > R¥(7). (1.7)
k=1

The last two terms on the right-hand-side of (1.6) vanish for global 75 but conspire to ensure
that the quadratic order algebra (1.4) is satisfied for arbitrary 7.

We also generalize the computation of the w4 phase-space algebra in [7] to the global
quadratic charges in gravity. Finally, we explicitly show that the local spin-2 charges also
obey a wiyo algebra at the quadratic order. As in the YM case the inclusion of the cubic
components in the charges is necessary to recover the correct commutation relations.

The relevance of the cubic component of the symmetry charge for the quadratic order
W1+ algebra for spin-2 charges in the matter sector was already pointed out in [11].
We are also aware of a forthcoming paper [12] which presents complementary results on
higher-helicity fields.

2 Preliminaries

We consider non-Abelian gauge theory with gauge group G in 4-dimensional Minkowski
spacetime. The Yang-Mills equations take the form

d«xF =0, F=dA+iAnA A, (2.1)

where A = A, dz" is a one-form valued in the adjoint representation of the Lie algebra g of
G.

We begin by describing the construction of the charge aspects in terms of the asymptotic
phase space variables of Yang-Mills theory. We work in Bondi coordinates® where

4dzdz

2 2 2

= — -2 +rf— 2.2
ds du dudr + r (1 ’2‘2)2, ( )

and assume an expansion of the field strength given by

n) n) (n

1 & FIS:}) 0 1 &
Fur:ﬁzo T‘n’ Z rz:ﬁz ) FZE—Z
n= n=0 n=0 n=0

In the radial gauge A, = 0, this corresponds to the following fall-off conditions on the

(2.3)

components of the gauge potential

Au:iA“, AZ:iAZ . (2.4)

We further specify the gauge on the initial slice to be such that A&O) =0.

4Tt can be convenient to work in retarded flat coordinates where ds®> = —2dudr + 2r’dzdz and asymptotic
infinity has the topology of a celestial plane. Removing the origin we get a celestial cylinder which can be
compactified into a celestial torus T' with respect to which we express the mode expansions (1.5).



The radiative field which carries information about the gluonic creation and annihilation
operators is given® by Aio) (u,z). Our convention is such that the connection and field
strength fields are hermitian. In other words we choose A, = AZTa, where T, is a
Hermitian generator satisfying the algebra [T,,Ty] = i fupT..5 The trace is normalized to
Tr(ToTy) = Ogp-

The first few charge aspects are identified as the dominant elements in the radial
expansion of the field strength:

R_i = F(O)

Zu

Ro = % (FT(S) + FQ) ., Ri=FO. (2.5)

The higher spin charge aspects R of conformal dimension and spin (A, J) = (2,s) are
constructed recursively by solving a system of differential equations given by

auRs = DRS—I + i[Ago)aRs—l]gy s=0. (26)

These evolution equations are consequences of the Yang-Mills evolution for Ry and R;. For
higher spin s > 1 they correspond to a truncation of the full Yang-Mills equations expanded
in 1/r. These equations parallel the ones extracted from the asymptotic Einstein equations
in [7, 8]. A complete derivation of this result starting from the Yang-Mills equations (2.1)
will be provided elsewhere [15]. The spin-0 charge is the leading while the spin-1 charge is
the subleading one.

The recursion relations (2.6) are formally solved in terms of R_; by

Rs = (0;'[D + iAd(AO) )Ry, (2.7)

where Ad(X)Y = [X,Y]; denotes the adjoint action and (9,'0)(u) := §%_ du'O(u') for
functionals that satisfy the boundary condition O(+00) = 0. This expression is non-linear
in the radiation field A and it will therefore be convenient to expand the charge aspects as

5+2
RS(UVZ) = Z Rl;(u) Z) ’ (28)
k=1

where R is homogeneous of degree k,” in the gauge fields A, A*. In the following we use
that R¥ = 0 unless k& < s + 2. At linear order we simply have
RY(u,2) = (9, D) FD (u, 2) (2.9)

while the higher order components are recursively determined in terms of the lower order
ones by

RE(u,z)=i Y] (@;1)8*"“1)8*"[Ag())(u,z),ngj(u,z)] for  k=2.  (2.10)
n=k—2 9

5In order to lighten the notation, we shall commonly indicate only z in the functional dependence of
the fields on the coordinates on the sphere, e.g. Ai")(u, z), but it should be understood that in general the
dependence is on both z, z.

50ur conventions here are such that the structure constants differ by a sign compared to those in [13, 14].

"More precisely it is of degree 1 in A* and degree k — 1 in A.



It turns out that (2.9) and (2.10) suffer from divergences in the limit u — —o0, the past
boundary ZT of future null infinity Z*. These divergences become evident, for instance,

(0)(

when computing their action on Ay” (v/, 2), leading to terms proportional to powers of u

and thus divergent in the limit « — —o0. This can be remedied by defining the renormalized
charge aspects
s s—0, s—C
rk(z) := lim (=)"u

U——00 ) (8 — E)

D 'RE(u, 2), (2.11)

whose action on the corner phase space at Z7 is finite. The first two non-linear components
of these charges will be central to our analysis and are given explicitly by (see appendix A)

= [ LD R ), (2.12)
RN ((_“)n),D [40w2), (0 D) ,2)] 2.13)
s n—1
@=S 5[ el ty
=1k=0

xD*" {Ag)) (,2), (051D | D (u,2), (07 DY+ B (w,2)| ] L (219)
8lg
It will prove useful to express these charge aspects in a discrete basis where all the integrals
over Z disappear, in analogy to the gravitational case recently considered in [16]. We
perform the discrete basis charge construction in section 3 and use it in section 4 to derive
the algebra (1.4).

Motivated by the holographic calculation in [1], the linear component of the analogous
commutator in gravity was first computed in [7]. A simpler derivation will be given in
section 6 using the expansion of the asymptotic fields in terms of a discrete tower of
modes recently derived in [16] (see also [17] for a complementary analysis) and reviewed in
sections 5 and 5.3, where the cubic charges are derived for the first time; in addition, we will
also provide evidence for the gravitational wi,o loop algebra at quadratic order as well.

2.1 Discrete basis

In order to introduce the discrete basis, we first decompose the vector potential in terms of
the positive and negative energy fields defined as

® o +00 ), 1
A+(U7 Z) = i dweiqu_i_(w?z) = _1f d’u,/(Az(u’Z)

27 2im uw —u+ie)’

1
A_ — YA =—— —_. 2.1
(u,z) := dwe (w, z) 5 ) (W —u+tic) (2.15)

2T

These fields enter the decomposition of the leading components A and FO as follows®

A0 (u, 2)= Ay (u,z) + A* (u, 2) (2.16)
FOu, 2)= F_(u, 2) + F*(u, 2). (2.17)

8Note that Fi(u,z) = —0u A+ (u, 2).



We introduce also the Mellin transforms A4 (A) and Fy (A) = iAL (A + 1) of A4 (w) and
Fy (w) respectively

N :j dww 1A (w) (2.18)
0
This equation implies that
~ o0 o0
F(A) = —AT(A + 1)J duu + ie)~ A+ Au) = z’AF(A)J du(u + ie) 2 F(u).
—0 —0
(2.19)

By demanding the vector potential field to belong to the Schwartz space S [18]—that is,
demanding that each component of the vector potential is a Lie algebra-valued, infinitely
continuously differentiable function with rapidly-decreasing derivatives — we can then
introduce the YM memory observables

fFi (n) = ReSA=_nﬁi(A), ne Z+ . (2.20)

These can be computed from the integrals

n +00 . in
Fi(n) = lim L du e " FO (u) ) = L duu"Fy(u) ), (2.21)
! —o n! U

where in the first integral we take the limit w — 0 from above and in the second U is the
upper half plane contour. The negative modes F_(n) are defined by similar integrals but
(0)

with Fz(g) replaced by F%,’. These memory observables can be understood as the coefficients
in a Taylor expansion of F (w) around w = 0, namely

~ N T, Filn) = = aFaw)| (2.22)
n=0

- n! - w=07*

At the same time, the Goldstone fields are defined by evaluating ﬁ’i(A) at positive
integer A, namely

Ai(n):= lim F+(A), ne”ls. (2.23)

A—-n
They correspond to Taylor coefficients in the analytic expansion of A4 (u) around u = 0

i—1l—-n

n l 1 &
au"4i<u)|u:0 = o ‘Ai(n)a T Z

n

(n). (2.24)
Following the gravity analysis in [16], it can be shown that (2.20) and (2.23) form a basis

for asymptotic gauge potentials that belong to the Schwartz space.

2.2 Phase space
The YM phase space at asymptotic infinity is characterized by the symplectic potential

0% = o [ W [F0 2540w + D A0 W] @)
yMm JIt



where Tr denotes the Cartan-Killing form for the Lie algebra associated to the YM theory.
Modulo a canonical transformation, this can be rewritten as @™ = @Y™ + ©Y™ where

oM = 1J Tr [Fy (u, 2)6A% (u, 2)] . (2.26)
T+

9ym

By means of (2.21), (2.24), we can rewrite the two symplectic potential components in
terms of the YM memory and Goldstone modes as

o Z J Tr [T (n, 2)6A% (n, 2)] . (2.27)

B 27ngM

In the quantum theory, the only non-trivial commutator is then given by

[F%(m, 2), AY (n, 2)] = 2762078, m6> (2, 2'). (2.28)

3 YM corner charges

In this section we rewrite YM higher spin charge operators in terms of the soft variables
introduced in the previous section. We then compute their action on the discrete modes
and review the connection with the celestial OPE [1, 19]. Finally we demonstrate that the
global subalgebra of quadratic charges is precisely (1.4).

3.1 Charge aspects

All the charge operators of level k£ can be decomposed as sum of a positive helicity charge
and the conjugate of a negative helicity charge operator according to

B (z) = 5, (2) + ¥ (2). (3.1)

The decomposition of the linear, quadratic and cubic charges follows straightforwardly
from (2.12), (2.13), (2.14). One finds that

ris(z) = =i D L (s, 2). (3.2)

Similarly for the quadratic and cubic charges one finds that (see appendix A.1)

i & & S (en) (mrlr k1
r?i(z):*(QW)Q _Z_:Z(;)( +n+1 +>

{=0m=0n=0k=n

x D" [A+ (¢,z), DFn [Ai(m, z),DS_k_lfr";(s +0+m, z)] ] : (3.4)
91

These charge aspects are valued in the Lie algebra g.



3.2 Charges

Given the charge aspects expressed as corner integrals of the memory and Goldstone
variables, we introduce the symmetry charges labeled by Lie algebra valued generators of
spin —s denoted 75 = 74T,,°

Ros(r) = j Tr (r(2)re s (2)) = fs (2% (2). (3.5)

S

Explicitly, the positive/negative helicity linear, quadratic and cubic charges read

Ri (1)=1i* fs Tr (DS+IT(Z)3'T_F(S, z)) , (3.6)
R, (r) = % i ZS]O(—>" (@”) L Tr (D"T(z) [DS”&‘"L(S—M,Z),Ai(&z)L) Y
{=0n=

Rgi(T)__(;_ﬂ_;gZ Z 2 i(_)n <€-Z7”L> (m-ﬁ-i;i;k-l—l)

{=0m=0n=0k=n

XJ Tr <D"T(z) [Ai(ﬁ,z),Dk" [Ai(m,z),DSik*lfT"L(s—i-E—i-m,z)] ] ) .
S 8
(3.8)

3.3 Quadratic charge action

The action of the quadratic charge operator can be conveniently written in terms of the Lie
algebra valued operator

Piair) = 31 COn (Do) o, (39
n=0

n

where (x), = z(x — 1)+ (x — n + 1) denotes the falling factorial. An essential property of
this operator, proven in appendix A.2 concerns its behavior under transposition. Given two
lie algebra functions (A4, B) on S, it satisfies

| P 1) BE AG) = ~(-1 | T (P-4 £+ 1), A, B).
’ ° (3.10)

This implies that the quadratic charge can be conveniently written in terms of this operator
as (see appendix A.2)

2 (r =E 3 1), F (s z +(4, z
Rsi( ) ot E_OJSTI‘([PS(E_‘_L )7:_fi( +€7 )]Q‘A_(£7 ))a
_ _% D L T ([P (0 i), A (- 5,21, L0 2)) . (3.1D)
l=s

'We define {  := { d’z,/7, with v the determinant of the 2-sphere metric, and §,, = {* duf{.
When different coordinate systems on the 2-sphere z, 2’ are introduced, we make the measure explicit to
avoid confusion.



From the expressions (3.7) and (3.11) for the charges we can evaluate the quantum
commutator of charges when acting on the discrete fields. One finds that

[R2,(7), 50, 2)] = 6 [Pl + 1:7). 7L (s 4, z)]z (3.12)

[R2: (1), Al (n, 2)] = g3y [Po(—(n + 1);7), A (n = 5,2)]5 (3.13)

The quantum commutators of RZ, (1) with Al}r and &"}b obviously vanish.

Given that A% (n, 2)oc ima_y 4y AP(A) and that F (n, z)ocResa—1_n AY(A) one can
deduce from this the action on the Mellin transform of the asymptotic field. It is simply
given by

=
—
>
~—
—
I
.

(R, (), A(A)] = g%, [ P(-a +2im), AL (A —5)| (3.14)

A~

[R2, (), AL (A)] = g2 [ Po(=2357), A (A = )] (3.15)

3.4 Celestial OPE from charge action

From (3.14) we get that the commutator between the charge aspect and the Mellin transform
of the radiative field is
s (A2—2) 2
[ 2 (21), AT (A2722)] g e ) (—1)8%(8771;778 "5 (219) 05 Al (Mg —s, 22).
n=0
(3.16)

The correspondence between the Fock space commutator and the OPE is obtained through
the identification

N 1
Pt (e A (B0, 20) ~ = [ (e0), A (Be 22) | (3.17)
Now given that
1 n

)= ieisle, et (D) cmernie, )

we obtain the OPE

ta Ath - gy [ )s= n(B2—2)sn 21505 sie n

F1(s,21) AV (Ag, 20) ~ i e ng TR Al (Ag—s,29). (3.19)

Finally, one uses that &"Ta(s 2) = —iResa—1_ SAT(A) and the evaluation Resa—1_s['(A —

1+n)= (( L°C ), for n < s, to see that the previous OPE is the residue at Ay =1 — s of

5 F(Al —1 +n)F(A2 —1

2 ab
Afe(A AT A N_gYMf c
+( 1721) +( 2722) A7 Z19 7;0 F(A1+A2+’)’L—2)

21508 i
) 12'2A1(A1+A2—1,22).

(3.20)



This is the complex conjugate of the tree level OPE for positive-helicity gluons derived
in [1, 19].19 The appearance of hermitian conjugates in (3.20) is due to our conventions
for the charges: from (3.1) and (3.2) we see that rl, create and annihilate soft gluons of
respectively negative and positive helicity at J*. Our convention for the helicity of outgoing
gluons coincides with that in the literature, as can be seen from (2.16).

3.5 Global charge
YM global charges are characterized by the condition

D¥tlr(z) = 0. (3.21)
By means of the generalized Leibniz rule'!

DYroDs e = [Z Z ] (DR D5 R (3.22)

k=0 k=s+1

we conclude that, for the global charges, the second sum in (3.22) drops out and we can
write the operator (3.9) simply as a conjugation

P*(—q; 1) = DO70D5 (3.23)

where the product is simply the composition of the operations of differentiation and
multiplication by 7,. This means that we can write the quantum commutator (3.15) in
terms of the adjoint action defined around (2.7) as

(B2 (7), A% (A)] = 2y Ad[Py (- A m)] A (A — ) = 2, D A[7] D" 2 A4 (A — ).
(3.24)

From this we see that the double quantum commutator action on A(A) is given by

(R, (7). [Rs (), AL (A)]] = i gt Ad [P (~As )] AA [Py — Air)]As(A — 5 — ).
(3.25)

When 7 and 7/ are parameters of global symmetry we simply have that
Ad[P, (—A; 7)]Ad[Ps(s' — A;7)] = DAAd[7']Ad[7] D5+ 4. (3.26)

The antisymmetrization of this action with respect to s <> s’ gives the action of the

commutator [RZ, (1), RZ, (/)] on A(A). Using that [Ad[7'], Ad[7]] = Ad([r', 7]), we thus

obtain that the algebra of global charges satisfies for each helicity the global S-algebra:
[Rgi (T)7 Rg’i(T/)] = _gﬁ%MRg—i-s',i([Tv T/]g)' (3'27)

We can also conclude from our definition that the commutator of global charges of opposite
helicities commute

[R2, (1), Ry (7")] = 0. (3.28)

Since the total charge is the sum Rq(7) = Ryt () + R}_(7) we have that the charge algebra
for R is identical to (3.27).

10Recall that the outgoing celestial operators O, are related to A‘j_ via Of* = —g‘iflfl A‘j_.
"'This follows from the expansion (z +y)* = >~ ((;),” 2"y*"" valid when z < y.

~10 -



On the torus 7T, the global algebra is a loop algebra parametrized by global charge
parameters 7(n,m) = 255757 where n,m € N and —5 < m < 5. In this case we

define S,%;La := R2,(7(n,m)). This is the algebra revealed by [2] from the study of the

OPE. It is the analog for Yang-Mills of the w1, loop algebra. This global algebra also
arises naturally in the study of self-dual Yang-Mills in the twistor formulation [20, 21].

It is important to appreciate that on the sphere S? the set of global charges vanish
if we insist that 7 is a regular function on S2.'> Non-trivial charges can be obtained by
allowing for poles in 7 at isolated points on the sphere and (3.21) will only hold away from
these points. As we will see, the non-linear contributions to the charges such as (3.8) will
be crucial in this case to ensure that the charge algebra closes.

4 YM corner algebra for the local charges

Given the charges derived in section 3.2 and the commutator (2.28), we are now ready to
compute their algebra at linear and quadratic order in the same helicity sector. We present
the calculations for the positive helicity sector, however similar results hold for the negative
one as well.

4.1 Linear order

In this section we compute the linear charge algebra in the positive helicity sector. We start
by evaluating

(2 (7). Bl (7)) = B2 ). [ T (D741 (5 2))]

g L Tr (DS’“T’[PS(s’ +157), T (s + 8, z)]s)

! 5 — / — 1 !
i —Sg,%Mf 3 (=5 = Dn : >”Tr<[DS +1T/,D"T]9Ds—"3i(s+s’,z)>,
Sn=0 n.
(4.1)

where in the first line we used the definition of the linear charge (3.6), in the second line we
used (3.12), and in the third line we used (3.9). Integrating by parts and using the binomial
expansion, we find

(B2, (), By ()] = 75 D) 3 (-1 ( , n) = bn

|
n=0 p=0 p n:

X J Tr ([DHS,H*"*Z’T’, DnerT]ngl(S + 5, z))
S

.s'+s 2 o s+s+1 s+s'4+1—p 1 Pp i ’
=1 gYMZ Tr([D 7, D 7']99’“+(.S—F(9,z)>7
S

p=0 p
(4.2)
12The reason is that 7, is a spin —s function on the sphere and therefore it can be expanded in spin
spherical harmonics Y, * with £ > s [22]. We have that D**'Y, * = Eﬁ:;:DYﬁm where Y, = Y, are

the usual scalar spherical harmonics. From this we see that the global condition reduces to DYy, = 0 which
can only be satisfied for £ = 0 hence for s = 0 since s < £.
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where in the last line we shifted variables p — p—n, switched sums 337 _(>7_ = > P o
and evaluated the sum over n.

The linear contribution to the charge commutators is found by adding the term with
s <> s',7 < 7/, namely

[Ros(7), Ry (7)]' =[R2, (7), Ry ()] = [R . (7'), Ry ()] (4.3)

This can be immediately evaluated by noting that the binomial coefficient is invariant under

p—-—p+s+s+1
'+ '+
<s+;+ )_}(s+;+ ) (4.4)

while
s’ s+s'+1
Z Ds+s’+1—p7_aDp7_lb _ 2 Ds+s’+1—p7_/pr7_a' (4'5)
p=0 p=s+1

As a result, it follows that
s+s'+1 /
/ 1 /
[Ret (1), R (] =g, Y (S“ ’ ) | (et oy s 2)
— p S
p=0

= _g%/MRi-i-s’,-i-([Tv T,]Q)' (4'6)
4.2 Quadratic order

The quadratic commutator receives two types of contributions, namely

[Ro+ (7), Rory (7)]% = [R3,. (1), RY (7)) + [Ryy (7), Ry (7] 4 [RY, (1), Ry (7))
(4.7)

We will show that, quite miraculously, the local contribution to the quadratic-quadratic
charge commutator that spoils the algebra is precisely cancelled by the cubic-linear com-
mutators. The remaining pieces of the cubic-linear commutators ensure that the global
algebra (3.27) is promoted to a local one. In the following sections we evaluate the
quadratic-quadratic and linear-cubic contributions. We present the main steps leading to
the cancellation and defer the details to appendix B.

4.2.1 Quadratic charge commutator

We start by computing the quadratic charge commutator

'75

LR (1) B (] = | R0 5 0 f T £+1T>ﬂ<s’+f>]gﬂ+<z>)]

(4.8)
=Ii(s,1;8,7) +I2(s T8, 1),

where I, I arises from the action of R, on 3" and A4 using the charge actions (3.12)
and (3.13). They read

Li(s,1;8,7") = gYMZf Tr w (C+1;7"), [P5(3/+€+1;T),?L(S/+S+€)]Q]Q.A+(£)),

Iy(s,7;5',7")

o (0+1;7), 3"1(s’+€)]g[Ps(—€—1;7),A+(€—s)]g>.
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The transposition property (3.10) simply implies (after shifting £ — ¢ + s in I3) that
L(s,m;8,7) = —-L(s,7';s,7). (4.9)

It therefore suffices to evaluate I; and then antisymmetrize in (s, 7;s’,7’). We have

Li(s,m;8,7") = gYMZZ Z Z S_mi! O ( ;n)

{=0n=0m=0 p=0 (410)

. L T ([D"!, [P, D P (4 s 0)]glg A (1))

where in the second line we used the binomial expansion. We now change variables

p — p —m — n and perform the sum over m upon changing sums
S s'+m s+s’ min p n, s
o= Z : (4.11)

m=0p=m+n  P=N m=max[0,p—s']

The different cases are worked out in appendix B.1, the result being that the sum splits

into two contributions

Li(s,m;8,7) = Ji(s,7;8,7') + J| (5,738, 7) (4.12)

Z'—s—sg%/M o s s+s (P ﬁ—i—p
Ji= 27 Z Z(_l) n 14

« j T ([0 (D7, DY P 4 5 4 0]l ()
S

0 s'—1 s'+s / /
{+n 1+4+s+s s —n
s+n
gYMEE Z (n )( s+1 )(p—n—s—l)

{=0 n=0 p=n+s+1

X Fi(s,s) L Tx ([D"7, [DP=7, DT (s s 4 0)]aleA (1)) (4.13)

In (4.13) we defined the hypergeometric function
Fi(s,8) =3F [1,1 +n—p+s,2+€+s+s/;s+2,2—p+s+s';l]. (4.14)
The term J; is present for all ranges of admissible p, while the second term .J{ arises only

for p > n + s. This means that the term J] vanishes for global transformation parameters.
We conclude that the commutator is

[Rz+ (1), R§/+(T/)] = Ji(s,m;8, 7+ J{ (5,758, 7)) — (s > &, 7 = 7). (4.15)
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4.2.2 Cubic charge commutators

Next we compute the cubic-linear charge commutator
[Roy (1), Ry (7)) = Ia(s, 738, 7') + La(s, 738, 7'), (4.16)

where I3 and I are respectively associated with the commutator of Rl, in (3.6) with
A4 (¢) and Ai(m) in (3.8). For the first contribution, using that [Rl, (7),A+(0)] =
—i%27g3 1,050 D17, we find

0 s'—1s—-1k—n
I3(s, 738, 7) = gYM YYD Z <S+n> (8+m+k+1) (k_n>

m=0n=0 k=n p= m p

x L Tr ([0, D=0 [Am), DY 71 (s 4 '+ )]y )
(4.17)

After a straightforward series of changes of variables and sum switches that we detail in
appendix B.2, this can be shown to simplify to

w0 s§'-1 s+’

Ly(s, 8/, 7') = ) o DD ( ) <m+k>

m=0 n=0 k=n+s+1 m (4.18)

« J T ([0, DA [ D7 4 (s 4 8/ 4 m), A(m)] ).
S

For the second contribution, direct binomial expansion yields

o0 s—ls—l
I(s,m;8,7") = <€+n> (S+k+£+1>
(=0n=0 k=n §
y f Tr[[D"T’,A+(£)]9Dk*"([Dsﬂr,DS/*’H?L(SMJFS’)]Q)]
e 5"15"1 <€+n> (s+k+€+1>
=0n=0 k=n s

X Z (k_n> L Tr ([DnT',AJr(f)]g[DHHpT’ Dsunipilgl(s—i—g—i_s/)]g)) '

p=0 \ P

(4.19)

After a short series of straightforward manipulations detailed in appendix B.3 we find
14(87 7—; 8,7 T,) = J4(s7 T; 8/7 7—/) + Jﬁi(s7 7—; 8,7 7_,)7 (4'20)

where

Ja(s, 738", 7") = gYME Z_: Z <€+p> (p)

{=0 n=0 p=n+s+1 n

y L Tr ([DHT’, [P, D525 (s 4 4 0]l A (1) (4.21)
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and

0 s'—1 s+s / /
s l+n s'—n s'+s+L+1
Jy(s, 78", 7)) = gYMZ Z Z i ( i ) <p—s—1—n> ( s )

{=0n=0p=n+s+1

<Fa(s,8) [ T (D" (D7 D 05 (55 4]l (0)

S
(4.22)
Here we defined
(s, )=3K[1,1—n+8,2+1+s+8,2+0+8,2—p+s+5,1]. (4.23)
From this we conclude that
[RL (7), RS (7)) = Is(s,7;8',7') + Ju(s, 758", 7') + Ji(s, 738, 7). (4.24)

From (4.18) and (4.19) it is easy to see that (4.16) vanishes provided that 7,7" obey the
global charge condition (3.21).

4.2.3 Full commutators

We can now put everything together. We first notice that, quite remarkably, the contributions
from the hypergeometric functions cancel each other! In particular we find that

Ji(s, 7387 + Jy(s, 78, 7') =0 (4.25)
due to the hypergeometric identity
(s+1)
Fi(s,s) = g K)FZ(S’S/) (4.26)

proven in appendix B.4. It then follows that
Jl(s 78 1)+ Ju(s, 758, 7

- 27r gYM Z SZ Sf (Mp) <i> (4.27)

=0n=0p=n

X J Tr ([D”T', [DP="r, D3PI (5 4 0+ s')]g]gfu(e)) .
S

This equality follows from the cancellations of sums

s’ s+s’  s'—1 s+’ s’ n+s

IDIEDINDINEDIPIE (4.28)

n=0p=n n=0 p=n+s+1 n=0p=n
In appendix B.4 we show as well that the anti-symmetrization of J; + J4 under the exchange

(s,7) < (s',7") simplifies into

Jl(s T8 7") + J4(s 8, 7)) = (s s, 7o)

/

Cags5or (7))

EOnOPn

x L Tr ([[D"T’, DP=7]g, D3P (s 40+ s’)]gA+(£)> . (4.29)
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To evaluate the commutator at quadratic order we have to add this contribution
to I3(s,7;8'1") — Is(s',7';s,7) given by (4.18). As a result, we find as shown in ap-
pendix B.4 that

s’ s+n s+s’ p—s—1 s+s’ P

e eSS TS 8 )
£=0

= n=0p=n p=s+1 n=0 p=s'+1n=1+s’ n

<[ T (10 BP0 L s 0, A 0.
S
(4.30)

After a series of straightforward manipulations described in appendix B.4, the sum can be
simply repackaged as Z;:a > - The sum over n can be reabsorbed into DP[r,7'] using

the Leibniz rule and we remarkably find that (4.30) reduces to

[Rs+ (7), R+ (7)])* = —g¥m R o + ([, 7]0)- (4.31)
5 Gravity corner charges

Similarly to the YM case, in gravity the vacuum asymptotic Einstein’s equations (EE)
around null infinity can be recast as a set of recursive differential equations for higher spin
gravitational charge aspects Qg given by [7, 8, 23]

s+1 1 1
0uQs =DQ. 1 + TCQS_Q, Q_9 = §8UN, Q_1= EDN, s=0, (5.1)

with C(u, z) representing the shear field encoding radiation data, N = 0,C* representing
the news field and Qg the Bondi mass. The relation between (5.1) and the vacuum EE is
exact up to s = 3 [10]; for s > 4 corrections in higher powers of the shear field are expected
to appear. Initially neglecting those corrections — that do not affect the linear order same
helicity algebra — it was shown in [7] that the dynamical system defined by (5.1) provides
a representation of the wi o loop algebra at linear order. This established a direct relation
between the celestial OPE [1, 19, 24, 25] of two conformal primary gravitons in the collinear
and soft limit with the commutator action of the quadratic order (hard) charge contribution
on the shear field. This clarified the gravitational origin of the wi symmetry originally
discovered through celestial OPE techniques in [1, 2].

In this second part of the paper, we are going to employ the newly introduced discrete
basis for celestial holography [16] in order to investigate the fate of such symmetry beyond
the linear level.

5.1 Discrete basis and phase space

We introduce the shear decomposition

C(u) = Cy(u) + C*(u), (5.2)
with the positive and negative helicity graviton components
1 (@ ou [ C(u)
C = — dwe™™"C = —— dv/ ———— 5.3
+() 27 Jo e +w) 2im J_ o " (W —u+ie)’ (5-3)
1 0 ) _ 1 400 % (]
)= - [ dwet=ne () — —,f au'— ) (5.3b)
27 Jo 2w J_op (W' —u + ie)
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Their Fourier and Mellin transforms are respectively given by

N too N oo
Ci(w) := J dueC(u), C_(w) := J due™*C*(u), (5.4)
—® —00
and
N +00 C’(u) N +00 C’*(u)
N _ A
Ci(A) =i7T(4A) joo dui(u_me)A7 C_(A) =i7T'(4) foo du*(u—kie)A' (5.5)
Similarly, we can decompose the news field N(u) = N_(u) + Ni(u), where

Ni(u) := 0,Cy(u).

The the higher spin, positive and negative energy memory observables are then defined as
My (n) := Resa__n N4 (A), neZ,. (5.6)

These can be conveniently written also as

i +0 . n +0 .
My (n):= lim — (j duewuu"(?uC(u)>, M_(n):= lim — (j duewuu”(?uC*(u)>.

—o —o0
(5.7)
Note that, in analogy with the YM case, we also have'3
1 Q0
. duu®N (u) = M*(s) = (i *M_(s) + "M (s)) . (5.8)
*J—00

The memory observables M4 (n) provide a Taylor expansion coefficients of Kh_r (w)
around w = 0, as

= Y Ma(, Me(n) = - AN@)| (59)
-0 )

w=0%*

On the other hand, by evaluating the news Mellin transform at positive integer conformal
dimension A = n, we obtain the Goldstone operators

8:(n):= lim N4 (A), neZ,. (5.10)

- A—n

The Goldstone modes provide a Taylor expansion of Cy (u) around u = 0, as
'L’ e}
55

The gravitational phase space at asymptotic infinity is characterized by the radiative

n

(5.11)

H—

symplectic potential [26-28]

2

GR _ %
S =2
T+

N(u, 2)0C(u, z), (5.12)

130ur conventions here differ by 1/2 from [16].
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with k = v/327G. This can be decomposed (up to a canonical transformation) into positive
and negative helicity components ©%" = OF" + OF¢F, each parametrized by the respective
infinite tower of memory and their conjugate (complex conjugate) Goldstone operators as

2 0
GR * — *
o = el Ny (u, 2)0C% (u, 2) = o nE_OLM+(n> 2)68% (n, ). (5.13)

At the quantum level then, the only non-trivial commutators are
[My(n, z),Sl (m, 2')] = 720, m6%(2, 2'). (5.14)
5.2 Charge aspects

The charge aspects solving (5.1) can again be expanded in powers of radiation fields as

max|[2,s+1
Q= > o (5.15)

k=1

At a given order k in powers of radiation fields, the renormalized aspects can be expressed as

it 2) = 2 mDS—"Qmu, 2)

n=0

Z 0+ 1) ) )™ e f[ (u, 2) QL (u, z)]. (5.16)

As clear from the expression above, the higher spin charges can be recursively expressed as
a nested product of integrals over Z. The discrete basis introduced in [16] allows one to
eliminate all the time integrals and obtain expressions for the charges as a single integral over
a corner at arbitrary value of retarded time u. In the rest of the paper we will concentrate
on the case u = 0, but formulas for generalization to arbitrary u = ug can be found in [16].
Let us first provide a brief review of the main ingredients of the new discrete basis.

5.3 Charges

As shown in [7, 16], the renormalized higher spin charges in gravity are defined as

Qu(r) = L 4:(2)7(2), (5.17)
where

qs(z) = lim qs(u, 2). (5.18)

u——

By performing a decomposition into positive and negative helicity components, for each
order we can define

Q) = —3 [k () + Qi (). (5.19)

The expressions of the positive and negative helicity parts in terms of the memory and
Goldstone variables M(n),8(n) for the linear and quadratic orders were derived in [16] and
are respectively given by

() = (-1)° f D ()M (s,2),  QL(r) = (~1)° f D2 ()M (5,2), (5.20)
S

S
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1 &< s (s—i—n—ﬁ)s,g o .
(T )——4777;0;](—)“ (€+1)(S_€)!LD 7 (2)84 (n,2) D'ME (s+n—1,2),
(5.21)
QZ* 1 i ZS: L+s g 1 MJ D3 r )S* (n Z)DZM (S+n 1 Z)
T n=06=0 (s=0)!
(5.22)

We also computed the action

_ 3/4;2 S n

[Q2,(7),84(n, 2)] = _{ zl Z (s—k+1) ( —I: 3) DEr(2)D* %8, (n—s+1,2).
k=0

(5.23)

In appendix C we compute the cubic charges in the discrete basis and their action on
the Goldstone operators. These are given respectively by

5 & 2 s+n— s+n —-—m—
§+<>=4((;7Z)22222<—>@<6+1><m+1>< o g)( ek 1)

x | d®2/g D" 7(2)84(n, 2) [DE 28, (k,2)D"M% (s +n+ k — 2 z)]] ,
S
(5.24)
and
(—)3‘*‘1/4;2 ©w s £—2/f4—m—2
[Q3(7),8+(n,2)] =Tor 2. Y, +1)(m+1)
k=00=2m=0 p=0
n—k+2—0\ (n—m+1)\ ({—m—2
8 s—/ k P
x D™ [Ds_m_2_p7(z)DpS+(n—k:—s+2,z)S+(k,z)] . (5.25)

6 Gravity corner algebra

As an application of the new discrete basis, we can verify that the expressions (5.20),
(5.21), (5.22) for the linear and quadratic charges in terms of the memory observables and
the Goldstone modes reproduce the Lwito symmetry (loop) algebra at linear order, as
previously computed in [7]. Furthermore, we will exploit the computational advantages of
the new basis to prove the validity of the Lw o loop algebra also at quadratic order, when
restricting to wedge sector, and in the general case of local charges for the choice of spins
s=5 = 2.

More precisely, the wedge subalgebra W Lwii+s < Lwite is characterized by the
following restriction of the transformation parameters

D% 27r.(2) = 0. (6.1)
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Note that the linear (soft) charges vanish for this choice of parameters. While on the
plane, solutions to (6.1) are polynomials of degree s + 1 in 2, on the sphere (6.1) admits
no non-trivial global solutions. Instead, (6.1) can only hold away from points z; where
D$*t21,(2) = DP§(z — 2z,). The corresponding charge aspecgs are associated to the global
-2

of the ¥y Weyl scalar (see [7] for more details on this relation). These also represent the

components (in a spherical harmonic decomposition) ‘IJ(()S in the asymptotic expansion

relevant symmetry sector of the twistor formulation of self-dual gravity [29].

6.1 Linear order commutator

As shown in appendix D.1, the new basis considerably simplifies the calculations and, by
means of the commutation relations (5.14), it allows us to recover the Lwi,« loop algebra
for the positive helicity piece of the charges (5.19). Explicitly, the commutator at linear
order yields

[Qs(7), Qo (7]} = [Qay. (1), Q% ()] + [Q2,.(7), Qur . (7')]
/€2
=7 + DQuiy14(7"D7) = (s + 1)Qs g1 4 (rDT)] . (6.2)

The same result holds for the negative helicity piece. Some of the intricacies for the mixed
helicity sector were pointed out in [7]. We expect the computational simplifications brought
along by the new basis to help investigate them.

6.2 Quadratic order commutator of global charges

In order to compute the quadratic order of the bracket [Qs(7), Qy (7')] in the global sector
(denoted by the subscript G), we use the Jacobi relation

[Q21 (1), [Q1.(7), 8+ (n, 2))la — [Q%+ (7, [Q34(7), 8+ (n, )]
= [[Q2 (1), Q% ()], 8+(n, 2)]c- (6.3)

Let us introduce the useful operatorial relation

s+1
D '(s+1)TD + (s +1—a)Dr] D** = Li) kEJ (s+1—k (k)(D’“ )0,
(6.4)

which can be proven in terms of the generalized Leibniz rule (3.22). For the global
charges (6.1), this reduces to (see appendix D.2)

D* M(s+1)TD+ (s +1— a)D7] D*~* = Z (s+1~— k)((Z?’“(D’“ﬂDS"“v (6.5)
k=0 ’

and we have the quadratic charge global action

[ §+(T),8+(n,z)]gz—( z; 2D"“[(s—l—l)TD—i—(s—n—2)DT]DS_"_:)’SJF(n—:s—i—l,z).
(6.6)
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From this we obtain (see appendix D.2)

[Q% 1 (7),[Q2(7),8+(n, )6~ [Q% (7). [Q% . (), 8+ (n, 2)]le

o (=) S n+3\ Lk 1k
=K — Z(s+8'—k) D7, 7 1D*t 1758, (n—s—5'+2,2), (6.7)
16 = k
where
[r,7]:= (s + 1)7D7" — (s + 1)7'D7. (6.8)

It can easily be checked (see again appendix D.2) that this matches exactly the action

K,Q

I (8" +D)[Q24 01+ (7' D7), 84 (n,2)] = (s + D)[Q31 g1 4 (TDT), 84 (n,2)]] . (6.9)

where notice that in this case we do not need to restrict to the global charges. Hence, from
the Jacobi relation (6.3), we immediately obtain the quadratic commutator of the global
charges

K2

[Q% (1), Q%1 ()] = T L&+ D@24 1,+(7'D7) = (s + 1)Q34 914 (7DT)] . (6.10)

6.3 Quadratic order commutator of the local charges s = s’ = 2

As a final step of this paper towards the full proof of the validity of the local Lwi, algebra,
we show it here for the simpler case s = s’ = 2. We begin with general considerations and
then specialize to this restriction on the spins.

Consider the Jacobi identity

[Qs4(7), [Qs’+(7—,)75+(n72>]] - [Qs’+(7—,)a [Qs+(7),84(n,2)]] = [[Qs+ (7)7Qs’+(7—,)]78+(na 2)],

(6.11)
which at quadratic order gives
(@2 (7 )7[Q§+( ), 8+(n,2)]] = [Q2 4 (77), [QF4.(7), 8+ (n, 2)]]
+[Quy (1), [Q3 1 (77, 84+ (10, 2)]] = [Qury (77), [Q24(7), 8+ (. 2)]]
= [[Qs+ (1), Qu+ (TP, 8.4 (n, 2)],
(6.12)
where we used the fact that
[ §+( /)7[ ;+<T)7S+(nvz)]] =0, (613)
and
[Qut (1), Qurs (NP = [Q2(7), Q21 (7] + [Q44.(7), Q2 (7)] = [QL 1 (7), Q3. (7)].
(6.14)
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As shown in the derivation of (6.10), the restriction (6.1) to the wedge sector of the
nested commutators involving quadratic charges in (6.12) is sufficient to yield the desired
result. Therefore, the goal is to show that the remaining contributions (the ‘remainders’)
to those commutators are cancelled exactly by those on the Lh.s. of (6.12) involving linear
and cubic charges.

The remainder nested commutators are of two types

[QF 4 (7),[Q3(7).8+(n, )]kl [Q% (7). [Q% (7). 8+(n, 2)lclr.  (6.15)

where we have defined

_ SI€2 0 n
[Q2,(1),84(n, 2)]R = (=) 2 (s—k+1) ( Z3> DR (2)D*7kS  (n — s + 1, 2),
k=s+1

(6.16)

which is the complementary contribution to the action (5.23) when the global condition (6.1)
is relaxed (see derivation of (6.6) in appendix D.2).

The two remainder contributions (6.15) are computed in appendix D.3 and they are
respectively

[ §+( )il §+( ),8+(n7Z)]R]

)5+ kg S& 3 4\ . (k—s+m—1)!
k=s+1(=0m=0 m'( —s—1)!
x DF7(2) D™ (2) D3+ kM (n—s—5' 42, 2), (6.17)

and

[Q% (7). [Q%,.(7), 8+ (1, 2)]c]r

o s+s’/{4 n—s+4 n+2 n—s n
:_()16 3 Z(s’—k+1)( k”)( ;2>

k=s"+1m=0

X <(s + 1)D™Mr D™ [DkT'(z)DS/_kS+(n —s—8+2, 2)]

+ (s —n —2)DmTrps—i-m [DkT’(Z)DSI*kSJF(n —s—5 +2, z)] ) (6.18)

The remaining nested commutators involving linear and cubic charges can be computed by
acting with Q3 (7') on (5.25). We don’t give the general expression here, but instead we
compute it for the case s = 2, namely (see appendix D.3)

¥t (n /
[ ;w'),[Q§+<T>,s+<n,z>]]=3(1)6(jj) (D (8 (s, 2). (6.19)

We now specialize the expressions (6.17), (6.18) to the case s = s’ = 2. We obtain
[Q%-‘,— (T/)a [Q%-‘,— (7_)7 S+(n, z)]R] + [Q%—&- (7—/)7 [Q%—&- (7_)> 8+(7’L, Z)]G]R

KJ4 n n
o [( Z3> () Dira(2) + ( Z?) 729475(2)] Se(n—22).  (6.20)
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On the other hand, the contribution (6.19) for s = s’ = 2 gives

n+2

ﬁ4
Qb (), 1@ (), 8- (n, )] = ( 5

) T2(Z)D4Té(z)8+(n —2,2). (6.21)

Therefore, upon antisymmetrization in 7 < 7/, we see that

[Q3,(7),[Q54 (1), 84+ (n, 2)]r] + [Q3,(7), [@34 (1), 84+ (n, 2)]c]r
+ [Q%+(T/), [Q§+(7')7 84(n,2)]] -7 7 =0, (6.22)

and hence
;2
Q2+ (7), Q2+ ()] = 03, (1), Q3 (7)o = 22 [QR, (D)~ @3, (rD7)] . (629

7 Conclusions

In this paper we extracted a tower of non-linear operators from the asymptotic Yang-Mills
equations and demonstrated that they form a representation of a higher-spin symmetry
loop algebra on Fock space. This algebra contains a global subalgebra, which at the linear
order is the phase space realization of the celestial algebra of soft gluon operators found
in [1, 2]. Remarkably, we found that this algebra admits a local enhancement and continues
to hold at quadratic order upon inclusion of new cubic terms as dictated by the equations of
motion. The steps leading to this result involved a series of miraculous cancellations, which
we believe hints at a deeper connection between symmetry and the asymptotic Yang-Mills
equations. It would be great to find an elegant way of deriving the loop algebra (1.4)
directly from the recursive towers of non-linear differential equations (1.3), perhaps by
employing or generalizing the methods of [30].

From a physical perspective, the implications of the infinite-dimensional symmetry
for scattering remain rather unclear. As a first step in this direction, one should try
to understand the signatures of the cubic and higher order components of the charges
in scattering amplitudes. Moreover, the full Yang-Mills equations will include further
non-linear corrections which deserve a better understanding (see [15] for progress in this
direction). It would be very interesting to understand in what way these corrections, as
well as coupling to matter, would affect the symmetry structures found in this work.

Central to this work was the algebra of quadratic charges, also known as hard charges.
On the other hand, the celestial symmetry algebras of [1, 2] were associated with soft
operators. We would like to have a better understanding of the dictionary between
symmetry generators in celestial CF'T and realization of the symmetry algebras on the bulk
Fock space.

In gravity, the non-linear charges were shown to correspond to the higher multipole
moments of the gravitational field and hence directly related to gravitational observables
such as the memory effect [31, 32]. It would be fascinating to explore the role of symmetry
in constraining observables of gauge theory and gravity. We leave this to future work.
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A YM charges

From the general expression (2.10) for the YM higher spin charge aspects, the quadratic
and cubic charge aspects read respectively

S

R(u,2) =i Y, (05~ D [ A0 (1w, 2), Ry (u, 2)|

u

n=0 g
- o~ Lys—n+lps—n A(O) u, z), o~ 1Dy (0) u, 2
@ A9 w,2), (6" D) FL (. 2) |
=i ) (@)D A0, 2), (07 DY TS (u,2)] (A1)
n=0 9
and
=i (a’;l)s—nﬁ-le—n [Ago) (uvz)vRi—l(uvzﬂg
n=1
s n—1
_ (a;l)sfrwlefn [Ago) (u,z), (a;l)kJrle [Ago) (U,Z), (a;lD)nfklez(g) (U,Z)] } ]
n=1k=0 9lg
(A.2)
Let us introduce the Leibniz rule for pseudo-differential calculus
k ko (k—n)
—1({U (=Dn u —1\n+1
—A = A
it (ram) = 3 S A
—q)(k—n)
—(—1) (—u) —1yn+1 4 A.
0 X T ) A, (4.3)
where we used
(=1)p = (—1)"n!. (A.4)
For k = 1, the renormalized charges (2.11) can be expressed as
POl G L A G700 AP )
’I"S(Z) _UEIPOOZ (S—E)' D Féu (’LL,Z)
(| D ), (4.5)
—o !
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where in the last line and below we recall that 0,1 = S:O du. For k > 2, we can rewrite

r*(z) = lim

n=k—2{=n ( g
- fm i Ze e D A0 2) R )|
=i i 3 o e [0, R )|
n=k—2
- —z'n_z; f; ((?i);; Do A0, 2), RE A (w,2)] (A.6)
from which
2 =i Y | P (f_n:l‘; D [AO ), @ D Y )] L (A)
n=0v~® g
and
ro(z

)
ZZ_}J du

e [A<0><u 2. (031D [ 40 (u.2), <a;1D>”—k—1F;2><u,z>u ,

(A.8)
where we used (A.1).
From the general expression (A.6), we can also write the recursion relation
s—k+2 u —k+
*(2) =u1_i)111001 Z 0, i DZA(O) (u, z) Z D” ‘RFEL(u, z)]
L n=t g
s—k+2 (—U)Z [ )
=u£r§mi Z ot 7 DYAO (u, 2) Z D"RET} (u,2)
= | = n! ]
s—k+2 B _
=m0 Y o T D A0 )k ()]
U—— =0 : L g
I 1 (=0 T e 40 k
= lim i ; 0 DAY (w2) T (2)] (A.9)
=0

where in the first line we applied the binomial expansion and switched the sums over /¢
and n.
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A.1 Corner charge aspects

Let us first of all list the useful the relations
uor = (A-1),, " = (Atn—1),, wm" = (An—1);1,
Ou(Ata)y = (A+a+1)pdy, 0 (A+a)y=(A+a—1),0;",
u(&—l—a)n:(ﬁ—l—a—l)nu, u(ﬁ+n—1);1=(ﬁ+n—2);1u, (A.10)

valid V n > 0, «a € Z and where we defined the operator A= Oyt and the requirement of
the potential field to be Schwartzian in order to integrate the A contributions to zero.
The quadratic charge aspects (2.13) can be expressed as

ri(2) = r2 (2) + r2*(2), (A.11)

2m = (s —n)l! . g
it S &G [(s+l—n ®© ustt
= (=)t D" {A (¢, z),D”J du Fi(u, z)]
2 ;0 ;) ( - e (5O T ]
ZstO > s+l—n s—n ek
= —=—=>. > DS [A4 (€, 2), DT (s + £, 2)] (A.12)
T 14
£=0n=0
In the manipulations above we used
GO = A+ n—1) = (A4 n—s—0— 1) T (A.13)
which follows from the list (A.10), and the identity
1 (s+£¢—n)!
— (—1\" YA Al4
n—s—0—1), (=1) (s +0)! ( )
The cubic charge aspects can be expressed as
r3(z) = r§+(z) + 3% (2), (A.15)
with
7’§+ (2)

[0e]
XD [ A (4,2), f duu® =" (6,1 DA [umA+<m,z>,<al>”1D"“Fi<u,z>]g}
g
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0
0 us+€+k+mfn+1
xD*" | A, (L, z2), D" [m(m,z),f du (8;1)"_’“_1D”_'“_1Ff(u,z)]
—® (n_s_é_l)k-kl ol

B i i ()it (s+L—n)! (s+L+k+m—n+1)!
- (2n)2 i (s—n)l! (s+L+k—n+1)Im!

—0
0 us+€+m
xD*" | Ay (L, 2), D" [J‘u(m,z),Dn_k_lf dui)! o ,z)]
flg

o (s+l+m
. o W s n—1
is s+l—n\ [s+l+k+m—n+1
(277)2;;);0;1;)( £ ) ( " )
< D5 [A+ 0,2), DF [A4 (m,2), D" *1F% (s 4L 4+m, 2)] ] , (A.16)
g
where we used
us—&-ﬁ—n(a;l)k-i—l _ us+€+k—n+1(A+k)l;'1_1 — (A_i_n_s_g_l)l;ilus""z"'k_n"’_l , (Al?)
_ +{—n)!
R N S S B G A18
(7’L S )k+1 ( ) (S+£—Tl+l€+1)!’ ( )
and
us+£+k+m—n+1(a;1)n—k—1 _ us+€+m(u—1)n—k—1(al:l)n—k—l
s+l+m A -
— A -k —2)70,
= (A +n—k—s—0—m— 2);ik_1us+€+m ) (Alg)

. k+0+m—n+1)!
ks t—m2)l = (k5 . A2
(n—k—-s—l-—m=2),7 ,=(-) (s+£+m)! (4.20)

We now perform this series of manipulations: we replace k — k — 1, we then switch sums
D Dby = X1 2 g, and we replace n — s — n to obtain

i LR R n+m+£L€+k
mnsns () )

—0m=0k=1n=0 m

T§+ (2) = —

—~

x D" [A+ (,z), DF1 [Ai(m,z),Ds_”_kffi(s + 0+ m,z)] ] ) (A.21)
Oy

At this point we switch sums again »;_, Zf;]a = Zf;% > and perform the final
replacement £k — k + 1 — n to arrive at

. 0 o0 s—1s—1
3 o l4+n)\ [(m+l+k+1
ho-gEs SR8 (V) (7
x D" {Ai(ﬁ, z), Dk [fb_r (m, 2), DS 1F% (s + £ + m, z)] } . (A.22)
+ ol
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A.2 Corner charges

We start proving the useful identity

| R 1 BE AG) = (7 [ T (1P (s 04 1057, 4G BR))
S S
(A.23)

where

S (—)n

Pd(a;T) = Z p

n=0

(D"78(2)) D5, (A.24)

Starting from the L.h.s. of (A.23) and integrating by parts, we have

n=0m=0 n! m!
-y 3 (sl 2'”)“ (s jn’f)m STr([DS_mT(z),B(z)]gDmA( ). (A.25)
m=0 n=0 ’

- : (A.26)

to write

LTr ([P + 1:7), B(2)]y A(2))

- Y S Den [y (0 e(a), B2y D7)

|
m=0 m)
s

_ (o 3 e D (RGO ONE)

= m!
_ (o) L Tr ([Pu(—(s + £+ 1);7), A(2)], B(2)) (A.27)

where in the second equality we used the cyclicity of the trace.
In terms of the operator (3.9), the quadratic charges can be written as

R2,(7) = —(;fr)s i M) (4 ; ”) L Tr <D”T(z) |4 (6,2), D" (s 4, @]g)

BB [ oot o]

- i Tr <A+(€, z) [PS(E +1;7),F (s + 4, z)]g) : (A.28)
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where we used

(=)" (“g ; n) = (_(q,l))" (A.29)
Using the identity (A.23), this can also be written as
2 oy Ty stk (o (o sk g (0 F (510 s
RLr) = g 3 0 R [ e (04 [ R a9 9L 0] )
Y L T ([P0 + 1)), As (- 5,2)], FL(62)) (A.30)

The quadratic charge action on SFLb(n, z) can then be computed from the commuta-
tor (2.28) as

s &

[R2 (1), 5P (n, )] = 5= fd%wfvwwz>ﬁ%nwﬂaw+nrwﬂ@+&zﬂw

_ gngS |[Po(n+157(2)), (s 4+, z)]z . (A.31)

B YM algebra

In this appendix we provide the proofs of the results presented in section 4.2. We make use
of several identities involving the falling factorial

Iz +1)
= -1)-(x— 1) = —/———. B.1
(@ =ala— 1)z -+ 1) = g (B.1)
First we use that
(—x— 1)y = (—=1)"(x + n)y. (B.2)
We make use of the fundamental binomial identity for the falling factorial
a0
Z s no_ (l’ + y)s’ (B3)

s—n) s!

where s! := I'(s + 1). This identity can be proven by recurrence from the shift identity
satisfied by the falling factorial

A@)n = n(@)n-1,  Af(z):=flz+1) - f(2) (B.4)

and the normalisation conditions (0),, = d,0. This identity is valid for —s € C\N and it can
be shown to be equivalent to the Gauss hypergeometric identity. When s € N it becomes

more simply

- . (B.5)
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Other useful identities when s is an integer can be obtained by taking y to be a positive or

_ b
negative integer. Such limits imply, after using % = (=1)" * n), that

b

z+b)s (b (2)s—n xbl > b+n\ (x)s—n
cog(em Sego()es e

where b € N. Taking x to be a positive integer and interchanging n — s — n gives the

identities

(EO) =g w

where a,b € N. Finally taking x to be a negative integer gives the identity

a+b+s S fa+n—1 b+s—n
= ) B.8
(s ) o

B.1 Quadratic charge commutator

In this appendix we present a detailed computation of I in section 4.2.1. After changing
variables p — p —m —n (4.10) becomes

s, sdm (—s'—=1—=0)p, s’ —n
I gYMZZZ Z m) ) <p_n_m> (B.9)

¢=0n=0m=0p=m+n

x L T ([0 (D7, D PG 4 s+ O]l (1))

In this parametrization we see that the integral factor does not depend on m. The goal is
therefore to perform the sum over m. We can do that after interchanging sums

S s'+m s+s' min[p—n,s]

oy o= 2 . (B.10)

m=0p=m+n  P=N m=max[0,p—s’]

s'—n
The sum involves the binomial coefficient which vanishes when m < p — s'.
p—n—m
This means that we can replace the lower bound m = max[0,p — s'] simply by m = 0.

Therefore we have two cases to evaluate.

Case I: when p —n < s we find

2, (_Sl_rril_g)m (pi;_nm> - % S (gip> ’ o

(p—n)! p—n

where we have used (B.5) with z > —(s'+ ¢+ 1), y — (¢ —n) and s — (p — n).
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Case II: for p —n > s we find
Zsz (= =1=4)p, [ §'—n = (—1)pn l+p) pifl (='=1=4)p, [ §'—n
= m! p—n—m p—n) = m! p—n—m

n [ l+p s s'—n l+5' +5+1
== <p—n>+(1) (p—s—l—n)( s+1 ) (B.12)

where we defined
Fi(s,s)i=3F[L,1+n—p+52+L+s+sis+2,2—p+s+5;1] (B.13)

and 3F5 is the generalized hypergeometric function.
We conclude that the final result of (B.9) includes two contributions. We will denote
L
the common contribution to the two cases, namely the one proportional to ( + p) by Ji.
p—n
We then find that Iy = J; + J| where

n- g S S e () (7)

{=0n=0p=n

y J T ([0, [DP ", D25 45 4 )]l (1))
S

w0 s'—1 s'+s / !
{+n 1+/+s+s s'—n
/ s+n
Jl_ gYMZZ Z ( n )( s+1 )(p—n—s—l)

=0 n=0 p=n+s+1
X F1(878/)f
S

Tv ([DnT', [DP="r, D3+ =Pt (¢ 4 s+ z)]g]gfuw)) . (B.14)

Note that the sum over n in J{ only goes up to s’ — 1 due to the fact that p > n+ s+ 1. In
the first equality we used that

G- 0) o1

B.2 First term in cubic algebra

In this appendix we evaluate I3. We start with (4.17) (with s « s’ and 7 < 7’) and shift
k—k—s—1 (B.16)

to find

o s—1 s+s’ k—n—s

Sau RS S TS e () ()

m=0n=0k=n+s'+1  p=0

I3(s',7';8,7) =

p— J— /_ !
x(k n—s 1) f T ([D"r, DX [g[A(m), D™ 7 (548 +m)]g )
b S

(B.17)

~31 -



We exchange sums

s—1  s+s’  k-n—s'—1 s+s k—s'—1k-—n—s'—1 s+s' k—s'—1k—s'—1—p
)P -2 X . (B
n=0k=n+s"+1 p=0 k=s'"+1 n=0 p=0 k=s"4+1 p=0 n=0

where in the first exchange we used that k — s’ — 1 < s so there is no need for another
bound. Shifting n — n — p, and changing the order of the commutator, we find

0  s+s k—s'—1k—s'—1 ) s’+n—p m-k
-[3(8,’7—/;877—) gYM Z Z Z Z kJrS < s ) < m >

m=0k=s"4+1 p=0 n=p

« (’“‘”_;_“p) LTr([D 7, DV gD R (s m), A(m)g).

(B.19)

Now we switch sums again

k—s'—1

i (B.20)

n=0 p=0

k—s'—1k—s'—1
p=0 n=p
and do the sum on p using (B.8) witha > k—s —n, b — s and s - n,

i(g_’_?_p) (k;—s'-i—p—n—l):(k)_ (B.21)
p=0 i ! '

We are then left with a double sum

!

s+s’ k—s'— s—1  s+s
Z Z Z > (B.22)
k=s'+1 n=0 n=0k=n+s'+1

The result (4.18) follows immediately after exchanging (s, 7) with (s, 7).

B.3 Second term in cubic algebra

We next show that I simplifies to (4.20). Starting with (4.19) (with (s,7) — (¢',7)) and
letting p - p —n — s’ — 1, we find

0 s—1s—1 k+s'+1
nfl+n) [+Ek+l+1 k—n
Iy(s',7'58,7) gYMZZ Z Z (—1) ( , )( o )(p—n—s’—l)

=0n=0k=np=n+s'+1
L Tr ([D"T,A+(5)]9[DP*"T',DHS/*PFL(SMH’)]B) .
(B.23)

We can now switch sums

s—1 k+s'+1 s+s’

S SR VDS B21)

k=np=n+s'+1  p=n+s'+1k=p—s'—1
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and evaluate the sum on k&

521 s +k+0+1 k—n
heps—1 s’ p—n—s'—1
s—1

_ (1)t sS'+k+04+1\ [n+s—p
s’ n—k—1
k=p—s’'—1

n—1 s—1 / /
g [8+k+l+1\ [(n+s'—p
k=p—s'—1 k=n

+ +
_ nZ (—1)ktpts'+t (5'”“) (”*‘S/—p) + Z (1)t (8’+k> <n+s’—p>
/ ’ )
k=p—s'+{ s n—k+t) = s n—k+/

(B.25)

where in the last equality we shifted k¥ — k— £ —1. We now use the second binomial identity
in (B.6) which can be written as

i(—Dn (b—il;n) ( x ) _ (x—b‘— s _ <a;—b—1) (B.26)
= s—n s! s

to simplify the first sum in (B.25)

n+4

D1 (mpkter s'+k\ (n+s'—p
s n—k+/
k=p—s'+¢
n+l p—s'+0—1
ST (1) (2
/
k=0 k=0 s n—k+/
—s'+0—1
:(_1)p+s’+£ n—p—1 _p . (_1)k+p+sl+£ s'+k n+s'—p
n+{ = s’ n—k+/

—s'+4—1
= (=1)pts'+n p+L _p i (1) s'+k\ [n+s—p
p—n s’ n—k+0 )"

k=0

(B.27)

Putting everything together we find

S*l /
sS+k+L+1 kE—n nants [ L+ D
2 ( J )( _n_s,_1)=<—1> ( _n> (B.28)
k=p—s'—1 p b

s+4 p—s'+L—1 ’ ,
g[S +Ek\ [(n+s —p
(8 T e () () (3.29)
k=nt6+1 k=0 s n
or equivalently
Si:l <5/+k‘~|—€+1>< k—n )
e s p—n—s —1
Fepms (B.30)

_ ’
:(71)n+p+s’ t+p . s—n sSS+s+L0+1 FQ(S,,S)
p—n p—s —1—n s’
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where we defined
F(s,s)=s3R[1,1-n+s2+1+s+8,2+0+s2—p+s+s, 1] (B.31)

This equality which is similar to (B.12) can also be checked by direct evaluation of the sum
in (B.25) with mathematica.

We recover (4.21) from the first term in (B.30), while for (4.22) we use the second term
in (B.30). In total we obtain (4.20). In both cases we acquire a sign upon cycling the terms
in the trace and reordering a commutator.

B.4 Putting everything together

We first prove an important identity relating hypergeometric functions. This will allow us
to show that the hypergeometric functions appearing in I; and Iy cancel. The relevant
hypergeometric identities are

F(bl)F(bl + by —a; —ag — ag)
F(bl — al)F(bl + by —ag — ag)

x 3Fhlar, by — ag, by — ag; by + by — ags — as, ba; 1],

sFblai, az, as3;b1,b2; 1] =

B.32
Re(by + by —a; —ag —az) >0, Re(by —ay) >0, ( )
(d — b))
sFy[—n,b,c;d,e; 1] = W:},Fg[—n, be—c;e,b—d—n+1;1], neZg,

where ()™ = T'(a + n)/T(a) is the raising factorial. The second of these can be used to
rewrite

s+ 2—1)p-1-n=s)
(s 4 2)(p—1-n=s)

Fl(s,s’):( sB[L,1—p+s+n,—p—4;2—p+s+s,1+n—p;1].

(B.33)

We could apply it because 1 +n —p+ s < 0 for the relevant summation range. We now use
the first identity in (B.32) to rewrite

(s +2—1)=1=n=s) (p _p)
(s +2)p—1-n=s) (1+¢' +¢)
X3Fp[1,14+8 —n,2+s5+8 +062—p+s+5,2+5 +4;1] (B.34)

6D _(nop) _py D gy
(p_”)(1+8'+€)F2(S’S>__(1+s’+€)F2(8’8)’

Fl(S,S,) =

which is exactly what we need for these terms to cancel in the sum.
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We next outline the steps leading from (4.30) to (4.31). We start by shifting p — p+n
in the first line of (4.30) which expresses J; + J4 and antisymmetrizing to get

;OPZ;) e <£+p+n) (pzn>

« f T ([0 (D77, D=2 (545 + 0] ] A (1))
S

—Tr ([an, (0P, D7 (545 40)] ] A4 (1)

_ e L+p+n p+n . ' oy s+s'—n—pel (g4 g
P ( )( . )LT (ILD" ', D7), D=2 (55 0)] g4 (6))

n=0p=0

- i Sil (Hp) <p> f Tr ([[D"T',Dp’"T]g,DS“'*PS—"Q(s+s’+€)]gA+(£)) :
njJs

n=0p=n

(B.35)

As a result, we see that (4.30) simplifies to
[Rs+ (T> Rs’Jr(T,)]Q

gYMZ (if i pil i Zp] >(*1)p (i) <£;p) (B.36)

{=0 \n=0p=n p=s+1 n=0 p=s'+1n=1+s¢'

x f T [ [0, DP g (D% L (s 450, AL (O],
S

The last two terms come from I3 (4.18) and its antisymmetrization upon using the follow-
ing identity

s+s' p—s'—1
Yy (f;p) () [
n

p=s'+1 n=0

sig Z (E * p) (i) JanTaDnT/bDSJrS/p’

p=s'+1n=1+¢

(B.37)

which is easy to prove by making the change of variables n — n — p.
Finally switching sums for the last term in (4.30), we notice that the sums can be
rearranged as

s’ s+n s+s’ p—s—1 s+s’ s’ s+tn  §'—1 s+s s+s’ s+s
DIPILDINDIEID) IEEDIDIED WD VRIS D YRR CES
n=0p=n p=s+1 n= p=s'+1n=1+s" n=0p=n n=0p=n+s+1 n=1+s'p=n
s+s' s+s’ §'—1 s+ s'—1  s+s s+s P
pPIPIRDIND D INDINEDID) (B:39)
n=0p=n n=0p=s+n+l1 n=0p=n+s+1 p=0n=0

from which (4.31) follows immediately.
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C Gravity cubic charges

We focus on the positive helicity charge (same result can be derived for the negative one)

We start from the general relation (5.16) to write the cubic charge as

%Z +1) JdQ JaD fooduuS—ZC(u,z)Q%_Q(wz). 1)

—0)!

We now use (5.11) again together with

0u(u) = — (I Qe (u) +1°Q7 (u)

(C.2)

and the expression for the quadratic charge

Q7 o, (u,2) =—i %2 m+ 1)( émlDzmz[C’+(uz)(6 Lym= leN*(uz)],
) (C.3)
to write
i° o (C+1)(m+1) s
2-1—(7—) = 4;2T;OMJSdQZ\/§D tr

.5 w0 {—2 m
! Z Z Z”kwfs d?2,/q D78 (n, 2)

42y n=0 k=0 =2 m=0 nlkl(s — £)!
0
< [ dwut oD [ k20, DN ()] (C.)
—o0

We can now introduce the operator A= Oy, which integrates to zero due to our choice of

boundary conditions, and use the property
s+n—m— 1( —la—l)é—m—l s+n m— I(A-f-f 71— 2)[ .
u m—

C

(u—l)f—s—n(agl)f—m 1_

(A +€—s—n—1)[1m 1us+"_m_1 ,

1)m—1 us+n+k 2(A+m 2)m 1_(A+m75 n— k:) _lus+n+k 2’

(u—l)m-&-l—s—n—k(a—
(C.5)

u

to write the cubic charges

-2

o0 s+n—m—1
f “ D= 2[8+(k: 2)uF D™ (0,1 )N (u, z)]

& (D) (m+1) 1
(s—£)Inlk! (E—s—n—l)g_m_l(m—s—n—k‘) _
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s SIS T e (T (e
xf Q2y/g D" r(2)8 4 (n,2) [ D 2[5 (k) DM (s +h—2,2)] |
S
(C.6)
where we have used (5.7) and the identity

(n—a—1)!

_(_1)€(n—a—1+€)!.

(C.7)

We now use this expression to compute the action

P k

() (C+1)(m+1) <s'+p—£> (3’+p+k—m—1>

p=0k=0¢=2m=0

x | 22\ /gD5 7 ()8 . (p, ) DL ™2 [5+(k,z')D;’7[M1(s/+p+k—2,z'),s+<n,z)]]

9 o s (-2 n— . n—m
S £ Sereanmen (1) (1)

k=04=2m=0
L

« f 022 \Jq DS ()8 (n—k— ' +2,2) D2 [ (I, ') D162 (2,2
S

:_( 2; 2 i e+ 1) (ma ) <n—§+?—£) (n—r:—kl) (e—m—Q)

=0 p=0 p

D Gravity algebra

D.1 Linear order

We concentrate on the same helicity sector and compute the linear charge commutator

[Qs(7), Qu (7]} = [Q44.(7), Q24 (T)] = [Qu1 (7). Q24 (D] - (D.1)

We use the Jacobi property

[[Qsr (1), Q2 ()], 8+(n, 2)] = [[Qu1(7), Q34 (7)], 8+ (n, 2)]
:[ ;+(T)7[ E’Jr( /)784-(”72)]]_[ ;’Jr(T/)v[ §+( )78+(n72)]]7 (D2)

where we used the fact that, by means of (5.14) and (5.20), (5.21),

[Q% (7). [Q54.(7), 8+ (n, 2)]] = 0. (D.3)
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We thus start with the action (5.23) and we recall the identity (6.4)

D '[(s+1)7D + (s + 1 —a)D7] D¥ = [Z + i ] (41— k)(C]gk(DkT)Dsk7
k=0 k=s+1 :

(D.4)

that allows us to rewrite

K2

(Q54(7):84(n,2)] = = (=)*D"* 2 [(s + 7D + (s = n = 2)D7] D" 81 (n — 5 + 1,2)
+ R(s,n), (D.5)

where R(s,n) corresponds to the contribution in (6.4) given by the sum };° ., which we
compute shortly. It follows that

[Qay (1), [Q2% (1), 8+ (n, 2)]]

= _FZ(_)S/DZH [(s"+1)7'D. + (& = n—2)D7’]
X f dZZ'\/aT(Z’)DifQDil_"_g[ML(s, 2,81 (n—s" +1,2)] + [QL. (1), R(s',n)]
S
4
- W%(—)S+S’Dg+8'+1 (8" + 1)7' D, — (s + 1)D7'] 7(2)dss. 5 ns1 + [QLy (1), R(s',m)].

(D.6)
Finally, we compute
2 n+3
/ 3
[QL (7). B m] = (=) 3] (5 =k + 1) (”;: )
k=s'+1

x Dir'(2) f A= q7(z) D52 DY ML (s, 2), 84 (n — 8 +1,2)]
S

4 s+s'+2 ’

/ 2 /

= —W%(_)SH E (s —k+1) (S * 2 * ) DR (2) DS 27k (2)
k=s'+1

s /
s+s Z s—k+ 1 <3+*Z + 2) DkT(z)Ds+s’+2—k7_/(z>

=1 §+( ’),[Qz (7),8+(n, 2)]]- (D.7)

Therefore we have

[Qe1 (1), [Q% 1 (77), 8+ (n, 2)]] = [Qur 4 (), [Q24(7), 8+ (n, 2)]]
= [[Qs4 (1), Q2 (7], 84(n, 2)] = [[Qu (1), Q% (7)], 84 (n, 2)]

/€4

=7 () D8 + D7Dt — (5 4+ D7DT] (2)dss—1m (D.8)

from which

[Qs(7), Qv ()]} = [Qs4.(7), Q24 (7)] + Q24 (7), Q1 (71)]

Ii2
4 [(S + 1)Qs+s’71+(7 DT) (S + 1)Q3+s’71+(7—DT )] : (DQ)
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D.2 Quadratic order global

In this section with give the proof of the relation (6.7). We start with the proof of (6.5) for
global charges. Using the generalised Leibniz rule (3.22), we find that

a(a — 1)71 (Dn+17_)Ds—n—1

18

aD* Y (DTD**) =
n!

3
Il
o

(a)n+1 (Dn+1T)DS_n_1

I
18

= n!
- (@)

= Y n-2"(D"r)D*", (D.10)
= n!

Summing these two contributions, we find that we have the key identity

(s+1—m' D (prrypn. (a1

D '(s+1)TD+ (s +1—a)D7] D" = :
n:

18

0

n

If we demand that
Dt =0, (D.12)

we see that the sum can be restricted to the range s < n. In this case all the derivative
operators appear with a positive power. There is no longer any non-locality. This means
that the charge action (5.23) can therefore be simply written as (6.6).

We then use this result to compute

[Q% 4 (7),[Q% 4 (7), 8+ (n, 2)]]

2

= == (-)"DI*[(s + V)7D: + (s = n = 2)D7] DI " 0[Q% (7)), 84(n — s+ 1,2)]a
_\s+s
- H4(16D?+2 [(s + )7Dz + (s =n = 2)D7][(s' + )7'D- + (s + &' —n = 3)D7']
x DI (n— s — 5 +2,2), (D-13)

where we used (D.5) twice. We now expand
[(s+1)7D+(s—n—2)(DT)] [(s'+1)T’D+(s+s’—n—3)(DT’)] —(so s, 71
= (s+1)(s'+1) [7(D7)D+77'D?*|+(s+1)(s+8 —n—3) [rD*r'+7(D7') D]
+(s—n—2)(s'+1)(D7)T' D+ (s—n—2)(s+5 —n—=3) (D7) (D7)~ (s & &', 7 = 7')
=(1+s)(s+$)7(DT"\D—(1+5")(s+s" )7 (DT)D
+(s+5'—n=3)[(s+1)7D*r'—(s'+ 1)1’ D*r+ (s—5') (D7)(D7")]
= (s+5)[r,7'|D+(s+s —n—3)D[r,7'], (D.14)

where we defined

[r,7'] := (s + 1)7D7" — (s + 1)7'Dr. (D.15)
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Therefore, we have

[ §'+(T/)a[Q§+(7)75+(naz)]]G—[ §+( )7[ §+( )8+(n72)]]G

_ 4(_)s+s’ N\ Hn+3 nps+s’ —n—4 e
=K (s+s)D [7,7'|D Si