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1 Introduction

It was shown in [1] that gravity and gauge theories possess an infinite tower of symmetries
generated by increasingly subleading soft modes. For example, the negative helicity modes
organize in finite dimensional representations of the SLp2,RqL component of the Lorentz
algebra (after analytic continuation to p2, 2q signature). In the case of pure Yang-Mills
(YM) theory, the symmetry generators were related to the soft modes by a light-transform
and were found to obey a simple algebra [2]1

rSp,a
m pz̄q, Sq,b

n pz̄qs “ ´ifab
cS

p`q´1,c
m`n pz̄q. (1.1)

Here p, q are half integers bigger than 1 and m, n satisfy the restriction 1´ p ď m ď p ´ 1,
while m`p is restricted to be integer — and similarly for the pair pq, nq; pz, z̄q are complex
loop coordinates on the celestial torus T “ S1 ˆ S1, hence the name ‘loop algebra’ for (1.1).
These soft modes admit a further mode expansion2 [3]

Sp,a
m pz̄q “

ÿ

nPZ
z̄p´n´2Sp,a

m,n. (1.2)

The dictionary relating bulk asymptotic scattering states and operators in the celestial
CFT [4–6] suggests that celestial symmetries like (1.1) should also be realized on the phase
space of the theory. Progress in this direction was made in [7] where such a claim was
established in Einstein gravity. Specifically, it was shown [8] that the asymptotic Einstein
equations truncate to two towers of recursive differential equations for charges defined as
appropriate combinations of the asymptotic metric components that transform covariantly
under the homogeneous subgroup of the Weyl extension of BMS4 [9]. After appropriate
regularization, half of the non-linear charges (whose linear part corresponds to the same
helicity gravitons) were shown to obey the gravitational analog of (1.1), namely a w1`8

algebra to linear order. Surprisingly, no restriction to the global subalgebra was necessary.
One may therefore hope that the loop algebra continues to hold upon including higher
non-linear contributions to the charges.

This paper extends the analysis of [7] to Yang-Mills theory, beyond the linear level.
In particular, we construct for each helicity an infinite tower of charges Rspτsq labelled by

1Note that this is the negative helicity version of the algebra worked out in [1, 2].
2p as defined in [2] is related to the spin label s introduced below via p “ s

2 ` 1.
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a Lie algebra valued function τspz, z̄q P g on the celestial sphere S (alternatively on the
celestial torus). Here pz, z̄q are complex coordinates on S (or circle coordinates on T ). It
can be shown that τs is an element of an SLp2,Cq (or SLp2,Rq ˆ SLp2,Rq) representation
of weight and spin p∆, Jq “ p0,´sq. These charges are constructed explicitly as operators
acting on the Yang-Mills Fock space and are obtained after regularization from components
of the gauge field in a large-r expansion. The latter satisfy a tower of recursive differential
equations obtained from a large-r expansion of the Yang-Mills equations

BuRs “ DRs´1 ` irAp0q
z , Rs´1sg, s ě 0, (1.3)

where D is the covariant derivative with respect to z on S or T . In the Abelian Maxwell
theory, these evolution equations for the lowest spin charges s “ 0, 1 correspond to the
non-radial Bianchi identities written in the Newman-Penrose formalism [10], respectively
9ϕ0
1 “ ´ðϕ0

2 and 9ϕ0
0 “ ´ðϕ0

1.3 We prove that the charges Rspτsq satisfy the algebra

rRspτq, Rs1pτ
1qs “ ´g2

YMRs`s1prτ, τ 1sgq, (1.4)

up to quadratic order in the creation and anihilation operators and for arbitrary functions
τ on S (or T ). We label the Lie algebra bracket with a subscript g to avoid any confusion
with the quantum commutators of operators.

The global S-subalgebra (1.1) appearing in celestial holography consists of the subalgebra
generated by the τs solution of Ds`1τs “ 0. The fact that this forms a subalgebra follows
directly from the fact that Ds`s1`1rτs, τs1sg “ 0, when Ds`1τs “ 0 and Ds1`1τs1 “ 0. The
algebra (1.1) and its modes (1.2) are recovered by choosing the smearing function on T to
be a polynomial of degree s in z. More precisely, for τs “ zm` s

2 z̄n´ s
2 T a, we have

S
1` s

2 ,a
m,n “

ż

T
dzdz̄zm` s

2 z̄n´ s
2 ra

s pz, z̄q, (1.5)

where ra
s is the local charge aspect of spin s and T a is a basis element for the Lie algebra g.

The main result of the present work is that (1.4) continues to hold for the local, nonlinear
charges parameterized by arbitrary functions τspz, z̄q. In particular, at quadratic order, the
commutator (1.4) receives contributions from the cubic component of the charges,

rRs˘pτq,Rs1˘pτ
1qs2 “rR2

s˘pτq,R
2
s1˘pτ

1qs`rR1
s˘pτq,R

3
s1˘pτ

1qs`rR3
s˘pτq,R

1
s1˘pτ

1qs,

(1.6)

3The scalars ϕ0
0, ϕ0

1, ϕ0
2 correspond to the leading order terms (in a 1{r expansion about null infinity) of

the complex tetrad components of the Maxwell field tensor

ϕ0 “ Fµνℓµmν , ϕ1 “
1
2Fµν pℓµnν

` m̄µmν
q , ϕ2 “ Fµνm̄µnν ,

where, in Bondi coordinates,

ℓ9Br, n9´ Br ` 2Bu, mµ
9

1
r
p1 ` zz̄qBz, m̄µ

9
1
r
p1 ` zz̄qBz̄.
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where the labels ˘ refer to a decomposition of the vector potential into positive and negative
energy fields and Rk

s is the degree k term in the charge regarded as a polynomial in the
gauge fields,

Rspτq “
s`2
ÿ

k“1
Rk

s pτq. (1.7)

The last two terms on the right-hand-side of (1.6) vanish for global τs but conspire to ensure
that the quadratic order algebra (1.4) is satisfied for arbitrary τs.

We also generalize the computation of the w1`8 phase-space algebra in [7] to the global
quadratic charges in gravity. Finally, we explicitly show that the local spin-2 charges also
obey a w1`8 algebra at the quadratic order. As in the YM case the inclusion of the cubic
components in the charges is necessary to recover the correct commutation relations.

The relevance of the cubic component of the symmetry charge for the quadratic order
w1`8 algebra for spin-2 charges in the matter sector was already pointed out in [11].
We are also aware of a forthcoming paper [12] which presents complementary results on
higher-helicity fields.

2 Preliminaries

We consider non-Abelian gauge theory with gauge group G in 4-dimensional Minkowski
spacetime. The Yang-Mills equations take the form

d ‹ F “ 0, F ” dA ` iA ^ A, (2.1)

where A “ Aµdxµ is a one-form valued in the adjoint representation of the Lie algebra g of
G.

We begin by describing the construction of the charge aspects in terms of the asymptotic
phase space variables of Yang-Mills theory. We work in Bondi coordinates4 where

ds2 “ ´du2 ´ 2dudr ` r2 4dzdz̄

p1` |z|2q2 , (2.2)

and assume an expansion of the field strength given by

Fur “
1
r2

8
ÿ

n“0

F
pnq
ur

rn
, Fuz “

8
ÿ

n“0

F
pnq
uz

rn
, Frz “

1
r2

8
ÿ

n“0

F
pnq
rz

rn
, Fzz̄ “

8
ÿ

n“0

F
pnq
zz̄

rn
. (2.3)

In the radial gauge Ar “ 0, this corresponds to the following fall-off conditions on the
components of the gauge potential

Au “

8
ÿ

n“0

A
pnq
u

rn
, Az “

8
ÿ

n“0

A
pnq
z

rn
. (2.4)

We further specify the gauge on the initial slice to be such that A
p0q
u “ 0.

4It can be convenient to work in retarded flat coordinates where ds2
“ ´2dudr` 2r2dzdz̄ and asymptotic

infinity has the topology of a celestial plane. Removing the origin we get a celestial cylinder which can be
compactified into a celestial torus T with respect to which we express the mode expansions (1.5).
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The radiative field which carries information about the gluonic creation and annihilation
operators is given5 by A

p0q
z pu, zq. Our convention is such that the connection and field

strength fields are hermitian. In other words we choose Aµ “ Aa
µTa, where Ta is a

Hermitian generator satisfying the algebra rTa, Tbs “ ifab
cTc.6 The trace is normalized to

TrpTaTbq “ δab.
The first few charge aspects are identified as the dominant elements in the radial

expansion of the field strength:

R´1 “ F
p0q
z̄u , R0 “

1
2

´

F p0q
ru ` F

p0q
z̄z

¯

, R1 “ F p0q
rz . (2.5)

The higher spin charge aspects Rs of conformal dimension and spin p∆, Jq “ p2, sq are
constructed recursively by solving a system of differential equations given by

BuRs “ DRs´1 ` irAp0q
z , Rs´1sg, s ě 0. (2.6)

These evolution equations are consequences of the Yang-Mills evolution for R0 and R1. For
higher spin s ě 1 they correspond to a truncation of the full Yang-Mills equations expanded
in 1{r. These equations parallel the ones extracted from the asymptotic Einstein equations
in [7, 8]. A complete derivation of this result starting from the Yang-Mills equations (2.1)
will be provided elsewhere [15]. The spin-0 charge is the leading while the spin-1 charge is
the subleading one.

The recursion relations (2.6) are formally solved in terms of R´1 by

Rs “ pB´1
u rD ` iAdpAp0q

z qsqs`1R´1, (2.7)

where AdpXqY “ rX, Y sg denotes the adjoint action and pB´1
u Oqpuq :“

şu
`8

du1Opu1q for
functionals that satisfy the boundary condition Op`8q “ 0. This expression is non-linear
in the radiation field A and it will therefore be convenient to expand the charge aspects as

Rspu, zq “
s`2
ÿ

k“1
Rk

spu, zq , (2.8)

where Rk
s is homogeneous of degree k,7 in the gauge fields A, A˚. In the following we use

that Rk
s “ 0 unless k ď s ` 2. At linear order we simply have

R1
spu, zq “ pB´1

u Dqs`1F
p0q
z̄u pu, zq , (2.9)

while the higher order components are recursively determined in terms of the lower order
ones by

Rk
spu,zq“ i

s
ÿ

n“k´2
pB´1

u qs´n`1Ds´n
”

Ap0q
z pu,zq,Rk´1

n´1pu,zq
ı

g
for k ě 2 . (2.10)

5In order to lighten the notation, we shall commonly indicate only z in the functional dependence of
the fields on the coordinates on the sphere, e.g. A

pnq
z pu, zq, but it should be understood that in general the

dependence is on both z, z̄.
6Our conventions here are such that the structure constants differ by a sign compared to those in [13, 14].
7More precisely it is of degree 1 in A˚ and degree k ´ 1 in A.
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It turns out that (2.9) and (2.10) suffer from divergences in the limit u Ñ ´8, the past
boundary I`

´ of future null infinity I`. These divergences become evident, for instance,
when computing their action on A

p0q
z pu1, zq, leading to terms proportional to powers of u

and thus divergent in the limit u Ñ ´8. This can be remedied by defining the renormalized
charge aspects

rk
s pzq :“ lim

uÑ´8

s
ÿ

ℓ“0

p´qs´ℓus´ℓ

ps ´ ℓq! Ds´ℓRk
ℓ pu, zq, (2.11)

whose action on the corner phase space at I`
´ is finite. The first two non-linear components

of these charges will be central to our analysis and are given explicitly by (see appendix A)

r1
spzq“ p´qs`1

ż 8

´8

us

s! Ds`1F
p0q
z̄u pu,zq , (2.12)

r2
spzq“´i

s
ÿ

n“0

ż 8

´8

p´uqs´n

ps´nq! Ds´n
”

Ap0q
z pu,zq,pB´1

u DqnF
p0q
z̄u pu,zq

ı

g
, (2.13)

r3
spzq“

s
ÿ

n“1

n´1
ÿ

k“0

ż 8

´8

du
p´uqs´n

ps´nq!

ˆDs´n

„

Ap0q
z pu,zq,pB´1

u qk`1Dk
”

Ap0q
z pu,zq,pB´1

u Dqn´k´1F
p0q
z̄u pu,zq

ı

g

ȷ

g

. (2.14)

It will prove useful to express these charge aspects in a discrete basis where all the integrals
over I disappear, in analogy to the gravitational case recently considered in [16]. We
perform the discrete basis charge construction in section 3 and use it in section 4 to derive
the algebra (1.4).

Motivated by the holographic calculation in [1], the linear component of the analogous
commutator in gravity was first computed in [7]. A simpler derivation will be given in
section 6 using the expansion of the asymptotic fields in terms of a discrete tower of
modes recently derived in [16] (see also [17] for a complementary analysis) and reviewed in
sections 5 and 5.3, where the cubic charges are derived for the first time; in addition, we will
also provide evidence for the gravitational w1`8 loop algebra at quadratic order as well.

2.1 Discrete basis

In order to introduce the discrete basis, we first decompose the vector potential in terms of
the positive and negative energy fields defined as

A`pu, zq :“ 1
2π

ż 8

0
dωe´iωu

rA`pω, zq “ ´
1
2iπ

ż `8

´8

du1 A
p0q
z pu1, zq

pu1 ´ u ` iϵq
,

A´pu, zq :“ 1
2π

ż 8

0
dωe´iωu

rA´pω, zq “ ´
1
2iπ

ż `8

´8

du1 A
p0q˚
z pu1, zq

pu1 ´ u ` iϵq
. (2.15)

These fields enter the decomposition of the leading components Ap0q and F p0q as follows8

Ap0q
z pu, zq“ A`pu, zq ` A˚

´pu, zq , (2.16)

F
p0q
z̄u pu, zq“ F´pu, zq ` F ˚

`pu, zq . (2.17)
8Note that F˘pu, zq “ ´BuA˘pu, zq.
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We introduce also the Mellin transforms pA˘p∆q and pF˘p∆q “ i pA˘p∆` 1q of rA˘pωq and
rF˘pωq respectively

pA˘p∆q :“
ż `8

0
dωω∆´1

rA˘pωq. (2.18)

This equation implies that

pF p∆q “ ´i∆Γp∆` 1q
ż 8

´8

dupu ` iϵq´p∆`1qApuq “ i∆Γp∆q

ż 8

´8

dupu ` iϵq´∆F puq.

(2.19)

By demanding the vector potential field to belong to the Schwartz space S [18]—that is,
demanding that each component of the vector potential is a Lie algebra-valued, infinitely
continuously differentiable function with rapidly-decreasing derivatives — we can then
introduce the YM memory observables

F˘pnq :“ Res∆“´n
pF˘p∆q, n P Z` . (2.20)

These can be computed from the integrals

F`pnq :“ lim
ωÑ0`

in

n!

ˆ
ż `8

´8

du eiωuunF p0q
zu puq

˙

“
in

n!

ˆ
¿

U
du unF`puq

˙

, (2.21)

where in the first integral we take the limit ω Ñ 0 from above and in the second U is the
upper half plane contour. The negative modes F´pnq are defined by similar integrals but
with F

p0q
zu replaced by F

p0q
z̄u . These memory observables can be understood as the coefficients

in a Taylor expansion of rF˘pωq around ω “ 0, namely

rF˘pωq “
8
ÿ

n“0
F˘pnqω

n, F˘pnq “
1
n! B

n
ω
rF˘pωq

ˇ

ˇ

ˇ

ω“0`
. (2.22)

At the same time, the Goldstone fields are defined by evaluating pF˘p∆q at positive
integer ∆, namely

A˘pnq :“ lim
∆Ñn

pF˘p∆q, n P Z` . (2.23)

They correspond to Taylor coefficients in the analytic expansion of A˘puq around u “ 0

Bn
uA˘puq|u“0 “

i´1´n

2π
A˘pnq , A˘puq “

1
2iπ

8
ÿ

n“0

p´iuqn

n! A˘pnq . (2.24)

Following the gravity analysis in [16], it can be shown that (2.20) and (2.23) form a basis
for asymptotic gauge potentials that belong to the Schwartz space.

2.2 Phase space

The YM phase space at asymptotic infinity is characterized by the symplectic potential

ΘYM “
1

g2
YM

ż

I`

Tr
”

F
p0q
z̄u pu, zqδAp0q

z pu, zq ` F p0q
zu pu, zqδA

p0q
z̄ pu, zq

ı

, (2.25)

– 6 –
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where Tr denotes the Cartan-Killing form for the Lie algebra associated to the YM theory.
Modulo a canonical transformation, this can be rewritten as ΘYM “ ΘYM

` `ΘYM
´ where

ΘYM
˘ “

1
g2

YM

ż

I`

Tr
“

F˘pu, zqδA˚
˘pu, zq

‰

. (2.26)

By means of (2.21), (2.24), we can rewrite the two symplectic potential components in
terms of the YM memory and Goldstone modes as

ΘYM
˘ “

1
2πig2

YM

8
ÿ

n“0

ż

S
Tr

“

F˘pn, zqδA˚
˘pn, zq

‰

. (2.27)

In the quantum theory, the only non-trivial commutator is then given by

rFa
˘pm, zq,Ab:

˘ pn, z1qs “ 2πg2
YMδabδn,mδ2pz, z1q. (2.28)

3 YM corner charges

In this section we rewrite YM higher spin charge operators in terms of the soft variables
introduced in the previous section. We then compute their action on the discrete modes
and review the connection with the celestial OPE [1, 19]. Finally we demonstrate that the
global subalgebra of quadratic charges is precisely (1.4).

3.1 Charge aspects

All the charge operators of level k can be decomposed as sum of a positive helicity charge
and the conjugate of a negative helicity charge operator according to

rk
s pzq “ rk

s`pzq ` rk:
s´pzq. (3.1)

The decomposition of the linear, quadratic and cubic charges follows straightforwardly
from (2.12), (2.13), (2.14). One finds that

r1
s˘pzq “ ´i´sDs`1F:

˘ps, zq . (3.2)

Similarly for the quadratic and cubic charges one finds that (see appendix A.1)

r2
s˘pzq “ ´

i´s

2π

8
ÿ

ℓ“0

s
ÿ

n“0

˜

ℓ ` n

ℓ

¸

Dn
”

A˘pℓ, zq, Ds´nF
:
˘ps ` ℓ, zq

ı

g
, (3.3)

r3
s˘pzq “ ´

i´s

p2πq2

8
ÿ

ℓ“0

8
ÿ

m“0

s´1
ÿ

n“0

s´1
ÿ

k“n

˜

ℓ ` n

ℓ

¸˜

m ` ℓ ` k ` 1
m

¸

ˆ Dn

„

A˘pℓ, zq, Dk´n
”

A˘pm, zq, Ds´k´1F:
˘ps ` ℓ ` m, zq

ı

g

ȷ

g

. (3.4)

These charge aspects are valued in the Lie algebra g.
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3.2 Charges

Given the charge aspects expressed as corner integrals of the memory and Goldstone
variables, we introduce the symmetry charges labeled by Lie algebra valued generators of
spin ´s denoted τs “ τa

s Ta,9

Rs˘pτq :“
ż

S
Tr pτpzqrs,˘pzqq “

ż

S
τapzqr

a
s˘pzq . (3.5)

Explicitly, the positive/negative helicity linear, quadratic and cubic charges read

R1
s˘pτq“ is

ż

S
Tr

´

Ds`1τpzqF:
˘ps,zq

¯

, (3.6)

R2
s˘pτq“

i´s

2π

8
ÿ

ℓ“0

s
ÿ

n“0
p´qn

˜

ℓ`n

ℓ

¸

ż

S
Tr

ˆ

Dnτpzq
”

Ds´nF
:
˘ps`ℓ,zq,A˘pℓ,zq

ı

g

˙

, (3.7)

R3
s˘pτq“´

i´s

p2πq2

8
ÿ

ℓ“0

8
ÿ

m“0

s´1
ÿ

n“0

s´1
ÿ

k“n

p´qn

˜

ℓ`n

ℓ

¸˜

m`ℓ`k`1
m

¸

ˆ

ż

S
Tr

˜

Dnτpzq

„

A˘pℓ,zq,D
k´n

”

A˘pm,zq,Ds´k´1F:
˘ps`ℓ`m,zq

ı

g

ȷ

g

¸

.

(3.8)

3.3 Quadratic charge action

The action of the quadratic charge operator can be conveniently written in terms of the Lie
algebra valued operator

P a
s pα; τq :“

s
ÿ

n“0

p´αqn

n! pDnτa
s pzqqD

s´n, (3.9)

where pxqn “ xpx ´ 1q ¨ ¨ ¨ px ´ n ` 1q denotes the falling factorial. An essential property of
this operator, proven in appendix A.2 concerns its behavior under transposition. Given two
lie algebra functions pA, Bq on S, it satisfies

ż

S
Tr prPspℓ ` 1; τq, Bpzqsg Apzqq “ ´p´1qs

ż

S
Tr

´

rPsp´ps ` ℓ ` 1q; τq, Apzqsg Bpzq
¯

.

(3.10)

This implies that the quadratic charge can be conveniently written in terms of this operator
as (see appendix A.2)

R2
s˘pτq “

i´s

2π

8
ÿ

ℓ“0

ż

S
Tr

´

rPspℓ ` 1; τq,F:
˘ps ` ℓ, zqsgA˘pℓ, zq

¯

,

“ ´
is

2π

8
ÿ

ℓ“s

ż

S
Tr

´

rPsp´pℓ ` 1q; τq,A˘pℓ ´ s, zqsg F
:
˘pℓ, zq

¯

. (3.11)

9We define
ş

S
:“

ş

S
d2z

?
γ, with γ the determinant of the 2-sphere metric, and

ş

I` :“
ş8

´8
du

ş

S
.

When different coordinate systems on the 2-sphere z, z1 are introduced, we make the measure explicit to
avoid confusion.
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From the expressions (3.7) and (3.11) for the charges we can evaluate the quantum
commutator of charges when acting on the discrete fields. One finds that

rR2
s˘pτq,F

:b
˘ pn, zqs “ i´sg2

YM

”

Pspn ` 1; τq,F:
˘ps ` n, zq

ıb

g
(3.12)

rR2
s˘pτq,A

b
˘pn, zqs “ isg2

YM rPsp´pn ` 1q; τq,A`pn ´ s, zqsbg . (3.13)

The quantum commutators of R2
s˘pτq with Ab

¯ and F
:b
¯ obviously vanish.

Given that Ab
`pn, zq9 lim∆“1`n Âbp∆q and that Fb

`pn, zq9Res∆“1´nÂbp∆q one can
deduce from this the action on the Mellin transform of the asymptotic field. It is simply
given by

rR2
s˘pτq, Â:b

˘ p∆qs “ i´sg2
YM

”

Psp´∆` 2; τq, Â:
˘p∆´ sq

ıb

g
, (3.14)

rR2
s˘pτq, Âb

˘p∆qs “ isg2
YM

”

Psp´∆; τq, Â˘p∆´ sq
ıb

g
. (3.15)

3.4 Celestial OPE from charge action

From (3.14) we get that the commutator between the charge aspect and the Mellin transform
of the radiative field is
”

r2a
s`pz1q, Â

:b
` p∆2,z2q

ı

“ i1´sg2
Y M fab

c

s
ÿ

n“0
p´1qs´n p∆2´2qs´n

ps´nq! B
s´n
1 δp2qpz12qB

n
2 Â:c

` p∆2´s,z2q.

(3.16)

The correspondence between the Fock space commutator and the OPE is obtained through
the identification

r1a
s pz1qÂ

b:
` p∆2, z2q „ ´

1
2

”

r2a
s`pz1q, Âb:

` p∆2, z2q
ı

. (3.17)

Now given that

r1
s˘pzq “ ´i´sBs`1

z F
:
˘ps, zq, Bs`1

z

1
n!

ˆ

zn

z̄

˙

“ 2πBs´n
z δp2qpzq, (3.18)

we obtain the OPE

F
:a
` ps,z1qÂ

:b
` p∆2,z2q„ i

g2
Y M

4π

fab
c

z̄12

s
ÿ

n“0
p´1qs´n p∆2´2qs´n

ps´nq!
zn

12B
n
2

n! Â:c
` p∆2´s,z2q. (3.19)

Finally, one uses that F
:a
˘ ps, zq “ ´iRes∆“1´sÂ:a

˘ p∆q and the evaluation Res∆“1´sΓp∆´

1` nq “ p´1qs´n

ps´nq! for n ď s, to see that the previous OPE is the residue at ∆1 “ 1´ s of

Â:a
` p∆1,z1qÂ

:b
` p∆2,z2q„´

g2
Y M

4π

fab
c

z̄12

s
ÿ

n“0

Γp∆1´1`nqΓp∆2´1q
Γp∆1`∆2`n´2q

zn
12B

n
2

n! Â:c
` p∆1`∆2´1,z2q.

(3.20)
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This is the complex conjugate of the tree level OPE for positive-helicity gluons derived
in [1, 19].10 The appearance of hermitian conjugates in (3.20) is due to our conventions
for the charges: from (3.1) and (3.2) we see that r1

s` create and annihilate soft gluons of
respectively negative and positive helicity at I`. Our convention for the helicity of outgoing
gluons coincides with that in the literature, as can be seen from (2.16).

3.5 Global charge

YM global charges are characterized by the condition

Ds`1τspzq “ 0. (3.21)

By means of the generalized Leibniz rule11

Dατa
s Ds´α “

«

s
ÿ

k“0
`

8
ÿ

k“s`1

ff

pαqk

k! pDkτa
s qD

s´k , (3.22)

we conclude that, for the global charges, the second sum in (3.22) drops out and we can
write the operator (3.9) simply as a conjugation

P a
s p´α; τsq “ Dατa

s Ds´α , (3.23)

where the product is simply the composition of the operations of differentiation and
multiplication by τs. This means that we can write the quantum commutator (3.15) in
terms of the adjoint action defined around (2.7) as

rR2
s˘pτq, Âb

˘p∆qs “ isg2
YMAdrPsp´∆; τqsÂ˘p∆´ sq “ isg2

YMD∆Adrτ sDs´∆Â˘p∆´ sq.

(3.24)

From this we see that the double quantum commutator action on Âp∆q is given by

rR2
s˘pτq, rR

2
s1˘pτ

1q, Âb
˘p∆qss “ is`s1g4

YMAdrPs1p´∆; τ 1qsAdrPsps
1 ´∆; τqsÂ˘p∆´ s ´ s1q.

(3.25)

When τ and τ 1 are parameters of global symmetry we simply have that

AdrPs1p´∆; τ 1qsAdrPsps
1 ´∆; τqs “ D∆Adrτ 1sAdrτ sDs`s1´∆. (3.26)

The antisymmetrization of this action with respect to s Ø s1 gives the action of the
commutator rR2

s˘pτq, R2
s1˘pτ

1qs on Âp∆q. Using that rAdrτ 1s, Adrτ ss “ Adprτ 1, τ sq, we thus
obtain that the algebra of global charges satisfies for each helicity the global S-algebra:

rR2
s˘pτq, R2

s1˘pτ
1qs “ ´g2

YMR2
s`s1,˘prτ, τ 1sgq. (3.27)

We can also conclude from our definition that the commutator of global charges of opposite
helicities commute

rR2
s˘pτq, R2

s1¯pτ
1qs “ 0. (3.28)

Since the total charge is the sum Rspτq “ Rs`pτq`R:
s´pτq we have that the charge algebra

for Rs is identical to (3.27).
10Recall that the outgoing celestial operators O`a

∆ are related to Âa
` via O`a

∆ “ ´ 4πi
gY M

Âa
`.

11This follows from the expansion px ` yqα
“

ř8

n“0
pαqn

n! xnyα´n valid when x ă y.
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On the torus T , the global algebra is a loop algebra parametrized by global charge
parameters τpn, mq “ zm` s

2 z̄n´ s
2 T a, where n, m P N and ´ s

2 ď m ď s
2 . In this case we

define S
s
2`1,a
m,n :“ R2

s˘pτpn, mqq. This is the algebra revealed by [2] from the study of the
OPE. It is the analog for Yang-Mills of the w1`8 loop algebra. This global algebra also
arises naturally in the study of self-dual Yang-Mills in the twistor formulation [20, 21].

It is important to appreciate that on the sphere S2 the set of global charges vanish
if we insist that τ is a regular function on S2.12 Non-trivial charges can be obtained by
allowing for poles in τ at isolated points on the sphere and (3.21) will only hold away from
these points. As we will see, the non-linear contributions to the charges such as (3.8) will
be crucial in this case to ensure that the charge algebra closes.

4 YM corner algebra for the local charges

Given the charges derived in section 3.2 and the commutator (2.28), we are now ready to
compute their algebra at linear and quadratic order in the same helicity sector. We present
the calculations for the positive helicity sector, however similar results hold for the negative
one as well.

4.1 Linear order

In this section we compute the linear charge algebra in the positive helicity sector. We start
by evaluating

rR2
s`pτq, R1

s1`pτ
1qs “ rR2

s`pτq, is1
ż

S
Tr

´

Ds1`1τ 1F
:
`ps

1, zq
¯

s

“ is1´sg2
Y M

ż

S
Tr

´

Ds1`1τ 1rPsps
1 ` 1; τq,F:

`ps ` s1, zqsg

¯

“ is1´sg2
Y M

ż

S

s
ÿ

n“0

p´s1 ´ 1qn

n! Tr
´

rDs1`1τ 1, Dnτ sgD
s´nF

:
`ps ` s1, zq

¯

,

(4.1)

where in the first line we used the definition of the linear charge (3.6), in the second line we
used (3.12), and in the third line we used (3.9). Integrating by parts and using the binomial
expansion, we find

rR2
s`pτq, R1

s1`pτ
1qs “ is1`sg2

Y M

s
ÿ

n“0

s´n
ÿ

p“0
p´1qn

˜

s ´ n

p

¸

p´s1 ´ 1qn

n!

ˆ

ż

S
Tr

´

rDs`s1`1´n´pτ 1, Dn`pτ sgF
:
`ps ` s1, zq

¯

“ is1`sg2
Y M

s
ÿ

p“0

˜

s ` s1 ` 1
p

¸

ż

S
Tr

´

rDs`s1`1´pτ 1, Dpτ sgF
:
`ps ` s1, zq

¯

,

(4.2)
12The reason is that τs is a spin ´s function on the sphere and therefore it can be expanded in spin

spherical harmonics Y ´s
ℓm with ℓ ě s [22]. We have that Ds`1Y ´s

ℓm “

b

pℓ`sq!
pℓ´sq! DY 0

ℓm, where Y 0
ℓm “ Yℓm are

the usual scalar spherical harmonics. From this we see that the global condition reduces to DYℓm “ 0 which
can only be satisfied for ℓ “ 0 hence for s “ 0 since s ď ℓ.
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where in the last line we shifted variables p Ñ p´n, switched sums
řs

n“0
řs

p“n “
řs

p“0
řp

n“0
and evaluated the sum over n.

The linear contribution to the charge commutators is found by adding the term with
s Ø s1, τ Ø τ 1, namely

rRs`pτq, Rs1`pτ
1qs1 “ rR2

s`pτq, R1
s1`pτ

1qs ´ rR2
s1`pτ

1q, R1
s`pτqs. (4.3)

This can be immediately evaluated by noting that the binomial coefficient is invariant under
p Ñ ´p ` s ` s1 ` 1

˜

s ` s1 ` 1
p

¸

Ñ

˜

s ` s1 ` 1
p

¸

, (4.4)

while
s1
ÿ

p“0
Ds`s1`1´pτaDpτ 1b “

s`s1`1
ÿ

p“s`1
Ds`s1`1´pτ 1bDpτa. (4.5)

As a result, it follows that

rRs`pτq,Rs1`pτ
1qs1 “ is1`sg2

Y M

s`s1`1
ÿ

p“0

˜

s`s1`1
p

¸

ż

S
Tr

´

rDs`s1`1´pτ 1,Dpτ sgF
:
`ps`s1,zq

¯

“´g2
Y M R1

s`s1,`prτ,τ 1sgq. (4.6)

4.2 Quadratic order

The quadratic commutator receives two types of contributions, namely

rRs`pτq,Rs1`pτ
1qs2 “rR2

s`pτq,R
2
s1`pτ

1qs`rR1
s`pτq,R

3
s1`pτ

1qs`rR3
s`pτq,R

1
s1`pτ

1qs.

(4.7)
We will show that, quite miraculously, the local contribution to the quadratic-quadratic
charge commutator that spoils the algebra is precisely cancelled by the cubic-linear com-
mutators. The remaining pieces of the cubic-linear commutators ensure that the global
algebra (3.27) is promoted to a local one. In the following sections we evaluate the
quadratic-quadratic and linear-cubic contributions. We present the main steps leading to
the cancellation and defer the details to appendix B.

4.2.1 Quadratic charge commutator

We start by computing the quadratic charge commutator

rR2
s`pτq, R2

s1`pτ
1qs “

«

R2
s`pτq,

i´s1

2π

8
ÿ

ℓ“0

ż

s
Tr

´

rPs1pℓ ` 1; τ 1q,F:
`ps

1 ` ℓqsgA`pℓq
¯

ff

” I1ps, τ ; s1, τ 1q ` I2ps, τ ; s1, τ 1q,

(4.8)

where I1, I2 arises from the action of R2
s` on F

:
` and A` using the charge actions (3.12)

and (3.13). They read

I1ps,τ ;s1, τ 1q“
i´s´s1

2π
g2

Y M

8
ÿ

ℓ“0

ż

S
Tr

´

rPs1pℓ`1;τ 1q, rPsps
1`ℓ`1;τq,F:

`ps
1`s`ℓqsgsgA`pℓq

¯

,

I2ps,τ ;s1, τ 1q“
is´s1

2π
g2

Y M

8
ÿ

ℓ“s

ż

S
Tr

´

rPs1pℓ`1;τ 1q,F:
`ps

1`ℓqsgrPsp´ℓ´1;τq,A`pℓ´sqsg

¯

.
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The transposition property (3.10) simply implies (after shifting ℓ Ñ ℓ ` s in I2) that

I2ps, τ ; s1, τ 1q “ ´I1ps
1, τ 1; s, τq. (4.9)

It therefore suffices to evaluate I1 and then antisymmetrize in ps, τ ; s1, τ 1q. We have

I1ps,τ ;s1, τ 1q“
i´s´s1

2π
g2

Y M

8
ÿ

ℓ“0

s1
ÿ

n“0

s
ÿ

m“0

s1´n
ÿ

p“0

p´ℓ´1qn

n!
p´s1´1´ℓqm

m!

˜

s1´n

p

¸

ˆ

ż

S
Tr

´

rDnτ 1, rDp`mτ,Ds`s1´p´n´mF
:
`ps

1`s`ℓqsGsGA`pℓq
¯

,

(4.10)

where in the second line we used the binomial expansion. We now change variables
p Ñ p ´ m ´ n and perform the sum over m upon changing sums

s
ÿ

m“0

s1`m
ÿ

p“m`n

“

s`s1
ÿ

p“n

minrp´n,ss
ÿ

m“maxr0,p´s1s

. (4.11)

The different cases are worked out in appendix B.1, the result being that the sum splits
into two contributions

I1ps, τ ; s1, τ 1q “ J1ps, τ ; s1, τ 1q ` J 1
1ps, τ ; s1, τ 1q (4.12)

where

J1 “
i´s´s1g2

Y M

2π

8
ÿ

ℓ“0

s1
ÿ

n“0

s`s1
ÿ

p“n

p´1qp

˜

p

n

¸˜

ℓ ` p

ℓ

¸

ˆ

ż

S
Tr

´

rDnτ 1, rDp´nτ, Ds`s1´pF
:
`ps

1 ` s ` ℓqsgsgA`pℓq
¯

,

J 1
1 “

i´s´s1

2π
g2

Y M

8
ÿ

ℓ“0

s1´1
ÿ

n“0

s1`s
ÿ

p“n`s`1
p´1qs`n

˜

ℓ ` n

n

¸˜

1` ℓ ` s ` s1

s ` 1

¸˜

s1 ´ n

p ´ n ´ s ´ 1

¸

ˆ F1ps, s1q

ż

S
Tr

´

rDnτ 1, rDp´nτ, Ds`s1´pF
:
`ps

1 ` s ` ℓqsgsgA`pℓq
¯

. (4.13)

In (4.13) we defined the hypergeometric function

F1ps, s1q ” 3F2
“

1, 1` n ´ p ` s, 2` ℓ ` s ` s1; s ` 2, 2´ p ` s ` s1; 1
‰

. (4.14)

The term J1 is present for all ranges of admissible p, while the second term J 1
1 arises only

for p ą n ` s. This means that the term J 1
1 vanishes for global transformation parameters.

We conclude that the commutator is

rR2
s`pτq, R2

s1`pτ
1qs “ J1ps, τ ; s1, τ 1q ` J 1

1ps, τ ; s1, τ 1q ´ ps Ø s1, τ Ø τ 1q. (4.15)
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4.2.2 Cubic charge commutators

Next we compute the cubic-linear charge commutator

rR1
s`pτq, R3

s1`pτ
1qs :“ I3ps, τ ; s1, τ 1q ` I4ps, τ ; s1, τ 1q, (4.16)

where I3 and I4 are respectively associated with the commutator of R1
s` in (3.6) with

A`pℓq and A`pmq in (3.8). For the first contribution, using that rR1
s`pτq,A`pℓqs “

´is2πg2
Y M δs,ℓD

s`1τ , we find

I3ps, τ ; s1, τ 1q “
i´s1`s

2π
g2

Y M

8
ÿ

m“0

s1´1
ÿ

n“0

s1´1
ÿ

k“n

k´n
ÿ

p“0
p´1qk

˜

s ` n

s

¸˜

s ` m ` k ` 1
m

¸˜

k ´ n

p

¸

ˆ

ż

S
Tr

´

rDn`pτ 1, Ds`1`k´n´pτ sgrApmq, Ds1´k´1F:ps ` s1 ` mqsg

¯

.

(4.17)

After a straightforward series of changes of variables and sum switches that we detail in
appendix B.2, this can be shown to simplify to

I3ps, τ ; s1, τ 1q “
i´ps`s1q

2π
g2

Y M

8
ÿ

m“0

s1´1
ÿ

n“0

s`s1
ÿ

k“n`s`1
p´1qk

˜

k

n

¸˜

m ` k

m

¸

ˆ

ż

S
Tr

´

rDnτ 1, Dk´nτ sgrD
s`s1´kF:ps ` s1 ` mq,Apmqsg

¯

.

(4.18)

For the second contribution, direct binomial expansion yields

I4ps,τ ;s1, τ 1q“
is´s1

2π
g2

Y M

8
ÿ

ℓ“0

s1´1
ÿ

n“0

s1´1
ÿ

k“n

p´1qn

˜

ℓ`n

ℓ

¸˜

s`k`ℓ`1
s

¸

ˆ

ż

S
Tr

”

rDnτ 1,A`pℓqsgD
k´n

´

rDs`1τ,Ds1´k´1F:
`ps`ℓ`s1qsg

¯ı

“
is´s1

2π
g2

Y M

8
ÿ

ℓ“0

s1´1
ÿ

n“0

s1´1
ÿ

k“n

p´1qn

˜

ℓ`n

ℓ

¸˜

s`k`ℓ`1
s

¸

ˆ

k´n
ÿ

p“0

˜

k´n

p

¸

ż

S
Tr

´

rDnτ 1,A`pℓqsgrD
s`1`pτ,Ds1´n´p´1F:

`ps`ℓ`s1qsg

¯¯

.

(4.19)

After a short series of straightforward manipulations detailed in appendix B.3 we find

I4ps, τ ; s1, τ 1q “ J4ps, τ ; s1, τ 1q ` J 1
4ps, τ ; s1, τ 1q, (4.20)

where

J4ps, τ ; s1, τ 1q “ ´
i´s1´s

2π
g2

Y M

8
ÿ

ℓ“0

s1´1
ÿ

n“0

s`s1
ÿ

p“n`s`1
p´1qp

˜

ℓ ` p

ℓ

¸˜

p

n

¸

ˆ

ż

S
Tr

´

rDnτ 1, rDp´nτ, Ds`s1´pF
:
`ps ` s1 ` ℓqsgsgA`pℓq

¯

(4.21)
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and

J 1
4ps,τ ;s1, τ 1q“

i´s1´s

2π
g2

Y M

8
ÿ

ℓ“0

s1´1
ÿ

n“0

s`s1
ÿ

p“n`s`1
p´1qn`s

˜

ℓ`n

ℓ

¸˜

s1´n

p´s´1´n

¸˜

s1`s`ℓ`1
s

¸

ˆF2ps,s1q

ż

S
Tr

´

rDnτ 1, rDp´nτ,Ds`s1´pF
:
`ps`s1`ℓqsgsgA`pℓq

¯

.

(4.22)

Here we defined

F2ps, s1q ” 3F2r1, 1´ n ` s1, 2` l ` s ` s1, 2` ℓ ` s1, 2´ p ` s ` s1, 1s. (4.23)

From this we conclude that

rR1
s`pτq, R3

s1`pτ
1qs ” I3ps, τ ; s1, τ 1q ` J4ps, τ ; s1, τ 1q ` J 1

4ps, τ ; s1, τ 1q. (4.24)

From (4.18) and (4.19) it is easy to see that (4.16) vanishes provided that τ, τ 1 obey the
global charge condition (3.21).

4.2.3 Full commutators

We can now put everything together. We first notice that, quite remarkably, the contributions
from the hypergeometric functions cancel each other! In particular we find that

J 1
1ps, τ ; s1, τ 1q ` J 1

4ps, τ ; s1, τ 1q “ 0 (4.25)

due to the hypergeometric identity

F1ps, s1q “ ´
ps ` 1q

p1` s1 ` ℓq
F2ps, s1q (4.26)

proven in appendix B.4. It then follows that

J1ps, τ ; s1, τ 1q ` J4ps, τ ; s1, τ 1q

“
i´s1´s

2π
g2

Y M

8
ÿ

ℓ“0

s1
ÿ

n“0

s`n
ÿ

p“n

p´1qp

˜

ℓ ` p

ℓ

¸˜

p

n

¸

ˆ

ż

S
Tr

´

rDnτ 1, rDp´nτ, Ds`s1´pF
:
`ps ` ℓ ` s1qsgsgA`pℓq

¯

.

(4.27)

This equality follows from the cancellations of sums
s1
ÿ

n“0

s`s1
ÿ

p“n

´

s1´1
ÿ

n“0

s`s1
ÿ

p“n`s`1
“

s1
ÿ

n“0

n`s
ÿ

p“n

. (4.28)

In appendix B.4 we show as well that the anti-symmetrization of J1`J4 under the exchange
ps, τq Ø ps1, τ 1q simplifies into

J1ps, τ ; s1, τ 1q ` J4ps, τ ; s1, τ 1q ´ ps Ø s1, τ Ø τ 1q

“
i´s1´s

2π
g2

Y M

8
ÿ

ℓ“0

s1
ÿ

n“0

s`n
ÿ

p“n

p´1qp

˜

ℓ ` p

ℓ

¸˜

p

n

¸

ˆ

ż

S
Tr

´

rrDnτ 1, Dp´nτ sg, Ds`s1´pF
:
`ps ` ℓ ` s1qsgA`pℓq

¯

. (4.29)
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To evaluate the commutator at quadratic order we have to add this contribution
to I3ps, τ ; s1τ 1q ´ I3ps

1, τ 1; s, τq given by (4.18). As a result, we find as shown in ap-
pendix B.4 that

rRs`pτ q,Rs1`pτ
1
qs

2
“

i´s´s1

2π
g2

Y M

8
ÿ

ℓ“0

˜

s1
ÿ

n“0

s`n
ÿ

p“n

`

s`s1
ÿ

p“s`1

p´s´1
ÿ

n“0
`

s`s1
ÿ

p“s1`1

p
ÿ

n“1`s1

¸

p´1qp

˜

p

n

¸˜

ℓ`p

ℓ

¸

ˆ

ż

S
Tr

´

rDnτ 1,Dp´nτ sgrD
s`s1

´pF
:
`ps

1
`s`ℓq,A`pℓqsg

¯

.

(4.30)
After a series of straightforward manipulations described in appendix B.4, the sum can be
simply repackaged as

řs`s1

p“0
řp

n“0. The sum over n can be reabsorbed into Dprτ, τ 1s using
the Leibniz rule and we remarkably find that (4.30) reduces to

rRs`pτq, Rs1`pτ
1qs2 “ ´g2

YMR2
s`s1,`prτ, τ 1sgq. (4.31)

5 Gravity corner charges

Similarly to the YM case, in gravity the vacuum asymptotic Einstein’s equations (EE)
around null infinity can be recast as a set of recursive differential equations for higher spin
gravitational charge aspects Qs given by [7, 8, 23]

BuQs “ DQs´1 `
s ` 1
2 CQs´2, Q´2 “

1
2BuN, Q´1 “

1
2DN, s ě 0, (5.1)

with Cpu, zq representing the shear field encoding radiation data, N “ BuC˚ representing
the news field and Q0 the Bondi mass. The relation between (5.1) and the vacuum EE is
exact up to s “ 3 [10]; for s ě 4 corrections in higher powers of the shear field are expected
to appear. Initially neglecting those corrections — that do not affect the linear order same
helicity algebra — it was shown in [7] that the dynamical system defined by (5.1) provides
a representation of the w1`8 loop algebra at linear order. This established a direct relation
between the celestial OPE [1, 19, 24, 25] of two conformal primary gravitons in the collinear
and soft limit with the commutator action of the quadratic order (hard) charge contribution
on the shear field. This clarified the gravitational origin of the w1`8 symmetry originally
discovered through celestial OPE techniques in [1, 2].

In this second part of the paper, we are going to employ the newly introduced discrete
basis for celestial holography [16] in order to investigate the fate of such symmetry beyond
the linear level.

5.1 Discrete basis and phase space

We introduce the shear decomposition

Cpuq “ C`puq ` C˚
´puq, (5.2)

with the positive and negative helicity graviton components

C`puq :“
1
2π

ż 8

0
dωe´iωuC̃`pωq “ ´

1
2iπ

ż `8

´8

du1 Cpu1q

pu1 ´ u ` iϵq
, (5.3a)

C´puq :“
1
2π

ż 8

0
dωe´iωuC̃´pωq “ ´

1
2iπ

ż `8

´8

du1 C˚pu1q

pu1 ´ u ` iϵq
. (5.3b)
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Their Fourier and Mellin transforms are respectively given by

rC`pωq :“
ż `8

´8

dueiωuCpuq, rC´pωq :“
ż `8

´8

dueiωuC˚puq, (5.4)

and

pC`p∆q “ i∆Γp∆q

ż `8

´8

du
Cpuq

pu`iϵq∆ , pC´p∆q “ i∆Γp∆q

ż `8

´8

du
C˚puq

pu`iϵq∆ . (5.5)

Similarly, we can decompose the news field Npuq “ N´puq ` N˚
`puq, where

N˘puq :“ BuC˘puq.
The the higher spin, positive and negative energy memory observables are then defined as

M˘pnq :“ Res∆“´n
pN˘p∆q, n P Z`. (5.6)

These can be conveniently written also as

M`pnq :“ lim
ωÑ0`

in

n!

ˆ
ż `8

´8

dueiωuun
BuCpuq

˙

, M´pnq :“ lim
ωÑ0`

in

n!

ˆ
ż `8

´8

dueiωuun
BuC˚

puq

˙

.

(5.7)

Note that, in analogy with the YM case, we also have13

1
s!

ż 8

´8

duusNpuq “ M˚psq “
`

i´sM´psq ` isM˚
`psq

˘

. (5.8)

The memory observables M˘pnq provide a Taylor expansion coefficients of rN˘pωq

around ω “ 0, as

rN˘pωq “
8
ÿ

n“0
M˘pnqω

n, M˘pnq “
1
n! B

n
ω
rN˘pωq

ˇ

ˇ

ˇ

ω“0`
. (5.9)

On the other hand, by evaluating the news Mellin transform at positive integer conformal
dimension ∆ “ n, we obtain the Goldstone operators

S˘pnq :“ lim
∆Ñn

pN˘p∆q, n P Z` . (5.10)

The Goldstone modes provide a Taylor expansion of C˘puq around u “ 0, as

C˘puq “
i

2π

8
ÿ

n“0

p´iuqn

n! S˘pnq . (5.11)

The gravitational phase space at asymptotic infinity is characterized by the radiative
symplectic potential [26–28]

ΘGR “
2
κ2

ż

I`

Npu, zqδCpu, zq, (5.12)

13Our conventions here differ by 1{2 from [16].
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with κ “
?
32πG. This can be decomposed (up to a canonical transformation) into positive

and negative helicity components ΘGR “ ΘGR
` `ΘGR

´ , each parametrized by the respective
infinite tower of memory and their conjugate (complex conjugate) Goldstone operators as

ΘGR
˘ “

2
κ2

ż

I`

N˘pu, zqδC˚
˘pu, zq “

1
iπκ2

8
ÿ

n“0

ż

S
M˘pn, zqδS˚˘pn, zq . (5.13)

At the quantum level then, the only non-trivial commutators are

rM˘pn, zq, S:˘pm, z1qs “ πκ2δn,mδ2pz, z1q. (5.14)

5.2 Charge aspects

The charge aspects solving (5.1) can again be expanded in powers of radiation fields as

Qs “

maxr2,s`1s
ÿ

k“1
Qk

s . (5.15)

At a given order k in powers of radiation fields, the renormalized aspects can be expressed as

q̂k
s pu, zq “

s
ÿ

n“0

p´uqs´n

ps ´ nq! Ds´nQk
npu, zq

“
1
2B

´1
u

s
ÿ

ℓ“0
pℓ ` 1qp´uqs´ℓ

ps ´ ℓq! Ds´ℓ
”

Cpu, zqQk´1
ℓ´2 pu, zq

ı

. (5.16)

As clear from the expression above, the higher spin charges can be recursively expressed as
a nested product of integrals over I. The discrete basis introduced in [16] allows one to
eliminate all the time integrals and obtain expressions for the charges as a single integral over
a corner at arbitrary value of retarded time u. In the rest of the paper we will concentrate
on the case u “ 0, but formulas for generalization to arbitrary u “ u0 can be found in [16].
Let us first provide a brief review of the main ingredients of the new discrete basis.

5.3 Charges

As shown in [7, 16], the renormalized higher spin charges in gravity are defined as

Qspτq :“
ż

S
qspzqτpzq, (5.17)

where

qspzq “ lim
uÑ´8

q̂spu, zq. (5.18)

By performing a decomposition into positive and negative helicity components, for each
order we can define

Qk
spτq “ ´

1
2

”

i´sQk
s`pτq ` isQ˚k

s´pτq
ı

. (5.19)

The expressions of the positive and negative helicity parts in terms of the memory and
Goldstone variables Mpnq, Spnq for the linear and quadratic orders were derived in [16] and
are respectively given by

Q1
s`pτq “ p´1qs

ż

S
Ds`2τpzqM˚

`ps, zq , Q1
s´pτq “ p´1qs

ż

S
D̄s`2τpzqM˚

´ps, zq , (5.20)
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and

Q2
s`pτq“´

1
4π

8
ÿ

n“0

s
ÿ

ℓ“0
p´qℓ`spℓ`1qps`n´ℓqs´ℓ

ps´ℓq!

ż

S
Ds´ℓτpzqS`pn,zqDℓM˚

`ps`n´1,zq,

(5.21)

Q2˚
s´pτq“´

1
4π

8
ÿ

n“0

s
ÿ

ℓ“0
p´qℓ`spℓ`1qps`n´ℓqs´ℓ

ps´ℓq!

ż

S
Ds´ℓτpzqS˚´pn,zqDℓM´ps`n´1,zq.

(5.22)

We also computed the action

rQ2
s`pτq, S`pn, zqs “ ´

p´qsκ2

4

s
ÿ

k“0
ps ´ k ` 1q

˜

n ` 3
k

¸

DkτpzqDs´kS`pn ´ s ` 1, zq .

(5.23)

In appendix C we compute the cubic charges in the discrete basis and their action on
the Goldstone operators. These are given respectively by

Q3
s`pτq “

p´qs

4p2πq2

8
ÿ

n“0

8
ÿ

k“0

s
ÿ

ℓ“2

ℓ´2
ÿ

m“0
p´qℓpℓ ` 1qpm ` 1q

˜

s ` n ´ ℓ

n

¸˜

s ` n ` k ´ m ´ 1
k

¸

ˆ

ż

S
d2z

?
q Ds´ℓτpzqS`pn, zq

”

Dℓ´m´2 “S`pk, zqDmM˚
`ps ` n ` k ´ 2, zq

‰

ı

,

(5.24)

and

rQ3
s`pτq,S`pn,zqs“

p´qs`1κ2

16π

8
ÿ

k“0

s
ÿ

ℓ“2

ℓ´2
ÿ

m“0

ℓ´m´2
ÿ

p“0
pℓ`1qpm`1q

ˆ

˜

n´k`2´ℓ

s´ℓ

¸˜

n´m`1
k

¸˜

ℓ´m´2
p

¸

ˆDm
“

Ds´m´2´pτpzqDpS`pn´k´s`2,zqS`pk,zq
‰

. (5.25)

6 Gravity corner algebra

As an application of the new discrete basis, we can verify that the expressions (5.20),
(5.21), (5.22) for the linear and quadratic charges in terms of the memory observables and
the Goldstone modes reproduce the Lw1`8 symmetry (loop) algebra at linear order, as
previously computed in [7]. Furthermore, we will exploit the computational advantages of
the new basis to prove the validity of the Lw1`8 loop algebra also at quadratic order, when
restricting to wedge sector, and in the general case of local charges for the choice of spins
s “ s1 “ 2.

More precisely, the wedge subalgebra WLw1`8 Ă Lw1`8 is characterized by the
following restriction of the transformation parameters

Ds`2τspzq “ 0 . (6.1)
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Note that the linear (soft) charges vanish for this choice of parameters. While on the
plane, solutions to (6.1) are polynomials of degree s ` 1 in z, on the sphere (6.1) admits
no non-trivial global solutions. Instead, (6.1) can only hold away from points zs where
Ds`2τspzq “ Dpδpz ´ zsq. The corresponding charge aspects are associated to the global
components (in a spherical harmonic decomposition) Ψps´2q

0 in the asymptotic expansion
of the Ψ0 Weyl scalar (see [7] for more details on this relation). These also represent the
relevant symmetry sector of the twistor formulation of self-dual gravity [29].

6.1 Linear order commutator

As shown in appendix D.1, the new basis considerably simplifies the calculations and, by
means of the commutation relations (5.14), it allows us to recover the Lw1`8 loop algebra
for the positive helicity piece of the charges (5.19). Explicitly, the commutator at linear
order yields

rQspτq, Qs1pτ
1qs1` “ rQ1

s`pτq, Q2
s1`pτ

1qs ` rQ2
s`pτq, Q1

s1`pτ
1qs

“
κ2

4
“

ps1 ` 1qQ1
s`s1´1,`pτ

1Dτq ´ ps ` 1qQ1
s`s1´1,`pτDτ 1q

‰

. (6.2)

The same result holds for the negative helicity piece. Some of the intricacies for the mixed
helicity sector were pointed out in [7]. We expect the computational simplifications brought
along by the new basis to help investigate them.

6.2 Quadratic order commutator of global charges

In order to compute the quadratic order of the bracket rQspτq, Qs1pτ
1qs in the global sector

(denoted by the subscript G), we use the Jacobi relation

rQ2
s`pτq, rQ

2
s1`pτ

1q, S`pn, zqssG ´ rQ2
s1`pτ

1q, rQ2
s`pτq, S`pn, zqssG

“ rrQ2
s`pτq, Q2

s1`pτ
1qs, S`pn, zqsG. (6.3)

Let us introduce the useful operatorial relation

Dα´1 rps ` 1qτD ` ps ` 1´ αqDτ sDs´α “

«

s`1
ÿ

k“0
`

8
ÿ

k“s`2

ff

ps ` 1´ kq
pαqk

k! pDkτqDs´k ,

(6.4)

which can be proven in terms of the generalized Leibniz rule (3.22). For the global
charges (6.1), this reduces to (see appendix D.2)

Dα´1 rps ` 1qτD ` ps ` 1´ αqDτ sDs´α “

s
ÿ

k“0
ps ` 1´ kq

pαqk

k! pDkτqDs´k , (6.5)

and we have the quadratic charge global action

rQ2
s`pτq,S`pn,zqsG “´

p´qsκ2

4 Dn`2 rps`1qτD`ps´n´2qDτ sDs´n´3S`pn´s`1,zq.

(6.6)

– 20 –



J
H
E
P
1
2
(
2
0
2
3
)
0
0
9

From this we obtain (see appendix D.2)

rQ2
s1`pτ

1q, rQ2
s`pτq,S`pn,zqssG´rQ2

s`pτq, rQ
2
s1`pτ

1q,S`pn,zqssG

“κ2 p´qs`s1

16

n`3
ÿ

k“0
ps`s1´kq

˜

n`3
k

¸

Dkrτ,τ 1sDs`s1´1´kS`pn´s´s1`2,zq , (6.7)

where

rτ, τ 1s :“ ps ` 1qτDτ 1 ´ ps1 ` 1qτ 1Dτ . (6.8)

It can easily be checked (see again appendix D.2) that this matches exactly the action

´
κ2

4
“

ps1`1qrQ2
s`s1´1,`pτ

1Dτq,S`pn,zqs´ps`1qrQ2
s`s1´1,`pτDτ 1q,S`pn,zqs

‰

, (6.9)

where notice that in this case we do not need to restrict to the global charges. Hence, from
the Jacobi relation (6.3), we immediately obtain the quadratic commutator of the global
charges

rQ2
s`pτq, Q2

s1`pτ
1qsG “

κ2

4
“

ps1 ` 1qQ2
s`s1´1,`pτ

1Dτq ´ ps ` 1qQ2
s`s1´1,`pτDτ 1q

‰

. (6.10)

6.3 Quadratic order commutator of the local charges s “ s1 “ 2

As a final step of this paper towards the full proof of the validity of the local Lw1`8 algebra,
we show it here for the simpler case s “ s1 “ 2. We begin with general considerations and
then specialize to this restriction on the spins.

Consider the Jacobi identity

rQs`pτq, rQs1`pτ
1q,S`pn,zqss´rQs1`pτ

1q, rQs`pτq,S`pn,zqss“ rrQs`pτq,Qs1`pτ
1qs,S`pn,zqs,

(6.11)

which at quadratic order gives

rQ2
s`pτq, rQ

2
s1`pτ

1q, S`pn, zqss ´ rQ2
s1`pτ

1q, rQ2
s`pτq, S`pn, zqss

` rQ1
s`pτq, rQ

3
s1`pτ

1q, S`pn, zqss ´ rQ1
s1`pτ

1q, rQ3
s`pτq, S`pn, zqss

“ rrQs`pτq, Qs1`pτ
1qsp2q, S`pn, zqs ,

(6.12)

where we used the fact that

rQ3
s1`pτ

1q, rQ1
s`pτq, S`pn, zqss “ 0, (6.13)

and

rQs`pτq, Qs1`pτ
1qsp2q “ rQ2

s`pτq, Q2
s1`pτ

1qs ` rQ1
s`pτq, Q3

s1`pτ
1qs ´ rQ1

s1`pτ
1q, Q3

s`pτqs.

(6.14)
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As shown in the derivation of (6.10), the restriction (6.1) to the wedge sector of the
nested commutators involving quadratic charges in (6.12) is sufficient to yield the desired
result. Therefore, the goal is to show that the remaining contributions (the ‘remainders’)
to those commutators are cancelled exactly by those on the l.h.s. of (6.12) involving linear
and cubic charges.

The remainder nested commutators are of two types

rQ2
s1`pτ

1q, rQ2
s`pτq, S`pn, zqsRs , rQ2

s1`pτ
1q, rQ2

s`pτq, S`pn, zqsGsR, (6.15)

where we have defined

rQ2
s`pτq, S`pn, zqsR :“ p´qsκ2

4

8
ÿ

k“s`1
ps ´ k ` 1q

˜

n ` 3
k

¸

DkτpzqDs´kS`pn ´ s ` 1, zq,

(6.16)

which is the complementary contribution to the action (5.23) when the global condition (6.1)
is relaxed (see derivation of (6.6) in appendix D.2).

The two remainder contributions (6.15) are computed in appendix D.3 and they are
respectively

rQ2
s1`pτ

1q, rQ2
s`pτq,S`pn,zqsRs

“´
p´qs`s1κ4

16

8
ÿ

k“s`1

s1
ÿ

ℓ“0

8
ÿ

m“0
ps´k`1q

˜

n`3
k

¸

ps1´ℓ`1q
˜

n´s`4
ℓ

¸

p´qm pk´s`m´1q!
m!pk´s´1q!

ˆDkτpzqDℓ`mτ 1pzqDs`s1´ℓ´k´mS`pn´s´s1`2,zq, (6.17)

and

rQ2
s1`pτ

1q, rQ2
s`pτq, S`pn, zqsGsR

“ ´
p´qs`s1κ4

16

n´s`4
ÿ

k“s1`1

n`2
ÿ

m“0
ps1 ´ k ` 1q

˜

n ´ s ` 4
k

¸˜

n ` 2
m

¸

ˆ

ˆ

ps ` 1qDmτDs´m
”

Dkτ 1pzqDs1´kS`pn ´ s ´ s1 ` 2, zq
ı

` ps ´ n ´ 2qDm`1τDs´1´m
”

Dkτ 1pzqDs1´kS`pn ´ s ´ s1 ` 2, zq
ı

˙

. (6.18)

The remaining nested commutators involving linear and cubic charges can be computed by
acting with Q1

s1`pτ
1q on (5.25). We don’t give the general expression here, but instead we

compute it for the case s “ 2, namely (see appendix D.3)

rQ1
s1`pτ

1q, rQ3
2`pτq,S`pn,zqss“

3p´qs1κ4

16

˜

n`2
s1`1

¸

τ2pzqD
s1`2τ 1

s1pzqS`pn´s1,zq. (6.19)

We now specialize the expressions (6.17), (6.18) to the case s “ s1 “ 2. We obtain

rQ2
2`pτ

1q, rQ2
2`pτq, S`pn, zqsRs ` rQ2

2`pτ
1q, rQ2

2`pτq, S`pn, zqsGsR

“
3κ4

16

«˜

n ` 3
4

¸

τ 1
2pzqD

4τ2pzq `

˜

n ` 2
4

¸

τ2D4τ 1
2pzq

ff

S`pn ´ 2, zq. (6.20)
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On the other hand, the contribution (6.19) for s “ s1 “ 2 gives

rQ1
2`pτ

1q, rQ3
2`pτq, S`pn, zqss “

3κ4

16

˜

n ` 2
3

¸

τ2pzqD
4τ 1

2pzqS`pn ´ 2, zq. (6.21)

Therefore, upon antisymmetrization in τ Ø τ 1, we see that

rQ2
2`pτ

1q, rQ2
2`pτq, S`pn, zqsRs ` rQ2

2`pτ
1q, rQ2

2`pτq, S`pn, zqsGsR

` rQ1
2`pτ

1q, rQ3
2`pτq, S`pn, zqss ´ τ Ø τ 1 “ 0, (6.22)

and hence

rQ2`pτq,Q2`pτ
1qsp2q“rQ2

2`pτq,Q
2
2`pτ

1qsG “
3κ2

4
“

Q2
3`pτ

1Dτq´Q2
3`pτDτ 1q

‰

. (6.23)

7 Conclusions

In this paper we extracted a tower of non-linear operators from the asymptotic Yang-Mills
equations and demonstrated that they form a representation of a higher-spin symmetry
loop algebra on Fock space. This algebra contains a global subalgebra, which at the linear
order is the phase space realization of the celestial algebra of soft gluon operators found
in [1, 2]. Remarkably, we found that this algebra admits a local enhancement and continues
to hold at quadratic order upon inclusion of new cubic terms as dictated by the equations of
motion. The steps leading to this result involved a series of miraculous cancellations, which
we believe hints at a deeper connection between symmetry and the asymptotic Yang-Mills
equations. It would be great to find an elegant way of deriving the loop algebra (1.4)
directly from the recursive towers of non-linear differential equations (1.3), perhaps by
employing or generalizing the methods of [30].

From a physical perspective, the implications of the infinite-dimensional symmetry
for scattering remain rather unclear. As a first step in this direction, one should try
to understand the signatures of the cubic and higher order components of the charges
in scattering amplitudes. Moreover, the full Yang-Mills equations will include further
non-linear corrections which deserve a better understanding (see [15] for progress in this
direction). It would be very interesting to understand in what way these corrections, as
well as coupling to matter, would affect the symmetry structures found in this work.

Central to this work was the algebra of quadratic charges, also known as hard charges.
On the other hand, the celestial symmetry algebras of [1, 2] were associated with soft
operators. We would like to have a better understanding of the dictionary between
symmetry generators in celestial CFT and realization of the symmetry algebras on the bulk
Fock space.

In gravity, the non-linear charges were shown to correspond to the higher multipole
moments of the gravitational field and hence directly related to gravitational observables
such as the memory effect [31, 32]. It would be fascinating to explore the role of symmetry
in constraining observables of gauge theory and gravity. We leave this to future work.
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A YM charges

From the general expression (2.10) for the YM higher spin charge aspects, the quadratic
and cubic charge aspects read respectively

R2
spu, zq “ i

s
ÿ

n“0
pB´1

u qs´n`1Ds´n
”

Ap0q
z pu, zq, R1

n´1pu, zq
ı

g

“ i
s
ÿ

n“0
pB´1

u qs´n`1Ds´n
”

Ap0q
z pu, zq, pB´1

u DqnF
p0q
z̄u pu, zq

ı

g

“ i
s
ÿ

n“0
pB´1

u qn`1Dn
”

Ap0q
z pu, zq, pB´1

u Dqs´nF
p0q
z̄u pu, zq

ı

g
(A.1)

and

R3
spu,zq

“ i
s
ÿ

n“1
pB´1

u qs´n`1Ds´n
“

Ap0q
z pu,zq,R2

n´1pu,zq
‰

g

“´

s
ÿ

n“1

n´1
ÿ

k“0
pB´1

u qs´n`1Ds´n

„

Ap0q
z pu,zq,pB´1

u qk`1Dk
”

Ap0q
z pu,zq,pB´1

u Dqn´k´1F
p0q
z̄u pu,zq

ı

g

ȷ

g

.

(A.2)

Let us introduce the Leibniz rule for pseudo-differential calculus

B´1
u

ˆ

uk

k! Apuq

˙

“

k
ÿ

n“0

p´1qn

n!
upk´nq

pk ´ nq!pB
´1
u qn`1Apuq

“ p´1qk
k
ÿ

n“0

p´uqpk´nq

pk ´ nq! pB´1
u qn`1Apuq , (A.3)

where we used

p´1qn “ p´1qnn! . (A.4)

For k “ 1, the renormalized charges (2.11) can be expressed as

r1
spzq “ lim

uÑ´8

s
ÿ

ℓ“0

p´qs´ℓus´ℓpB´1
u qℓ`1

ps ´ ℓq! Ds`1F
p0q
z̄u pu, zq

“ p´qs`1
ż 8

´8

du
us

s! Ds`1F
p0q
z̄u pu, zq , (A.5)
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where in the last line and below we recall that B´1
u “

şu
8

du. For k ě 2, we can rewrite

rk
s pzq “ lim

uÑ´8

s
ÿ

ℓ“0

p´qs´ℓus´ℓ

ps ´ ℓq! Ds´ℓRk
ℓ pu, zq

“ lim
uÑ´8

i
s
ÿ

n“k´2

s
ÿ

ℓ“n

p´uqs´ℓ

ps ´ ℓq! pB
´1
u qℓ´n`1Ds´n

”

Ap0q
z pu, zq, Rk´1

n´1pu, zq
ı

g

“ lim
uÑ´8

i
s
ÿ

n“k´2

s´n
ÿ

ℓ“0

p´uqs´ℓ´n

ps ´ ℓ ´ nq!pB
´1
u qℓ`1Ds´n

”

Ap0q
z pu, zq, Rk´1

n´1pu, zq
ı

g

“ lim
uÑ´8

i
s
ÿ

n“k´2
B´1

u

p´uqs´n

ps ´ nq! Ds´n
”

Ap0q
z pu, zq, Rk´1

n´1pu, zq
ı

g

“ ´i
s
ÿ

n“k´2

ż 8

´8

p´uqs´n

ps ´ nq! Ds´n
”

Ap0q
z pu, zq, Rk´1

n´1pu, zq
ı

g
, (A.6)

from which

r2
spzq “ ´i

s
ÿ

n“0

ż 8

´8

du
p´qs´nus´n

ps ´ nq! Ds´n
”

Ap0q
z pu, zq, pB´1

u qnDnF
p0q
z̄u pu, zq

ı

g
, (A.7)

and

r3
spzq

“

s
ÿ

n“1

n´1
ÿ

k“0

ż 8

´8

du
p´uqs´n

ps´nq! Ds´n

„

Ap0q
z pu,zq,pB´1

u qk`1Dk
”

Ap0q
z pu,zq,pB´1

u Dqn´k´1F
p0q
z̄u pu,zq

ı

g

ȷ

g

,

(A.8)

where we used (A.1).
From the general expression (A.6), we can also write the recursion relation

rk
s pzq “ lim

uÑ´8
i

s´k`2
ÿ

ℓ“0
B´1

u

p´uqℓ

ℓ!

«

DℓAp0q
z pu, zq,

s´k`2
ÿ

n“ℓ

p´uqn´ℓ

pn ´ ℓq! Dn´ℓRk´1
s´n´1pu, zq

ff

g

“ lim
uÑ´8

i
s´k`2
ÿ

ℓ“0
B´1

u

p´uqℓ

ℓ!

«

DℓAp0q
z pu, zq,

s´ℓ´k`2
ÿ

n“0

p´uqn

n! DnRk´1
s´ℓ´n´1pu, zq

ff

g

“ lim
uÑ´8

i
s´k`2
ÿ

ℓ“0
B´1

u

p´uqℓ

ℓ!

”

DℓAp0q
z pu, zq, rk´1

s´ℓ´1pu, zq
ı

g

“ lim
uÑ´8

i
s´k`2
ÿ

ℓ“0
B´1

u

p´uqℓ

ℓ!

”

DℓAp0q
z pu, zq, rk´1

s´ℓ´1pu, zq
ı

g
, (A.9)

where in the first line we applied the binomial expansion and switched the sums over ℓ

and n.
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A.1 Corner charge aspects

Let us first of all list the useful the relations

unBn
u “pp∆´1qn , Bn

uun “pp∆`n´1qn , u´nB´n
u “pp∆`n´1q´1

n ,

Bup
p∆`αqn “pp∆`α`1qnBu , B´1

u pp∆`αqn “pp∆`α´1qnB
´1
u ,

upp∆`αqn “pp∆`α´1qnu, upp∆`n´1q´1
n “pp∆`n´2q´1

n u, (A.10)

valid @ n ě 0 , α P Z and where we defined the operator p∆ :“ Buu and the requirement of
the potential field to be Schwartzian in order to integrate the p∆ contributions to zero.

The quadratic charge aspects (2.13) can be expressed as

r2
spzq “ r2

s`pzq ` r2˚
s´pzq , (A.11)

with

r2
s`pzq “ ´i

s
ÿ

n“0

ż 8

´8

du
p´qs´nus´n

ps ´ nq! Ds´n
“

A`pu, zq, pB´1
u qnDnF ˚

`pu, zq
‰

g

“ ´
i´ℓ

2π

s
ÿ

n“0

8
ÿ

ℓ“0

p´qs´n

ps ´ nq!ℓ!D
s´n

„

A`pℓ, zq,

ż 8

´8

duus`ℓ´npB´1
u qnDnF ˚

`pu, zq

ȷ

g

“
i´ℓ

2π
p´qs`1

s
ÿ

n“0

8
ÿ

ℓ“0

˜

s ` ℓ ´ n

ℓ

¸

Ds´n

„

A`pℓ, zq, Dn

ż 8

´8

du
us`ℓ

ps ` ℓq!F
˚
`pu, zq

ȷ

g

“ ´
i´s

2π

8
ÿ

ℓ“0

s
ÿ

n“0

˜

s ` ℓ ´ n

ℓ

¸

Ds´n
“

A`pℓ, zq, DnF˚
`ps ` ℓ, zq

‰

g
. (A.12)

In the manipulations above we used

us`ℓ´npB´1
u qn “ us`ℓp∆̂` n ´ 1q´1

n “ p∆̂` n ´ s ´ ℓ ´ 1q´1
n us`ℓ , (A.13)

which follows from the list (A.10), and the identity

1
pn ´ s ´ ℓ ´ 1qn

“ p´1qn ps ` ℓ ´ nq!
ps ` ℓq! . (A.14)

The cubic charge aspects can be expressed as

r3
spzq “ r3

s`pzq ` r3˚
s´pzq , (A.15)

with

r3
s`pzq

“´
1

p2πq2

s
ÿ

n“1

n´1
ÿ

k“0

8
ÿ

ℓ“0

8
ÿ

m“0

p´qs´ni´ℓ´m

ps´nq!ℓ!m!

ˆDs´n

„

A`pℓ,zq,

ż 8

´8

duus`ℓ´npB´1
u qk`1Dk

“

umA`pm,zq,pB´1
u qn´k´1Dn´k´1F ˚

`pu,zq
‰

g

ȷ

g
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“´
1

p2πq2

s
ÿ

n“1

n´1
ÿ

k“0

8
ÿ

ℓ“0

8
ÿ

m“0

p´qs´ni´ℓ´m

ps´nq!ℓ!m!

ˆDs´n

«

A`pℓ,zq,D
k

„

A`pm,zq,

ż 8

´8

du
us`ℓ`k`m´n`1

pn´s´ℓ´1qk`1
pB´1

u qn´k´1Dn´k´1F ˚
`pu,zq

ȷ

g

ff

g

“´
1

p2πq2

s
ÿ

n“1

n´1
ÿ

k“0

8
ÿ

ℓ“0

8
ÿ

m“0
p´qsi´ℓ´m ps`ℓ´nq!

ps´nq!ℓ!
ps`ℓ`k`m´n`1q!
ps`ℓ`k´n`1q!m!

ˆDs´n

«

A`pℓ,zq,D
k

„

A`pm,zq,Dn´k´1
ż 8

´8

du
us`ℓ`m

ps`ℓ`mq!F
˚
`pu,zq

ȷ

g

ff

g

“´
i´s

p2πq2

8
ÿ

ℓ“0

8
ÿ

m“0

s
ÿ

n“1

n´1
ÿ

k“0

˜

s`ℓ´n

ℓ

¸˜

s`ℓ`k`m´n`1
m

¸

ˆDs´n
”

A`pℓ,zq,D
k
“

A`pm,zq,Dn´k´1F˚
`ps`ℓ`m,zq

‰

g

ı

g
, (A.16)

where we used

us`ℓ´npB´1
u qk`1 “us`ℓ`k´n`1p∆̂`kq´1

k`1 “p∆̂`n´s´ℓ´1q´1
k`1us`ℓ`k´n`1 , (A.17)

pn´s´ℓ´1q´1
k`1 “p´qk`1 ps`ℓ´nq!

ps`ℓ´n`k`1q! , (A.18)

and

us`ℓ`k`m´n`1pB´1
u qn´k´1 “ us`ℓ`mpu´1qn´k´1pB´1

u qn´k´1

“ us`ℓ`mp∆̂` n ´ k ´ 2q´1
n´k´1

“ p∆̂` n ´ k ´ s ´ ℓ ´ m ´ 2q´1
n´k´1us`ℓ`m , (A.19)

pn ´ k ´ s ´ ℓ ´ m ´ 2q´1
n´k´1 “ p´qn`k`1 ps ` k ` ℓ ` m ´ n ` 1q!

ps ` ℓ ` mq! . (A.20)

We now perform this series of manipulations: we replace k Ñ k ´ 1, we then switch sums
řs

n“1
řn

k“1 “
řs

k“1
řs

n“k, and we replace n Ñ s ´ n to obtain

r3
s`pzq “ ´

i´s

p2πq2

8
ÿ

ℓ“0

8
ÿ

m“0

s
ÿ

k“1

s´k
ÿ

n“0

˜

ℓ ` n

ℓ

¸˜

n ` m ` ℓ ` k

m

¸

ˆ Dn

„

A˘pℓ, zq, Dk´1
”

A˘pm, zq, Ds´n´kF˚
˘ps ` ℓ ` m, zq

ı

g

ȷ

g

. (A.21)

At this point we switch sums again
řs

k“1
řs´k

n“0 “
řs´1

n“0
řs´n

k“1 and perform the final
replacement k Ñ k ` 1´ n to arrive at

r3
s˘pzq “ ´

i´s

p2πq2

8
ÿ

ℓ“0

8
ÿ

m“0

s´1
ÿ

n“0

s´1
ÿ

k“n

˜

ℓ ` n

ℓ

¸˜

m ` ℓ ` k ` 1
m

¸

ˆ Dn

„

A˘pℓ, zq, Dk´n
”

A˘pm, zq, Ds´k´1F˚
˘ps ` ℓ ` m, zq

ı

g

ȷ

g

. (A.22)
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A.2 Corner charges

We start proving the useful identity
ż

S
Tr prPspℓ ` 1; τq, Bpzqsg Apzqq “ p´qs`1

ż

S
Tr

´

rPsp´ps ` ℓ ` 1q; τq, Apzqsg Bpzq
¯

,

(A.23)

where

P a
s pα; τq :“

s
ÿ

n“0

p´αqn

n! pDnτa
s pzqqD

s´n. (A.24)

Starting from the l.h.s. of (A.23) and integrating by parts, we have
ż

S
Tr prPspℓ ` 1; τq, Bpzqsg Apzqq

“

s
ÿ

n“0

s´n
ÿ

m“0
p´qs`n p´pℓ ` 1qqn

n!
ps ´ nqm

m!

ż

S
Tr

`

rDs´mτpzq, Bpzqsg DmApzq
˘

“

s
ÿ

m“0

s´m
ÿ

n“0
p´qs pℓ ` nqn

n!
ps ´ nqm

m!

ż

S
Tr

`

rDs´mτpzq, Bpzqsg DmApzq
˘

. (A.25)

We now use
s´m
ÿ

n“0

pℓ ` nqn

n!
ps ´ nqm

m! “
ps ` ℓ ` 1qs´m

ps ´ mq! , (A.26)

to write
ż

S
Tr prPspℓ ` 1; τq, Bpzqsg Apzqq

“ p´qs
s
ÿ

m“0

ps ` ℓ ` 1qs´m

ps ´ mq!

ż

S
Tr

`

rDs´mτpzq, Bpzqsg DmApzq
˘

“ ´p´qs
s
ÿ

m“0

ps ` ℓ ` 1qm

m!

ż

S
Tr

`

rDmτpzq, Ds´mApzqsg Bpzq
˘

“ p´qs`1
ż

S
Tr

´

rPsp´ps ` ℓ ` 1q; τq, Apzqsg Bpzq
¯

, (A.27)

where in the second equality we used the cyclicity of the trace.
In terms of the operator (3.9), the quadratic charges can be written as

R2
s`pτq “ ´

p´iqs

2π

8
ÿ

ℓ“0

s
ÿ

n“0
p´qn

˜

ℓ ` n

ℓ

¸

ż

S
Tr

ˆ

Dnτpzq
”

A`pℓ, zq, Ds´nF
:
`ps ` ℓ, zq

ı

g

˙

“ ´
i´s

2π

8
ÿ

ℓ“0

s
ÿ

n“0

p´pℓ ` 1qqn

n!

ż

S
Tr

ˆ

Dnτpzq
”

A`pℓ, zq, Ds´nF
:
`ps ` ℓ, zq

ı

g

˙

“
i´s

2π

8
ÿ

ℓ“0

ż

S
Tr

ˆ

A`pℓ, zq
”

Pspℓ ` 1; τq,F:
`ps ` ℓ, zq

ı

g

˙

, (A.28)
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where we used

p´qn

˜

ℓ ` n

ℓ

¸

“
p´pℓ ` 1qqn

n! . (A.29)

Using the identity (A.23), this can also be written as

R2
s`pτq “ ´

is

2π

8
ÿ

ℓ“0

s
ÿ

k“0

pℓ ` s ` 1qk

k!

ż

S
Tr

ˆ

Dkτpzq
”

Ds´kA`pℓ, zq,F:
`ps ` ℓ, zq

ı

g

˙

“ ´
is

2π

8
ÿ

ℓ“s

ż

S
Tr

´

rPsp´pℓ ` 1q; τq,A˘pℓ ´ s, zqsg F
:
˘pℓ, zq

¯

. (A.30)

The quadratic charge action on F
:b
` pn, zq can then be computed from the commuta-

tor (2.28) as

rR2
s`pτq,F

:b
` pn, zqs “

i´s

2π

8
ÿ

ℓ“0

ż

S
d2z1

?
γ rAa

`pℓ, z1q,F:b
` pn, zqs

”

Pspℓ ` 1; τq,F:
`ps ` ℓ, z1q

ı

ga

“ g2
YMi´s

”

Pspn ` 1; τpzqq,F:
`ps ` n, zq

ıb

g
. (A.31)

B YM algebra

In this appendix we provide the proofs of the results presented in section 4.2. We make use
of several identities involving the falling factorial

pxqn “ xpx ´ 1q ¨ ¨ ¨ px ´ n ` 1q “ Γpx ` 1q
Γpx ´ n ` 1q . (B.1)

First we use that

p´x ´ 1qn “ p´1qnpx ` nqn. (B.2)

We make use of the fundamental binomial identity for the falling factorial

8
ÿ

n“0

pxqn

n!
pyqs´n

ps ´ nq! “
px ` yqs

s! , (B.3)

where s! :“ Γps ` 1q. This identity can be proven by recurrence from the shift identity
satisfied by the falling factorial

∆pxqn “ npxqn´1, ∆fpxq :“ fpx ` 1q ´ fpxq (B.4)

and the normalisation conditions p0qn “ δn0. This identity is valid for ´s P CzN and it can
be shown to be equivalent to the Gauss hypergeometric identity. When s P N it becomes
more simply

s
ÿ

n“0

pxqn

n!
pyqs´n

ps ´ nq! “
px ` yqs

s! . (B.5)
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Other useful identities when s is an integer can be obtained by taking y to be a positive or

negative integer. Such limits imply, after using p´pb`1qqn

n! “ p´1qn

˜

b ` n

b

¸

, that

px`bqs

s! “

s
ÿ

n“0

˜

b

n

¸

pxqs´n

ps´nq! .
px´b´1qs

s! “

s
ÿ

n“0
p´qn

˜

b`n

b

¸

pxqs´n

ps´nq! , (B.6)

where b P N. Taking x to be a positive integer and interchanging n Ñ s ´ n gives the
identities

˜

a`b

s

¸

“

s
ÿ

n“0

˜

a

n

¸˜

b

s´n

¸

,
pa´b´1qs

s! “

s
ÿ

n“0
p´qn

˜

a

n

¸˜

b`s´n

b

¸

, (B.7)

where a, b P N. Finally taking x to be a negative integer gives the identity
˜

a ` b ` s

s

¸

“

s
ÿ

n“0

˜

a ` n ´ 1
a ´ 1

¸˜

b ` s ´ n

b

¸

. (B.8)

B.1 Quadratic charge commutator

In this appendix we present a detailed computation of I1 in section 4.2.1. After changing
variables p Ñ p ´ m ´ n (4.10) becomes

I1 “
i´s´s1

2π
g2

Y M

8
ÿ

ℓ“0

s1
ÿ

n“0

s
ÿ

m“0

s1`m
ÿ

p“m`n

p´ℓ ´ 1qn

n!
p´s1 ´ 1´ ℓqm

m!

˜

s1 ´ n

p ´ n ´ m

¸

ˆ

ż

S
Tr

´

rDnτ 1, rDp´nτ, Ds`s1´pF
:
`ps

1 ` s ` ℓqsgsgA`pℓq
¯

.

(B.9)

In this parametrization we see that the integral factor does not depend on m. The goal is
therefore to perform the sum over m. We can do that after interchanging sums

s
ÿ

m“0

s1`m
ÿ

p“m`n

“

s`s1
ÿ

p“n

minrp´n,ss
ÿ

m“maxr0,p´s1s

. (B.10)

The sum involves the binomial coefficient
˜

s1 ´ n

p ´ n ´ m

¸

which vanishes when m ă p ´ s1.

This means that we can replace the lower bound m “ maxr0, p ´ s1s simply by m “ 0.
Therefore we have two cases to evaluate.

Case I: when p ´ n ď s we find

p´n
ÿ

m“0

p´s1´1´ℓqm

m!

˜

s1´n

p´n´m

¸

“
p´1´ℓ´nqp´n

pp´nq! “p´1qp´n

˜

ℓ`p

p´n

¸

, (B.11)

where we have used (B.5) with x Ñ ´ps1 ` ℓ ` 1q, y Ñ ps1 ´ nq and s Ñ pp ´ nq.
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Case II: for p ´ n ą s we find

s
ÿ

m“0

p´s1´1´ℓqm

m!

˜

s1´n

p´n´m

¸

“p´1qp`n

˜

ℓ`p

p´n

¸

´

p´n
ÿ

m“s`1

p´s1´1´ℓqm

m!

˜

s1´n

p´n´m

¸

“p´1qp`n

˜

ℓ`p

p´n

¸

`p´1qs

˜

s1´n

p´s´1´n

¸˜

ℓ`s1`s`1
s`1

¸

(B.12)

where we defined

F1ps, s1q :“ 3F2
“

1, 1` n ´ p ` s, 2` ℓ ` s ` s1; s ` 2, 2´ p ` s ` s1; 1
‰

(B.13)

and 3F2 is the generalized hypergeometric function.
We conclude that the final result of (B.9) includes two contributions. We will denote

the common contribution to the two cases, namely the one proportional to
˜

ℓ ` p

p ´ n

¸

by J1.

We then find that I1 “ J1 ` J 1
1 where

J1 “
i´s´s1g2

Y M

2π

8
ÿ

ℓ“0

s1
ÿ

n“0

s`s1
ÿ

p“n

p´1qp

˜

p

n

¸˜

ℓ ` p

ℓ

¸

ˆ

ż

S
Tr

´

rDnτ 1, rDp´nτ, Ds`s1´pF
:
`ps

1 ` s ` ℓqsgsgA`pℓq
¯

,

J 1
1 “

i´s´s1

2π
g2

Y M

8
ÿ

ℓ“0

s1´1
ÿ

n“0

s1`s
ÿ

p“n`s`1
p´1qs`n

˜

ℓ ` n

n

¸˜

1` ℓ ` s ` s1

s ` 1

¸˜

s1 ´ n

p ´ n ´ s ´ 1

¸

ˆ F1ps, s1q

ż

S
Tr

´

rDnτ 1, rDp´nτ, Ds`s1´pF
:
`ps

1 ` s ` ℓqsgsgA`pℓq
¯

. (B.14)

Note that the sum over n in J 1
1 only goes up to s1 ´ 1 due to the fact that p ě n` s` 1. In

the first equality we used that

pℓ ` nqn

n!

˜

ℓ ` p

p ´ n

¸

“

˜

ℓ ` p

ℓ

¸˜

p

n

¸

. (B.15)

B.2 First term in cubic algebra

In this appendix we evaluate I3. We start with (4.17) (with s Ø s1 and τ Ø τ 1) and shift

k Ñ k ´ s1 ´ 1 (B.16)

to find

I3ps
1, τ 1;s,τq“

i´s`s1

2π
g2

Y M

8
ÿ

m“0

s´1
ÿ

n“0

s`s1
ÿ

k“n`s1`1

k´n´s1´1
ÿ

p“0
p´1qk`s1`1

˜

s1`n

s1

¸˜

m`k

m

¸

ˆ

˜

k´n´s1´1
p

¸

ż

S
Tr

´

rDn`pτ,Dk´n´pτ 1sgrApmq,Ds`s1´kF:ps`s1`mqsg

¯

.

(B.17)
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We exchange sums

s´1
ÿ

n“0

s`s1
ÿ

k“n`s1`1

k´n´s1´1
ÿ

p“0
“

s`s1
ÿ

k“s1`1

k´s1´1
ÿ

n“0

k´n´s1´1
ÿ

p“0
“

s`s1
ÿ

k“s1`1

k´s1´1
ÿ

p“0

k´s1´1´p
ÿ

n“0
, (B.18)

where in the first exchange we used that k ´ s1 ´ 1 ă s so there is no need for another
bound. Shifting n Ñ n ´ p, and changing the order of the commutator, we find

I3ps
1, τ 1;s,τq“

i´s`s1

2π
g2

Y M

8
ÿ

m“0

s`s1
ÿ

k“s1`1

k´s1´1
ÿ

p“0

k´s1´1
ÿ

n“p

p´1qk`s1

˜

s1`n´p

s1

¸˜

m`k

m

¸

ˆ

˜

k´n´s1´1`p

p

¸

ż

S
Tr

´

rDnτ,Dk´nτ 1sgrD
s`s1´kF:ps`s1`mq,Apmqsg

¯

.

(B.19)

Now we switch sums again

k´s1´1
ÿ

p“0

k´s1´1
ÿ

n“p

“

k´s1´1
ÿ

n“0

n
ÿ

p“0
(B.20)

and do the sum on p using (B.8) with a Ñ k ´ s1 ´ n, b Ñ s1 and s Ñ n,

n
ÿ

p“0

˜

s1 ` n ´ p

s1

¸˜

k ´ s1 ` p ´ n ´ 1
p

¸

“

˜

k

n

¸

. (B.21)

We are then left with a double sum
s`s1
ÿ

k“s1`1

k´s1´1
ÿ

n“0
“

s´1
ÿ

n“0

s`s1
ÿ

k“n`s1`1
. (B.22)

The result (4.18) follows immediately after exchanging ps, τq with ps1, τ 1q.

B.3 Second term in cubic algebra

We next show that I4 simplifies to (4.20). Starting with (4.19) (with ps, τq Ñ ps1, τ 1q) and
letting p Ñ p ´ n ´ s1 ´ 1, we find

I4ps
1, τ 1;s,τq“

is1´s

2π
g2

Y M

8
ÿ

ℓ“0

s´1
ÿ

n“0

s´1
ÿ

k“n

k`s1`1
ÿ

p“n`s1`1
p´1qn

˜

ℓ`n

ℓ

¸˜

s1`k`ℓ`1
s1

¸˜

k´n

p´n´s1´1

¸

ż

S
Tr

´

rDnτ,A`pℓqsgrD
p´nτ 1,Ds`s1´pF

:
`ps`ℓ`s1qsg

¯

.

(B.23)

We can now switch sums
s´1
ÿ

k“n

k`s1`1
ÿ

p“n`s1`1
“

s`s1
ÿ

p“n`s1`1

s´1
ÿ

k“p´s1´1
(B.24)
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and evaluate the sum on k

s´1
ÿ

k“p´s1´1

˜

s1`k`ℓ`1
s1

¸˜

k´n

p´n´s1´1

¸

“

s´1
ÿ

k“p´s1´1
p´1q1`k`p`s1

˜

s1`k`ℓ`1
s1

¸˜

n`s1´p

n´k´1

¸

“

˜

n´1
ÿ

k“p´s1´1
`

s´1
ÿ

k“n

¸

p´1q1`k`p`s1

˜

s1`k`ℓ`1
s1

¸˜

n`s1´p

n´k´1

¸

“

n`ℓ
ÿ

k“p´s1`ℓ

p´1qk`p`s1`ℓ

˜

s1`k

s1

¸˜

n`s1´p

n´k`ℓ

¸

`

s`ℓ
ÿ

k“n`ℓ`1
p´1qℓ`k`p`s1

˜

s1`k

s1

¸˜

n`s1´p

n´k`ℓ

¸

,

(B.25)

where in the last equality we shifted k Ñ k´ ℓ´1. We now use the second binomial identity
in (B.6) which can be written as

s
ÿ

n“0
p´1qn

˜

b ` n

b

¸˜

x

s ´ n

¸

“
px ´ b ´ 1qs

s! “

˜

x ´ b ´ 1
s

¸

(B.26)

to simplify the first sum in (B.25)
n`ℓ
ÿ

k“p´s1`ℓ

p´1qk`p`s1`ℓ

˜

s1`k

s1

¸˜

n`s1´p

n´k`ℓ

¸

“

˜

n`ℓ
ÿ

k“0
´

p´s1`ℓ´1
ÿ

k“0

¸

p´1qk`p`s1`ℓ

˜

s1`k

s1

¸˜

n`s1´p

n´k`ℓ

¸

“p´1qp`s1`ℓ

˜

n´p´1
n`ℓ

¸

´

p´s1`ℓ´1
ÿ

k“0
p´1qk`p`s1`ℓ

˜

s1`k

s1

¸˜

n`s1´p

n´k`ℓ

¸

“p´1qp`s1`n

˜

p`ℓ

p´n

¸

´

p´s1`ℓ´1
ÿ

k“0
p´1qk`p`s1`ℓ

˜

s1`k

s1

¸˜

n`s1´p

n´k`ℓ

¸

.

(B.27)

Putting everything together we find
s´1
ÿ

k“p´s1´1

˜

s1 ` k ` ℓ ` 1
s1

¸˜

k ´ n

p ´ n ´ s1 ´ 1

¸

“ p´1qn`p`s1

˜

ℓ ` p

p ´ n

¸

(B.28)

`

˜

s`ℓ
ÿ

k“n`ℓ`1
´

p´s1`ℓ´1
ÿ

k“0

¸

p´1qℓ`k`p`s1

˜

s1 ` k

s1

¸˜

n ` s1 ´ p

n ´ k ` ℓ

¸

(B.29)

or equivalently
s´1
ÿ

k“p´s1´1

˜

s1 ` k ` ℓ ` 1
s1

¸˜

k ´ n

p ´ n ´ s1 ´ 1

¸

“p´1qn`p`s1

˜

ℓ ` p

p ´ n

¸

´

˜

s ´ n

p ´ s1 ´ 1´ n

¸˜

s1 ` s ` ℓ ` 1
s1

¸

F2ps
1, sq

(B.30)
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where we defined

F2ps
1, sq ” 3F2r1, 1´ n ` s, 2` l ` s ` s1, 2` ℓ ` s, 2´ p ` s ` s1, 1s. (B.31)

This equality which is similar to (B.12) can also be checked by direct evaluation of the sum
in (B.25) with mathematica.

We recover (4.21) from the first term in (B.30), while for (4.22) we use the second term
in (B.30). In total we obtain (4.20). In both cases we acquire a sign upon cycling the terms
in the trace and reordering a commutator.

B.4 Putting everything together

We first prove an important identity relating hypergeometric functions. This will allow us
to show that the hypergeometric functions appearing in I1 and I4 cancel. The relevant
hypergeometric identities are

3F2ra1, a2, a3; b1, b2; 1s “
Γpb1qΓpb1 ` b2 ´ a1 ´ a2 ´ a3q

Γpb1 ´ a1qΓpb1 ` b2 ´ a2 ´ a3q

ˆ 3F2ra1, b2 ´ a2, b2 ´ a3; b1 ` b2 ´ a2 ´ a3, b2; 1s,
Repb1 ` b2 ´ a1 ´ a2 ´ a3q ą 0, Repb1 ´ a1q ą 0,

3F2r´n, b, c; d, e; 1s “ pd ´ bqpnq

pdqpnq
3F2r´n, b, e ´ c; e, b ´ d ´ n ` 1; 1s, n P Z`,

(B.32)

where pαqpnq “ Γpα ` nq{Γpαq is the raising factorial. The second of these can be used to
rewrite

F1ps, s1q “
ps ` 2´ 1qpp´1´n´sq

ps ` 2qpp´1´n´sq 3F2r1, 1´ p ` s ` n,´p ´ ℓ; 2´ p ` s ` s1, 1` n ´ p; 1s.

(B.33)

We could apply it because 1` n ´ p` s ă 0 for the relevant summation range. We now use
the first identity in (B.32) to rewrite

F1ps, s1q “
ps ` 2´ 1qpp´1´n´sq

ps ` 2qpp´1´n´sq

pn ´ pq

p1` s1 ` ℓq

ˆ 3F2r1, 1` s1 ´ n, 2` s ` s1 ` ℓ; 2´ p ` s ` s1, 2` s1 ` ℓ; 1s

“
ps ` 1q
pp ´ nq

pn ´ pq

p1` s1 ` ℓq
F2ps, s1q “ ´

ps ` 1q
p1` s1 ` ℓq

F2ps, s1q,

(B.34)

which is exactly what we need for these terms to cancel in the sum.
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We next outline the steps leading from (4.30) to (4.31). We start by shifting p Ñ p` n

in the first line of (4.30) which expresses J1 ` J4 and antisymmetrizing to get

s1
ÿ

n“0

s
ÿ

p“0
p´1qp`n

˜

ℓ`p`n

ℓ

¸˜

p`n

n

¸

ˆ

ż

S

Tr
´

rDnτ 1, rDpτ,Ds`s1
´n´pF

:
`ps`s1`ℓqsgsgA`pℓq

¯

´Tr
´

rDnτ, rDpτ 1,Ds`s1
´n´pF

:
`ps`s1`ℓqsgsgA`pℓq

¯

“

s1
ÿ

n“0

s
ÿ

p“0
p´1qp`n

˜

ℓ`p`n

ℓ

¸˜

p`n

n

¸

ż

S

Tr
´

rrDnτ 1,Dpτ sg,Ds`s1
´n´pF

:
`ps`s1`ℓqsgA`pℓq

¯

“

s1
ÿ

n“0

s`n
ÿ

p“n

p´1qp

˜

ℓ`p

ℓ

¸˜

p

n

¸

ż

S

Tr
´

rrDnτ 1,Dp´nτ sg,Ds`s1
´pF

:
`ps`s1`ℓqsgA`pℓq

¯

.

(B.35)

As a result, we see that (4.30) simplifies to

rRs`pτq,Rs1`pτ
1qs2

“
i´s´s1

2π
g2

Y M

8
ÿ

ℓ“0

˜

s1
ÿ

n“0

s`n
ÿ

p“n

`

s`s1
ÿ

p“s`1

p´s´1
ÿ

n“0
`

s`s1
ÿ

p“s1`1

p
ÿ

n“1`s1

¸

p´1qp

˜

p

n

¸˜

ℓ`p

ℓ

¸

ˆ

ż

S
Tr

”

rDnτ 1,Dp´nτ sgrD
s`s1´pF

:
`ps

1`s`ℓq,A`pℓqsg

ı

.

(B.36)

The last two terms come from I3 (4.18) and its antisymmetrization upon using the follow-
ing identity

s`s1
ÿ

p“s1`1

p´s1´1
ÿ

n“0
p´1qp

˜

ℓ ` p

ℓ

¸˜

p

n

¸

ż

DnτaDp´nτ 1bDs`s1´p

“

s`s1
ÿ

p“s1`1

p
ÿ

n“1`s1

p´1qp

˜

ℓ ` p

ℓ

¸˜

p

n

¸

ż

Dn´pτaDnτ 1bDs`s1´p,

(B.37)

which is easy to prove by making the change of variables n Ñ n ´ p.
Finally switching sums for the last term in (4.30), we notice that the sums can be

rearranged as

s1
ÿ

n“0

s`n
ÿ

p“n

`

s`s1
ÿ

p“s`1

p´s´1
ÿ

n“0
`

s`s1
ÿ

p“s1`1

p
ÿ

n“1`s1

“

s1
ÿ

n“0

s`n
ÿ

p“n

`

s1´1
ÿ

n“0

s`s1
ÿ

p“n`s`1
`

s`s1
ÿ

n“1`s1

s`s1
ÿ

p“n

(B.38)

“

s`s1
ÿ

n“0

s`s1
ÿ

p“n

´

s1´1
ÿ

n“0

s`s1
ÿ

p“s`n`1
`

s1´1
ÿ

n“0

s`s1
ÿ

p“n`s`1
“

s`s1
ÿ

p“0

p
ÿ

n“0
(B.39)

from which (4.31) follows immediately.
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C Gravity cubic charges

We focus on the positive helicity charge (same result can be derived for the negative one).
We start from the general relation (5.16) to write the cubic charge as

Q3
spτq “ ´

1
2

s
ÿ

ℓ“2

pℓ ` 1q
ps ´ ℓq!

ż

S
d2z

?
q Ds´ℓτ

ż 8

´8

du us´ℓCpu, zqQ2
ℓ´2pu, zq. (C.1)

We now use (5.11) again together with

Qspuq “ ´
1
2
`

i´sQs`puq ` isQ˚
s´puq

˘

(C.2)

and the expression for the quadratic charge

Q2
ℓ´2`pu, zq “ ´is 1

2

ℓ´2
ÿ

m“0
pm ` 1qpB´1

u qℓ´m´1Dℓ´m´2 “C`pu, zqpB´1
u qm´1DmN˚

`pu, zq
‰

,

(C.3)

to write

Q3
s`pτq “

is

4

s
ÿ

ℓ“2

ℓ´2
ÿ

m“0

pℓ ` 1qpm ` 1q
ps ´ ℓq!

ż

S
d2z

?
q Ds´ℓτ

ˆ

ż 8

´8

du us´ℓC`pu, zqpB´1
u qℓ´m´1Dℓ´m´2 “C`pu, zqpB´1

u qm´1DmN˚
`pu, zq

‰

“ ´
is

4p2πq2

8
ÿ

n“0

8
ÿ

k“0

s
ÿ

ℓ“2

ℓ´2
ÿ

m“0
i´n´k pℓ ` 1qpm ` 1q

n!k!ps ´ ℓq!

ż

S
d2z

?
q Ds´ℓτ S`pn, zq

ˆ

ż 8

´8

du us`n´ℓpB´1
u qℓ´m´1Dℓ´m´2

”

S`pk, zqukpB´1
u qm´1DmN˚

`pu, zq
ı

. (C.4)

We can now introduce the operator p∆ :“ Buu, which integrates to zero due to our choice of
boundary conditions, and use the property

pu´1qℓ´s´npB´1
u qℓ´m´1 “us`n´m´1pu´1B´1

u qℓ´m´1 “us`n´m´1p∆̂`ℓ´m´2q´1
ℓ´m´1

“p∆̂`ℓ´s´n´1q´1
ℓ´m´1us`n´m´1 ,

pu´1qm`1´s´n´kpB´1
u qm´1 “us`n`k´2p∆̂`m´2q´1

m´1 “p∆̂`m´s´n´kq´1
m´1us`n`k´2,

(C.5)

to write the cubic charges

Q3
s`pτq“´

is

4p2πq2

8
ÿ

n“0

8
ÿ

k“0

s
ÿ

ℓ“2

ℓ´2
ÿ

m“0
i´n´k pℓ`1qpm`1q

n!k!ps´ℓq!

ż

S
d2z

?
q Ds´ℓτ S`pn,zq

ˆ

ż 8

´8

du
us`n´m´1

pℓ´s´n´1qℓ´m´1
Dℓ´m´2

”

S`pk,zqukDmpB´1
u qm´1N˚

`pu,zq
ı

“´
is

4p2πq2

8
ÿ

n“0

8
ÿ

k“0

s
ÿ

ℓ“2

ℓ´2
ÿ

m“0
i´n´k pℓ`1qpm`1q

ps´ℓq!n!k!
1

pℓ´s´n´1qℓ´m´1pm´s´n´kqm´1

ˆ

ż

S
d2z

?
q Ds´ℓτpzqS`pn,zq

„

Dℓ´m´2
„

S`pk,zqDm

ż 8

´8

duus`n`k´2N˚
`pu,zq

ȷȷ
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“
p´qs

4p2πq2

8
ÿ

n“0

8
ÿ

k“0

s
ÿ

ℓ“2

ℓ´2
ÿ

m“0
p´qℓpℓ`1qpm`1q

˜

s`n´ℓ

n

¸˜

s`n`k´m´1
k

¸

ˆ

ż

S
d2z

?
q Ds´ℓτpzqS`pn,zq

”

Dℓ´m´2 “S`pk,zqDmM˚
`ps`n`k´2,zq

‰

ı

,

(C.6)

where we have used (5.7) and the identity

1
pα ´ nqℓ

“ p´1qℓ pn ´ α ´ 1q!
pn ´ α ´ 1` ℓq! . (C.7)

We now use this expression to compute the action

rQ3
s1`pτ

1q,S`pn,zqs

“
p´qs1

4p2πq2

8
ÿ

p“0

8
ÿ

k“0

s1
ÿ

ℓ“2

ℓ´2
ÿ

m“0
p´qℓpℓ`1qpm`1q

˜

s1`p´ℓ

p

¸˜

s1`p`k´m´1
k

¸

ˆ

ż

S
d2z1

?
q Ds1´ℓ

z1 τ 1pz1qS`pp,z1qDℓ´m´2
z1

”

S`pk,z1qDm
z1 rM

:
`ps

1`p`k´2,z1q,S`pn,zqs
ı

“´
p´qs1κ2

16π

8
ÿ

k“0

s1
ÿ

ℓ“2

ℓ´2
ÿ

m“0
p´qℓpℓ`1qpm`1q

˜

n´k`2´ℓ

s1´ℓ

¸˜

n´m`1
k

¸

ˆ

ż

S
d2z1

?
q Ds1´ℓ

z1 τ 1pz1qS`pn´k´s1`2,z1qDℓ´m´2
z1

“

S`pk,z1qDm
z1 δ

2pz,z1q
‰

“´
p´qs1κ2

16π

8
ÿ

k“0

s1
ÿ

ℓ“2

ℓ´2
ÿ

m“0

ℓ´m´2
ÿ

p“0
pℓ`1qpm`1q

˜

n´k`2´ℓ

s1´ℓ

¸˜

n´m`1
k

¸˜

ℓ´m´2
p

¸

ˆDm
”

Ds1´m´2´pτ 1pzqDpS`pn´k´s1`2,zqS`pk,zq
ı

. (C.8)

D Gravity algebra

D.1 Linear order

We concentrate on the same helicity sector and compute the linear charge commutator

rQspτq, Qs1pτ
1qs1` “ rQ1

s`pτq, Q2
s1`pτ

1qs ´ rQ1
s1`pτ

1q, Q2
s`pτqs . (D.1)

We use the Jacobi property

rrQ1
s`pτq, Q2

s1`pτ
1qs, S`pn, zqs ´ rrQ1

s1`pτ
1q, Q2

s`pτqs, S`pn, zqs

“ rQ1
s`pτq, rQ

2
s1`pτ

1q, S`pn, zqss ´ rQ1
s1`pτ

1q, rQ2
s`pτq, S`pn, zqss, (D.2)

where we used the fact that, by means of (5.14) and (5.20), (5.21),

rQ2
s1`pτ

1q, rQ1
s`pτq, S`pn, zqss “ 0 . (D.3)
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We thus start with the action (5.23) and we recall the identity (6.4)

Dα´1 rps ` 1qτD ` ps ` 1´ αqDτ sDs´α “

«

s
ÿ

k“0
`

8
ÿ

k“s`1

ff

ps ` 1´ kq
pαqk

k! pDkτqDs´k ,

(D.4)

that allows us to rewrite

rQ2
s`pτq, S`pn, zqs “ ´

κ2

4 p´qsDn`2 rps ` 1qτD ` ps ´ n ´ 2qDτ sDs´n´3S`pn ´ s ` 1, zq

` Rps, nq , (D.5)

where Rps, nq corresponds to the contribution in (6.4) given by the sum
ř8

k“s`1 which we
compute shortly. It follows that

rQ1
s`pτq, rQ

2
s1`pτ

1q, S`pn, zqss

“ ´
κ2

4 p´qs1Dn`2
z

“

ps1 ` 1qτ 1Dz ` ps1 ´ n ´ 2qDτ 1
‰

ˆ

ż

S
d2z1

?
q τpz1qDs`2

z1 Ds1´n´3
z rM

:
`ps, z1q, S`pn ´ s1 ` 1, zqs ` rQ1

s`pτq, Rps1, nqs

“ π
κ4

4 p´qs`s1Ds`s1`1
z

“

ps1 ` 1qτ 1Dz ´ ps ` 1qDτ 1
‰

τpzqδs`s1,n`1 ` rQ1
s`pτq, Rps1, nqs.

(D.6)

Finally, we compute

rQ1
s`pτq, Rps1, nqs “

κ2

4 p´qs1
n`3
ÿ

k“s1`1
ps1 ´ k ` 1q

˜

n ` 3
k

¸

ˆ Dk
z τ 1pzq

ż

S
dz1

2?
q τpz1qDs`2

z1 Ds1´k
z rM

:
˘ps, z1q, S`pn ´ s1 ` 1, zqs

“ ´π
κ4

4 p´qs`s1
s`s1`2
ÿ

k“s1`1
ps1 ´ k ` 1q

˜

s ` s1 ` 2
k

¸

Dkτ 1pzqDs`s1`2´kτpzq

“ π
κ4

4 p´qs`s1
s
ÿ

k“0
ps ´ k ` 1q

˜

s ` s1 ` 2
k

¸

DkτpzqDs`s1`2´kτ 1pzq

“ rQ1
s1`pτ

1q, rQ2
s`pτq, S`pn, zqss . (D.7)

Therefore we have

rQ1
s`pτq, rQ

2
s1`pτ

1q, S`pn, zqss ´ rQ1
s1`pτ

1q, rQ2
s`pτq, S`pn, zqss

“ rrQ1
s`pτq, Q2

s1`pτ
1qs, S`pn, zqs ´ rrQ1

s1`pτ
1q, Q2

s`pτqs, S`pn, zqs

“ π
κ4

4 p´qs`s1Ds`s1`1 “ps1 ` 1qτ 1Dzτ ´ ps ` 1qτDτ 1
‰

pzqδs`s1´1,n , (D.8)

from which

rQspτq, Qs1pτ
1qs1` “ rQ1

s`pτq, Q2
s1`pτ

1qs ` rQ2
s`pτq, Q1

s1`pτ
1qs

“
κ2

4
“

ps1 ` 1qQ1
s`s1´1`pτ

1Dτq ´ ps ` 1qQ1
s`s1´1`pτDτ 1q

‰

. (D.9)
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D.2 Quadratic order global

In this section with give the proof of the relation (6.7). We start with the proof of (6.5) for
global charges. Using the generalised Leibniz rule (3.22), we find that

αDα´1pDτDs´αq “

8
ÿ

n“0

αpα ´ 1qn

n! pDn`1τqDs´n´1

“

8
ÿ

n“0

pαqn`1
n! pDn`1τqDs´n´1

“

8
ÿ

n“0
n
pαqn

n! pDnτqDs´n. (D.10)

Summing these two contributions, we find that we have the key identity

Dα´1 rps ` 1qτD ` ps ` 1´ αqDτ sDs´α “

8
ÿ

n“0
ps ` 1´ nq

pαqn

n! pDnτqDs´n. (D.11)

If we demand that

Ds`2τs “ 0, (D.12)

we see that the sum can be restricted to the range s ď n. In this case all the derivative
operators appear with a positive power. There is no longer any non-locality. This means
that the charge action (5.23) can therefore be simply written as (6.6).

We then use this result to compute

rQ2
s1,`pτ

1q, rQ2
s,`pτq, S`pn, zqssG

“ ´
κ2

4 p´qsDn`2
z rps ` 1qτDz ` ps ´ n ´ 2qDτ sDs´n´3

z rQ2
s1,`pτ

1q, S`pn ´ s ` 1, zqsG

“ κ4 p´qs`s1

16 Dn`2
z rps ` 1qτDz ` ps ´ n ´ 2qDτ s

“

ps1 ` 1qτ 1Dz ` ps ` s1 ´ n ´ 3qDτ 1
‰

ˆ Ds`s1´n´4
z S`pn ´ s ´ s1 ` 2, zq , (D.13)

where we used (D.5) twice. We now expand

rps`1qτD`ps´n´2qpDτqs
“

ps1`1qτ 1D`ps`s1´n´3qpDτ 1q
‰

´psØ s1, τ Ø τ 1q

“ ps`1qps1`1q
“

τpDτ 1qD`ττ 1D2‰`ps`1qps`s1´n´3q
“

τD2τ 1`τpDτ 1qD
‰

`ps´n´2qps1`1qpDτqτ 1D`ps´n´2qps`s1´n´3qpDτqpDτ 1q´psØ s1, τ Ø τ 1q

“ p1`sqps`s1qτpDτ 1qD´p1`s1qps`s1qτ 1pDτqD

`ps`s1´n´3q
“

ps`1qτD2τ 1´ps1`1qτ 1D2τ`ps´s1qpDτqpDτ 1q
‰

“ps`s1qrτ,τ 1sD`ps`s1´n´3qDrτ,τ 1s, (D.14)

where we defined

rτ, τ 1s :“ ps ` 1qτDτ 1 ´ ps1 ` 1qτ 1Dτ . (D.15)
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Therefore, we have

rQ2
s1`pτ

1q, rQ2
s`pτq, S`pn, zqssG ´ rQ2

s`pτq, rQ
2
s1`pτ

1q, S`pn, zqssG

“ κ4 p´qs`s1

16

„

ps ` s1qDn`3
”

rτ, τ 1sDs`s1´n´4S`pn ´ s ´ s1 ` 2, zq
ı

´ pn ` 3qDn`2
”

Drτ, τ 1sDs`s1´n´4S`pn ´ s ´ s1 ` 2, zq
ı

ȷ

“ κ4 p´qs`s1

16

„

ps ` s1q
n`3
ÿ

k“0

˜

n ` 3
k

¸

”

Dkrτ, τ 1sDs`s1´1´kS`pn ´ s ´ s1 ` 2, zq
ı

´ pn ` 3q
n`2
ÿ

k“0

˜

n ` 2
k

¸

”

Dk`1rτ, τ 1sDs`s1´1´pk`1qS`pn ´ s ´ s1 ` 2, zq
ı

ȷ

“ κ4 p´qs`s1

16

n`3
ÿ

k“0
ps ` s1 ´ kq

˜

n ` 3
k

¸

Dkrτ, τ 1sDs`s1´1´kS`pn ´ s ´ s1 ` 2, zq . (D.16)

We conclude by verifying the action

´
κ2

4
“

ps1`1qrQ2
s`s1´1,`pτ

1Dτq,S`pn,zqs´ps`1qrQ2
s`s1´1,`pτDτ 1q,S`pn,zqs

‰

“´κ4 p´qs`s1

16 ps1`1q
s`s1´1
ÿ

k“0
ps`s1´kq

˜

n`3
k

¸

Dkpτ 1DτqDs`s1´1´kS`pn´s´s1`2,zq

´psØ s1, τ Ø τ 1q , (D.17)

which matches (D.16) up to a sign, and thus (6.10) follows.

D.3 Quadratic order remainders

In this section we compute the two remainder nested commutators (6.15). By means
of (6.16), we compute first

rQ2
s1`pτ

1q, rQ2
s`pτq,S`pn,zqsRs

“
p´qsκ2

4

n`3
ÿ

k“s`1
ps´k`1q

˜

n`3
k

¸

DkτpzqDs´krQ2
s1,`pτ

1q,S`pn´s`1,zqs

“´
p´qs`s1κ4

16

n`3
ÿ

k“s`1

s1
ÿ

ℓ“0
ps´k`1q

˜

n`3
k

¸

ps1´ℓ`1q
˜

n´s`4
ℓ

¸

ˆDkτpzqDs´k
”

Dℓτ 1pzqDs1´ℓS`pn´s´s1`2,zq
ı

“´
p´qs`s1κ4

16

8
ÿ

k“s`1

s1
ÿ

ℓ“0

8
ÿ

m“0
ps´k`1q

˜

n`3
k

¸

ps1´ℓ`1q
˜

n´s`4
ℓ

¸

p´qm pk´s`m´1q!
m!pk´s´1q!

ˆDkτpzqDℓ`mτ 1pzqDs`s1´ℓ´k´mS`pn´s´s1`2,zq, (D.18)
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where we used the generalized Leibniz rule

Ds´k
”

Dℓτ 1pzqDs1´ℓS`pn ´ s ´ s1 ` 2, zq
ı

“

8
ÿ

m“0

ps ´ kqm

m! Dℓ`mτ 1pzqDs1´ℓ`s´k´mS`pn ´ s ´ s1 ` 2, zq, (D.19)

with
ps ´ kqm

m! “
p´pk ´ sqqm

m! “ p´qm pk ´ s ` m ´ 1qm

m! . (D.20)

The other contribution that we want to cancel is

rQ2
s1`pτ

1q, rQ2
s`pτq, S`pn, zqsGsR

:“ ´
p´qsκ2

4 Dn`2 rps ` 1qτD ` ps ´ n ´ 2qDτ sDs´n´3rQ2
s1,`pτ

1q, S`pn ´ s ` 1, zqsR

“ ´
p´qs`s1κ4

16

8
ÿ

k“s1`1
ps1 ´ k ` 1q

˜

n ´ s ` 4
k

¸

ˆ Dn`2 rps ` 1qτD ` ps ´ n ´ 2qDτ sDs´n´3rDkτ 1pzqDs1´kS`pn ´ s ´ s1 ` 2, zqs

“ ´
p´qs`s1κ4

16

8
ÿ

k“s1`1
ps1 ´ k ` 1q

˜

n ´ s ` 4
k

¸

ˆ

ˆ

ps ` 1qDn`2
”

τDs´n´2
”

Dkτ 1pzqDs1´kS`pn ´ s ´ s1 ` 2, zq
ıı

` ps ´ n ´ 2qDn`2
”

DτDs´n´3
”

Dkτ 1pzqDs1´kS`pn ´ s ´ s1 ` 2, zq
ıı

˙

“ ´
p´qs`s1κ4

16

n´s`4
ÿ

k“s1`1

n`2
ÿ

m“0
ps1 ´ k ` 1q

˜

n ´ s ` 4
k

¸˜

n ` 2
m

¸

ˆ

ˆ

ps ` 1qDmτDs´m
”

Dkτ 1pzqDs1´kS`pn ´ s ´ s1 ` 2, zq
ı

` ps ´ n ´ 2qDm`1τDs´1´m
”

Dkτ 1pzqDs1´kS`pn ´ s ´ s1 ` 2, zq
ı

˙

. (D.21)

We conclude with the derivation of the (6.19). The action (5.25) simplifies to

rQ3
2`pτq, S`pn, zqs “ ´

3κ2

16π

n
ÿ

k“0

˜

n ` 1
k

¸

τ2pzqS`pn ´ k, zqS`pk, zq. (D.22)

From this, we can then compute

rQ1
s1`pτ

1q, rQ3
2`pτq, S`pn, zqss

“ ´
3p´qs1κ2

16π

8
ÿ

k“0

˜

n ` 1
k

¸

τ2pzq

ż

S
dz1

2?
q Ds1`2

z1 τ 1pz1qrM:
`ps

1, z1q, S`pn ´ k, zqS`pk, zqs

“
3p´qs1κ4

16

«˜

n ` 1
n ´ s1

¸

`

˜

n ` 1
s1

¸ff

τ2pzqD
s1`2τ 1pzqS`pn ´ s1, zq

“
3p´qs1κ4

16

˜

n ` 2
s1 ` 1

¸

τ2pzqD
s1`2τ 1

s1pzqS`pn ´ s1, zq. (D.23)
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