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1 Introduction and summary

Supersymmetric quantum field theories with 8 supercharges can be characterized by their
moduli space of vacuaM, which possesses an intricate geometry. This geometry contains a
lot of crucial physical content, which has been successfully used in the past decades to learn
about QFTs. The work by Seiberg and Witten [3, 4] used the structure of the Coulomb
branch of 4d N = 2 theories to understand the strong coupling dynamics, in particular
showing that certain singularities correspond to non-perturbative states becoming massless,
thereby giving an explanation to confinement. It has been realized that restrictions imposed
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by physical requirements on the types of singularities can lead to partial classifications of
QFTs, in particular in the conformal case. In 4d, the classification has been attempted
at low rank [5–7] (the rank is the complex dimension of the Coulomb branch), yielding
impressive results at rank 1 [8–11] and rank 2 [12–18].

A feature of the geometry of the moduli spaces of vacua that is central in all the works
mentioned above is the singularity structure. This naturally defines a stratification which
can be depicted in a phase diagram encoding a partial order (making it a Hasse diagram) [19].
Dots in the diagram represent the locus inM corresponding to a given phase, and edges
are labeled with the local singular geometry which encodes phase transitions. These ideas
are for instance reflected in flavor symmetry breaking patterns in 6d SCFTs [20–25], and in
5d SCFTs [26–29].

The Higgs branchMH ⊂M is a hyperKähler singular space [30–32], i.e. a symplectic
singularity [33–35]. The study of the singular stratification ofMH , which coincides with its
symplectic leaves stratification, was put forward in connection to generalized Higgsing in [19].
This is the physical incarnation of the stratification of symplectic singularities [34], which
can be seen as an extension of the partial order on nilpotent orbits of simple algebras [36–38]
which are realized explicitly in brane setups [39–41]. A powerful tool to compute this
hyperKähler singular structure is to realize it as the 3d N = 4 Coulomb branch [42–47] of
a quiver gauge theory, which is then called a magnetic quiver for that singularity [48–80].
This notion extends the notion of 3d mirror symmetry [81–86], its scope encompassing
much beyond 3d Higgs branches. The stratification is obtained using an algorithm dubbed
quiver subtraction, which is derived from brane manipulations [19, 87]. In certain situations,
it turns out to be necessary to extend the standard notion of quiver: non simply laced
quivers [88–92], wreathed quivers [68, 93], decorated quivers [1]. A Hasse diagram, or phase
diagram, not only is a highly discriminant invariant one can associate to a QFT with 8
supercharges, but it also shows how the theory is related to others under various kinds of
deformations or flows (see [74, 94–101] for a selection of recent works along these lines).

The stratification of all of M was studied in [7, 102–105]. The general picture is as
follows: M can be described as a fibration with a global section,1 where the base is the
Coulomb/tensor branch, while the fiber is the local Higgs branch. The fiber geometry stays
the same as long as it lies above the same leaf in the base space, but can jump when going
from one leaf to the next — this statement can be seen as a refinement of the classical
non-renormalization theorems for the Higgs branch. The nature of these jumps depends
on the theory, but can be severe in general, including a change of the dimension of the
fiber, which is the usually observed effect of extra Higgs branch directions opening up at
singularities of the Coulomb branch, implying the fibration is non-flat; or a discrete quotient
of the fiber which is the case we will describe here. It is also possible to change the point
of view and see the Higgs branch as the base, and the local Coulomb/tensor branch as
the fiber.

In this paper, we leverage these tools to explore the full moduli space of 6d N = (1, 0)
theories. We focus on a simple yet very rich family of 6d theories, which can be realized in

1In this paper, all fibrations are implicitly assumed to be fibrations with a global section.
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Figure 1. (a) Full moduli space M of the theory (1.1) with n = k = 2, viewed as a fibration
by the Higgs branch (blue) over the tensor branch (purple). At the origin of the tensor branch,
the fiber develops a singularity (olive) due to quotienting by the Z2 symmetry on the generic d4
fiber (indicated by the notation (d4,Z2) borrowed from [38, 113]) producing the next-to-minimal
nilpotent orbit closure of so(7). The flavor symmetry is reduced from so(8) to so(7) at the origin
of the tensor branch [109]. (b) Hasse diagram ofM with respect to the fibration depicted in (a),
with the real dimension of each locus. The red lines denote N = (1, 0) tensor branch transitions;
when it is dashed, the transition is actually smooth (no phase transition). Indeed the top two blue
vertices represent the same phase of the theory, they are distinct only because the diagram respects
the fibration. The real codimension 1 locus is selected by the Z2 symmetry acting on the smooth
tensor branch R. (c) Hasse diagram ofM. There are only four phases. The orange line denotes an
N = (2, 0) tensor branch transition, the transverse geometry being R5/Z2.

M-theory by n M5 branes probing a C2/Zk singularity [106–108]. When the M5 branes are
separated, the theory is on its tensor branch, it can be described by the quiver

k SU(k)
· · ·

SU(k) k

n− 1 nodes

(1.1)

and the Higgs branch can be studied classically. When some M5 branes coincide, we
move on to more singular loci on the tensor branch, and the theory experiences so-called
discrete gauging [109]. One remarkable and somewhat counter-intuitive consequence of this
phenomenon is the fact that the flavor symmetry of SU(2) SQCD with Nf = 4 (i.e. the
case n = k = 2), which is classically so(8), reduces to so(7) at the SCFT point at the origin
of the tensor branch [109–112]. Geometrically, this can be interpreted in the context of the
fibration ofM over the tensor branch: while the fiber has a fixed dimension everywhere on
the tensor branch, the singularity structure of the fiber changes at the origin of the tensor
branch, see figure 1(a). This physical effect and its generalizations can be understood from
the magnetic quiver perspective, thus motivating an in-depth study of Hasse diagram of
symmetric products of symplectic singularities. A central role is played by decorated quivers,
recently introduced in [1]. A summary of why these are needed is given in appendix B.

While the description ofM as a fibration provides a powerful organizing principle that
allows to apply the decorated quiver techniques to compute the singularity structure of
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the fibers, it can also introduce spurious loci in these fibers, which breaks the one-to-one
correspondence between dots of the Hasse diagrams and phases of the theory. This is
illustrated in figure 1(b) and (c).

In view of this, it is useful to draw two general lessons:
(i) Describing a space as a fibration can change the Hasse diagram.

(ii) The Hasse diagram of a transverse slice in a space X might not be a sub-diagram of
the Hasse diagram of X.

The main motivation of this note is the full phase diagram for the 6d theory described
above, derived independently from string theory and magnetic quiver technology. In the
steps needed to reach this result, we uncover several new features:

• We identify the recently discovered family of new symplectic singularities Y(d) [2] in
6d physics.

• We conjecture the existence of two new isolated symplectic singularities, that we
call J32 and J33, unknown in both the mathematics and physics literature. Their
existence is derived from brane systems, and their Hilbert series is computed using
magnetic quivers. Their isometry algebra is so(4) = su(2)⊕ su(2).

• We point out that the transverse slice between two adjacent leaves in a Higgs branch
Hasse diagram can be a union of arbitrary many irreducible singularities, a known
fact from geometry of which we give an interpretation in string theory.

• We give a general recipe to compute the Hasse diagram of symmetric products of
symplectic singularities.

The paper is organized as follows. We start in section 2 by a review and extension of
the decorated quiver technology of [1], emphasizing the possibility of having multiple cones
in a transverse slice. We apply these tools to symmetric products of symplectic singularities
in section 3 as a necessary step before constructing the full moduli space of the 6d theory
described above in section 4. The text is complemented by appendices which review
the geometry of the singularities Y(d) (appendix A.1) and J32 and J33 (appendix A.2).
Appendix B gathers basic facts about decorated quivers, explaining why they are necessary
and illustrating with an example. In appendix C we show how non-singular transitions
can arise in Hasse diagrams of the full moduli space on the example of theories with 16
supercharges as well as 3d N = 4 SO(3) SQCD.

2 Unions of cones in quiver subtraction

In this section we briefly review the algorithm of [1] to compute Hasse diagrams of unitary
quivers with adjoint loops and the possibility of subtracting the same slice multiple times
through the use of decorated quivers. We add an important ingredient to the algorithm,
to deal with elementary slices which are unions of cones. Throughout the paper we use
the notation

nS = S ∪ S ∪ . . . ∪ S︸ ︷︷ ︸
n times

. (2.1)

When such a slice appears in a diagram, we draw n parallel lines.
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2.1 Decorated node merging

As pointed out in [1] one can merge U(1) nodes which are decorated in the same color as a
generalised quiver subtraction. Let us consider as an example the 4-th symmetric product
of C2. We can realize this as the Higgs branch of a brane system with 4 parallel Dp branes
moving inside a single D(p+ 4) brane. We draw a Dp brane as , and denote coincident Dp
branes by drawing a circle around them, e.g. . We can draw the Hasse diagram of brane
phases and associate partitions to each brane phase:

↔

[4]

[3, 1] [22]

[2, 12]

[14]

(2.2)

We argued in [1] that a transition where two stacks of n1 and n2 coincident branes are made
to coincide as n1 + n2 coincident branes is

• A1 if n1 = n2

• m if n1 6= n2

This statement needs to be amended however. Let us focus on the transition between the
partitions [2, 2] and [2, 12]. Going upwards in the Hasse diagram, there are two possibilities,
one could split the ‘left’ or the ‘right’ 2-stack of branes:

. (2.3)

Both transitions are A1. The two brane systems on top of (2.3) are related by moving
branes around without going through any singular transitions. Hence the two configurations
are actually the same leaf. This is no surprise, and it is how the Hasse diagram was already
drawn in (2.2). However, there are in fact two A1 transitions from the leaf [2, 2] to the
leaf [2, 12]. The transverse slice between the two leaves is therefore not A1 but rather
2A1 = A1 ∪A1.2 Sym4(C2) can be realized as the Coulomb branch of

1

4
∼=

1

1 1 1 1
. (2.4)

2This can be seen in the algebraic description of Sym4(C2). Denote the elements of Sym4(C2)
by O(x1,x2,x3,x4), the orbit of (x1, x2, x3, x4) ∈ C4 under the permutation group S4. The [22] leaf is
{O(x1,x1,x2,x2)|x1 6= x2}, and given a point O(x1,x1,x2,x2) in this leaf, the transverse slice in the leaf [2, 12] is
{O(x1+u,x1−u,x2+v,x2−v)|(u, v) ∈ (C2/Z2)× {0} ∪ {0} × (C2/Z2)}, which we denote as A1 ∪A1.
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The node merging procedure is as follows:

1

1

1

1 1

1

1 1

1

1
1 1

1

1 1 1 1

A1

2A1m

A1m

(2.5)

From this example it is straight forward to read of a general rule when unions appear as
elementary slices in the quiver merging procedure. We modify the rule of decorated node
merging of [1] as follows:

Decorated node merging. When merging two U(1)s which are decorated in the same
color and have shortness 1/n1 and 1/n2 respectively, we have the following elementary
transition

• (k + 1)A1, if n1 = n2

• (k + 1)m, if n1 6= n2

Where k is the number U(1)s decorated in the same color of shortness 1/(n1 + n2).
Schematically we can represent this subtraction as follows:

Q
1

1

k
n1 + n2 n1

n2

=
Q

1
1

1 · · · 1

k

Q

k + 1
n1 + n2

=

Q

1 · · · 1

k + 1

(k + 1)A1 or (k + 1)m

(2.6)
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2.2 Repeated identical quiver subtraction

We can now turn to quiver subtraction in the case where the same slice can be subtracted
multiple times. As we showed in [1] when there is the possibility of subtracting the same slice
multiple times on the same set of nodes, there is a need to decorate the U(1) rebalancing
nodes together with the subtracted part of the quiver. Let us considerM2,SU(3), the moduli
space of two SU(3) instantons on C2. We can realize this moduli space as the Higgs branch
of two parallel Dp branes inside a stack of three coincident D(p + 2) branes. We draw
Dp branes just like before, and Dp branes which are dissolved into the D(p+ 4) branes —
realizing instanton moduli — as . We can draw the Hasse diagram of brane phases and
associate partitions to each brane phase:

↔

[2]

[12]
[1]

[0]

(2.7)

Let us focus on the transition [12] to [1]. Similar to what we discussed before there is a
choice to make. There are two branes of which we should pick one to dissolve:

(2.8)

Both transitions are a2 transitions, since we are dealing with SU(3) instantons. For G-
instantons it would be the minimal nilpotent orbit closure of the corresponding algebra.
However the two brane systems are related by a non-singular transition, and therefore
are part of the same leaf. Just like before, this is no surprise, and we already drew our
Hasse diagram like this in (2.7). The transverse slice between [11] and [1] is the union
2a2 = a2 ∪ a2.

This is also visible from partial Higgsings. M2,SU(3) can be realized through the ADHM
construction [114] as the Higgs branch of

U(2) 3
. (2.9)

Turning on a scalar VEV in the adjoint hyper one Higgses the theory to a product

U(1) 3

U(1) 3

. (2.10)

While there is a Z2 ⊂ U(2) which exchanges the two U(1)s, this Z2 is broken by the Higgs
mechanism.3 One can now turn on a scalar VEV in the fundamental hyper of either of the

3We did not appreciate this point in [1] and we thank Carlo Meneghelli for correcting us.
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U(1) gauge groups — one has two choices — to trigger an additional partial Higgsing to a
single U(1) gauge theory. However the two choices are not distinguished from the point
of view of the U(2) gauge theory where the Z2 exchanging the U(1)s is gauged. Therefore
there is a single leaf in the Higgs branch of the U(2) theory on which it is broken to a U(1)
theory, while there are two distinct leaves in the Higgs branch U(1)×U(1) theory on which
it is broken to a U(1) theory, explaining the elementary slice being a union of cones.
M2,SU(3) can also be realized as the Coulomb branch of [82]

1
2

2

2
. (2.11)

On the level of quiver subtraction we have the following:

1

1

1

1 1 1

1

1

1

1

1
2

2

2

A1

2a2

a2

. (2.12)

It is straight forward to modify the rule of repeatedly subtracting the same slice given in [1]
to take into account unions of cones:

Repeated identical quiver subtraction. When subtracting a quiver D from a set of
nodes, such that one can subtract the same quiver again from the same nodes, one must add
a decoration between this set of nodes and the rebalancing U(1), and every rebalancing U(1)
coming from successive subtractions. The slice associated to the subtraction is4 (k+ 1)C(D)
where k is the number of rebalancing U(1) nodes present in the quiver before subtraction
decorated in the same color. Only U(1) nodes of shortness 1 are counted, if two or more
such U(1)s have already been merged (i.e. have shortness < 1) they are not counted.

4Here and everywhere in the paper, the notation C stands for the 3d N = 4 Coulomb branch.
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Schematically we can represent this subtraction as follows:

Q nD

k =

Q nD

1 · · · 1

k

Q (n− 1)D

k + 1
=

Q (n− 1)D

1 · · · 1

k + 1

(k + 1)C(D) (2.13)

3 Symmetric products

3.1 Symmetric product of C2

Before we turn to symmetric products of a singular space we start by analyzing Symk(C2)
taking into account elementary slices which are unions of cones using what we discussed in
the last section. The results for k ≤ 6 are shown in figure 2.

Transverse slices in Symk(C2). Transverse slices from any leaf in Symk(C2) to the
top leaf are products ∏i Symki

0 (C2),5 ∑i ki ≤ k, where Symki
0 (C2) = Symki(C2)/C2 is

the symmetric product with the free part (center of mass) removed. However the Hasse
diagrams of these product spaces are not a subdiagram of the bigger Symk(C2) spaces in
which they are a transverse slices. For example we have

Sym2(C2)× Sym2(C2) =
[12]

[2]

A1 ×
[12]

[2]

A1 =

[12][12]

[2][12] [12][2]

[2][2]

A1 A1

A1 A1

(3.1)

This product space can be identified with the transverse slice from [22] to [14] in

5We thank Travis Schedler for pointing this out to us.
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[1]

k = 1

[12]

[2]

k = 2

[13]

[2, 1]

[3]

k = 3

[14]

[2, 12]

[3, 1] [22]

[4]

k = 4

[15]

[2, 13]

[3, 12]

[4, 1] [3, 2]

[22, 1]

[5]

k = 5

[16]

[2, 14]

[3, 13] [22, 12]

[4, 12] [3, 2, 1] [23]

[5, 1]
[4, 2]

[32]

[6]

k = 6

Figure 2. Diagrams for the k-th symmetric products of C2 for k = 1, 2, 3, 4, 5, 6. The full lines
denote A1-type transitions, the dashed lines denote m-type transition. n parallel lines denote a
union of n cones.

Sym4(C2). The relevant subdiagram of the Hasse diagram is

[14]

[2, 12]

[2, 2]

2A1

A1

. (3.2)
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Partition Subdiagram of bigger Hasse diagram Hasse diagram of transverse slice

(2,2)

[22]

[2, 12]

[14]

[2][2]

[2][12] [12][2]

[12][12]

(2,2,2)

[23]

[22, 12]

[2, 14]

[16]

[2][2][2]

[2][2][12] [2][12][2] [12][2][2]

[2][12][12] [12][2][12] [12][12][2]

[12][12][12]

(2,3)

[3, 2]

[3, 12] [22, 1]

[2, 13]

[15]

[3][2]

[3][12] [2, 1][2]

[2, 1][12] [13][2]

[13][12]

(3,3)

[32]

[3, 2, 1]

[3, 13] [22, 12]

[2, 14]

[16]

[3][3]

[3][2, 1]

[3][13]

[2, 1][13]

[13][13]

[2, 1][3]

[2, 1][2, 1] [13][3]

[13][2, 1]

Figure 3. Transverse slices in Symk(C2). On the left we display the corresponding subdiagram in
the Hasse diagram of Symk(C2). On the right we display the Hasse diagram of the transverse slice.
This illustrates that the Hasse diagram of a transverse slice in a space X need not be a subdiagram
of the Hasse diagram of X. The Hasse diagram conventions are the same as in figure 2.
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This is clearly not the same as (3.1), however the 2A1 at the bottom of (3.2) tell us that
there are really two minimal leaves whose closure is A1, and we can infer the correct Hasse
diagram of symplectic leaves. This shows that it is important to be sensitive to unions of
cones as elementary slices. Other examples of similar computations are shown in figure 3,
which shows the diagrams for the k-th symmetric products of C2 for k = 1, 2, 3, 4, 5, 6. Going
further in k presents no difficulty. Note that the cases k = 3, 4, 5 can be checked against
computations in the math literature. Indeed, [38, Theorem 1.3] shows that these three
diagrams should appear in the diagrams for nilpotent orbits in G2, F4 and E8 respectively,
namely as the transverse slices between G2(a1) and A1, between F4(a3) and A2 + Ã1, and
between E8(a7) and A4 + A3. This can be checked directly on the diagrams at the end
of [38].

3.2 Symmmetric product of Klein singularities

We now consider the symmetric product of an ADE singularity, Symk(C2/ΓG), for
G = ADE.

The leaves of Symk(X). The moduli space of k points on X, i.e. Symk(X), has a
much more intricate Hasse diagram. Let us first review how to count the number of leaves,
following [115, 9.4(vii)]. We can have 0 ≤ k′ ≤ k points on L, while k − k′ points remain
at the singularity {0}. For a given k′ there is the possibility for several of the k′ points to
coincide. Each such possibility is captured by a partition of k′, where the parts count the
multiplicities of points. Therefore we have

# leaves of Symk(X) =
k∑

k′=0
p(k′), (3.3)

where p(k′) denotes the number of partitions of k′. The leaf associated to a partition
λk′ = [n1, . . . , nl] has quaternionic dimension l, the number of parts.

The Hasse diagram of Symk(X). Before constructing Hasse diagrams of Symk(X), let
us note that the subdiagram for a fixed k′ ≤ k is the Hasse diagram of Symk′(C2) studied in
the previous subsection. The Hasse diagram of Symk(X) is obtained in the following way:

1. Take the disjoint union of the Hasse diagrams of Symk′(C2) for 0 ≤ k′ ≤ k.

2. For each partition λ = [n1, . . . , nl] of k′, with 0 ≤ k′ < k, add an elementary transition
from λ to the partition [n1, . . . , nl, k − k′] of k. This transition has multiplicity 1.

The transitions added in the second step are justified in the following way. From the k − k′
points at the origin, we may move n ≤ k − k′ coincident points onto L. This is expected to
be an elementary transition.

The diagrams for 1 ≤ k ≤ 4 are shown in figure 5b. We now show how these can be
derived from quiver subtraction. It is necessary to introduce some notations first.

– 12 –
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Notation. In the following we will encounter quivers with non-simply laced edges with
multiplicity. We will denote such edges by two numbers — m, l — where l denotes the
non-simply lacedness and m denotes the multiplicity of the link. A link 1, l denotes a
standard non-simply laced edge of order l, and a link m, 1 denotes m simply laced links.
We have

C


1 1

m, l
 = C2/Zm (3.4)

independent of l.
Let’s get to quiver subtraction. We have

Symk(C2/ZN ) = C


1 k

N

 . (3.5)

There are two possible subtractions: either A1, using the rule (2.6), or the standard
subtraction of AN−1:

1 k

N

1 k − 2
N

1 1

1 k − 2
N

1
N, 2

−A1 and

1 k

N

−
1 1

N

1 k − 1
N

−AN−1 (3.6)

Using these two types of subtractions repeatedly, making sure that rule (2.6) is applied
properly to account for multiplicities, one can compute the Hasse diagram for an arbitrary
symmetric product of AN−1. An example is given in figure 4 for k = 4.

3.3 Comparison with the moduli space of instantons

LetMG,k denote the moduli space of k G-instantons on R4. Following [1] the Hasse diagram
ofMG,k is obtained by combining the Hasse diagrams of Symk′(C2) for 0 ≤ k′ ≤ k, and
adding additional transitions (drawn red in figure 5a). It follows from our construction,
that the Hasse diagram ofMG,k is contained in the Hasse diagram ofMG,k+1, and that
the Hasse diagram of Symk(X) is contained in the Hasse diagram of Symk+1(X). The way
the two Hasse diagrams grow when one increases k, however, is quite different. While the
Hasse diagram of Symk(X) grows ‘upwards’ when one increases k, the Hasse diagram of
MG,k grows ‘downwards’. This is illustrated in figure 5.
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1 4

N

1 2
N

1
N, 2

1 2

N, 2

1 1
N

1
N, 3

1 1

N, 4

1 3

N

1 1
N

1
N, 2

1 1

N, 3

1 2

N

1 1

N, 2

1 1

N

1

Figure 4. Hasse diagram for the space Sym4(C2/ZN ) computed from the magnetic quiver using
the rules of section 2. The green transitions denote AN−1 while the other transitions are those
shown in figure 2.

An observation about the number of leaves and slices. The number of symplectic
leaves inMG,k and Symk(C2/ΓG) is the same. InMG,k there are elementary slices which are
unions of cones, i.e. g, 2g, . . . , kg. In Symk(C2/ΓG) there are no elementary slices which are
a union of multiple C2/ΓG. However, there are many more elementary transitions connecting
the various leaves in Symk(C2/ΓG) than there are elementary transitions connecting the
various leaves inMG,k.

It is interesting to note that since we denote an elementary slice which is a union of n
cones by n lines in the Hasse diagram, the number of lines in the Hasse diagrams of MG,k

and Symk(C2/ΓG) are the same. More precisely, we show in appendix D that the number
of green / red lines, using the color code of figure 5, are both equal to

k∑
k′=0

k′∑
k′′=0

p(k′′) . (3.7)

4 6d SCFTs with discrete gauging

In this section we consider 6d N = (1, 0) theories living on n M5 branes probing a C2/Zk
singularity, as discussed in the Introduction. When the n M5 branes are separated along
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4

31 22

211

1111

3

21

111
2

11
1

0

k = 1
k = 2

k = 3
k = 4

(a) Hasse diagrams ofMk,G for k ≤ 4 embedded in each other. l red lines connecting two dots denote an
elementary slices lg = g ∪ . . . ∪ g, where g is the minimal nilpotent orbit closure for G.

0

1 2

11

3

21

111

4

31 22

211

1111

k = 1

k = 2

k = 3

k = 4

(b) Hasse diagrams of Symk(C2/ΓG) for k ≤ 4 embedded in each other. Green lines denote elementary slices
C2/ΓG.

Figure 5. Illustration how the Hasse diagrams ofMk,G and Symk(C2/ΓG) grow, as one increases
k. While the Hasse diagram ofMk,G grows ‘downwards’ the Hasse diagram of Symk(C2/ΓG) grows
‘upwards’. Note that while the number of leaves is the same in both cases, there are many more
elementary transitions in Symk(C2/ΓG) than inMk,G. We note that the number of red lines is the
same as the number of green lines.

the C2/Zk singularity the low energy theory is the linear quiver (1.1). This theory lives on
the tensor branch of a 6d N = (1, 0) SCFT. At infinite couplings, i.e. at singularities of the
tensor branch, these theories exhibit discrete gauging [109]. Magnetic quivers for all tensor
branch phases of this theory have been computed in [53].6

The goal of this section is to describe the full moduli space of this theory, using both
a the brane system described in the next paragraph, and the techniques developed in the

6Note that parts of the following analysis overlap with certain results of [80], which came out while this
work was completed.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 x x x x x x
D6 x x x x x x x
D8 x x x x x x x x x

(x6)

(x7, x8, x9)

D8 D8

D6

NS5

(1)

(2)

Figure 6. (1) The Type IIA set-up: the ’x’ mark the spacetime directions spanned by the various
branes. (2) Depiction of a brane system.

previous sections. Compactifying the M-theory setup, we will work with brane systems in
Type IIA. Our conventions for depicting brane systems are summarized in figure 6. Before
delving into the details, let us mention a few salient results.

• We fully derive the rank 1 result shown in figure 1, and its generalization at rank 2,
with much greater complexity.

• We examine in detail the points mentioned in the introduction regarding the fibration
structure and how it introduces spurious loci in the fibered Hasse diagram, with
smooth transitions.

• We characterize the new elementary transverse slices Y(n), J23 and J33.

Finally, we make an important remark regarding phase transitions in brane diagrams.
In several situations, such as linear unitary 3d N = 4 quiver theories, or 5d SCFTs on
simple brane webs (with only (p, q)-fivebranes), the number of leaves on the Higgs branch
corresponds to the number of maximal leaves in the full moduli space, and the mixed
branches are direct products of a Higgs component and a Coulomb component. When this
is the case, singular transitions are always associated to the opening of new branches, and
are therefore directly visible in brane systems. This insight was central to the works [19, 40]
and many others to compute the Hasse diagram of a given branch in a moduli space.
Crucially, the theories studied in the present paper do not satisfy the above property that
its mixed branches are direct products.7 In this case one may be able to identify singular
transitions from a brane system by looking at the massless degrees of freedom on a given

7For a simpler example of theories which do not satisfy the property, one can consider O(n) gauge
theories, see appendix C.2 for a discussion.
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brane configuration and comparing it to the massless degrees of freedom of a different brane
configuration. If the degrees of freedom change, there was a singular transition. This is
however only possible if one can characterize the massless degrees of freedom appropriately,
which is often not the case at a strongly coupled fixed point. The most versatile and
general method we know to compute singular transitions is to characterize a transition in a
brane system by computing the magnetic quiver for the moduli needed to move from one
phase to another, as this gives access to the singular stratification from a purely geometric
point of view. If the magnetic quiver has a singular Coulomb branch, then the brane
transition was singular. To summarize, we have at least three methods available to identify
singular transitions:

1. Jump in the number of massless degrees of freedom. This is the most obvious
method, which corresponds to directly reading the phase, but it rarely works for
strongly coupled systems.

2. New Coulomb branch directions. This is extremely useful and has been used
extensively in the literature, but has its limitations, as it relies on the assumption
that mixed branches are direct products of Higgs and Coulomb branch directions,
and is only sensitive to (the subset of) singularities at which new Coulomb branch
directions open up. The present work is dedicated to theories where this assumption
is not satisfied.

3. Magnetic quiver. This is the most general and versatile method. It requires a
careful understanding of the algorithm, such as rules (2.6) and (2.13).

4.1 The case k = 2 and n = 2

We start with the simple case k = n = 2, which we have already discussed in the Introduction.
We will describe the full moduli space as a fibration by the Higgs branch over the tensor
branchMT :

π :M−→MT = R≥0 . (4.1)
There are two cases to consider: finite coupling and SCFT point.

Finite coupling. The electric quiver is

2 SU(2) 2 (4.2)

We can depict the brane system at a generic point on the Higgs branch, and the magnetic
quiver describing its moduli:

1 2 1

1 1
(4.3)
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In this phase the gauge group is completely broken. Extra massless states arise, when the
gauge group is ‘unhiggsed’ to SU(2), i.e. when two D6 branes end on an NS5 brane on the
left and right. Keeping in mind the S-rule (at most one D6 brane may be stuck between an
NS5 and a D8 brane) we obtain the brane system for this phase and the magnetic quiver
describing its moduli:

1 (4.4)

The elementary slice in the Higgs branch corresponding to the transition from (4.3) to (4.4)
is d4. We obtained the Hasse diagram of the Higgs branch of our theory:

d4 (4.5)

This Hasse diagram is the diagram of one fiber, above a given point on the tensor branch.
However when considering π−1(MT − {0}), the Z2 action exchanging the two NS5 branes
is manifestly acting. This is the action that ends up being quotiented by at the origin of
the branch. We can record this using the notation of [38, 113] as follows:

(d4,Z2) (4.6)

Infinite coupling. At infinite coupling the theory has no gauge theoretic description. In
the brane system the two NS5 branes are now aligned along the x6-direction.

We can depict the brane system at a generic point on the Higgs branch, and the
magnetic quiver describing its moduli:

1 2 1

2
(4.7)

It is less obvious to determine a phase in the brane system where new massless states arise.
The Hasse diagram of the Coulomb branch of the magnetic quiver in (4.7) is know to be

A1

b3

. (4.8)
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This can be deduced from the fact that the quiver in (4.7) is a magnetic quiver for the
closure of the next-to-minimal nilpotent orbit of so(7), or from quiver subtraction, as we
show below. Therefore we know that we can reach a phase in the brane system where extra
massless states arise by restricting one modulus in the brane system (4.7). We happen to
have one such modulus, the separation between the two NS5 branes. Making these NS5
branes coincide they now share one modulus. Following [1] this modulus appears as a U(1)
node of shortness 1/2 in the magnetic quiver:

2

1 2 1

1
(4.9)

We can now obtain extra massless states much like in the finite coupling case. The two
coincident NS5 branes need to team up with 2 D6 branes. Respecting the S-rule we find
the brane system and magnetic quiver:

2
1 (4.10)

By comparing the three phases (4.7), (4.9) and (4.10) we exactly recover the Hasse dia-
gram (4.8). Putting everything together, we can draw the Hasse diagram for the full moduli
space. This is done in figure 1.

The transition between configurations (4.3) and (4.7), represented by the red dashed
line in figure 1, is clearly non-singular. The NS5 branes just happen to share one coordinate
in R4, but do not share the other three coordinates before reaching the configuration (4.9).
Therefore, a phase transition takes place between (4.3) and (4.9). In this transition, the D6
and D8 branes are spectators, and the local system involved in the transition preserves 16
supercharges. It is the same transition that would occur in a 6d N = (2, 0) theory. This is
the transition denoted by the orange line in figure 1.

4.2 The case k = 2 and n = 3

We now consider the case k = 2, n = 3. At finite coupling the electric quiver is

2 SU(2)SU(2) 2 , (4.11)
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while the brane system and magnetic quiver are

1 2 1

1 1 1

(4.12)

From the brane system / magnetic quiver, one identifies 5 distinct ways to reaching a
different phase. These correspond to the five brane systems depicted on the left part
of figure 8.

When one of the two tensor moduli (identified with the spacing between the NS5 branes
along direction x6) is taken to zero, the story is similar to what happened for k = n = 2,
involving b3 transitions. The configurations and diagrams are shown in the middle part
of figure 8.

Finally, at the origin of the tensor branch, we can depict the brane system at a generic
point on the Higgs branch, and the magnetic quiver describing its moduli:

1 2 1

3
(4.13)

Just as in the n = 2 case we can make two NS5 branes coincide to reach a phase with extra
massless states. The brane system is simple, and the magnetic quiver is obtained using the
rules of [1], or directly by quiver subtraction using (2.6). The full diagram for the Higgs
branch above the origin of the tensor branch is shown in figure 7. Crucially, the closure of
the minimal nilpotent orbit of the exceptional Lie algebra G2 is involved in the process,
through the subtraction of its magnetic quiver

1 2

1
(4.14)

The diagram for the full moduli space with respect to the Higgs branch fibration
over the tensor branch is summarized on figure 9. As before, it is interesting to notice
that several phases are spuriously separated by the fibration, as indicated by the dashed
lines which denote smooth transverse spaces. We refer to the caption of this figure for
detailed comments.
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1 2 1

3

2

1 2 1

1 1

3

1 2 1

1

2

1

1
3

1

1
3

1

1

3
1

A1

m

b3

g2 g2

A1 A1 A1

Figure 7. k = 2, n = 3. Different Higgs phases in the brane system along with corresponding
magnetic quivers and elementary transitions. The Hasse diagram contains the Hasse diagram for
k = 2, n = 2. Note that the decoration on the second quiver from the top imply that there is only
one possible b3 subtraction — there would be three without the decoration — in other words, the
decoration ensures the configuration stays at the same point on the tensor branch.
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222

2
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33

3

Figure 8. Hasse diagram with respect to the Higgs branch fibration over the tensor branch for the full moduli space of theory (4.11). Black lines
represent Higgs branch transitions, red lines represent N = (1, 0) tensor branch transitions, and orange lines represent N = (2, 0) tensor branch
transitions. The red shaded area depicts the pure tensor branch, and the blue shaded area depicts the pure Higgs branch. Each phase of the theory
is represented by a brane diagram. A more schematic version of this figure is shown in figure 9.
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4.3 The case k = 2 and n ≥ 4

Let us now turn to (1.1) with n ≥ 4, still with k = 2. We skip the finite coupling discussion
and go to infinite coupling at the origin of the n − 1 dimensional tensor branch straight
away, where a new phenomenon occurs. We can depict the brane system at a generic point
on the Higgs branch, and the magnetic quiver describing its moduli:

...

n
N
S5

1 2 1

n

(4.15)

There are many possible transitions, and we will focus only on a new type of transition not
previously discussed in the physics literature. After making 4 ≤ d ≤ n NS5 branes coincide,
we can align them with D6 branes. Suppressing all branes not involved in this elementary
transition, we have the following:

d

2

1
d

d
1

Y(d)
(4.16)

The elementary slice Y(d) was only recently discovered by mathematicians [2] and is
described in appendix A.1. Note that for d < 4, the quiver on top of (4.16) has an
underbalanced node, and accordingly the transitions that are performed are of type b3
(see (4.9)) or g2 (see (4.14)). The Hasse diagram for k = 2, n = 4 is given in figure 10.
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Diagram of Sym 3(R 5)

Figure 9. (Top) Simplified version of figure 8 representing the Hasse diagram of the full moduli
space of the theory k = 2, n = 3 with respect to the fibration of the Higgs branch over the tensor
branch. Red lines are N = (1, 0) tensor transitions (dashed lines for smooth transverse slices),
orange lines are N = (1, 0) tensor transitions, black lines are Higgs branch transitions (the type is
not specified as it can be read from the brane systems in figure 8). The red shaded area represents
the tensor branch, with the origin at the bottom right, and the most generic point at the top left.
The orange shaded area is the tensor branch for the 6d N = (2, 0) theory of type An−1 = A2.
(Bottom) Phase diagram for the same theory. The points in the top diagram representing the same
phase have been identified. The 6d N = (2, 0) tensor branch is seen to have the structure of the
third symmetric product of R5, as expected.
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Y(4) = a2g2

g2 b3

b3

Figure 10. Higgs branch Hasse diagram for k = 2, n = 4 at the origin of the tensor branch. The
height of a dot is proportional to the dimension of the leaf it stands for. As before black lines with
no label stand for A1 transitions, and dashed lines for m transitions. In the light gray area we
can recognize the Hasse diagram for k = 2, n = 3 and in the dark gray area the Hasse diagram
for k = 2, n = 2.

4.4 General case

As made clear by the previous case studies, the phase diagram for the theory of n M5 branes
probing a C2/Zk singularity shows an extraordinary complexity as k and n grow. However,
this complexity is only combinatorial and the transverse slices — i.e. the phase transitions
— are fully understood in principle, and can be worked out in any particular example.

Let us begin by studying the theory on the most generic point of the tensor branch, i.e.
at finite coupling. The Type IIA brane system at the origin of the Higgs branch is

· · · · · ·· · ·
1 2 k − 1 k k k k − 1 2 1

n

k k

The brane system on a generic point of the Higgs branch is

· · · · · ·

· · ·

... ... ...
...

...

– 25 –



J
H
E
P
1
2
(
2
0
2
2
)
1
5
9

The geometry of the Higgs branch is encapsulated in its magnetic quiver, which can be read
off from the brane system [53]

1 2
· · ·

k − 1 k k − 1
· · ·

2 1

1 · · · 1
n

(4.17)

Structure at the origin of the tensor branch. At the origin of the tensor branch,
one gets the following magnetic quiver, which involves discrete gauging:

1 2
· · ·

k − 1 k k − 1
· · ·

2 1

n

(4.18)

The Hasse diagram is very complicated, and cannot be depicted in general. A part of it is
shown in figure 11. In particular for k = 2 the magnetic quiver simplifies, and the Hasse
diagram contains as a subdiagram

Y(n)

A1 A1

A1 A1

Symn(C2)/C2

(4.19)

where the gray area stands for the diagram of Symn(C2)/C2. We have not drawn the b3,
g2, and Y(k) with 4 ≤ k < n transitions which are also present in the Hasse diagram. The
bottom part of this diagram, drawn in black lines, can be reproduced using the tools from
the atomic classification of 6d SCFTs [20, 21, 24, 25, 116].8

8We thank Craig Lawrie for drawing our attention on this agreement.
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Partition Transition
[14] d4

[2, 12] b3

[22] d3 = a3

[3, 1] g2

[4] Y(4) = a2

[3, 2] J3,2

[32] J3,3

[d] (with d ≥ 4) Y(d)

Table 1. List of partitions of integers ≥ 4 which do not contain a strict sub-partition of a number
≥ 4. For each such partition we indicate the isolated symplectic singularity.

New transitions. At a point on an arbitrary locus on the tensor branch, one is confronted
with the situation

d1 d2 · · ·
(4.20)

characterized by a partition d = [d1, d2, . . . ] of an integer d1+d2+· · · ≥ 4 (if d1+d2+· · · < 4,
the singular transition involves additional D6 branes as shown in sections 4.1 and 4.2).
If d is a partition of 4, the transitions already have been worked out in the previous
subsection. If d has a sub-partition that is a partition of an integer ≥ 4, then a transition
will be associated to that sub-partition, and we can focus on that one. This means that
elementary transitions are associated to partitions of integers ≥ 4 which do not contain
a strict sub-partition of a number ≥ 4. The full list of such partitions is given in table 1.
Inspecting this table we notice that two entries have not been covered yet. The associated
isolated symplectic singularities are dubbed J3,2 and J3,3, and are studied in detail in
appendix A.2.
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Y(n)

Symn(C2)/C2

1 2
· · ·

k − 1 k − 2 k − 1
· · ·

2 1

1
n− 4

1 2
· · ·

k − 1 k k − 1
· · ·

2 1

1
n

1 2
· · ·

k − 1 k k − 1
· · ·

2 1

n

Figure 11. Part of the beginning of the Hasse diagram for the theory (1.1), for n ≥ 4. The gray
area represents the Hasse diagram of the symmetric product. In the full diagram, several lines would
emerge from that area (see figure 10).
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A New isolated symplectic singularities

A.1 The slice Y(d) from [2]

The classification of isolated symplectic singularities is an open problem in mathematics.
Recently a new family of normal isolated symplectic singularities of quaternionic dimension
2 was found by a team of mathematicians [2], which they call Y(d), d ≥ 4, where Y(4) = a2.
We conjecture

C


2 1

d
 = Y(d) for d ≥ 4 (A.1)

based on a Hilbert series computation. The (unrefined) Hilbert series of Y(d) was computed
in [2, eq. (6.4)] and reads

HS(Y(d)) =
∑d−2
i=0 t

2i + (d− 1)td−2

(1− t2)2(1− td−2)2 , (A.2)

which matches the Hilbert series of the Coulomb branch in (A.1).
The global symmetry is SU(2) and the highest weight generating function is9

HWG(A.1) = PE[µ2t2 + t4 + µd(td−2 + td)− µ2dt2d] , (A.3)
9We thank Amihay Hanany, Daniel Juteau and Zhenghao Zhong for discussions on this Hilbert series

and HWG.
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Y(d)

Ad−1

Ad−3

[
WSL2/Z2

][0,d]

[0,d−4]

Zd

Figure 12. Zd quotient of Y(d) visible from the quiver.

where µ denotes the highest weight fugacity of SU(2). Y(d) is realized as the singularity
associated to the brane transition (A.1).

Zd quotient of Y(d). As pointed out in [2], Y(d) is a Zd cover of the slice between the
sub-sub-regular [d− 2, 2] orbit and the regular [d] orbit in the nilpotent cone of sl(d), which

is also realized as the affine Grassmannian slice
[
WSL2/Z2

][0,d]

[0,d−4]
, which is nothing but the

Coulomb branch of U(2) with d fundamental hypers.

This is immediately visible from the magnetic quiver: promoting the U(1) node of
‘shortness’ d to a long node — or in other words, changing the ungauging scheme [117] —
the Coulomb branch is quotiented by Zd. We get

C


2 1

d
 Zd−→ C


2 1

d
 = C


2

d
 . (A.4)

We depict this quotient in figure 12.

A.2 The slices Jk1,k2

Consider the singularity

Jk1,k2 = C


2 11

k2k1
 (A.5)
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Which is realized for example as the singularity associated to the transition

k1
k2

k1 k2

Jk1,k2

(A.6)

in the brane system.
The Hilbert series for Jk1,k2 (with k1, k2 ≥ 1 and (k1, k2) 6= (1, 1)) is

(2k−3)tk−2+(2k−3)t2k+(1−2k)t2k−2+t3k−4+t3k−2+(1−2k)tk+t2+1
(t2−1)2 + (k1 − 1)(k2 − 1)tk−4

(
tk + t2

)
(1− t2)3 (1− tk−2)3

(A.7)
where k = k1 + k2.

We have quiver subtraction and brane transitions at our disposal to compute the Hasse
diagrams for various k1 and k2, summarized in table 2. As argued in table 1, for two specific
values, (k1, k2) = (3, 3) and (k1, k2) = (2, 3) ∼ (3, 2), there is no known quiver to subtract.
Furthermore the S-rule implies that there is a single transition in the brane system. This
indicates, that J3,3 and J2,3 = J3,2 are elementary slices.

From the magnetic quiver is it clear that these Coulomb branches have a Zk1 and Zk2

quotients by promoting the U(1) node of ‘shortness’ ki to a long node — or in other words,
changing the ungauging scheme [117].

A.2.1 The slice J33

Let

J33 = C


2 11

33
 (A.8)

with Hilbert series

HS (J33) = 1 + 3t2 + 18t4 + 14t6 + 18t8 + 3t10 + t12

(1− t2)3(1− t4)3 . (A.9)
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k2
k1

≥ 4

3

2

1

≥ 4 3 2 1

Y(k1) Y(k2)

A1 A1

su(2)2

Y(k1)

A1

su(2)2

Y(k1)

A1

su(2)2

Y(k1)

A1

su(2)2

J33

su(2)2

J32

su(2)2

g2

G2

d3

so(6)

H3

sp(3)

bad

Table 2. We depict the Hasse diagram and the global symmetry of the slices Jk1,k2 for various
values of k1 and k2. It is symmetric in k1 and k2.

The character expansion of the refined Hilbert series reads

HS (J33) = 1 + ([2, 0] + [0, 2])t2 + ([3, 3] + [2, 2] + [4, 0] + [0, 4] + [0, 0])t4

+ ([5, 3] + [3, 5] + [6, 0] + [0, 6] + [4, 2] + [2, 4] + [3, 3] + [2, 0] + [0, 2])t6

+ ([6, 6] + [7, 3] + [3, 7] + [5, 5] + [8, 0] + [0, 8] + [6, 2] + [2, 6] + [5, 3] + [3, 5]
+ [4, 4] + [3, 3] + [4, 0] + [0, 4] + [2, 2] + [0, 0])t8 + . . . ,

(A.10)

and the plethystic logarithm of the refined Hilbert series reads

PL (HS (J33)) = ([2, 0] + [0, 2])t2 + ([3, 3]− [0, 0])t4 + (−[3, 3]− [3, 1]− [1, 3])t6

+ ([3, 3] + [3, 1] + [1, 3] + [1, 1]− [6, 2]− [2, 6]− [4, 4]− [4, 0]− [0, 4]
− [2, 2]− [0, 0])t8 .

(A.11)

From this we gather that the global symmetry is SO(4) = Spin(4)/Z2, where the Z2 is the
diagonal subgroup of the Z2 × Z2 center of Spin(4).
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Z3 quotient of J33. Note that J33 is a Z3 cover of the affine Grassmannian slice [WG2 ][0,3]
[0,2]

with magnetic quiver [118]:

2 11

33
=

2 11

33
=

21

3
3 (A.12)

and Hilbert series

HS
(

[WG2 ][0,3]
[0,2]

)
= 1 + 2t2 + 8t4 + 11t6 + 14t8 + 11t10 + 8t12 + 2t14 + t16

(1− t2)2(1− t4)3(1− t6) . (A.13)

Indeed we have Vol(J33)

Vol
(
[WG2 ][0,3]

[0,2]

) = 3 indicating the Z3 quotient. From the magnetic quiver of

J33 we can see, that this Z3 quotient can be taken in two different (but isomorphic) ways,
indicated by the two unframed quivers in (A.12).

Z3 × Z3 quotient of J33. After the first Z3 quotient one can do a further Z3 quotient
with magnetic quiver

21 1

3 3
(A.14)

and Hilbert series

HS (C(A.14)) = 1 + t2 + 3t4 + 9t6 + 11t8 + 8t10 + 11t12 + 9t14 + 3t16 + t18 + t20

(1− t2)(1− t4)3(1− t6)2 . (A.15)

Indeed we have
Vol
(
[WG2 ][0,3]

[0,2]

)
Vol(C(A.14)) = 3 indicating the second Z3 quotient, and Vol(J33)

Vol(C(A.14)) = 9
indicating a quotient of order 9 which we deduce to be Z3 × Z3 based on the commutative
diagram in figure 13.

A.2.2 The slice J32 = J23

J32 = C


2 11

23
 (A.16)

with Hilbert series

HS (J32) = 1 + 3t2 + 9t3 + 5t4 + 5t5 + 9t6 + 3t7 + t9

(1− t2)3(1− t3)3 . (A.17)

The character expansion of the refined Hilbert series reads

HS (J23) = 1 + ([2, 0] + [0, 2])t2 + ([2, 3])t3 + ([2, 2] + [4, 0] + [0, 4] + [0, 0])t4

+ ([2, 5] + [4, 3] + [2, 4])t5

+ ([4, 6] + [4, 2] + [2, 4] + [6, 0] + [0, 6] + [2, 0] + [0, 2])t6

+ ([2, 7] + [6, 3] + [4, 5] + [2, 5] + [4, 3] + [2, 3])t7 + . . . ,

(A.18)
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J33

A2

ag2
[WG2 ][0,3]

[0,2]

A2

ag2
[WG2 ][0,3]

[0,2]

A2

A2

A3

A2

A2

A3

A2 A2
C(A.14)

Z3

Z3

Z3

Z3

Z3 × Z3

Figure 13. Quotients of J33 which are visible from the quiver.

and the plethystic logarithm of the refined Hilbert series reads

PL (HS (J23)) = ([2, 0] + [0, 2])t2 + ([2, 3])t3 − ([0, 0])t4 − ([2, 3] + [2, 1] + [0, 3])t5

− ([2, 4] + [4, 2] + [2, 0] + [0, 6] + [0, 2])t6

+ ([2, 3] + [2, 1] + [0, 3] + [0, 1])t7 + . . . .

(A.19)

From this we gather that the global symmetry is SemiSpin(4) = Spin(4)/Z2, where the Z2
is one of the factors in the Z2 × Z2 center of Spin(4).

Z2 quotient of J32. J32 is a Z2 cover of the affine Grassmannian slice [WG2 ][0,2]
[0,1] with

magnetic quiver [118]:

2 11

23
=

21

2
3 (A.20)

and Hilbert series

HS
(

[WG2 ][0,2]
[0,1]

)
= 1 + 2t2 + 5t3 + 4t4 + 6t5 + 6t6 + 4t7 + 5t8 + 2t9 + t11

(1− t2)2(1− t3)3(1− t4) . (A.21)

Indeed we have
Vol (J23)

Vol
(

[WG2 ][0,2]
[0,1]

) = 2 , (A.22)

indicating the Z2 quotient.
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Z3 quotient of J32. J32 is also a Z3 cover of the affine Grassmannian slice
[
WSp2/Z2

][0,3]

[0,1]
with magnetic quiver [118]:

2 11

23
=

21

3
2 (A.23)

and Hilbert series

HS
([
WSp2/Z2

][0,3]

[0,1]

)
= 1 + t2 + 3t3 + t4 + t5 + 3t6 + t7 + t9

(1− t2)3(1− t3)3 . (A.24)

Indeed we have
Vol (J23)

Vol
([
WSp2/Z2

][0,3]

[0,1]

) = 3 , (A.25)

indicating the Z3 quotient.

Z2 × Z3 = Z6 quotient of J32. J32 is also a Z2×Z3 = Z6 cover of the Coulomb branch
of

2 11

23
(A.26)

with Hilbert series

HS (C(A.26)) = 1 + 2t3 + 2t4 + 4t5 + 3t6 + 3t8 + 4t9 + 2t10 + 2t11 + t14

(1− t2)2(1− t3)2(1− t4)(1− t6) . (A.27)

From the structure of the quiver (A.26) we expect that its Coulomb branch is a slice in the
double affine Grassmannian of Â1. One can check that

Vol
(

[WG2 ][0,2]
[0,1]

)
Vol (C(A.26)) = 3 ,

Vol
([
WSp2/Z2

][0,3]

[0,1]

)
Vol (C(A.26)) = 2 , Vol (J23)

Vol (C(A.26)) = 6 . (A.28)

This can be represented by the commutative diagram in figure 14.

A.2.3 Why J33 and J23 are isolated symplectic singularities

Without an explicit description in terms of generators and relations it is hard to tell whether
a singularity is an isolated symplectic singularity. We do not have such a description of J33
and J23, and the Hilbert Series indicates that such a description would be very complicated
and hence difficult to obtain. We will only give a collection of arguments why we conjecture
both singularities to be isolated symplectic singularities.

First an observation about global symmetry is in order. There are isolated symplectic
singularities with a global symmetry algebra which is a product of an abelian and a simple
non-abelian part. For example the slices called hn,k and h̄n,k in [118], for k > 2, have a
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J23

A1

cg2
[WG2 ][0,2]

[0,1]

A2

ac2

[
WSp2/Z2

][0,3]

[0,1]

A1

A2

A2

A2

A1

A2

A2 A1
C(A.26)

Z2

Z3

Z3

Z2

Z6

Figure 14. Quotients of J23 which are visible from the quiver.

u(n) = u(1)⊕ su(n) global symmetry algebra. However no isolated symplectic singularity
with a global symmetry algebra which is a product of multiple simple non-abelian parts
is known to the authors. Both slices J33 and J23, have an su(2)⊕ su(2) global symmetry,
which is unusual but not impossible to the best of our knowledge.

The minimal nilpotent orbit of O(4) has an su(2)⊕ su(2) global symmetry, but it is a
union of two A1 singularities, and hence it is not a symplectic singularity in the sense of
Beauville [33] which requires normality. Nevertheless ‘non-normal symplectic singularities’
appear as elementary slices in symplectic singularities. E.g. the singularities A2k−1 ∪A2k−1
and other unions appear as elementary slices in the nilcone of classical and exceptional
algebras [37, 38, 41]. Furthermore the singularities m, m′ and µ of [38] — which are not
unions of symplectic singularities (they have only two leaves) but are still non-normal —
appear as elementary slices in the nilcone of exceptional algebras.

Therefore there are several questions to address for J33 and J23.

• Are they elementary slices?

• If they are elementary, are they not a union, i.e. are there only two leaves?

• If they are not a union, are they normal?

If they are normal elementary slices, then they are isolated symplectic singularities.
There are several arguments for the slices J33 and J23 to be elementary and also normal.

1. From 6d physics and the associated brane system, following the arguments given at
the end of section 4.

2. Quotients: when we have a symplectic singularity S with a Zk quotient S′ then the
number of symplectic leaves of S′ is often greater than the number of symplectic
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leaves of S. Examples are S = C2n, bn, dn, . . .. Known counterexamples are ADE
singularities whose Zk quotients are again an ADE singularity.
Since the Zki

quotients of J33 and J23 have known Hasse diagrams which are linear
with three leaves, we can expect their coverings to have only two leaves, which would
mean that the slices are elementary and also not a union.

3. Hilbert series: all known Hilbert series of non-normal singularities have non palin-
dromic numerators. The numerators in the Hilbert series for J33 and J23 are palin-
dromic, which suggests the slices are normal, and hence also not a union.

We therefore conclude conjecturally that J33 and J23 are new isolated symplectic
singularities.

B The Case for Decorated Quivers

Decorated quivers were introduced in [1]. In this appendix we briefly review the salient
facts about these quivers and explain why they are needed.

Before doing this, we remind the properties of magnetic quivers. Given a theory with
8 supercharges, one can produce a Hasse diagram which can be interpreted in several
equivalent ways:

(i) As the phase diagram of the theory on its Higgs branch. The elementary transitions
correspond to phase transitions where a minimal set of fields becomes massless /
massive, generalizing the usual Higgs mechanism.

(ii) As the brane configuration diagram, if the theory can be realized on a brane
system. The elementary transitions correspond to minimal brane recombinations
preserving supersymmetry;

(iii) As the singularity diagram of the Higgs branch, viewed as a symplectic singularity.
This is purely geometric, and the elementary transitions correspond to minimal
degenerations.

(iv) As the quiver subtraction diagram, produced by the quiver subtraction algo-
rithm [118] when a magnetic quiver is available for the Higgs branch.

In the simplest cases (e.g. for a pair of 3d N = 4 unitary and linear mirror quivers), one can
easily relate all four interpretations above: quiver subtraction (iv) corresponds to the Higgs
mechanism (i) via 3d mirror symmetry, to brane recombination (ii) through Kraft-Procesi
transitions, and to the geometry (iii) using the monopole formula.

However it was pointed out in [1] that for moduli spaces of instantons, the correspondence
with (iv) naively breaks down. This is an important problem, as method (iv) is the
most straightforward to effectively compute the phase diagram. It can be restored by
introducing decorated quivers. More generally, these appear whenever repeated identical
quiver subtraction is needed, see the rule on page 8.

A strong case can be made for this addition, as it perfectly fits with all other approaches
(i), (ii) and (iii). The relation between brane systems and decorated quiver is made
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precise, for brane webs, in [1, appendix C]. The agreement with field theory methods has
been explicitly checked using the ADHM construction. The consistency with independently
computed singular stratifications has been demonstrated for the G2 nilcone in [1, appendix A],
and e.g. for symmetric products in the present work — see figure 2, which agrees with the
mathematical literature.

The previous paragraph argues that introducing decorated quivers is sufficient to
restore the agreement, and provides an efficient way to compute phase diagrams whenever
a magnetic quiver is available. One could however ask whether this is necessary: does there
exist a simpler fix that wouldn’t need such a vast and exotic extension of the notion of
quivers? We can safely argue that indeed these quivers are necessary. The main argument
for decorations is the very natural string theory interpretation which we will comment on in
the next subsection. But another reason, of a more mathematical nature, is as compelling.
It was shown in [92] that Coulomb branches of quivers, including non simply laced edges,
are always normal. However the geometry includes non-normal transverse slices, like m,
discussed at length in the present work, showing that a major generalization is indeed
needed if one wishes to use quivers to describe these singularities.Moreover, decorated
quivers turn out to be needed to describe moduli spaces, as opposed to mere transverse
slices. This is illustrated in the next paragraph. Before that, let us mention that One aspect
of decorated oquivers remains open at the moment, namely the direct computation of the
Hilbert series of the corresponding symplectic singularity. We are currently investigating
this question, and the results will be presented in a future work [119].

Instantons in product groups. Decorated quivers were first conceived to address a
problem in quiver subtraction of a conventional (non-decorated) quiver. In this paragraph
we show that decorated quivers arise in their own right as magnetic quivers for certain
moduli spaces. The simplest example is in the moduli space of instantons of a product
group. Let us consider the moduli space of two instantons in SU(3)× SU(2). This moduli
space is realised as the Higgs branch of the 5d N = 1 theory living on the brane web

(B.1)

This brane web has three maximal decompositions. Corresponding to the three choices: both
instantons in SU(3), one instanton in SU(3) and one instanton in SU(2), both instantons
in SU(2). We depict all three maximal decompositions, as well as all other phases of the
brane web in figure 15. From these brane web decompositions we can read off (decorated)
magnetic quivers following the rules of [1, appendix C]. We summarize the magnetic quivers
for each phase in figure 16. Importantly the cone in the moduli space for one instanton in
SU(3) and one instanton in SU(2) has a decorated magnetic quiver. Without the decoration
one would not obtain the Hasse diagram predicted from the branes and other physical
considerations.
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2

a2 a1 a2 a1

2a2 2a1

A1

Figure 15. The seven distinct brane phases arranged in a Hasse diagram. The Hasse diagrams of
two SU(3) (two SU(2)) instantons is the subdiagram from the bottom to the top left (top right).
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1

2
2

2

1

1
1

1

1

1

1

2

2

1

1
1

1

1

1

1 1

1

1

1 1

= 1

2

1

1

a2 a1 a2 a1

2a2 2a1

A1

Figure 16. Magnetic quivers read from the brane web decompositions in figure 15. Note that the
top middle magnetic quiver, corresponding to a maximal brane web decomposition, is decorated.
The Hasse diagram is obtained using the quiver subtraction rules of section 2.
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C Non-singular Transitions in the Hasse Diagram of the full
Moduli Space

C.1 Theories with 16 supercharges

4d N = 4 SYM. We start with the description of the vacuum moduli space of 4d N = 4
SYM with simple gauge group G. This isM = C3r/W where r is the rank of G and W is
its Weyl group. The Weyl group acts simultaneously on the three Cr factors. A choice of
an N = 2 subalgebra inside the N = 4 algebra corresponds to a choice insideM of a Higgs
branch partMH and a Coulomb branch partMC , respectively of dimension 2r and r. We
are interested here in the interplay between the Hasse diagrams of M,MH andMC .

Consider for simplicity G = SU(2), with Weyl group W = Z2. The moduli space
M = C3/Z2, viewed as an algebraic variety, clearly has the following singular stratification:

0

3
C3/Z2

(C.1)

as there is a unique singular point, located at the origin.
We introduce coordinates z1, z2, z3 on C3, so that the Z2 action is (z1, z2, z3) ∼

(−z1,−z2,−z3). The varietyM can then be described as the spectrum of C[Zij ]/I where
we have introduced variables Zij = zizj for 1 ≤ i, j ≤ 3 and the ideal I is defined by

I = (Zij − Zji, ZijZkl − ZikZjl) . (C.2)

Explicitly, there are six quadratic equations:

Z11Z22 = Z2
12 Z11Z23 = Z12Z13

Z22Z33 = Z2
23 Z22Z13 = Z12Z23

Z33Z11 = Z2
13 Z33Z12 = Z13Z23

(C.3)

The Higgs branch can be defined by z3 = 0, which in terms of the Zij variables
translate into Zi,3 = 0 for all i. The above ring reduces to C[Z11, Z12, Z22]/(Z11Z22 − Z2

12),
which corresponds to C2/Z2. On the other hand the Coulomb branch can be defined by
z1 = z2 = 0, whereby the ring reduces to C[Z33], so the Coulomb branch is C ' C/Z2.
Finally, the mixed branch can be described as a fibration over either the Higgs or Coulomb
branch. The fibers can be called respectively Coulomb and Higgs branches, keeping in mind
that their geometry can change as the base point is changed.

Consider for instanceMC to be the base of the fibration. We have already seen that
the fiber above the origin of the Coulomb branch isMH = C2/Z2. Let us now look at the
fiber above a generic point Z33 6= 0. We can now solve three of the equations of (C.3) as

Z11 = Z2
13

Z33
, Z22 = Z2

23
Z33

, Z12 = Z13Z23
Z33

, (C.4)

and the three other equations become trivial, so the fiber is described by its coordinate ring
C[Z13, Z23], and it is simply C2.

Similarly, going on a generic point on the Higgs branch, we can assume without loss of
generality that Z11 6= 0, and a similar procedure leads to the fiber having coordinate ring
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C[Z13]. We can then draw the following Hasse diagram:

0

1 2

3

C

C2

C2/Z2

C
(C.5)

A few comments are in order. First, the fact that the Coulomb branch has a free coordinate
ring indicates it does not have complex structure singularity, but it nevertheless has a metric
singularity at the origin (see [120] for a detailed discussion of this point). It corresponds
to the planar special Kähler singularity with Kodaira type I∗0 . Second, the choice of
N = 2 subalgebra inside the N = 4 algebra defines the Higgs and Coulomb branches as
sub-varieties, and as such, the fibration of one above the other should be seen as a fibration
with section. The fibers come equipped with a Z2 action, whose fixed point is this section.
We use the notation (X,Z2) to denote a fiber X with such an action, following [38, 113].
With these amendments, the full Hasse diagram for SU(2) N = 4 SYM with a choice of
N = 2 subalgebra is

0

1 2

3

I∗0 ≡ C

(C2,Z2)

C2/Z2

(C,Z2)
(C.6)

3d N = 8 SYM. A very similar situation describes the three dimensional theory, though
more symmetric as the Coulomb and Higgs branch are now isomorphic. The Hasse diagram
for the SU(2) 3d N = 8 theory with a choice of N = 4 subalgebra is

0

4

C4/Z2 →

0

2 2

4

C2/Z2

(C2,Z2)

C2/Z2

(C2,Z2)
(C.7)

We can sketch the full moduli space with a choice of Higgs and Coulomb as follows:

C2/Z2 (C2,Z2)

C2/Z2

(C2,Z2)

C4/Z2

{0}

(C.8)
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C.2 SO(3) with fundamental flavours

In the last section on theories with 16 supercharges we have seen, that the unnatural split of
the moduli space in a Higgs and Coulomb part leads to an overcounting of leaves when in the
Hasse diagram of the full moduli space, accompanied by the presence of non-singular slices

(C2n,Zk) , (C.9)

which are quotiented to
C2n/Zk . (C.10)

We observe a similar phenomenon in the full moduli space of theories with less super-
symmetry as well. This was already pointed out in the realm of the enhanced Coulomb
branch in [10]. It is instructive to look at the 3d N = 4 gauge theories with O(3) or SO(3)
gauge group and N fundamental flavours.

Orthogonal gauge group. Consider the 3d N = 4 theory

O(3) CN
(C.11)

The full moduli space Hasse diagram of this theory was already discussed in detail in [104].
We will nevertheless explain it here. We use blue lines for Higgs branch directions and red
lines for Coulomb branch directions.

The Higgs branch Hasse diagram is [19]:

cN

cN−1

cN−2

O(3)− [CN ]

O(2)− [CN−1]

O(1)− [CN−2]

∅

. (C.12)

Where we have added in purple what the theory is higgsed to on a given stratum. On the
most generic stratum the theory is completely higgsed. The Coulomb branch Hasse diagram
of the O(1) theory is trivial. The Coulomb branch Hasse diagram of the O(2) is

DN+1
O(2)− [CN−1]

∅
. (C.13)

The Coulomb branch Hasse diagram of the full O(3) theory is

DN+1
O(3)− [CN ]

O(1)− [CN ]
. (C.14)

– 42 –



J
H
E
P
1
2
(
2
0
2
2
)
1
5
9

On the most general stratum, there is an O(1) gauge theory which is left over. Its Higgs
branch Hasse diagram is

cN
O(1)− [CN ]

∅
. (C.15)

Putting this all together, we obtain the Hasse diagram of the full moduli space [104]:

cN

cN−1

cN−2

cN

DN+1

DN+1

O(3)− [CN ]

O(2)− [CN−1]

O(1)− [CN−2]

∅

O(1)− [CN ]

∅

(C.16)

The mixed branch10 is a direct product

cN ×DN+1 →
cN

cN

DN+1

DN+1

(C.17)

Special orthogonal gauge group. Let us now consider the 3d N = 4 theory

SO(3) CN
(C.18)

The Higgs branch Hasse diagram is [19]:

cN

a2N−3

SO(3)− [CN ]

SO(2)− [CN−1]

∅

. (C.19)

On the most generic stratum the theory is completely higgsed. The Coulomb branch Hasse
diagram of the SO(2) ∼ U(1) theory is

A2N−3

SO(2)− [CN−1]

∅
. (C.20)

The Coulomb branch Hasse diagram of the full SO(3) theory is the same as that of the
O(3) theory

DN+1
SO(3)− [CN ]

SO(1)− [CN ]
. (C.21)

10Since the mixed branch includes the Coulomb branch it is also called enhanced Coulomb branch [10].
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At this point it is important to note that

A2N−3/Z2 = DN+1 , (C.22)

and that we can view A2N−3 as (A2N−3,Z2), where the Z2 is the global symmetry of A2N−3
which we need to quotient to obtain DN+1.

On the most general stratum of the Coulomb branch of the SO(3) theory, there is a
collection of N free hypermultiplets, which we denote as a SO(1) ‘gauge’ theory. Its Higgs
branch is C2N . We argue that we should view this Higgs branch as (C2N ,Z2), where the
Z2 is the symmetry of C2N which we need to quotient to obtain C2n/Z2 = cN . The Hasse
diagram of (C2N ,Z2) is

(C2N ,Z2)
SO(1)− [CN ]

∅
. (C.23)

Putting this all together, we obtain the Hasse diagram of the full moduli space [104]:

cN

a2N−3
(C2N ,Z2)

DN+1

A2N−3

SO(3)− [CN ]

SO(2)− [CN−1]

∅

SO(1)− [CN ]

∅

(C.24)

The mixed branch is no longer a direct product, but it is a fibration with a global section,
as was already discussed in detail in the 4d context in [10, section 2.2.1]. Suggestively we
can denote its Hasse diagram as

C2N/Z2

(C2N ,Z2)

AN+1/Z2

(AN+1,Z2)
, (C.25)

which mimics the description of the fibration in [10].

D Proof of (3.7)

In this appendix, we prove formula (3.7) which gives the number of transitions of type g in
MG,k, and the number of transitions of type AN−1 in Symk(C2/ZN ).

To show this, it is enough to prove that when going from the diagram of MG,k−1 to
that ofMG,k (respectively from Symk−1(C2/ΓG) to Symk(C2/ΓG)), the number of added

lines is
k−1∑
k′=0

p(k′).
This follows from the existence of two maps f1 and f2 from the set P<k of partitions of

integers < k to the set Pk of partitions of k defined by

f1([λ1, . . . , λr]) = [λ1, . . . , λr, 1λ1+···+λr ] (D.1)
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and
f2([λ1, . . . , λr]) = [λ1, . . . , λr, k − (λ1 + · · ·+ λr)] (D.2)

The number of red lines (respectively green lines) in the diagram ofMG,k (resp. Symk(C2/ΓG))
connected to the partition λ ∈ Pk is |f−1

1 (λ)| (resp. |f−1
2 (λ)|), and we have∑

λ∈Pk

|f−1
1 (λ)| = |P<k| =

∑
λ∈Pk

|f−1
2 (λ)| . (D.3)

This equality can be illustrated by the following table, which contains the partitions of P<5
with the value of f1 and f2 labeling the columns and rows.

[15] [2, 13] [22, 1] [3, 12] [3, 2] [4, 1] [5]
[15] [14] [13] [12] [1] ∅

[2, 13] [2, 12] [2, 1] [2]
[22, 1] [22]
[3, 12] [3, 1] [3]
[3, 2]
[4, 1] [4]
[5]
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