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1 Introduction

Precise theoretical predictions for collider experiments rely on increasingly higher order
and higher multiplicity calculations of scattering amplitudes. The standard method of
computation is to express the amplitudes in a basis of dimensionally-regulated master
integrals, reducing the calculation to determining the associated prefactors. These are
rational functions of the external kinematics and of the dimensional regularization parameter.
However, due to the algebraic complexity of both intermediate stages and final results
of analytic calculations, this poses a considerable challenge. To combat the difficulty of
rational prefactor computations, in recent years it has become commonplace to compute
loop amplitudes numerically over so-called “finite fields” [1, 2], and subsequently obtain
the analytic form of the result by making use of an appropriate Ansatz. By now there
exist a number of advanced approaches for fitting specialized Ansätze from numerical
evaluations. In cases where the target function is a rational function of an independent set
of variables, then there exist “functional reconstruction” algorithms for an arbitrary number
of variables [1–4]. In the multivariate case, these approaches reduce rational function
interpolation to the simpler polynomial case where either Newton [2] or Vandermonde [4, 5]
approaches are used. By now these are sufficiently well understood that there exist public
implementations [3, 4, 6]. An important recent success of the Ansatz approach is the
calculation of a plethora of two-loop, five-point scattering amplitudes — both for fully
massless configurations [7–22] and for configurations involving one massive particle [5, 23–
25]. Furthermore, we have also seen ground-breaking computations of three-loop four-point
amplitudes made possible by these tools [26–28].

In this work, we focus on an important problem found when applying the Ansatz
formalism to processes with a large number of scales. Specifically, as one considers scattering
amplitudes that depend on an increasing number of scales, the complexity of functional
reconstruction approaches grows exponentially. For example, the Ansätze used in the
computation of the two-loop finite remainders for five-parton scattering required O(105)
evaluations [12], while those for four partons and a W -boson required O(106) evaluations [5].
Despite these examples, there is growing evidence that more compact Ansätze for rational
prefactors should exist. Firstly, if we look towards highly supersymmetric theories, we see
that an Ansatz consisting of leading singularities made it possible to construct the full-color,
two-loop, five-point amplitudes in N = 4 super-Yang-Mills theory with only 6 numerical
evaluations [7, 8]. Secondly, in ref. [12], it was observed that, when amplitudes are expressed
in a basis of “pentagon functions” [29], the denominators of the rational prefactors can
be derived from the symbol alphabet of the associated integrals. This observation has led
to efficient algorithms for determination of the denominator factors [12, 30, 31]. Finally,
it has been observed that two-loop, five-point amplitudes in quantum chromodynamics
(QCD) simplify when the rational prefactors are cast in different types of partial-fraction
decompositions, see refs. [13, 23, 32]. The Lĕınartas representation [33–36] has received
particular attention with a number of algorithms for its computation [13, 31, 37].

Given this large body of evidence for the existence of compact Ansätze for rational
prefactors, our aim is to develop an approach to algorithmically construct such Ansätze
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and thereby enable the analytic computation of two-loop, multi-scale amplitudes with
dramatically fewer numerical evaluations over finite fields. To this end, we wish to exploit
the well-known fact that gauge-theory amplitudes admit more compact representations when
expressed in terms of spinor-helicity variables. This leads us to develop a framework based
on the approach of ref. [30], which has been applied to a number of other amplitudes [38–40].
In this approach, one takes a perspective on the organization of rational prefactors based on
their behavior on singular surfaces. Specifically, rational prefactors are studied numerically
near surfaces where one or more of the denominator factors vanish and this information is
incorporated into an Ansatz. In order to set up this approach algorithmically, we formalize
a number of its ingredients using methods from computational algebraic geometry. These
methods have already found ample application in the scattering-amplitude literature (see, for
example, applications to integrand reduction [41–43] and integration-by-parts relations [44]).
Firstly, we interpret the spinor-helicity formalism in the language of algebraic geometry,
allowing us to use the tools of Gröbner bases to understand and solve the problem of
constructing linearly-independent polynomials of spinor brackets. Secondly, we discuss
how singular surfaces often have multiple branches and we show how to systematically
identify these branches by constructing the primary decomposition of an ideal associated
to the singular surface. Thirdly, we show how the behavior of a rational function when
approaching surfaces where multiple denominators are singular is encoded in its analytic
structure. Specifically, we show that the numerator of the rational function must belong
to a certain ideal, controlled by the geometry of the singular surface. The relevant tool
is provided to us by the Zariski-Nagata theorem [45–47], which tells us to consider the
so-called “symbolic power” of an associated ideal.

In order to determine the singular behavior of the rational prefactors, we introduce
a new numerical tool. Modern methods for two-loop amplitude calculation rely on the
absence of precision loss when working over finite fields. However, finite fields lack a concept
of scale separation that is required to probe singular configurations. To this end, we work in
a middle ground provided to us by number theoretical techniques: the p-adic numbers (see
ref. [48] for an introduction). While these objects are a rich source of number theory, with
their own notion of calculus, here we will only scratch the surface and use their properties
as a field. One can regard them as bridging the gap between finite fields and floating-point
numbers: p-adic numbers have natural expansions in powers of a prime p, and the first digit
in such an expansion behaves like a finite field. This set of numbers comes associated with
a concept of size, which allows us to perform numerical studies in singular configurations.
At the same time, by working with large primes p, there is a low probability of numerical
p-adic calculations involving a spurious scale hierarchy in intermediate stages. This makes
it possible to control accidental precision loss in numerical computation. Combining this
numerical tool with the algebro-geometric understanding, we then present an algorithm for
the construction of Ansätze for rational prefactors, that can in principle be automated and
applied to the computation of novel two-loop scattering amplitudes.

This article is organized as follows. In section 2, we present algebro-geometric tools
that allow us to understand functions on spinor space and perform a systematic study of
the singular varieties of rational prefactors. Next, in section 3, we give an introduction
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to p-adic numbers and explain how to generate numerical phase-space points on or near
singular varieties. Thereafter, in section 4 we collect the theoretical work of the previous
section into an algorithm to generate compact Ansätze which leverage the singularity
information. In section 5, as a proof-of-concept application, we construct a compact Ansatz
for the 0→ qq̄γγγ finite remainder coefficients at two loops, obtaining the requisite p-adic
evaluations from the analytic results of ref. [17]. Finally, we summarize and conclude
in section 6.

2 Algebraic geometry and spinor space

Scattering amplitudes are transcendental functions of the external kinematics, which are
typically evaluated on the set of four-momenta associated to the external states. For an
n-point process, these are a collection of momenta {k1, . . . , kn} which satisfy on-shell and
momentum-conservation relations, that is

k2
i = m2

i and 0 =
n∑
i=1

kµi , (2.1)

where we use the all-outgoing convention. In the case of massless scattering, where mi = 0, it
is natural to employ spinor variables instead of Mandelstam variables to describe scattering
amplitudes. The connection between a massless four momentum ki and a pair of Weyl
spinors (λi, λ̃i), is made through the relation

kiµσ
µα̇α = λ̃α̇i λ

α
i , (2.2)

where σµα̇α = (1, ~σ) denotes an Infeld-Van der Waerden symbol, and ~σ are the three
Pauli matrices. We take the metric on spinor space to be the 2 × 2 Levi-Civita symbol
εαβ = εα̇β̇ = iσ2. The metric with lowered indices is then εαβ = εα̇β̇ = (iσ2)T , such that
εαβε

βγ = δγα, where δ is the Kronecker delta. Raising and lowering of the indices is achieved
by contraction with the metric, that is λiα = εαβλ

β
i and λ̃iα̇ = εα̇β̇λ̃

β̇
i . Spinor-helicity

variables trivialize on-shell relations, while momentum conservation becomes a quadratic
relation

0 =
n∑
i=1

λ̃α̇i λ
α
i . (2.3)

Invariant quantities can be built by contracting the spinors in so-called spinor brackets. We
define them through the following contractions

〈ij〉 = λαi λjα and [ij] = λ̃iα̇λ̃
α̇
j , (2.4)

where the Einstein summation convention is implied over the spinor indices. Furthermore,
we will make use of simple spinor chains, specifically we define

〈i|j + k|l] = 〈ij〉[jl] + 〈ik〉[kl] ,
[i|j + k|l〉 = [ij]〈jl〉+ [ik]〈kl〉 ,

(2.5)

as well as
〈i|j + k|l +m|n〉 = 〈i|j + k|l]〈ln〉+ 〈i|j + k|m]〈mn〉 ,
[i|j + k|l +m|n] = [i|j + k|l〉[ln] + [i|j + k|m〉[mn] .

(2.6)

For brevity, we will often denote an n-point phase-space point as (λ, λ̃).
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Physical functions of spinor variables satisfy a number of properties. Specifically, they
have well-defined mass dimension and little-group weights. Working with some function
E(λ, λ̃) with well-defined mass dimension means that if we uniformly scale all of the spinors
by z then we find that

E
(
zλ1, zλ2, . . . , zλ̃1, zλ̃2, . . .

)
= z2[E]E(λ1, λ2, . . . , λ̃1, λ̃2 . . .) , (2.7)

where [E ] is the mass dimension of E . If E has well-defined little-group weight k then this
means that if we scale λk by z and λ̃k by 1/z we find

E
(
. . . , zλk, . . . , λ̃k/z, . . .

)
= z{E}kE

(
. . . , λk, . . . , λ̃k, . . .

)
, (2.8)

where {E}k is the kth little-group weight of E . Importantly, this rescaling does not affect the
validity of eq. (2.2). We will always work with functions E with well-defined mass dimension
and little-group weights. Finally, note that for such functions, it can be useful to compute
the mass-dimension and little-group weights numerically via eqs. (2.7) and (2.8).

Scattering amplitudes have well-defined mass dimension and little-group weights. The
mass dimension depends only on the multiplicity of the process. For an n-point amplitude
An it is well known that the mass dimension is given by

[An] = 4− n . (2.9)

The little-group weights depend on the helicity states1 of the scattered particles, more
precisely the kth little-group weight depends on the helicity state of the kth particle, denoted
as hk. In the all-outgoing convention, the kth little-group weight is given by

{An}k = −2hk . (2.10)

Beyond tree level, when working in dimensional regularization, a scattering amplitude can
be decomposed as a linear combination of so-called “master integrals”. Such a decomposition
can be written as

A(l)
n =

∑
i

Bi
(
λ, λ̃, ε

)
Ii
(
λ, λ̃, ε

)
, (2.11)

where the Bi are rational functions of the spinors (λ, λ̃) and of the dimensional regulator
ε, and the Ii are transcendental functions thereof. It is well understood that amplitudes
in gauge theory diverge in a universal way [49–52], (see ref. [53] for a recent review).
Specifically, after renormalization, these divergences can be written in terms of lower loop
amplitudes and universal operators. That is, one can write

A(l)
n,R =

l−1∑
l′=0

I(l−l′)A(l′)
n,R +H(l)

n +O(ε) , (2.12)

where A(l)
n,R is the renormalized l − loop amplitude and we have introduced the so-called

“finite remainder” H(l)
n , which captures the new information at each perturbative order.

1As standard, massless s-spin states will have helicity ±s, i.e. h = 0, ±1/2 and ±1 for scalars, spin-1/2
fermions and vectors respectively.
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In practice, one computes the finite remainder by inserting the ε expansion of the master
integrals into eq. (2.11) and subtracting the lower loop contributions in eq. (2.12). The
resulting expression for the finite remainder can be expressed in a basis of special functions.
That is, in general we can write

H(l)
n =

∑
i

Ci
(
λ, λ̃

)
Fi
(
λ, λ̃

)
, (2.13)

where the Ci are rational functions of the spinors and the Fi are special functions of the
spinors. In this work, we consider the Ci in common denominator form. Specifically, we write

Ci
(
λ, λ̃

)
=

Ni
(
λ, λ̃

)
∏ni
j=1Dj(λ, λ̃)qij

, (2.14)

where ni is the number of denominator factors and the Ni and Dj are polynomials of
spinors. As is well known, the amplitude only picks up a little-group rescaling under Lorentz
transformations and so it can only depend on the spinors indirectly through the spinor
brackets of eq. (2.4). In practice, it is trivial to choose the basis of transcendental functions
Fi to also have this property, and so the coefficient functions inherit it as well. Importantly,
the Ni and Dj all have well-defined mass dimension and little-group weights.

For the rest of this work, we shall work in a framework where we are able to numerically
evaluate the Ci over an arbitrary field. In practice, this may be when one has an explicit
analytic form available, or an appropriate algorithm to compute the Ci. Our aim is then to
use this numerical information in an efficient way to determine the analytic form of the
functions Ci.

2.1 Rudiments of algebraic geometry

The coefficients Ci in a scattering amplitude have been introduced in the previous section
as ratios of polynomials, which are to be evaluated on inputs that satisfy momentum-
conservation relations. In this section, we introduce basic technologies of algebraic geometry
which will allow us to understand polynomials in this context in detail. We intend our
presentation to be self-contained and we refer the reader to refs. [54–56] for an introductory
account of the requisite algebraic geometry.

2.1.1 Polynomials, ideals and varieties

The central object of study will be polynomials in spinor variables. Therefore, we consider
the polynomial ring of spinor variables for n massless particles,

Sn = F
[
λ10, λ11, . . . , λn0, λn1, λ̃10̇, λ̃11̇, . . . , λ̃n0̇, λ̃n1̇

]
, (2.15)

where F is the coefficient field and the variables are the various λiα and λ̃jα̇. All polynomials
in spinor variables are elements of Sn. For example, the spinor brackets defined in eq. (2.4)
can be identified as elements of Sn. Furthermore, constraints on the spinors, such as
momentum conservation (2.3) or being on a particular surface, are expressed using elements
of Sn. Here, and throughout this work, we shall abstract over the field F. In practice, we
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can consider F to be the rational numbers Q, the real numbers R, the complex numbers C, a
finite field Fp or the p-adic numbers Qp, which we will discuss in section 3.1. For theoretical
considerations, such as considering the geometry, we will always work in an algebraically
closed field such as the complex numbers. For practical calculations, we will be working
over finite fields or p-adic numbers. Throughout this work, we will take this polynomial
perspective as our foundation. This perspective explicitly breaks Lorentz covariance in
intermediate stages of our calculation, as we work in a given frame. Furthermore, the ring
Sn contains unphysical polynomials, such as ones without well-defined mass dimension
and little-group weight. We will return to the question of imposing these constraints
in section 2.2.

Ideals. The key algebraic object that we use is a so-called ideal. We will work with rings,
such as polynomial rings, in which ideals are finitely generated. Specifically, we consider a
set of elements {p1, . . . , pk} ∈ A called generators and define an ideal of A as

〈
p1, . . . , pk

〉
A

=
{

k∑
i=1

aipi, ai ∈ A
}
. (2.16)

Here, as we will work in a number of rings, we extend the 〈. . .〉 notation of ref. [54] with a
subscript to denote the ring under consideration. When discussing an ideal we typically
label it as J or K. From the definition in eq. (2.16), it is clear that an ideal always forms
a subset of the ring A. In the case where the subset is proper, that is when we have an
ideal J such that J ( A, we say that J is a proper ideal. We refer to the set {p1, . . . , pk}
as a generating set of the ideal. In practice we will always consider physical generating
sets, i.e. sets in which each pi has well-defined mass dimension and little-group weight.
Furthermore, we will often consider ideals that are generated by multiple elements which
can be grouped into an object with some open spinor index. In this case we will use a
natural shorthand where we do not write the individual generators, but only the object
with an open index. As a simple example consider

〈λjα〉Sn
!= 〈λj0, λj1〉Sn . (2.17)

Multiple generating sets may correspond to the same ideal, i.e. they are not unique, and
different generating sets of the same ideal may have a different number of elements. For
any ideal J , there exist generating sets with a minimal number of elements and any such
generating set is called a minimal generating set. The size of a minimal generating set
is denoted by

µ(J) = min
({
|G| : G is a generating set of J

})
, (2.18)

where |G| denotes the number of elements of the generating set G. While still not unique,
we will always present ideals through minimal generating sets. For ideals generated by
homogeneous polynomials, such as those which we consider, minimal generating sets can be
determined algorithmically.2 In practice, we will always have a generating set of the ideal

2For example, one can find such an algorithm implemented in the computer algebra system Singular [57]
under the minbase command.
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at hand. A trivial example of an ideal is the ideal generated by the zero element of the ring.
This is the set containing only the zero element, that is

〈0〉A = {0} . (2.19)

As algebraic objects, ideals have natural algebraic operations associated to them. For
example, we will make use of the ideal sum, which we define through

〈p1, . . . , pk〉A + 〈q1, . . . , ql〉A = 〈p1, . . . , pk, q1, . . . , ql〉A . (2.20)

Furthermore, one can take the ideal product. Given two ideals J = 〈p1, . . . , pa〉A and
K = 〈q1, . . . , qb〉A, we define the ideal product JK as

JK = 〈piqj : 1 < i ≤ a , 1 < j ≤ b〉A , (2.21)

that is, the generators of JK are the products of the generators of J and K. It is clear
that the ideal product is commutative, i.e. JK = KJ . It will also be useful to consider the
ideal power Jk, which we define recursively through

J0 = 〈1〉A and Jk = JJk−1 . (2.22)

When working with an ideal J in Sn, we will often be interested in other ideals which
can be constructed from J by parity or permutations of the associated spinors. We define a
permuted ideal through

J(σ(1) . . . σ(n)) = J |λi→λσ(i), λ̃i→λ̃σ(i)
, (2.23)

where σ is a permutation of {1, . . . , n}. We will also consider the parity conjugate ideal J
defined by a swap of the λ and λ̃ spinors, that is

J = J |λα↔λ̃α̇ . (2.24)

In practice, one computes generating sets of the these ideals by applying the permuta-
tion/parity conjugation to the generators of J .

Algebraic varieties. Now, note that for n-point spinor space, we can regard the tu-
ple of spinor variables {λ10, λ11, . . . , λn0, λn1, λ̃10̇, λ̃11̇, . . . , λ̃n0̇, λ̃n1̇} as taking values in the
4n-dimensional space F4n. Physical spinors are constrained to satisfy momentum conser-
vation according to eq. (2.3). It is therefore natural to consider the set of solutions of
momentum conservation in F4n, which defines a so-called algebraic variety. In general,
we can associate a variety to any ideal in Sn. That is, given an ideal J = 〈p1, . . . , pk〉Sn ,
the associated algebraic variety is defined as

V (〈p1, . . . , pk〉Sn) =
{(
λ, λ̃

)
∈ F4n : pi

(
λ, λ̃

)
= 0 for 1 ≤ i ≤ k

}
. (2.25)

From this definition it is clear that V (J) ⊆ F4n for any ideal J . While we have defined an
algebraic variety over an arbitrary field F, many powerful theorems of algebraic geometry
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can be applied only when F is an algebraically closed field, such as the complex numbers. In
this paper, we will always work over these fields when considering geometry. We remark that
the definition of a variety in eq. (2.25) allows varieties to be “reducible”, an important fact
we shall return to in detail in section 2.3. We note two trivial cases: V (〈1〉Sn) corresponds
to the empty variety and V (〈0〉Sn) corresponds to all of F4n.

In the same way that we have just associated a variety to an ideal, we can naturally
associate an ideal to a variety. Specifically, for a variety U in F4n it turns out that the set
of polynomials that vanish on U forms an ideal, which is defined as

I (U) =
{
p ∈ Sn : p

(
λ, λ̃

)
= 0 for all

(
λ, λ̃

)
∈ U

}
. (2.26)

Application to momentum conservation. To understand these ideas in a physical
context, consider the ideal of Sn generated by the four momentum-conservation polynomials
of eq. (2.3), which we denote as

JΛn =
〈

n∑
i=1

λiαλ̃iα̇

〉
Sn

. (2.27)

We will refer to JΛn as “the momentum-conservation ideal”. Physically, JΛn is the set of
all polynomials in spinor variables which are rewritings of zero. The associated variety is
the set of points in spinor space that satisfy momentum conservation. We dub this the
“momentum-conservation variety” and it is denoted as V (JΛn). All varieties of interest in
this work will be sub-varieties of V (JΛn), as physical configurations of spinors must satisfy
momentum conservation. We note that

JΛn = I(V (JΛn)) . (2.28)

That is, the momentum-conservation ideal contains all polynomials which vanish on the
momentum-conservation variety.3 In an algebraically closed field, the operation in eq. (2.28)
of taking the ideal associated to the variety associated to an ideal corresponds to taking
the radical of an ideal [54, chapter 4], which we will denote as

√
J = I(V (J)) . (2.29)

If it is the case that
√
J = J , then the ideal J is said to be “radical” (see appendix A for

the algebraic definition). Therefore, we see that eq. (2.28) says that JΛn is radical.

2.1.2 Independent sets and dimension

A natural question to ask of any geometric structure is its dimension. Varieties, as surfaces
defined by algebraic equations, indeed have a concept of dimension that we can associate
to them. Furthermore, one can also associate a concept of dimension to an ideal. In this
section, we introduce the concepts relevant for our work and refer the reader to ref. [56,
section 6.3] for a deeper treatment.

3While this statement is physically intuitive, an analytic proof is currently lacking. Nevertheless, using
Singular we have validated eq. (2.28) up to n = 50.
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In order to ease the discussion, we will work over the polynomial ring F[X1, . . . , Xn].
We will denote the collection of variables as X = {X1, . . . , Xn}. We will further denote a
subset of the variables as Y ⊆ X. To begin phrasing the question of dimension we ask if the
variables Y can be chosen independently on the variety V (J). The important observation is
that the answer will be ‘no’ if there is some polynomial in the ideal J which depends only
on the variables Y . If there is no such polynomial, then the variables are not constrained in
terms of each other, and so the variables Y can be chosen independently. We can formally
state the question of the existence of such a polynomial by considering the associated
elimination ideal defined as4

JY = J ∩ F [Y ] , (2.30)

that is, the intersection of the ideal J with the set of all polynomials which depend only on
the variables Y . An independent set Y of a proper ideal J is defined by requiring that
the associated elimination ideal JY contains only the zero element, that is

JY = {0} ⇒ Y is an independent set of J . (2.31)

Furthermore, an independent set is said to be maximally independent if there exists no
other independent set which contains it. That is,

Y is maximally independent if @ Y ′ ⊃ Y , with Y ′ and Y independent sets . (2.32)

Note that, in the general case, not all maximally independent sets need be of the same length.
With the definition of independent sets in hand, we can now discuss dimension. Specif-

ically, for a proper ideal J of a polynomial ring F[X], the dimension of J is defined as

dim(J) = max ({|Y | : Y is an independent set of J}) . (2.33)

That is, the dimension of the ideal is the length of the largest independent set. It is clear
that this length is unique, as there will always exist at least one independent set (the empty
set) and we take the length of the largest independent set. The dimension of the variety
associated to J is defined as

dim
(
V (J)

)
= dim(J) . (2.34)

To build intuition, consider the trivial ideal 〈0〉A. In the case where A is a polynomial ring,
as there are no constraints, dim

(
〈0〉A

)
naturally coincides with the number of variables. As

a second example, consider a case where V (J) corresponds to a finite set of points, then
all variables are fixed on each point and so there is no non-empty independent set. One
thus finds that dim(J) = 0. Naturally, J is called a zero-dimensional ideal. Importantly,
efficient algorithms exist to compute both the maximally independent sets of an ideal J
and dim(J) given a Gröbner basis of J , see e.g. ref. [56, Proposition 9.29].5

4This can be computed via Gröbner basis methods, see e.g. ref. [54, chapter 3]. Nevertheless, computation
of the elimination ideal can be avoided when computing the dimension.

5Implementations of algorithms to compute maximally independent sets and dimensions of ideals can be
found in computer algebra systems such as Singular.
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Finally, we introduce the notion of codimension of an ideal. Specifically, for a proper
ideal J in a ring A, we define

codim(J) = dim(〈0〉A)− dim(J) . (2.35)

With this language then we see that

codim(JΛn) = 4 . (2.36)

Intuitively, this can be regarded as the number of constraints imposed by the generators
of an ideal. We remark that the number of constraints may be less than the number of
generators. If the codimension of an ideal is equal to the length of its minimal generating
set, we say that this ideal has maximal codimension, that is

µ(J) = codim(J) ⇒ J is of maximal codimension. (2.37)

For example, the momentum-conservation ideal JΛn is of maximal codimension, with

µ(JΛn) = codim(JΛn) = 4 . (2.38)

As a more concrete example, we can use the computational algebraic geometry system
Singular to show that

codim
(〈

[12], [13]
〉
S4

)
= 2 and codim

(〈
[12], [13], [23]

〉
S4

)
= 2. (2.39)

Moreover, we can compute a maximal independent set for both ideals, e.g. it can be taken
to be the set of variables of S4 that are not in {λ̃2,1̇, λ̃3,1̇}. Importantly, we have expressed
both ideals in terms of a minimal generating set. Therefore, we see the, perhaps surprising,
feature that we can often add a generator to an ideal without changing the codimension.

2.1.3 Gröbner bases

In order to make practical use of the concepts that we present in this paper, two major
tools are polynomial reduction and Gröbner bases. Here we review these objects in order
to set up notation but, as these are common tools in the particle physics literature, we
refer the reader to ref. [54] for a pedagogical introduction. As we work in a number of
polynomial rings, in this section we shall maintain the generic notation introduced in the
previous section. A polynomial ring F[X], with X = {X1, . . . , Xn}, can be viewed as a
(countably) infinite-dimensional vector space — the direct sum of one-dimensional spaces
corresponding to the monomials, which we denote as

Xα =
n∏
i=1

Xαi
i , (2.40)

where α ∈ Zn≥0. That is, each αi is a non-negative integer. A polynomial p in F(X) takes
the form

p =
∑

α∈Zn≥0

cαX
α, cα ∈ F , (2.41)
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where only a finite number of cα are non-zero. A useful structure to put on the space is a
so-called monomial ordering, denoted by �. This is a (total) ordering of the exponents α
of the monomials. Common orderings are “lexicographic” and “degree reverse lexicographic”.
Both of these orderings depend on an underlying ordering of the variables X. Unless
otherwise stated, throughout this work we use the degree reverse lexicographic ordering.
Given an ordering �, one can organize the terms of any polynomial and thereby define a
lead monomial, given by

LM(p) = Xβ , where β = max�
(
{α : cα 6= 0}

)
, (2.42)

where the maximum is taken over the set with respect to the ordering �. An important
application of the lead monomial of a polynomial is to define the concept of reducibility
of one polynomial by another. Specifically, one says that p is reducible by h if the lead
monomial of h is a factor of the lead monomial of p, that is

LM(p) | LM(h) ⇒ p is reducible by h , (2.43)

where we use x | y to denote that y is a factor of x. If y does not factor x we write x - y.
If the lead monomial of h is not a factor of the lead monomial of p then we say that p
is irreducible by h. Given a set of generators H = {h1, . . . , hk} of an ideal J , one can
then discuss polynomial reduction. Specifically, it turns out that one can always write a
polynomial p as

p = q1h1 + . . .+ qkhk + ∆H(p) , (2.44)

where ∆H(p) is irreducible by any of the hi. The object ∆H(p) is of fundamental importance
and is known as the remainder modulo H. An important feature of remainders is that
they are linear combinations of monomials that are irreducible by the given generating set,
that is

∆H(p) =
∑

β∈irreds(H)
dβX

β , where irreds(H) = {β : Xβ - LM(h) ∀ h ∈ H} . (2.45)

Here irreds(H) is the set of exponents whose associated monomial is not a (polynomial)
multiple of the lead monomial of any element of the set H. The aim of introducing the
remainder ∆H(p) is to define a canonical form of p when working modulo elements of the
ideal J . However, it turns out that the remainder modulo H is not uniquely determined
by the ordering � and the ideal J that it generates. It also depends on the details of the
set H. Specifically, if a polynomial is reducible by an element of the ideal J it may not be
reducible by an element of the generating set H. However, given an ordering �, there exist
special generating sets of J that do uniquely determine the remainder. These are known as
Gröbner bases. We denote a Gröbner basis of an ideal J as G(J). General algorithms
exist to compute Gröbner bases, which are implemented in many computer algebra systems.
Remainders modulo a Gröbner basis have the important property that if p is in the ideal,
then the remainder is zero. That is,

p ∈ J ⇔ ∆G(J)(p) = 0 . (2.46)
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Organizing vector spaces by ideals. A useful application of Gröbner bases is to split
a subspace of a polynomial ring into a subspace that belongs to an ideal, and a remaining
subspace. Specifically, consider the polynomial ring F[X], an ideal J of F[X] and a finite-
dimensional vector space W that is a subspace of F[X]. Using J , one can split the space W
into a direct sum as

W ∼= (W ∩ J)⊕W/(W ∩ J) . (2.47)

The left summand (W ∩ J) is the subspace of W formed by all elements that are also
elements of J . The right summand W/(W ∩ J) is the quotient of W by this subspace.
W/(W ∩ J) can be considered as the space of elements of W modulo the elements of J . To
make practical use of the decomposition in eq. (2.47), we now discuss how to find a basis of
the two summand spaces.

Let us first consider how to find a basis of W ∩ J given a basis Ω = {Ω1, . . . ,Ωdim(W )}
of W . We recall from eq. (2.46) that all elements of J have zero remainder modulo G(J).
As polynomial division acts linearly on W , we consider the remainders of the basis elements,
∆G(J)(Ωj). Recall that these remainders can be expressed in terms of monomials irreducible
by G(J), that is

∆G(J)(Ωj) =
∑

βi∈irreds(G[J ])
∆ij(G[J ],Ω)Xβi , (2.48)

where ∆ij(G[J ],Ω) is the F-valued matrix of coefficients of the remainder of Ωj when
expressed in terms of the monomials Xβi . Note that for ideals that are not zero dimensional,
irreds(G[J ]) is an infinite set. However, as in practice the degree of Ωj is bounded, the sum
is always finite. Clearly, one can linearly express the remainder of any element of W in
terms of the ∆G(J)(Ωj). Therefore, we see that any element w of W ∩ J takes the form

w =
dim(W )∑
j=1

cjΩj , such that
dim(W )∑
j=1

∆ij(G[J ],Ω) cj = 0 , (2.49)

where cj ∈ F. Eq. (2.49) states that the cj live in the nullspace of the F-valued matrix
∆ij(G[J ],Ω). A basis of this nullspace can be computed with standard linear algebra
techniques. Through eq. (2.49), we then arrive at a basis of W ∩ J .

Next, we consider how to construct a set of elements ofW that form a basis ofW/(W∩J)
when considered modulo elements of W ∩ J . Specifically, we show that one can choose a
subset of the basis elements of W using standard linear-algebra techniques. To see this,
note that W/(W ∩ J) is isomorphic to the space spanned by the remainders modulo G(J)
of the elements of W . Furthermore, considering i as a row index and j as a column index,
this space is isomorphic to the column space of the matrix ∆ij(G[J ],Ω). We then see that

W/(W ∩ J) ∼= spanF

({
Ωj such that j ∈ pivots [∆ij(G[J ],Ω)]

})
. (2.50)

That is, a basis of W/(W ∩ J) can be chosen as the subset of Ω corresponding to the pivot
columns of the matrix ∆ij(G[J ],Ω). Note that constructing W/(W ∩ J) in this way gives a
true subspace of W , rather than one up to isomorphism. Therefore, with the construction
in eq. (2.50), eq. (2.47) is an equality. To compute the set of pivot indices, one can use the
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standard technique where the pivot indices are read from the row-reduced echelon form
of ∆ij(G[J ],Ω). We note that the subset of Ω that is chosen as a basis by this algorithm
depends on the ordering of the elements of Ω. Specifically, elements of Ω that occur earlier
in the set are prioritized.

2.1.4 Quotient rings

When considering physical polynomials in spinor variables, i.e. polynomials subject to
momentum conservation, it is easy to see that the polynomial ring Sn is redundant.
Specifically, we wish to consider a number of elements of Sn as equivalent: those which
can be converted into each other by application of the momentum-conservation identity.
In numerical applications, where one only has access to evaluations of functions on points
(λ, λ̃) ∈ V (JΛn), this is essential: any two polynomials p, q ∈ Sn that are equivalent under
momentum conservation will evaluate to the same value on such a point. Hence, the
momentum-conservation ideal induces an equivalence class of polynomials: we wish to
consider two polynomials in Sn which can differ by some element of JΛn as equivalent. That
is, for p, q ∈ Sn

p ∼ q ⇐⇒ p− q ∈ JΛn . (2.51)

Working in a polynomial ring up to equivalence by an ideal means that we work in a quotient
ring. Specifically, all independent spinor polynomials given momentum conservation belong
to the quotient ring

Rn = Sn/JΛn . (2.52)

Returning to eq. (2.51), both p and q belong to the same equivalence class in Rn, and
we say that p and q are representatives of this equivalence class. In order to represent
elements of quotient rings, one can make use of Gröbner bases. Specifically, if two elements
p and q are equivalent then their difference belongs to the ideal JΛn and so

∆G(JΛn )(p− q) = 0 . (2.53)

Rearranged, this means that the remainders of p and q are equal. Therefore, elements
of a quotient ring are uniquely (canonically) represented by their remainders modulo a
Gröbner basis. For a recent application of polynomial quotient rings in other areas of
particle physics see ref. [58]. In this work, we will refer to Rn as the set of “physically
inequivalent” polynomials.

Ideals and varieties in quotient rings. It is clear from the definition in eq. (2.16)
that we can consider ideals in polynomial quotient rings. Ideals in polynomial quotient
rings are also finitely generated and one can represent generators by a representative of the
equivalence class. Let us denote a polynomial ring by A, an ideal of A by J and consider
the polynomial quotient ring A/J . It turns out that, for computations involving an ideal K
of A/J , we can perform the computation using an ideal in the polynomial ring A which
corresponds to K. Therefore, we are able to continue to use Gröbner basis technology when
working with polynomial quotient rings. Let us concretize the correspondence as follows.
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Let us denote the generators of J as {q1, . . . , ql}. We introduce a map πA,A/J which takes
an ideal of A to an ideal of the quotient ring A/J . Explicitly we have

πA,A/J ( 〈p1, . . . , pk〉A ) = 〈p1, . . . , pk〉A/J , (2.54)

where the pi on the right hand side are understood as representatives of the equivalence
class. The map πA,A/J is many-to-one, but if one restricts the domain to ideals K of A
which contain J , then the map is one-to-one [56, Lemma 1.63]. Given this restriction, the
πA,A/J has a unique inverse given by

π−1
A,A/J

(
〈p1, . . . , pk〉A/J

)
= 〈p1, . . . , pk, q1, . . . , ql〉A . (2.55)

Consider Rn, this means that, given an ideal J of Rn, one appends the generators of JΛn
to find the corresponding ideal in Sn. The map πA,A/J has a number of applications. For
instance, given a representative q of an element of A/J and an ideal K of A/J , we define
the remainder of q modulo a Gröbner basis of K through

∆G(K)(q) = ∆
G
(
π−1
A,A/J

[K]
)(q) , (2.56)

where the right hand side is again a representative of an element of A/J . This allows us
to apply the vector space organization technology of section 2.1.3 also in quotient rings.
Moreover, πA,A/J induces a definition of dimension of ideals in the quotient ring. Specifically,
we define

dim
(
〈p1, . . . , pk〉A/〈q1,...,ql〉A

)
= dim (〈p1, . . . , pk, q1, . . . , ql〉A) . (2.57)

Recalling the definition of codimension in eq. (2.35) and the codimension of momentum
conservation in eq. (2.36), we see that the dimension of 〈0〉Rn is given by

dim(〈0〉Rn) = 4n− 4 . (2.58)

Furthermore, πA,A/J gives a natural way to understand the geometry of ideals in a quotient
ring. Specifically, we can apply the correspondence and consider the variety associated to
the associated ideal in Sn, i.e. we define

V (〈p1, . . . , pk〉Rn) = V

(〈
p1, . . . , pk,

n∑
i=1

λiαλ̃iα̇
〉
Sn

)
. (2.59)

Therefore, all varieties associated to ideals in Rn are sub-varieties of the of the momentum-
conservation variety V (JΛn).

Finally, we point out that we will also make use of ideals of Rn generated by the
application of a permutation or parity operation as denoted in eq. (2.23). Similar to the Sn
case, one can compute generating sets of these ideals by applying the permutation and/or
parity operation to the generators in Rn. This follows as the momentum-conservation ideal
JΛn is invariant under permutations and parity.
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2.2 Linearly independent polynomials in spinor brackets

In the previous subsection, we set up an algebro-geometric framework to understand spinor
space. We have seen that all polynomial functions on V (JΛn) are contained in Rn. In
practice, when discussing scattering amplitudes, we are only interested in a subset of these
functions: those which are Lorentz invariant up to a little-group rescaling. In this sense,
the ring Rn is a superset of the polynomial functions relevant for scattering amplitudes.
Furthermore, Rn is the set of spinor polynomials up to equivalences induced by momentum
conservation. For the purposes of making an Ansatz, it is necessary that there are no linear
dependencies between the Ansatz elements. In this section, we discuss how we resolve these
two issues.

The bracket subring. Our aim is to understand the set of physically inequivalent
polynomial functions which are Lorentz invariant, up to a little-group rescaling. These form
a subset of Rn, which we denote by

Rn =
{
a ∈ Rn : Λ(a) = Z(Λ,a) a

}
, (2.60)

where Λ is a Lorentz transformation which is continuously connected to the identity and
Z(Λ,a) is an element of GL(1) corresponding to a little-group rescaling of a when acted
on by Λ. One can show that Rn is a ring. Therefore, as a subset of Rn which is also a
ring, Rn is a subring of Rn. From a physical perspective, it is clear that Rn is composed
of polynomials which can be described in terms of spinor brackets. Therefore, we refer
to Rn as the bracket subring. In order to work with Rn in practice, it is convenient to
reformulate it in a way that manifests the Lorentz transformation properties of its elements.
To this end, we will observe that we can describe Rn as a polynomial quotient ring. In this
formulation, one can then use Gröbner basis technology for standard operations, such as
finding a canonical form of elements of Rn, checking equivalence of elements of Rn and
intersecting a subspace of Rn with an ideal of Rn.

Let us consider a polynomial ring where we label the variables by the independent
spinor brackets for n particles,

Sn = F
[
〈12〉, 〈13〉, . . . , 〈(n− 1)n〉, [12], [13], . . . , [(n− 1)n]

]
. (2.61)

We note that Sn is a polynomial ring in 2
(n

2
)
variables, that is we choose our variables to

be 〈ij〉 and [ij] for i < j. We stress that, in the context of Sn, the spinor brackets are to be
considered as variables and not as polynomials in Rn. It can be shown (see appendix C)
that Rn is isomorphic to a polynomial quotient ring as

Rn ∼= R(q)
n , where R(q)

n = Sn/
(
JΛn +KΛn +KΛn

)
(2.62)

and

JΛn =
〈

n∑
j=1
j 6=i,k

〈ij〉[jk] : 1 ≤ i ≤ n, 1 ≤ k ≤ n
〉
Sn

, (2.63)

KΛn =
〈
〈ij〉〈kl〉+ 〈ik〉〈lj〉+ 〈il〉〈jk〉 : 1 ≤ i < j < k < l ≤ n

〉
Sn , (2.64)

KΛn =
〈

[ij][kl] + [ik][lj] + [il][jk] : 1 ≤ i < j < k < l ≤ n
〉
Sn . (2.65)
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Here, for ease of notation, for brackets with j ≥ i we make use of the identities

〈ji〉 = −〈ij〉 and [ji] = −[ij] . (2.66)

Physically, JΛn is the set of relations between spinor brackets generated by the momentum-
conservation identities, and KΛn and KΛn are the set of relations generated by the Schouten
identities. Eq. (2.62) says that R(q)

n is the set of inequivalent spinor bracket polynomials
under this set of identities.

It is natural to ask what happens if we consider of the set of elements of an ideal J of
Rn that can be expressed in terms of spinor brackets. Mathematically, we are inquiring
about the object J ∩Rn. Importantly, it can be shown that J ∩Rn is an ideal of Rn. To
be able to perform practical computations with J ∩Rn, we wish to find the ideal in R(q)

n to
which J ∩Rn maps. Specifically, we need to be able to construct a generating set of this
ideal. To this end, we will make use of the correspondence between ideals of polynomial
rings and polynomial quotient rings discussed in section 2.1.4 and begin by working with
the polynomial rings Sn and Sn. Consider the augmented polynomial ring

Σn = F
[
〈12〉, . . . , 〈(n− 1)n〉, [12], . . . , [(n− 1)n], λ10, λ11, . . . , λ̃10̇, λ̃11̇, . . .

]
, (2.67)

that is, a polynomial ring whose variables are both the spinor brackets and the spinor
variables. It is clear that Σn contains both Sn and Sn as subrings. Given an ideal
J = 〈p1, . . . pk〉Sn we construct the ideal

κ[J ] =
〈
p1, . . . , pk, 〈12〉 −

(
λ10λ21 − λ20λ11

)
, . . . , [12]−

(
λ̃10̇λ̃21̇ − λ̃20̇λ̃11̇

)
, . . .

〉
Σn

.

(2.68)
Here, κ[J ] is generated by the generators of the ideal J , as well as by the relations between
the spinor brackets and spinor variables.6 It can be shown (see appendix C) that the set of
elements of J that can be written in terms of spinor brackets correspond to the ideal of Sn
given by

κ[J ] ∩ Sn . (2.69)

This intersection is an example of elimination of variables and can be computed in practice
via Gröbner basis techniques, see e.g. section 2.4.3 of ref. [55]. We can then use the
correspondence map to understand the ideals of R(q)

n associated to ideals of Rn. Combining
this with the isomorphism in eq. (2.62), for an ideal J of Rn we have that

J ∩Rn ∼= πSn,R(q)
n

(
κ
[
π−1
Sn,Rn

(J)
]
∩ Sn

)
, (2.70)

where the right hand side is the ideal in the polynomial quotient ring formulation of Rn.

Examples of constructing corresponding ideals in the bracket ring. Let us now
consider a number of examples of applications of this technology. First, we can consider the
situation where we wish to find the ideal in Sn corresponding to 〈0〉Sn . A Gröbner basis
calculation shows that

κ[〈0〉Sn ] ∩ Sn = KΛn +KΛn , (2.71)
6A very similar setup can be found in constructing “algebraic dependence relations” in the Lĕınartas

algorithm [33, 34, 36].
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that is, we have only generated the Schouten identities. A less trivial example is to find the
ideal in Sn which corresponds to JΛn . One finds that

κ[JΛn ] ∩ Sn = JΛn +KΛn +KΛn . (2.72)

Here, we now pick up both momentum-conservation and Schouten identities.
As a more explicit example, let us work in five-point kinematics and consider the ideal

of spinor brackets that vanish when λ1 goes soft. To this end, we apply eq. (2.70) with
J = 〈λα1 〉R5 . The bracket on the right-hand side reads

κ [〈λα1 〉S5 + JΛ5 ] ∩ S5 =
〈
〈12〉, 〈13〉, 〈14〉, 〈15〉

〉
S5

+ JΛ5 +KΛ5 +KΛ5 , (2.73)

where we perform the variable elimination with Gröbner basis techniques. Using eq. (2.70),
we can now find the ideal associated to 〈λα1 〉R5 in R5. Specifically, we drop momentum
conservation and Schouten identities from the right-hand side of eq. (2.73) and reinterpret
the result in R5. We therefore find that

〈λα1 〉R5 ∩R5 =
〈
〈12〉, 〈13〉, 〈14〉, 〈15〉

〉
R5
. (2.74)

Throughout this work, we will follow this procedure to find ideals in Rn associated to
those in Rn.

Physical polynomial space. In this work, our aim is to construct compact Ansätze
for the rational prefactors. So far, we have discussed the polynomials relevant for the
numerators of rational prefactors in scattering amplitudes as living in the spinor bracket
ring Rn. However, this is an infinite dimensional vector space, and so this information is
insufficient for the construction of a finite Ansatz. Nevertheless, physical polynomials, such
as numerators of rational prefactors, have well-defined mass dimension and little-group
weight. This leads us to define the space of independent bracket polynomials with a
well-defined mass dimension d and little-group weights φk,

M
d,~φ

=
{
a ∈ Rn : [a] = d, and {a}k = φk

}
. (2.75)

Note that as the mass dimension d is fixed,M
d,~φ

is a finite-dimensional vector space over F.
If we can find a basis of M

d,~φ
, we can use this basis as an Ansatz for the numerator

polynomial. Furthermore, any Ansatz for the numerator polynomial must be expressible
in terms of a basis of M

d,~φ
. Therefore, this basis is a natural starting point for refined

Ansätze with special properties. We will now describe an algorithm to construct a basis
ofM

d,~φ
. There are two problems we need to solve. First, we must construct elements of

Rn which are linearly independent. It is clear from the definition of R(q)
n that monomials

inM
d,~φ

are related by momentum-conservation and Schouten identities. Second, we must
impose the constraints of fixed mass dimension and little-group weight. We note that other
methods have been put forward to build a basis ofM

d,~φ
, see e.g. refs. [59, 60]. Our methods

make use of general features of the algebra of polynomials and we expect them to have wide
applicability to many problems. The approach that we employ here was previously also

– 17 –



J
H
E
P
1
2
(
2
0
2
2
)
1
4
0

used in ref. [42], where the problem was finding a linearly independent set of monomials in
loop momentum on a given generalized unitarity cut.

As Rn is isomorphic to a polynomial quotient ring in spinor brackets, all elements can
be expressed as linear combinations of monomials in the spinor brackets, which we denote as

m(α,β) =
n∏
j=1

j−1∏
i=1
〈ij〉αij [ij]βij , (2.76)

where αij and βij belong to Z≥0. It will turn out that we can pick a subset of the monomials
in spinor brackets as basis elements. Specifically, we will show that

M
d,~φ

= spanF

(
M
d,~φ

)
where M

d,~φ
=
{
m(α,β) such that (α, β) ∈ X

d,~φ

}
. (2.77)

That is,M
d,~φ

is the set of all F-linear combinations of the elements ofM
d,~φ

, the set of spinor
bracket monomials whose exponents lie in the finite set X

d,~φ
. Our task is to determine

the set of exponents X
d,~φ

such that the associated monomials have mass dimension d,
little-group weights ~φ and are linearly independent elements of Rn.

To begin, we discuss the structure of Rn as an F-vector space. As it is a ring, it is an
infinite-dimensional vector space. Physically, a basis of Rn as an F-vector space gives a set
of linearly independent polynomials in spinor brackets when one takes into account the
momentum-conservation and Schouten identities. To resolve these identities, consider a
polynomial quotient ring A/J , where A is a polynomial ring over the field F and J is an
ideal of A. We recall from section 2.1.3 that elements of A/J can be uniquely expressed
as an F-linear combination of monomials that are irreducible by the Gröbner basis G(J).
Therefore, we see that the monomials which are irreducible by G(J) form a basis of A/J
as an F-vector space [54, chapter 4.3, Proposition 4]. Recall from eq. (2.62) that Rn is
isomorphic to the polynomial quotient ring R(q)

n = Sn/(JΛn + KΛn + KΛn). Therefore,
viewing m(α,β) as an element of R(q)

n , we require that

m(α,β) - LM(g) for all g ∈ G
(
JΛn +KΛn +KΛn

)
, (2.78)

where G(JΛn + KΛn + KΛn) is the Gröbner basis associated to momentum-conservation
and Schouten identities. Note that the statement that a polynomial is reducible can be
stated as a set of simultaneous linear inequalities. That is, all of the elements of (α, β)
must be greater than or equal to the corresponding entry in the exponent of LM(g). The
irreducibility constraint, eq. (2.78), is the complement of this. In summary, monomials
m(α,β) which satisfy the irreducibility constraint form a basis of Rn as an F-vector space.

The constraints of fixed little-group weight and mass dimension translate to linear
constraints on the exponents (α, β). First, we consider mass dimension: all spinor brackets
have unit mass dimension, so we can easily write the mass dimension of a monomial m(α,β) as

[m(α,β)] =
n∑
j=1

j−1∑
i=1

(αij + βij) = d . (2.79)

Next, we consider little-group weight of a monomial m(α,β). It is clear that

{m(α,β)}k =
n∑
j=1

j−1∑
i=1

(αij{〈ij〉}k + βij{[ij]}k) = φk , (2.80)
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where
{〈ij〉}k = δik + δjk and {[ij]}k = − (δik + δjk) (2.81)

are the little-group weights of the angle and square brackets respectively. It is interest-
ing to note that, as the αij and βkl are non-negative, eqs. (2.79) and (2.80) cut out a
convex polytope.

Together with the irreducibility constraints (2.78), the constraints of mass dimen-
sion (2.79) and little-group weights (2.80) on (α, β) define the set of exponents X

d,~φ
. To

solve these equations, first note that the exponents (α, β) are non-negative integers. The
space cut out by our equations is bounded, and therefore X

d,~φ
is finite. Solving these equa-

tions is then reduced to enumerating their solutions. Efficient algorithms to enumerate such
non-negative integer solutions are commonly implemented in computer algebra systems.7

Example of basis construction. Let us consider an explicit example of the construction
of a basis of the space of independent bracket polynomials modulo momentum conservation
and Schouten identities. We will work in five-point kinematics, considering the space of
polynomials in spinor brackets with d = 5 and ~φ = [0, 0,−1, 0,−1]. We begin by constructing
a Gröbner basis of JΛ5 +KΛ5 +KΛ5 . The exact form depends on the monomial ordering,
which itself depends on the ordering of the variables. We use the degree reverse lexicographic
ordering, and order the variables as{

〈12〉, 〈13〉, 〈14〉, 〈15〉, 〈23〉, 〈24〉, 〈25〉, 〈34〉, 〈35〉, 〈45〉,
[12], [13], [14], [15], [23], [24], [25], [34], [35], [45]

} (2.82)

The Gröbner basis can be efficiently computed in any computer algebra system. The
relevant information that we need from the Gröbner basis is the set of lead monomials,

LM
(
G
(
JΛ5 +KΛ5 +KΛ5

))
={

[25][34], [15][34], 〈12〉[25], [15][24], 〈12〉[24], [15][23], [14][23],
〈23〉[23], 〈13〉[23], 〈12〉[23], 〈15〉[15], 〈14〉[15], 〈13〉[15], 〈12〉[15],
〈15〉[14], 〈14〉[14], 〈13〉[14], 〈12〉[14], 〈23〉[13], 〈15〉[13], 〈14〉[13],
〈13〉[13], 〈12〉[13], 〈25〉[12], 〈24〉[12], 〈23〉[12], 〈15〉[12], 〈14〉[12],
〈13〉[12], 〈12〉[12], 〈25〉〈34〉, 〈15〉〈34〉, 〈15〉〈24〉, 〈15〉〈23〉, 〈14〉〈23〉

}
(2.83)

We then generate the set of monomials with the appropriate dimension and little group
weights, which are indivisible by the lead monomials in eq. (2.83). This leads us to a basis
of the spaceM5,[0,0,−1,0,−1] which is given by

M5,[0,0,−1,0,−1] ={
〈25〉〈35〉[25][35][35], 〈35〉〈35〉[35][35][35], 〈24〉〈24〉[24][24][35], 〈24〉〈24〉[23][24][45],
〈24〉〈35〉[24][35][35], 〈24〉〈35〉[23][35][45], 〈34〉〈35〉[34][35][35], 〈34〉〈34〉[34][34][35],
〈24〉〈34〉[24][34][35], 〈24〉〈34〉[23][34][45], 〈34〉〈45〉[34][35][45], 〈24〉〈45〉[24][35][45],
〈45〉〈45〉[35][45][45], 〈35〉〈45〉[35][35][45], 〈23〉〈45〉[24][35][35], 〈25〉〈45〉[25][35][45],
〈25〉〈25〉[25][25][35], 〈24〉〈25〉[24][25][35], 〈24〉〈25〉[23][25][45], 〈24〉〈45〉[23][45][45]

}
(2.84)

7For example, in the computer algebra system Mathematica one can simply apply the Solve function,
requiring the solution domain to be the NonNegativeIntegers.
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This then allows us to see that M5,[0,0,−1,0,−1] is a 20-dimensional space. Other bases of
M5,[0,0,−1,0,−1] given in terms of monomials exist. Such bases can be explored by changing
monomial and variable orderings.

2.3 Geometry of singular varieties

Let us consider the rational functions Ci from eq. (2.14) and in particular the set of all their
possible denominator factors D = {D1, . . . ,Dni}. In general, this set will depend on the
specifics of the considered external kinematics, together with the definitions of the functions
F . As an example of typical elements of the set D we can consider all spinor brackets from
eq. (2.4). We wish to study the behavior of the rational coefficients when considered near
varieties on which some subset of the denominators D vanishes. We dub these varieties
“singular varieties”.8 Conventional examples are configurations where external particles
become soft or collinear. We denote a singular variety as

U~γ = V
(
〈Dγ1 , . . . ,Dγm〉Rn

)
, (2.85)

for some subset of the denominators {Dγ1 , . . . ,Dγm} ⊆ D. We note that, by definition, the
variety U~γ corresponds to an ideal

J~γ = 〈Dγ1 , . . . ,Dγm〉Rn , (2.86)

which we dub a “singular ideal”. In practice, we will only be considering ideals generated
by one or two denominator factors, i.e. the cases m = 1 or m = 2.

A key feature of the algorithm we present in this paper will be to generate numerical
configurations of spinors which lie close to singular varieties in order to determine how
fast a given rational expression diverges close to the singular variety. This procedure is
complicated by the fact that the singular varieties may branch and that the degree of
divergence may differ close to different branches of the same variety. Therefore, we will
find it necessary to be able to control which branch we are approaching numerically. The
remainder of this section reviews in general terms the geometric and algebraic concepts
related to branching. We refer the reader to section 4 of ref. [54] for more details.

Irreducible varieties. The key geometric concept related to branching is that of re-
ducibility of a variety. The object that we wish to consider is that of an irreducible
variety. A variety U is defined to be irreducible if

U = U1 ∪ U2 ⇒ łU1 = U or U2 = U . (2.87)

In our case, the varieties U~γ in eq. (2.85) may well be reducible. A reducible variety U can
be written as a proper union of sub-varieties and there exists a minimal decomposition

U =
nB(U)⋃
k=1

Uk , (2.88)

8The term “singular” here refers to a property of rational functions on the variety, not to a topological
property of the variety itself.
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where nB(U) is the number of varieties in the decomposition, each Uk is irreducible and
Ui 6⊆ Uj for all i 6= j. We call each Uk a “branch” of U and this last condition is that no
branch is contained within another. A minimal decomposition is unique, up to the order of
the branches Uk [54, section 4.6, Theorem 4].

Importantly, the reducibility of a variety may not be manifest from the set of equations
used to define it. Our task is now to discuss how to understand the decomposition of
eq. (2.88) algebraically so that one can perform the decomposition systematically.

Ideals associated to irreducible varieties. To understand the decomposition of vari-
eties in an algebraic fashion, let us start by considering an ideal J , its associated variety
U = V (J) and its minimal decomposition U =

⋃nB(U)
k Uk. It is natural to consider the

ideal associated to each branch Uk

Pk = I(Uk) . (2.89)

Here we have judiciously labeled the ideal as P , which hints at the fact that the ideal
associated to an irreducible variety is prime (see appendix A for the algebraic definition).

A reasonable expectation could be to express J in terms of the Pk’s. However, recall
that in general J 6= I(V (J)), as this requires the ideal to be radical (see eq. (2.29)). In
fact, it turns out that the algebraic analogue of a minimal decomposition of U , called a
minimal primary decomposition, expresses J as

J =
nQ(J)⋂
l=1

Ql , (2.90)

where each Ql is primary (see appendix A for the definition), all
√
Ql are distinct, and no

Ql can be removed from the intersection without changing the result, i.e. Qm +
⋂
l 6=mQl.

We stress that the intersection of ideals should be viewed considering the ideals as infinite
sets of polynomials. We call each Ql a primary component of J and we denote the number
of primary components as nQ(J). The radical of each primary component Ql is a prime
ideal

Pl =
√
Ql , (2.91)

i.e. a primary ideal is also prime only if it is radical. As Pl is the prime associated to
Ql, we say that Ql is Pl-primary. We call the set of primes associated to all the primary
components of J the set of associated primes. To this end, we write

assoc(J) =
{
P1, . . . , PnQ(J)

}
. (2.92)

It can be shown that the associated primes in a minimal primary decomposition are
unique [61, Theorem 4.5]. We call an associated prime Pi of J a minimal prime if Pi 6⊇ Pj
for all i 6= j. We define the set of minimal associated primes of J as

minAssoc(J) =
{
P ∈ assoc(J) where P is a minimal prime

}
. (2.93)

It can be shown that the set of primary components Qk of J for which
√
Qk is a minimal

prime of J is unique [61, Theorem 4.10].
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Let us now address the relation between the minimal primary decomposition of an ideal
J and the minimal decomposition of its associated variety U = V (J). First of all, note
that the dimension of each primary component may not be the same. In fact, it can be
shown that

dim(J) = max ({dim(Ql) : 1 ≤ l ≤ nQ(J)}) . (2.94)

If we now interpret eq. (2.90) geometrically by taking the variety of both left- and right-hand
side and using the fact that the variety associated to an intersection of a set of ideals
corresponds to the union of the varieties associated to each ideal, we obtain

V (J) =
nQ(J)⋃
l=1

V (Ql) . (2.95)

In general, the union of eq. (2.95) may not be a minimal decomposition of V (J), because
the variety associated to a primary component may be contained in the variety associated
to another. Therefore, we can split set of varieties V (Ql) into two distinct subsets: those
who can be removed from the intersection of eq. (2.95) without changing the result and
those that cannot. We refer to these as “embedded” and “isolated”, respectively. It can be
shown that the prime ideals Pk in the set minAssoc(J) are in one-to-one correspondence
with the irreducible varieties Uk from eq. (2.88), i.e. Uk = V (Pk). Therefore, it is clear
that nQ(J) ≥ nB(V (J)). Geometrically, one can see that the non-uniqueness in a minimal
primary decomposition is associated to the primary ideals Ql such that V (Ql) is embedded.

Before moving on to some explicit examples in spinor space, let us remark that there
exist general algorithms for the computation of primary decompositions, see for instance
ref. [62]. A further useful comment is that for a prime ideal, all maximally independent
sets are of the same size [56, Proposition 7.26]. This observation can provide a simple way
to show that an ideal is not prime.

Examples of irreducible singular varieties at three and four points. To under-
stand eqs. (2.90) and (2.95) in a more physical context, let us turn to simple examples
of the problem at hand: understanding surfaces in spinor space. As a first warm-up, we
consider there-point phase space. A well-known fact is that either all angle or all square
brackets must be zero. Formally, this means that the zero ideal in R3 (or equivalently the
ideal in S3 generated by momentum conservation alone) is not primary. That is, one can
compute the primary decomposition of

〈
0
〉
R3

to find〈
0
〉
R3

=
〈
〈12〉, 〈13〉, 〈23〉

〉
R3
∩
〈
[12], [13], [23]

〉
R3
. (2.96)

In contrast, four-point phase space, V (〈0〉R4), is irreducible. However, a number of
interesting varieties associated to codimension-one ideals do decompose. This is again a
statement that we can demonstrate with the help of a primary decomposition. For instance,
we have 〈

[12]
〉
R4

=
〈
[12], 〈34〉

〉
R4
∩
〈
[12], [13], [14], [23], [24], [34]

〉
R4
. (2.97)

One way to see why
〈
[12]

〉
R4

must decompose is to note that in R4

〈12〉[12] = 〈34〉[34] , (2.98)
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i.e. 〈34〉[34] is a member of
〈
[12]

〉
R4

, but this is not the case for 〈34〉 nor [34]. Therefore, we
must have at least two branches, each one containing one of the two factors of s34.

A well-known fact that can be interpreted in terms of this splitting is that four-point
massless amplitudes have non-unique common denominators in terms of spinor brackets. To
better understand this let us consider as a concrete example the Parke-Taylor expression [63]
for maximally-helicity-violating (MHV) and MHV trees, say

iAg−g−g+g+ = 〈12〉3

〈23〉〈34〉〈41〉 = [34]3

[12][23][41] . (2.99)

As shown in eq. (2.99), at four points MHV and MHV coincide. Thus, the denominator is
clearly not unique. To see this algebro-geometrically, let us begin by posing an apparently
legitimate question; that is, whether 〈23〉 is a pole of this amplitude. We can now say that
this question is ill-posed because the surface is reducible. The amplitude Ag−g−g+g+ has a
simple pole on V

(〈
〈23〉, [14]

〉
R4

)
but it is regular on V

(〈
〈12〉, 〈13〉, 〈14〉, 〈23〉, 〈24〉, 〈34〉

〉
R4

)
;

that is, it has a different behavior on the different branches of V
(〈
〈23〉

〉
R4

)
. Therefore,

〈23〉 is both a physical and a spurious singularity, depending on the branch we look at. In
conclusion, the physical statement about the singularity is that Ag−g−g+g+ has a simple
pole on V

(〈
〈23〉, [14]

〉
R4

)
and algebraically we can represent this in two different ways,

either via 〈23〉 or via [14] in the denominator.
As a final warm-up, let us consider the set of ideals at four points generated by pairs

of invariants, together with their primary decompositions. We present a set of such ideals
from which all others can be derived by permutations of the n momenta and parity.

〈
〈12〉, 〈13〉

〉
R4

= P2 ∩ P3 ∩ P 3(2341) , P1 =
〈
〈12〉, [34]

〉
R4
,〈

〈12〉, 〈34〉
〉
R4

= P2 ∩ P4 , P2 =
〈
〈12〉, 〈13〉, 〈14〉, 〈23〉, 〈24〉, 〈34〉

〉
R4
,〈

〈12〉, [12]
〉
R4

= P4 ∩ P5 ∩ P 5 , P3 =
〈
〈12〉, 〈13〉, 〈23〉, λ̃α̇4

〉
R4
,〈

〈12〉, [13]
〉
R4

= P3(1243) ∩ P 3(1342) P4 =
〈
〈12〉, [12], 〈34〉, [34] ,

∩P5 ∩ P 5(1324) , λα1 λ̃
α̇
1 + λα2 λ̃

α̇
2 , λ

α
3 λ̃

α̇
3 + λα4 λ̃

α̇
4
〉
R4
,〈

〈12〉, [34]
〉
R4

= P1 , P5 =
〈
〈12〉, [12], [13], [14], [23], [24], [34]

〉
R4
.

(2.100)
Here, on the left-hand side, we show ideals generated by pairs of invariants together with
their primary decompositions; on the right-hand side, we give minimal bases for their
primary components. We remark that P3, P4 and P5 have codimension two, while P1 and
P2 have codimension one.

2.4 Functions vanishing to higher order on singular varieties

Now that we have discussed how to construct the set of irreducible singular varieties of
rational prefactors, our aim is to use these varieties to study the prefactors and interpret
their behavior close to singular varieties as constraints on the analytic structure of their
numerators. In this section, we review a well-studied class of ideals that we can use to
parameterize these constraints. Specifically, we introduce the so-called “symbolic power” of
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an ideal (see ref. [64] for a recent survey and chapter 3.9 of ref. [65] for a textbook discussion).
Importantly, we can use the symbolic power to define what we mean by “behavior close to
a variety”. Our ultimate goal is to present a numerical algorithm for this study. However,
in this section we content ourselves with the mathematical preliminaries, and delay the
discussion of the numerical procedure to section 3.

Vanishing to higher order at a point. Our goal is to discuss a set of elements of Rn
that vanish to kth order on a variety U ⊂ V (JΛn). Before we tackle this problem, we begin
by studying the simpler case where the variety is a single point. Let us consider a point
(η, η̃) in spinor space that satisfies momentum conservation, i.e. (η, η̃) ∈ V (JΛn). The set of
elements of Rn that vanish on this point is given by an ideal

m(η,η̃) =
〈
λ10 − η10, λ11 − η11, . . . , λ̃10̇ − η̃10̇, λ̃11̇ − η̃11̇, . . .

〉
Rn
. (2.101)

Here we label such an ideal as m(η,η̃), hinting that it is actually a so-called “maximal ideal”
(see appendix A for the algebraic definition). To better understand eq. (2.101), let us
consider computing the remainder of an element q ∈ Rn modulo a Gröbner basis of m(η,η̃).
From eq. (2.101), it is easy to see that the remainder modulo G(m(η,η̃)) of q is equivalent to
the evaluation of q at the point (η, η̃), that is

∆G(m(η,η̃))(q) = q(η, η̃) . (2.102)

With this perspective, it is clear that q vanishes at the point (η, η̃) if and only if it belongs
to the ideal m(η,η̃).

With the ideal m(η,η̃) in hand, we are now in a position to define a set of elements of
Rn that vanish to kth order at the point (η, η̃). To motivate the definition, let us start by
noting that it is natural to say that elements of m(η,η̃) vanish to (at least) first order at the
point (η, η̃). One way to think of this is to consider a point(

η(ε), η̃(ε)
)

=
(
η + εδ, η̃ + εδ̃

)
, (2.103)

for some small quantity ε and a point (δ, δ̃) in spinor space which is not required to satisfy
momentum conservation itself, but is chosen such that (η(ε), η̃(ε)) satisfies momentum
conservation. At this shifted point (η(ε), η̃(ε)), the generators of m(η,η̃) are all proportional
to ε and we can interpret this as vanishing to first order. It is easy to see that if we raise
m(η,η̃) to kth power then all of the generators of this power ideal will be proportional to εk.
This leads us to define that an element q ∈ Rn vanishes to kth order at a point (η, η̃), if it
is an element of mk

(η,η̃), i.e.

q ∈ mk
(η,η̃) ⇒ q vanishes to kth order at (η, η̃) . (2.104)

We remind the reader that the ideal power is computed by repeated multiplication of the
generators, see eqs. (2.21) and (2.22).

Vanishing to higher order on a variety. Let us now consider elements of Rn that
vanish not just at a single point, but on an entire variety W . We ask an analogous question
to the case where the variety was a single point, that is whether we can construct the set of

– 24 –



J
H
E
P
1
2
(
2
0
2
2
)
1
4
0

elements that vanish to kth order at every point on W . Given our previous discussion, we
therefore want to understand elements which belong to mk

(η,η̃) for every (η, η̃) ∈W . This is
the intersection of each of these ideals, that is⋂

(η,η̃)∈W
mk

(η,η̃) . (2.105)

We will refer to this intersection as the set of elements of Rn which vanish to kth order on
W . As the set of points in W is potentially infinite, the computation of this intersection is
a non-trivial exercise. A natural expectation is that the set of elements which vanish to kth

order on W is related to I(W )k. However, it turns out that I(W )k is insufficient: there
can exist elements of Rn which vanish to kth order but do not belong to I(W )k. We must
introduce a refined definition of ideal power: the so-called symbolic power (see chapter
3.9 [65]).

Let us begin with an irreducible variety U . In the case of a prime ideal such as I(U),
the symbolic power can be defined as the I(U)-primary component of the ideal power. More
precisely, we consider the minimal primary decomposition of I(U)k which we can write as9

I(U)k =
m⋂
i=1

Qi . (2.106)

The kth symbolic power of an ideal associated to an irreducible variety U is defined as

I(U)〈k〉 = Qj , where
√
Qj = I(U) , (2.107)

that is, the kth symbolic power of I(U) is the unique primary component Qj of I(U)k whose
associated prime is I(U). It is clear from the definition that I(U)〈1〉 = I(U). Consider now
a situation where we work with a reducible variety W . Then the symbolic power can be
defined as the intersection of the symbolic powers of the ideals associated to the irreducible
components of W , i.e.

I(W )〈k〉 =
⋂

Pi ∈ assoc(I(W ))
P
〈k〉
i . (2.108)

We are now prepared to describe the set of elements of Rn which vanish to kth order
on a variety. The key theorem we need is the so-called “Zariski-Nagata theorem” [45, 46],
in the general form introduced by Eisenbud and Hochster [47]. For our purposes, it states
that for a radical ideal J in Rn ⋂

(η,η̃)∈V (J)
mk

(η,η̃) ⊆ J
〈k〉 , (2.109)

where we stress that the powers of the maximal ideals, and the symbolic power of J , are
computed in Rn. We see that Zariski-Nagata tells us that the set of elements of Rn that
vanish to kth order on the variety V (J) is contained within the kth symbolic power of J .
Therefore, we see that if we wish to compute the set of polynomials that vanish on a variety
W to kth order, it is sufficient to compute I(W )〈k〉.

9It is perhaps surprising that there could be multiple primary components Qi, since
√

I(U)k = I(U),
but this is possible because in general V (Qi) ⊆ U . That is, it is possible that V (Qi) can be embedded. This
corresponds to the fact that the ideal I(U)k does not necessarily contain all functions that vanish to kth

order on U .
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Computing symbolic powers. A natural question is how one computes the symbolic
power in practice. It is clear from eq. (2.107) that, for a prime ideal P , one can calculate
the kth symbolic power P 〈k〉 by computing the primary decomposition of P k. However,
obtaining the primary decomposition can be computationally demanding. In order to
circumvent this, we now introduce a useful lemma. First, we note an important technical
property of Rn. As it is a quotient of a polynomial ring by a maximal codimension ideal, Rn
is “Cohen-Macaulay” [65, Proposition 18.13]. This property has a very useful consequence
for certain ideals when computing symbolic powers. Specifically, if A is a Cohen-Macaulay
ring and J is a maximal codimension ideal of A then the ideal power and symbolic power
coincide [66, appendix 6, Lemma 5]. That is, for an ideal J of Rn we have

codim(J) = µ(J) ⇒ J 〈n〉 = Jn . (2.110)

One can understand this as follows: if the ideal associated to a variety U is of maximal
codimension, then the functions which vanish to kth order on U are simply given by I(U)k.
In many cases, strategic application of the lemma in eq. (2.110) allows one to bypass the
computation of unnecessary primary decompositions when computing symbolic powers.

Examples of symbolic powers. To build intuition, let us reconsider the prime ideals P1
through P5 in the four-point quotient ring R4, as given in eq. (2.100). It can be shown that

〈
〈12〉, [34]

〉〈2〉
R4

=
〈
〈12〉, [34]

〉2
R4

=
〈
〈12〉2, 〈12〉[34], [34]2

〉
R4
. (2.111)

That is, in this case, the second symbolic power agrees with the second ideal power. In fact,
for almost all of the Pi in eq. (2.100) this holds. Specifically,

assoc(P 2
i ) = {Pi} =⇒ P 2

i = P
〈2〉
i ∀ i 6= 5 . (2.112)

That is, the second ideal power corresponds to the second symbolic one in all cases except
for P5. Let us then consider the case of P5, where the symbolic power does not coincide
with the normal power. The associated primes are

assoc(P 2
5 ) = {P5, Px} with Px =

〈
〈ij〉, [ij] : 1 ≤ i < j ≤ n

〉
R4
, (2.113)

and the primary decomposition reads

P 2
5 = Q5 ∩Qx with

√
Q5 = P5 ,

√
Qx = Px =⇒ P

〈2〉
5 = Q5 . (2.114)

One finds that the size of the minimal generating sets are given by µ(Q5) = 16 and
µ(Qx) = 49. We, therefore, do not print these ideals in the text, but they are easily
obtainable with computer algebra techniques. We note that there must be some polynomial
which belongs to the symbolic power P 〈2〉5 but not to Qx, and hence not to P 2

5 . It is easy to
check that

[34] /∈ Qx and [34] /∈ P 2
5 , but [34] ∈ P 〈2〉5 . (2.115)
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3 Numerical points near singular varieties

In the previous section, we introduced the class of polynomials which vanish to a kth order
on a variety. We now wish to understand how to generate numerical configurations of spinors
that are close to irreducible singular varieties. This will allow us to numerically determine
the degree of vanishing of a numerator polynomial. One of the important properties of finite
fields that makes them useful in computer algebra applications is that, in contrast to real or
complex numbers, they can be exactly represented on a computer without approximation.
However, if we wish to use finite fields to construct configurations of spinors which are close
to some other configuration, this is not possible as it turns out that the available measure
of size is not sufficiently powerful. To understand this mathematically, we now review the
idea of an absolute value on a field F which will allow us to formalize the notion of size.
Absolute values on fields are a basic idea in the theory of number fields and we refer to
ref. [48] for an introduction. Mathematically, when we wish to discuss the size of elements
of a field F we make use of a map | · |F from a field F to the non-negative real numbers R≥0,
known as an absolute value.10 Well-known absolute values include the standard ones on
the real and complex numbers. If we have two elements x and y of a field F, we will say
that x is smaller than y if

|x|F < |y|F . (3.1)

Note that the result of | · |F is always a real number, so the comparison in eq. (3.1) takes
place in the real numbers. An absolute value also induces a metric d on F, given by

d(x, y) = |x− y|F , (3.2)

where x and y are two elements of F. We will mostly make use of eq. (3.1)—the ability to
compare sizes of elements of a field — in order to discuss points close to a variety.

Let us return to the finite-field case. It can be shown that the only absolute value on
Fp is the so-called trivial absolute value which takes one of two values [48]. That is, for
all a ∈ Fp one can show that11

|a = 0|Fp = 0 or |a 6= 0|Fp = 1 . (3.3)

Considering the induced metric on Fp, one can then say that two elements x and y of Fp
are either 0 or 1 units apart. This implies that in Fp we can only generate phase-space
points which are either on or away from a given surface. Therefore, the induced metric does
not admit a non-trivial hierarchy of distances.

In order to bypass this issue, in section 3.1 we introduce another number-theoretical
field that admits a more powerful measure of distance: the p-adic numbers. Then, in
sections 3.2 and 3.3, we show how to start from a finite-field-valued configuration of spinors
that is on a variety to then construct a p-adic configuration of spinors which is close to said
variety, by perturbing the finite-field configuration.

10We note that a field F may admit multiple absolute values, but for the cases in this work it will be clear
by context the one which we consider.

11This is easily proven by using Fermat’s little theorem and by multiplicativity and non-negativity of the
absolute value. Let a ∈ Fp, then: ap = a ⇒ |ap| − |a| = 0 ⇒ |a|p − |a| = 0 ⇒ |a|(|a|p−1 − 1) = 0 ⇒
|a| = 0 ∨ |a| = 1. Finally, by positive-definiteness we have |a| = 0 ⇒ a = 0, and hence eq. (3.3).
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3.1 Beyond finite fields: p-adic numbers

In this section, we review mathematical details of the p-adic numbers that are relevant for
our applications. These are well-studied objects in the mathematical literature and we refer
the reader to textbooks such as ref. [48] for a pedagogical introduction to the topic. We
begin by introducing the so-called p-adic integers, which we denote as Zp. These are
not to be confused with a finite field with p elements, which we denote as Fp. An element
z ∈ Zp can be considered as a power series in a prime number p, i.e.

z =
∞∑
i=0

aip
i = a0 + a1p+ a2p

2 + · · · , (3.4)

where the ai take integer values in the range [0, p−1]. We call the coefficients ai the p-adic
digits of z, in analogy to a decimal representation of a real number. Multiplication and
addition of elements of Zp can be defined using the standard multiplication and addition
rules for power series. However, one must also take into account that the digits of the
resulting series must still live in the range [0, p− 1]. This can always be achieved by carry
rules, analogous to performing arithmetic with decimal numbers. With this in mind, the
first non-zero p-adic digit behaves like an element of Fp. It can be shown that the set of
p-adic integers forms a ring under multiplication and addition. However, Zp is not a field:
there exists no multiplicative inverse for any element of Zp with zero as its first p-adic digit.

Let us reconsider the power series representation of a p-adic integer given in eq. (3.4).
Note that extending this representation to allow for negative powers of p solves the issue
that prevents the p-adic integers from being a field. This leads us to the p-adic numbers,
which we denote as Qp. Specifically, an element x ∈ Qp takes the form

x =
∞∑
i=−l

aip
i = a−lp

−l + · · ·+ a−1p
−1 + a0 + a1p+ a2p

2 + · · · , (3.5)

where again ai is an integer in the range [0, p− 1]. Multiplication and addition are again
defined by power series operations with carries. It is important to note that the p-adic
numbers are not an algebraically closed field.

As promised, the p-adic numbers are a field with a more powerful way to measure
size. To discuss this, given a p-adic number x, we first introduce the p-adic valuation
of x, which we denote by νp(x). Considering the power series representation of x ∈ Qp of
eq. (3.5), the valuation of a non-zero x is the integer k such that ak is the first non-zero
p-adic digit of x. That is,

νp(x) = k such that ai = 0 for all i < k . (3.6)

For x = 0 it is conventional to take νp(x) = ∞. The p-adic absolute value, which we
denote by |x|p, is defined as

|x|p = p−νp(x) , (3.7)

for x 6= 0, and |0|p = 0. It is this absolute value on Qp that we will use to discuss size.
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This measurement of size has a number of interesting implications. Firstly, we see that
p-adic numbers which are proportional to p are p-adically small, and those proportional to
1
p are p-adically large. That is, considering p as a p-adic number, we have

|p|p < 1 <
∣∣∣∣1p
∣∣∣∣
p

. (3.8)

We emphasize that, when considered p-adically, the quantity p is to be regarded as small.
Note that the p-adic integers form a subset of the p-adic numbers whose absolute value is
bounded from above. That is,

|x|p ≤ 1 for all x ∈ Zp . (3.9)

Next, note that the p-adic absolute value is discrete and unbounded when considered over
the set of p-adic numbers. This is in contrast to the trivial absolute value, which is discrete
but bounded to either 0 or 1; or the standard absolute value over R which is unbounded
but continuous. Finally, we note that, while numbers in R satisfy the triangle inequality

|x+ y|R ≤ |x|R + |y|R for x, y ∈ R , (3.10)

those in Qp satisfy the strong triangle inequality

|x+ y|p ≤ max(|x|p, |y|p) for x, y ∈ Qp . (3.11)

Eq. (3.11) states that when one sums two p-adic numbers, the result cannot be larger than
either of the two summands. In practice, this can be helpful for establishing bounds on the
size of intermediate stages of calculations, which can be important for numerical stability.
Furthermore, it is important to note that, for large p, the bound in eq. (3.11) is frequently
saturated in practice. This can be seen by analogy to finite-field computations. Specifically,
in Fp it is well-understood that a quantity accidentally evaluating to zero can be made
less probable by raising the value of p. As the first digit of a p-adic number behaves like
an element of a finite-field, we see that this implies that, by working with large p, one
can make it improbable that such a quantity becomes accidentally small. As quantities
accidentally becoming small is an important source of precision loss in many algorithms,
this has important practical implications for numerical stability.

p-adics on a computer. Since computers have finite memories, one can consider trun-
cating the power series expansion of a p-adic number. Recalling the form of a p-adic number
x from eq. (3.5), one can truncate the series and write

x = a−lp
−l + . . .+ a−1p

−1 + a0 + a1p+ · · ·+ am−1p
m−1 +O(pm) . (3.12)

This can be understood as a p-adic analogue of real numbers being represented by floating-
point numbers of finite precision. Comparing the truncated power series in eq. (3.12) to
the full series in eq. (3.5), we see that the error O(pm) made by truncating the power series
can be made small in a p-adic sense: increasing m decreases the error as |pm|p < |pm−1|p.
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To make use of this on a computer, we use a floating-point representation.12 To this end,
let us write a truncated p-adic number x as

x = pνp(x)
(
k−1∑
i=0

aip
i +O(pk)

)
with ai 6= 0 . (3.13)

From this representation, for fixed prime p and working precision k ∈ Z>0, it is clear
that a p-adic number can be described in terms of two pieces of data: the prefactor pνp(x),
which we call the exponent, and the summation part, which we call the mantissa. We
therefore store a p-adic number as a pair of positive integers, the first representing the
valuation νp(x) and the second representing the mantissa

∑k−1
i=0 aip

i. In this representation,
floating-point p-adic arithmetic is very similar to working modulo pk, with a small overhead
from the exponent management. In practice, we expect computational cost and memory
usage of calculations with p-adic numbers truncated to k -digit to be comparable to those
with a finite field Fq where the characteristic q is similar in magnitude to pk.

Let us consider basic arithmetic operations in the floating-point representation. First,
consider multiplying x by another p-adic number y, whose digits we denote as bi. This is
given by

xy = pνp(x)+νp(y)
[(

k−1∑
i=0

aip
i

)(
k−1∑
i=0

bip
i

)
+O(pk)

]
. (3.14)

Here, we can clearly identify the exponent of the product as the sum of the exponents, and
the mantissa of the product as the product of the mantissae modulo pk. The multiplicative
inverse of x can computed as

x−1 = p−νp(x)
(
x+O(pk)

)
, (3.15)

where x is an integer satisfying

npk + x
k−1∑
i=0

aip
i = 1 , (3.16)

for some auxiliary integer n. Such a pair (x, n) can easily be computed through the extended
Euclidean algorithm applied to the mantissa and pk, in analogy to the finite-field case (see,
for example, ref. [2, appendix A]). Note that, as p is prime, both multiplication and the
computation of multiplicative inverse have the property that the mantissa of the result
cannot be proportional to p, as required in the floating-point representation of eq. (3.13).

Let us now consider addition in the floating-point representation. In contrast to
multiplication, questions of stability arise. Without loss of generality we can consider
νp(y) ≥ νp(x) and write the summation of x and y as

x+ y = pνp(x)
[(

k−1∑
i=0

aip
i

)
+ p[νp(y)−νp(x)]

(
k−1∑
i=0

bip
i

)
+O(pk)

]
. (3.17)

12A public implementation of Qp can be found in Sage [67] or FLINT [68].
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In comparison to multiplication, it is more subtle to compute the exponent and mantissa
of the sum from this form. Specifically, for the case where νp(x) = νp(y), the part in
square brackets in eq. (3.17) may be proportional to p. This violates the assumption in
eq. (3.13) that the leading digit of the mantissa is non-zero. To return to the floating-
point representation, one must then shuffle factors of p from the mantissa to the exponent.
However, as the mantissa is only known to k digits, this procedure introduces an arbitrary
choice into the last digits of the new mantissa. In more traditional terms, one may lose
precision when performing addition. In practice, similarly to working in Fp, this can be
made unlikely to accidentally happen by increasing the size of the prime p. We note that
this is a generalization of the issue of accidental division by zero in finite fields.

3.2 Finite-field points on singular varieties

Let us now discuss how one can generate a point on a variety when working in Fp. To
ease the discussion, we will work over the polynomial ring Fp[X1, . . . , Xn], and denote the
tuple of variables as X = {X1, . . . , Xn}. Given an ideal J = 〈q1, . . . , qm〉Fp[X], we wish to
generate a numerical point X(0) ∈ Fnp that is a solution to the equations

qi(X) = 0 for i = 1, . . . ,m . (3.18)

That is, X(0) ∈ V (J). Clearly, for a variety that is not zero dimensional, there are many
such points X(0). In the following we will focus on constructing a single point X(0) ∈ V (J).
Geometrically, our strategy is to intersect the variety with a randomly chosen collection of
hyperplanes so that this intersection is a zero-dimensional variety. The zero-dimensional
variety then corresponds to a finite collection of points. We explicitly construct one such
point and take this to be X(0).

In order to build the set of hyperplanes, we begin by constructing a maximally inde-
pendent set of J , as discussed in section 2.1.2. We denote the maximally independent set
as Y and the corresponding dependent variables as Z = X \Y . We remind the reader
that Y is a tuple of dim(J) variables and that Z is a tuple of codim(J) variables. By
definition, the elements of the set Y can be chosen independently. If we choose values
for Y generically, then they specify a variety such that its intersection with V (J) is a
zero-dimensional sub-variety of V (J). To this end, we construct a point Y (0) ∈ Fdim(J)

p by
choosing each component uniformly as integers from the range [0, p− 1]. With this point in
hand, we now consider the system

qi
(
Z, Y (0)

)
= 0 for i = 1, . . . ,m . (3.19)

This system of equations defines our zero-dimensional subvariety of V (J). Note that the
polynomials in eq. (3.19) qi depend only on the Z variables, as the components of Y (0) take
values in Fp. It is useful to introduce the corresponding ideal in the polynomial ring Fp[Z], as

J (0) =
〈
q1
(
Z, Y (0)

)
, . . . , qm

(
Z, Y (0)

) 〉
Fp[Z]

. (3.20)

Clearly, any Z(0) ∈ V (J (0)) can be combined with Y (0) to find our desired point X(0).
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Our problem is now reduced to the simpler task of finding an element of V (J (0)).
However, in general the system of eqs. (3.19) is non-linear in Z, which makes this a non-
trivial exercise. To this end, we make use of standard tools of elimination theory, which
we now review. We refer the reader to chapter 3 of ref. [54] for a pedagogical introduction.
The key tool we will use is a Gröbner basis with a special monomial ordering. The ordering
that we need is the so-called lexicographic ordering on the variables Z, which we denote as
�lex.. Specifically, we order the variables as

�lex.: Zcodim(J) � · · · � Z1 . (3.21)

To highlight the use of this monomial order, we will denote the lexicographic Gröbner basis
of J (0) as Glex.(J (0)). We now consider the subset of Glex.(J (0)) which depends only on the
variables Z1 through Zl. That is, we define

Gl = Glex.
(
J (0)

)
∩ Fp[Z1, . . . , Zl] . (3.22)

The sets of polynomials Gl allow one to find a zero of Glex.(J (0)) in an iterative manner,
constructing it variable by variable. We will call a zero {Z(0)

1 , . . . , Z
(0)
l } of the polynomials

Gl an lth partial solution. Note that one can always construct a 0th partial solution as this
is the empty set. Given a (l − 1)th partial solution {Z(0)

1 , . . . , Z
(0)
l−1}, our task is to find

a Z(0)
l ∈ Fp such that {Z(0)

1 , . . . , Z
(0)
l } is an lth partial solution. We will refer to this as

extending the (l− 1)th partial solution. Clearly, repeatedly extending a partial solution will
lead to an element of V (J (0)).

To discuss how to extend a partial solution, let us consider the ideal generated by the
evaluations of Gl on an (l − 1)th partial solution. That is, we consider the ideal

J
(0)
l,eval =

〈
g
(
Z

(0)
1 , . . . , Z

(0)
l−1, Zl

)
: g ∈ Gl

〉
Fp[Zl]

. (3.23)

It can be shown that J (0)
l,eval is generated by a single polynomial go (see chapter 3.5 of

ref. [54]). That is, one can write J (0)
l,eval as

J
(0)
l,eval = 〈go〉Fp[Zl] . (3.24)

Note that a zero of go is a Z(0)
l that allows us to extend the (l − 1)th partial solution.

Importantly, go can be read from Gl. Specifically, let us write each element g of Gl in
the form

g = cg(Z1, . . . , Zl−1)ZNgl + terms in which Zl has degree < Ng . (3.25)

If we consider the set of polynomials g′ ∈ Gl such that cg′ does not evaluate to zero on the
(l− 1)th partial solution, then go can be taken to be a g′ which is a non-constant polynomial
and has lowest degree in Zl amongst all such g′. To extend a partial solution, we must
therefore find a zero of the univariate polynomial go. This can be solved systematically over
Fp by general, efficient algorithms such as the Cantor-Zassenhaus algorithm [69]. Note that,
in principle, there may be multiple zeros. As we only want a single point on the variety, it is
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sufficient to take a single such zero. Since Fp is not algebraically closed, it may also happen
that go has no zero in Fp. This problem is easily circumvented either by a field extension or
by simply trying a different choice of numerical values for the independent variables. In
many cases, it is also possible to choose the independent set Y such that the equations for
the dependent variables Z are all linear, ensuring a solution can be found in Fp.

In summary, starting from the trivial 0th partial solution, we repeatedly extend the
partial solution until we have constructed the codim(J)th partial solution, which is the
desired Z(0) which satisfies eq. (3.19). This is then combined with Y (0), to give the desired
X(0). While, in principle, this procedure of extending a partial solution is only guaranteed
to succeed in an algebraically closed field, which Fp is not, in practice, we do not find this
to be a real problem.

We make some final remarks. Firstly, we consider applying this procedure in the case
where V (J) is reducible. This procedure will still generate a point belonging to V (J),
however it provides no guarantee as to which branch of V (J) the point belongs. In practice
we solve this issue by only applying the approach to prime ideals. Secondly, there exist other
algorithms to enumerate the elements of V (J (0)) that avoid the use of the lexicographic
monomial ordering: see, for example, section 2.4 of ref. [70]. This can prove more efficient.
However, we do not find this to be necessary in this work.

Example of constructing a finite-field-valued phase-space point on a variety.
We now provide an explicit example of a randomly chosen phase-space point on a codimension-
one singular variety in a finite field. For pedagogical purposes, we will work over F127.
We will find a phase-space point living on the variety V (P1), where P1 =

〈
〈12〉, [34]

〉
R4
.

We recall from eq. (2.59) that the variety associated to an ideal in Rn is the variety as-
sociated to the corresponding ideal in Sn with the momentum conservation generators
restored. Specifically,

V (P1) = V
(〈
〈12〉, [34]

〉
S4

+ JΛ4

)
. (3.26)

In this case, we can identify the set of variables X as those of S4. That is,

X =
{
λ10, λ11, . . . , λ40, λ41, λ̃10̇, λ̃11̇, . . . , λ̃40̇, λ̃41̇

}
. (3.27)

Our task is to find a point X(0) ∈ F4×4
127 such that the generators of P1 all vanish. That is,

〈12〉
∣∣
X(0) = [34]

∣∣
X(0) = 0 mod 127 and

4∑
i=1

λiαλ̃iα̇
∣∣
X(0) = 0 mod 127. (3.28)

The first step is to construct a maximal independent set Y , in order to split X = Y ∪Z.
Using the techniques of section 2.1.2, we find

Y =
{
λ20, λ21, λ31, λ40, λ41, λ̃10̇, λ̃11̇, λ̃21̇, λ̃30̇, λ̃31̇, λ̃41̇

}
,

Z =
{
λ10, λ11, λ30, λ̃20̇, λ̃40̇

}
.

(3.29)

Here, we see that Y has 11 entries and Z with 5 entries. We note that the choice of Y is
not unique. Furthermore, as Z has only 5 entries, the codimension of P1 in S4 is 5, while
its minimal generating set has 6 entries. Thus, P1 is not of maximal codimension.
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Next, as in eq. (3.20), we assign random values to the independent variables in Y , and
then build the zero-dimensional ideal P (0)

1 of the ring F127[Z]

P
(0)
1 =

〈
〈12〉

∣∣
Y=Y (0) , [34]

∣∣
Y=Y (0) ,

4∑
i=1

λiαλ̃iα̇
∣∣
Y=Y (0)

〉
F127[Z]

. (3.30)

The randomly selected values in F127 for the independet set Y are

Y (0) = {19, 123, 9, 14, 7, 99, 107, 70, 30, 58, 108} . (3.31)

We now construct the lexicographic Gröbner basis of P (0)
1 , which reads

Glex.(P (0)
1 ) =

{
λ̃40̇ − 69, λ̃20̇ − 112, λ30 − 74, λ11 − 88, λ10 − 90

}
. (3.32)

From this, one can see the full solution for Z(0) by inspection. In summary, the singular
phase space point that we have built on V (P1) reads

4λ1,α =
(

90
88

)
, λ̃α̇1 =

(
107
28

)
, λ2,α =

(
19
123

)
, λ̃α̇2 =

(
70
15

)
,

λ3,α =
(

74
9

)
, λ̃α̇3 =

(
58
97

)
, λ4,α =

(
14
7

)
, λ̃α̇4 =

(
108
58

)
.

(3.33)

We note that the simplicity of the lexicographic Gröbner basis in this example has allowed
us to sidestep many of the stages of the solution algorithm. Nevertheless, the algorithm
is completely general and allows one to proceed even when Glex. contains polynomials of
higher degree that do not depend on just a single variable.

3.3 p-adic Points Close to Singular Varieties

As already mentioned, we aim to evaluate rational functions on points in spinor space which
are p-adically close to singular varieties. This will allow us to numerically probe rational
functions to learn how fast they diverge or vanish. It this section we discuss how to obtain a
p-adic point close to a given variety by perturbing an exact finite-field solution. Thereafter,
we discuss how one can interpret this behavior in the language of algebraic geometry.

Lifting FFFp solutions to the p-adic integers. Consider an ideal J of Sn that takes
the form

J = 〈q1, . . . , qm, r1, . . . , r4〉Sn , (3.34)

where {r1, . . . , r4} generate JΛn . Naturally, V (J) ⊂ V (JΛn) and we further assume that J
is prime. We wish to construct a point (η(ε), η̃(ε)) ∈ Z4n

p , such that

qi
(
η(ε), η̃(ε)

)
= O(p) for i = {1, . . . ,m} ,

rj
(
η(ε), η̃(ε)

)
= O(pk) for j = {1, . . . , 4} ,

(3.35)

where k is a positive integer. We stress that a p-adic integer point will be suitable for our
purposes. As the evaluations of the generators qi are p-adically small, we consider such a
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point to be close to V (J). As discussed in section 3.1, when working with a computer we
work with truncated p-adic numbers. Therefore a solution to eq. (3.35) is a point that is
close to V (J), but on V (JΛn) when working to k digits of precision.

To construct our desired point, we will work digit by digit in the p-adic expansion.
Specifically, the p-adic point in spinor space reads(

η(ε), η̃(ε)
)

=
(
η(ε),0 + p η(ε),1 + . . .+O(pk), η̃(ε),0 + p η̃(ε),1 + . . .+O(pk)

)
, (3.36)

where each of the (η(ε),i, η̃(ε),i) are integers in the range [0, p− 1]. We will determine the
(η(ε),i, η̃(ε),i) starting from i = 0 and moving up to the working precision.

The starting observation is that for (η(ε), η̃(ε)) to be near V (J), it must be on V (J) when
truncated to first digit. We, therefore, begin with a finite-field-valued configuration which
lives on the variety analogous to V (J) over the finite fields, that is an (η, η̃)Fp ∈ F4n

p . Clearly,
we can use the algorithm of section 3.2 to generate such a configuration. Importantly,
(η, η̃)Fp is a zero of the generators of J when considered modulo p. Therefore, we can
reinterpret each finite-field value as the first digit of a p-adic integer. That is, we choose

(η(ε),0, η̃(ε),0) = (η, η̃)Fp , (3.37)

where we consider the components of (η, η̃)Fp to be integers in the range [0, p− 1]. We now
have a p-adic configuration which is a zero of the qi and ri up to O(p) corrections. That is,

qi
(
η(ε),0, η̃(ε),0

)
= ri

(
η(ε),0, η̃(ε),0

)
= O(p) . (3.38)

Note that eq. (3.38) implies that whatever the value of the digits (η(ε),i, η̃(ε),i) for i > 0,
the qi conditions of eq. (3.35) will be satisfied. Therefore, we will not need to consider
the polynomials qi further. However, the present p-adic point in spinor space does not yet
satisfy momentum conservation to working precision.

Our task, therefore, is to choose the remaining digits of (η(ε), η̃(ε)) such that momentum
conservation is satisfied to k digits. To achieve this, we work iteratively order by order in p.
For convenience, let us define

(η(ε),ν , η̃(ε),ν) =
(

ν∑
i=0

piη(ε),i,
ν∑
i=0

piη̃(ε),i
)
. (3.39)

This represents the first ν + 1 digits of (η(ε), η̃(ε)). Let us assume that we have determined
the p-adic spinors (η(ε),i, η̃(ε),i) up to i = ν. That is, we assume that we have already fixed
ν + 1 digits such that

ri
(
η(ε),ν , η̃(ε),ν

)
= O

(
pν+1

)
. (3.40)

Our aim is to find a value for the next digit, (η(ε),ν+1, η̃(ε),ν+1) such that each ri will vanish
to one order higher in p. It turns out that (η(ε),ν+1, η̃(ε),ν+1) satisfies a system of linear
equations in a finite field. Let us expand the four ri polynomials around (η(ε),ν , η̃(ε),ν) to
O(pν+2). One finds

ri
(
η(ε), η̃(ε)

)
= ri

(
η(ε),ν , η̃(ε),ν

)
+ pν+1

[(
η(ε),ν+1, η̃(ε),ν+1

)
· ∇ ri

∣∣
(η(ε),ν ,η̃(ε),ν)

]
+O(pν+2) ,

(3.41)
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where ∇ is the vector of derivatives with respect to (λ, λ̃). If we now require that (η(ε), η̃(ε))
is a zero of ri up to O(pν+2) then we have a linear equation for the next digit. That is,(

η(ε),ν+1, η̃(ε),ν+1
)
· ∇ ri

∣∣
(η(ε),ν ,η̃(ε),ν) = − 1

pν+1 ri
(
η(ε),ν , η̃(ε),ν

)
+O(p) . (3.42)

This is a linear system of equations for the next digit (η(ε),ν+1, η̃(ε),ν+1). At a practical level,
note that the constraints are modulo p, so they effectively give a linear system in Fp.

Importantly, the constraints in eq. (3.42) always have a solution, given an appropriate
choice of (η(ε),0, η̃(ε),0). We can see this as follows. Note that the derivatives of the ri are
being evaluated close to the variety V (JΛn) and so up to O(p) corrections we can replace
them with their evaluations on the variety. That is,

∇ ri
∣∣
(η(ε),ν ,η̃(ε),ν) = ∇ ri

∣∣
(η,η̃) +O(p) , (3.43)

where (η, η̃) is a point on V (JΛn). Therefore, up to O(p) corrections, the derivative vectors
in eq. (3.42) span the cotangent space of V (JΛn) at (η, η̃). As JΛn is a maximal codimension
ideal this implies that, if (η, η̃) is not a singular point of V (JΛn), the linear system of
equations in eq. (3.42) is of full rank and a solution exists. In practice it is easy to
avoid such singular points. Nevertheless, the system does not uniquely define the value
of (η(ε),ν+1, η̃(ε),ν+1) as it can be freely changed by any element of the tangent space of
the V (JΛn) at the point (η, η̃). We make use of this freedom and pick a random solution
to eq. (3.42).

Having determined the value of (η(ε),ν+1, η̃(ε),ν+1), we are now in a position where we
have a solution of eq. (3.40) but with ν replaced with ν + 1. It is therefore clear that
we can iterate this procedure until we find a solution with ν = k − 1, which is thus a
solution to eq. (3.35). Furthermore, note that since this procedure is linear, any solution
will necessarily belong to the field. That is, it is always possible to lift an exact finite field
solutions to an approximate p-adic solution regardless of the chosen point and without need
for field extensions.

We close with a few remarks. Firstly, we point out that an analogous procedure could be
followed to generate points close to singular varieties when working over R or C. Secondly,
let us also remark the similarity of this multivariate procedure to the univariate Hensel’s
lifting lemma. Thirdly, it would be interesting to consider extending this procedure to
generate points in “asymmetric” approaches to a variety as employed in ref. [30].

Example of lifting a FFFp phase space point to ZZZp. Let us now extend the example
from the previous subsection to show a hands-on application of the p-adic lifting procedure.
For simplicity’s sake, we will work with just two p-adic digits. The aim is thus to generate a
point (η(ε), η̃(ε)) ∈ Z16

127 defined up to O(1272) that is close to V (P1), with P1 =
〈
〈12〉, [34]

〉
R4

.
That is, we require

〈12〉
∣∣
(η(ε),η̃(ε)) = [34]

∣∣
(η(ε),η̃(ε)) = O(127) and

4∑
i=1

λiαλ̃iα̇
∣∣
(η(ε),η̃(ε)) = O(1272) . (3.44)

We explicitly expand our point (η(ε), η̃(ε)) digit by digit(
η(ε), η̃(ε)

)
=
(
η(ε),0 + η(ε),1 · 127 +O(1272), η̃(ε),0 + η̃(ε),1 · 127 +O(1272)

)
, (3.45)
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and set (η(ε),0, η̃(ε),0) equal to the exact finite field solution. That is, we take as values for
the first 127-adic digit those given in eq. (3.33). Then, the first two equations in eq. (3.44)
will be satisfied regardless of the choice for (η(ε),1, η̃(ε),1).

We now choose the second digit of (η(ε), η̃(ε)) such that momentum conservation is
satisfied up to O(1272). To achieve this we solve eq. (3.42) for ν = 0. In practice, we find it
useful to compute the gradient semi-numerically by inserting into the generators of JΛ4 ,
ri, the point (η(ε), η̃(ε)) with (η(ε),0, η̃(ε),0) numeric and (η(ε,1), η̃(ε,1)) symbolic. The result is
proportional to 127, thus we divide by it. Then, we truncate to O(127). The result is an
underconstrained system of four linear equations in 16 unknowns in the finite field F127.
Any solution will satisfy eq. (3.44). For instance, we can set any 12 independent variables
to random values in F127, and solve for the remaining 4. One such solution is

λ1,α =
(

90 + 25 · 127
88 + 49 · 127

)
+O(1272) , λ̃α̇1 =

(
107 + 114 · 127
28 + 29 · 127

)
+O(1272) ,

λ2,α =
(

19 + 85 · 127
123 + 116 · 127

)
+O(1272) , λ̃α̇2 =

(
70 + 124 · 127
15 + 51 · 127

)
+O(1272) ,

λ3,α =
(

74 + 14 · 127
9 + 16 · 127

)
+O(1272) , λ̃α̇3 =

(
58 + 118 · 127
97 + 74 · 127

)
+O(1272) ,

2[pt]λ4,α =
(

14 + 101 · 127
7 + 107 · 127

)
+O(1272) , λ̃α̇4 =

(
108 + 124 · 127

58 + 6 · 127

)
+O(1272) .

(3.46)

Interpretation of p-adic evaluations. Let us now consider how to interpret the evalu-
ation of a numerator N ∈ Rn at a point close to an irreducible singular variety U . Let k be
the largest integer such that N ∈ mk

(η,η̃) holds for all points (η, η̃) ∈ U . For specific points
(η, η̃), it may be the case that N belongs to mk+1

(η,η̃), but these must always live on higher
codimension sub-varieties. We define

κ(N , U) = k s.t.
(
N ∈ mk

(η,η̃) ∀ (η, η̃) ∈ U
)

and
(
∃ (η, η̃) ∈ U : N 6∈ mk+1

(η,η̃)

)
. (3.47)

Note that κ(N , U) ≥ 0, as N ∈ m0
(η,η̃) holds trivially. Importantly, it is clear from the

definition of κ(N , U) that we have

N ∈
⋂

(η,η̃)∈U
m
κ(N ,U)
(η,η̃) , (3.48)

and we cannot replace κ(N , U) with any higher integer. By the Zariski-Nagata theorem we
conclude that

N ∈ I(U)〈κ(N ,U)〉 . (3.49)

We will now argue that, for large p, a p-adic evaluation of N near U allow us to
determine κ(N , U) with high probability. Specifically, we will make use of a p-adic point
in spinor space (η(ε), η̃(ε)) as constructed earlier in this section to satisfy eq. (3.35). The
corresponding point (η, η̃) on the variety U can be thought of as any of the infinitely many
p-adic points on U with the same first p-adic digit as (η(ε), η̃(ε)). We will argue that the
probability of evaluating N at the point (η(ε), η̃(ε)) and finding that its p-adic valuation
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exceeds κ(N , U) is small. We begin by noting that, by eq. (3.48), N is an element of
m
κ(N ,U)
(η,η̃) . We can therefore write N as

N =
∑

|β|+|β̃|=κ(N ,U)

nβ,β̃(λ, λ̃)
∏
i,α

(λiα − ηiα)βiα
∏
j,α̇

(λ̃jα̇ − η̃jα̇)β̃iα̇ , (3.50)

where the summation runs over all sets of powers β and β̃ such that the total degree of the
product part of eq. (3.50) is κ(N , U) and nβ,β̃(λ, λ̃) is a polynomial in the spinor variables.
The indices i, j run from 1 to n, with n being the multiplicity of phase space, and α, α̇ are
either 0 or 1. Evaluating N at (η(ε), η̃(ε)) we obtain

N
(
η(ε), η̃(ε)

)
= pκ(N ,U)Ñ

(
η(ε), η̃(ε)

)
+O

(
pκ(N ,U)+1

)
, (3.51)

where

Ñ (η(ε), η̃(ε)) =
∑

|β|+|β̃|=κ(N ,U)

nβ,β̃(η(ε),0, η̃(ε),0)
∏
i,α

(
η

(ε),1
iα

)βiα∏
j,α̇

(
η̃

(ε),1
jα̇

)β̃iα̇
. (3.52)

It is then clear that we can extract κ(N , U) from the numerical evaluation N (η(ε), η̃(ε)), if
we can understand the valuation of Ñ (η(ε), η̃(ε)). We will now argue that if p is large, then
with high probability

νp
[
Ñ
(
η(ε), η̃(ε)

)]
= 0 . (3.53)

Firstly, we argue that there exists, with high probability, some nβ,β̃(η(ε),0, η̃(ε),0) that is not
O(p). If all nβ,β̃(η(ε),0, η̃(ε),0) vanish modulo p, this would imply that N ∈ m

κ(N ,U)+1
(η′,η̃′) , for

some point (η′, η̃′) whose first p-adic digit is given by (η(ε),0, η̃(ε),0). However, recalling the
discussion around eq. (3.47), points such as (η′, η̃′) belong to higher codimension varieties.
As (η(ε),0, η̃(ε),0) has been chosen randomly and p is large, such points are chosen with
low probability. Secondly, consider Ñ as a polynomial in the (η(ε),1, η̃(ε),1) given fixed
(η(ε),0, η̃(ε),0). The point (η(ε),1, η̃(ε),1) could then be close to a zero of this polynomial.
However, as this point was also chosen randomly and p is large, this also occurs with low
probability as well.

In summary, for large p, given a point (η(ε), η̃(ε)) close to U , and N (η(ε), η̃(ε)) we
conclude that with high probability

κ(N , U) = νp
(
N (η(ε), η̃(ε))

)
. (3.54)

4 Ansatz construction algorithm

In this section, we leverage the technology described so far to build an algorithm to construct
Ansätze for rational functions in scattering amplitudes. Specifically, for each coefficient Ci
we discuss an algorithm to construct a set of rational functions {ai,1, . . . , ai,di} of spinor
variables such that

Ci
(
λ, λ̃

)
=

di∑
k=1

ci,kai,k
(
λ, λ̃

)
, (4.1)
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where the ci,k are rational numbers. Importantly, this Ansatz has fewer terms than those
commonly considered in the literature based on functional reconstruction techniques as it
will take into account the analytical properties of the rational functions. We consider the
coefficients in least common denominator form. That is,

Ci
(
λ, λ̃

)
=

Ni
(
λ, λ̃

)
∏ni
j=1Dj

(
λ, λ̃

)qij , (4.2)

where Ni and Dj are elements of Rn and where ni is the number of distinct denominator
factors Dj . We note that we allow the exponents qij to be negative, denoting numerator
factors. For our procedure, we assume that the set of denominator factors {D1, . . . ,Dni} in
eq. (4.2) is known a priori. In physical applications, where the transcendental functions are
pure, it is conjectured that this set can be constructed from the symbol alphabet [12]. We
further assume that we can numerically evaluate the Ci p-adically, e.g. either from some
analytic formula or from an appropriate numerical algorithm.

4.1 Study of singular varieties

We begin by considering the behavior of the coefficient function Ci on singular varieties.
This procedure has two parts: first, we find all relevant irreducible singular varieties; second,
we perform numerical evaluations near these varieties and interpret the result.

Analytic study. Let us consider the set of codimension-m varieties on which the rational
functions in eq. (4.2) may diverge. These are naturally associated to ideals generated by
the denominator factors in eq. (4.2). Specifically, the set of ideals that define the singular
varieties at codimension m is

D(m) =
{
J such that J = 〈Dj1 , . . . ,Djm〉Rn and codim(J) = m

}
, (4.3)

where the indices j1, . . . , jm are all distinct and take values in 1, . . . , ni. We remind the
reader that ideals generated by m elements are not necessarily of codimension m. The
varieties associated to the ideals in D(m) may be reducible. To this end, we consider the set
of irreducible varieties is given by

V(m) =
{
U such that U = V (P ) where P ∈ minAssoc

(
J
)
for some J ∈ D(m)

}
. (4.4)

Where we recall from section 2.3, that the set of irreducible varieties can be extracted from
the primary decomposition of the associated ideal.

The first step of our algorithm is to construct generating sets of the ideals associated
to each variety in V(m), for m ranging from 1 to some largest codimension of interest. In
this work, we study the rational functions in eq. (4.2) only on varieties of codimension one
and two, and leave the impact of higher codimension studies to further work. Therefore, we
begin by performing the requisite primary decompositions to construct V(1) and V(2).

Numerical warm-up. Given the two sets of varieties, V(1) and V(2), we now use p-adic
numerical evaluations in order to determine strongly constraining information about the
function Ci. We do this in a two step procedure, first working at codimension one, and
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then at codimension two. We note that numerical sampling near higher codimension
varieties could, in principle, provide further constraints. However, the number of higher
codimension varieties grows quickly and potential benefits gained from these constraints
are counterbalanced by the required number of samples.

1. Codimension One: the first step is to evaluate Ci near all codimension-one irre-
ducible varieties whose associated ideals are generated by one element, Dj . To each
of these we associate an element of V(1), namely Uj = V (〈Dj〉Rn). For each Uj , we
employ the procedure in section 3.3 to generate a point (η(ε)

Uj
, η̃

(ε)
Uj

) that is p-adically
close to Uj . As the associated ideal is generated by the single irreducible element Dj
and we work with large p, we infer that

qij = νp
(
Ci
(
η

(ε)
Uj
, η̃

(ε)
Uj

))
. (4.5)

That is, we deduce the exponent of the denominator factor from the p-adic valuation
of the coefficient when evaluated on a random point nearby the associated variety.

2. Codimension Two: the second step is to study the behavior of Ci near all codimension-
two irreducible varieties U ∈ V(2). Specifically, we make use of the numerical techniques
of section 3.3 to compute κ(Ni, U), i.e. to show membership of Ni to some symbolic
power of I(U), where we recall that I(U) is an ideal of Rn. To do this, for each U we
again generate a point (η(ε)

U , η̃
(ε)
U ), which is close to U . As we know all qij from the

codimension-one study, we can use eq. (4.2) to evaluate Ni on this point and thereby
numerically compute νp

(
Ni(η(ε)

U , η̃
(ε)
U )
)
. As we perform this procedure for large p, by

eq. (3.54), we have calculated κ(Ni, U). Gathering all of these constrains, we conclude
that

Ni ∈ J, where J =
⋂

U∈V(2)

I(U)〈κ(Ni,U)〉 . (4.6)

4.2 Constructing the space of vanishing functions

We have now shown that Ni belongs to both the ideal J defined in eq. (4.6) and to the
space of polynomials ofM

d,~φ
, defined in eq. (2.75). We wish to use these two statements

in order to construct an Ansatz of the form given in eq. (4.1). To this end, we construct a
basis of the space

M
d,~φ

(J) =M
d,~φ
∩ J . (4.7)

Once the denominators are restored, a basis of M
d,~φ

(J) can be used as the set of rational
functions {ai,1, . . . , ai,di} in eq. (4.1). There are a number of ways one can construct a
basis of M

d,~φ
(J), and they can differ strongly in computational complexity. For example,

direct computation a generating set of J using Gröbner basis methods can be intractable.
Instead, we find it more efficient to reduce the problem to one of vector space intersection.
Specifically, given a set of ideals {J1, . . . , Jm} in Rn, it is clear that

M
d,~φ

(
m⋂
k=1

Jk

)
=

m⋂
k=1

M
d,~φ

(Jk) . (4.8)

This allows us to avoid computing a generating set for the ideal J by Gröbner basis methods.
Instead, we construct a basis of each M

d,~φ
(Jk) and perform the intersection of vector spaces

in eq. (4.8) to find a basis of M
d,~φ

(J).
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To practically construct a basis of each of the M
d,~φ

(Jk), we first note that

M
d,~φ

(Jk) = M
d,~φ

(Jk ∩Rn), (4.9)

asM
d,~φ

is a subspace of Rn. This allows us to construct a basis of M
d,~φ

(Jk) by Gröbner
basis techniques. Specifically, we exploit the isomorphism in eq. (2.62) and work with
the polynomial quotient ring R(q)

n and the ideals J (q)
k that map to Jk ∩ Rn under the

isomorphism (see eq. (2.70)). By computing a basis of the intersection in R(q)
n , we construct

a set of spinor bracket polynomials that can be understood as a basis of M
d,~φ

(Jk) by the
isomorphism. To construct this basis we recall the technology of section 2.1.3 for intersecting
ideals with vector spaces. First we compute the remainders modulo G(J (q)

k ) of the elements
ofM

d,~φ
. In practice, the calculation of these remainders can prove computationally intensive.

Nevertheless, we find that the remainders themselves are often simple. By eq. (2.49), we
then construct a basis of the nullspace of ∆ij

(
G[J (q)

k ],M
d,~φ

)
to obtain a basis of M

d,~φ
(Jk).

Finally, in order to compute a basis of M
d,~φ

(J), we make use of eq. (4.8), and perform
the vector space intersection with standard linear algebra techniques. We remark that,
as the remainders modulo G(J (q)

k ) are simple, the matrices ∆ij
(
G[J (q)

k ],M
d,~φ

)
are sparse.

Therefore we find that sparse linear algebra techniques are efficient when performing the
relevant vector space intersections.

4.3 Improving the basis

We now have a basis for M
d,~φ

(J). However, the techniques of section 2.1.3 to intersect a
vector space with an ideal make extensive use of (sparse) linear algebra. This introduces an
arbitrary choice into the basis elements given by the pivoting scheme made in the linear
algebra algorithms. This has a practical downside as, for large dim

(
M

d,~φ
(J)
)
, expressing

the numerator Ni in eq. (4.2) in terms of this basis leads to large rational numbers. We
wish to address this by constructing a more compact basis of M

d,~φ
(J). To this end, we will

organize the basis in a way reminiscent of a partial-fraction decomposition.

Organizing the space by denominators. We begin by recalling that an element of
M

d,~φ
(J) is to be interpreted as the numerator of a rational function. In a partial-fraction

decomposition, one attempts to cancel the numerator against the denominator. In order for
a numerator to cancel against a factor of Dk in the denominator, this numerator must itself
come with a factor of Dk. Naturally, numerators which factorize Dk form a subspace of
M

d,~φ
(J). Specifically, they are given by

M
d,~φ

(J) ∩ 〈Dk〉Rn . (4.10)

Note that, due to the codimension-one study of section 4.1, the space of functions M
d,~φ

(J)
have no common factors given by the Dk. Therefore

M
d,~φ

(J) ∩ 〈Dk〉Rn ( M
d,~φ

(J) , (4.11)

that is, it is a proper subspace. Next, we recall eq. (2.47) and note that the M
d,~φ

(J) can be
related to the subspace of terms belonging to the ideal 〈Dk〉Rn by

M
d,~φ

(J) ∼=
[
M

d,~φ
(J) ∩ 〈Dk〉Rn

]
⊕Q

d,~φ
(J,Dk) , (4.12)
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where
Q
d,~φ

(J,Dk) = M
d,~φ

(J)/
[
M

d,~φ
(J) ∩ 〈Dk〉Rn

]
. (4.13)

We can therefore use a denominator factor Dk to break down the space into two smaller
spaces. In the context of partial fractions, we can interpret eq. (4.12) as the standard
observation that the choice of numerator of Dk is only fixed up to terms proportional to Dk.

To make practical use of eq. (4.12), we again employ the isomorphism in eq. (2.62).
This allows us to construct a basis of the two spaces in the sum using the Gröbner basis
technology for organizing spaces by ideals described in section 2.1.3. When constructing the
basis of Q

d,~φ
(J,Dk), we order the basis elements by the number of terms in their expressions

to prioritize simpler basis elements. We refer to this as the naive approach to constructing
a basis of Q

d,~φ
(J,Dk). To organize M

d,~φ
(J) we can recursively applying eq. (4.12) to its

left summand with different choices of Dk. In practice, we order the choice of the Dk
heuristically, such that the Q

d,~φ
(J,Dk) are kept of low dimension at each step.

Generating simple basis elements. While the space of functions M
d,~φ

(J) ∩ 〈Dk〉Rn
is simpler than M

d,~φ
(J), the naive approach for choosing a basis of Q

d,~φ
(J,Dk) can still

result in complicated basis elements. To avoid this problem, we introduce a procedure to
generate simple elements of Q

d,~φ
(J,Dk). Specifically, we choose to construct monomials of

the denominator factors that are linearly independent modulo 〈Dk〉Rn . It is clear that such
a monomial of denominators cannot be proportional to Dk, so we construct

Dβ =
ni∏
j=1
Dβjj such that Dβ ∈M

d,~φ
(J) with βk = 0 , (4.14)

where the product over j runs over the full list of ni denominator factors, the βj ∈ Z≥0. It
is not clear a priori if, considered modulo 〈Dk〉Rn , this set of monomials of the denominator
factors spans Q

d,~φ
(J,Dk), and indeed we find this not to always be the case. Nevertheless, as

we have generated a basis of Q
d,~φ

(J,Dk) from the naive approach, we can always supplement
the set of independent denominator-factor monomials with elements of the naive basis to
obtain a basis. In practice, we find that this is rarely necessary in our applications. In the
following, to generate the β described in eq. (4.14), we take a two-step procedure. We first
generate denominator-factor monomials and then find a subset that is linearly independent
modulo 〈Dk〉Rn .

To begin, we discuss our approach to generating an overcomplete set of denominator-
factor monomials without imposing independence modulo 〈Dk〉Rn . Let us consider exponent
vectors β ∈ Zni≥0 that satisfy the equations

ni∑
j=1

βjκ(Dj , U) ≥ κ(N , U) for each U ∈ V(2) , (4.15)

ni∑
j=1

βj{Dj}i = φi , (4.16)

ni∑
j=1

βj [Dj ] = d . (4.17)
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Here, eq. (4.15) guarantees that the monomial Dβ is an element of the ideal J, while
eqs. (4.16) and (4.17) require that Dβ have little-group weights ~φ and mass dimension d
respectively. Let us denote the set of solutions β to these equations as B

d,~φ
(J,Dk). In

principle, the set B
d,~φ

(J,Dk) can be enumerated by a computer algebra system. This is
analogous to the enumeration of independent spinor bracket exponents, X

d,~φ
, in section 2.2.

In practice, we find that direct enumeration of the elements of B
d,~φ

(J,Dk) can be
computationally prohibitive. To address this, we instead consider constructing B

d′,~φ

for d′ < d and multiplying these elements by appropriate functions to arrive at a set of
denominator monomials of mass dimension d. Note that eq. (4.15) and eq. (4.16) are already
satisfied by any element of B

d′,~φ(J,Dk). Therefore, we can generate a valid monomial by
multiplying by any little-group-invariant monomial of spinor brackets of mass dimension
d− d′. Specifically, consider the set of monomials

Γ
d,d′,~φ(J,Dk) =

{
mDβ : m ∈Md−d′,~0 , β ∈ Bd′,~φ(J,Dk)

}
, (4.18)

where we recall from eq. (2.77) that Md−d′,~0 is a monomial basis of Md−d′,~0. For d′ < d,
Γ
d,d′,~φ(J,Dk) forms a subset of all possible monomials in denominator factors in eq. (4.14).

We note that there exists a dmin ≥ 0 such that for all d′ < dmin the set Γ
d,d′,~φ(J,Dk)

is empty.
When considered modulo 〈Dk〉Rn , the monomials in Γ

d,d′,~φ(J,Dk) are linearly dependent.
We must therefore find a linearly independent subset. To this end, we again recall the
Gröbner basis technology of section 2.1.3. Specifically, we apply eq. (2.50) and construct
the matrix

∆
d,d′,~φ (J,Dk) = ∆ij

[
G
(
〈Dk〉R(q)

n

)
,Γ

d,d′,~φ (J,Dk)
]
, (4.19)

where i and j are the row and column indices of ∆
d,d′,~φ (J,Dk) respectively. A linearly

independent subset of Γ
d,d′,~φ (J,Dk) corresponds to the pivot columns of ∆

d,d′,~φ (J,Dk).
Note that

rank
[
∆
d,d′,~φ (J,Dk)

]
≤ dim

[
Q
d,~φ

(J,Dk)
]

(4.20)

and the inequality is saturated if Γ
d,d′,~φ(J,Dk) spans Q

d,~φ
(J,Dk). In practice, we often find

that this occurs even for d′ < d. As Γ
d,d′,~φ(J,Dk) contains fewer elements than B

d,~φ
(J,Dk)

it is therefore often more efficient to search for such a d′ < d. In practice, this d′ can be
found by searching from d′ = 0 and increasing d′ in unit steps until either Γ

d,d′,~φ(J,Dk)
spans Q

d,~φ
(J,Dk) or stopping at d′ = d.

Finally, we note an important feature when determining a subset of Γ
d,d′,~φ(J,Dk) that

is linearly independent modulo 〈Dk〉Rn : we can prioritize elements when choosing a basis
by ordering Γ

d,d′,~φ(J,Dk) when constructing ∆
d,d′,~φ(J,Dk) in eq. (4.19). In practice, we

choose an ordering criteria that is inspired by partial fractions. Specifically, we choose to
order Γ

d,d′,~φ(J,Dk) by the mass dimension of the numerator, after cancellation against the
denominator, which is known from the codimension one study. That is, given a numerator
exponent β, and the denominator exponent α, the rational function associated to β takes
the form Dβ−α. The mass dimension of the numerator of Dβ−α can be calculated through[

Num
(
Dβ−α

)]
=

∑
j :βj>αj

[Dj ] . (βj − αj) . (4.21)
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By ordering the elements of Γ
d,d′,~φ(J,Dk) with respect to the criteria of eq. (4.21) when

constructing ∆
d,d′,~φ(J,Dk), the pivot columns will be such that chosen basis of denominator

factor monomials will cancel against the denominator as much as possible.

4.4 Summary of algorithm

In order to help the reader orientate themselves within the details of our approach, we
now present an executive summary. Using the following procedure, we construct the set
of rational functions ai,k(λ, λ̃) of eq. (4.1), which are to be used as an Ansatz for some
unknown coefficient. In the following, we refer to the numerator of the unknown coefficient
as N and denote the mass dimension and little-group weights of N as d and ~φ respectively.
The algorithm takes as input the set of denominator factors (without exponents), and a
numerical procedure for computing the unknown rational function p-adically. We proceed
as follows.

1. Analytic Study of Singular Varieties. Using primary decomposition techniques,
we construct V(1) and V(2) (see eq. (4.4)), the set of irreducible varieties where one or
two denominator factors vanish respectively.

2. Numeric Study of Singular Behavior.

(a) We probe the coefficient numerically on phase space points that are close to
elements of V(1). This allows us to constrain the exponents qij of the denominator
factors (see eq. (4.2)), and therefore determine the full denominator.

(b) We probe the coefficient numerically on phase space points that are close to each
element U of V(2). This allows us to extract κ(N , U), the degree of vanishing of
the numerator on each variety U as described in section 3.3. This information is
then used in the next step.

3. Vanishing Function Space Construction.

(a) For each irreducible codimension-two variety, i.e. for each element U of V(2), we
compute the symbolic power ideal I(U)κ(N ,U) (see section 2.4) using primary
decomposition techniques.

(b) We construct a basis of the space of linearly independent spinor-bracket mono-
mials of appropriate little group and mass dimension,M

d,~φ
using the techniques

of section 2.2. Next, for each codimension-two variety U ∈ V(2), we construct
the spaceM

d,~φ
∩ I(U)κ(N ,U) using the Groebner basis techniques described in

section 2.1.3. Finally, we construct the space of vanishing functions M
d,~φ

(J) (see
eq. (4.7)) by intersecting all the spacesM

d,~φ
∩ I(U)κ(N ,U).

4. Basis Improvement. Finally, we use the techniques of section 4.3 to choose a more
compact basis of the space of vanishing polynomials. We begin by setting i = 0 and
M0 = M

d,~φ
(J). We then repeatedly apply the following steps.
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(a) We choose a denominator Di and split Mi into a direct sum of a space of
polynomials that factor Di, Mi ∩ 〈Di〉Rn , and a space that does not, as defined
in eq. (4.12).

(b) Using the procedure of section 4.3, we generate a basis of Mi/[Mi ∩ 〈Di〉Rn ]
where as many elements as possible are given by monomials of denominator
factors.

(c) We return to step 4 (a), incrementing i and taking Mi+1 = 1
Di [Mi ∩ 〈Di〉Rn ]. We

repeat until we reach an i such that dim(Mi) = 0. A complete basis of M
d,~φ

(J)
has therefore been found: it is constructed by combining each of the bases of the
Mi/[Mi ∩ 〈Di〉Rn ] that were computed in each iteration.

The result of the basis improvement is affected by the choice of Di made on each
iteration, and our strategy is to pick Di such that the dimension of the vector space
Mi ∩ 〈Di〉Rn is minimal at each iteration.

Applying this procedure, we find, in step 1, the set of denominator exponents, and, in
step 4, a basis of the space of vanishing polynomials M

d,~φ
(J). Taking the ratio of each of

these basis elements with the denominator we find the set of rational functions that we take
to be the Ansatz, ai,k(λ, λ̃).

5 Application to two-loop 0 → qq̄γγγ finite-remainder coefficients

As a proof-of-concept application of our approach, we reconsider the collection of pentagon-
function remainder coefficients for the leading-color process 0 → qq̄γγγ at two loops. In
order to focus our study on the Ansatz construction algorithm, we obtain the necessary
p-adic evaluations of the coefficients by using the analytic expressions of ref. [17]. In this way,
we demonstrate that our approach requires fewer evaluations than the original functional
reconstruction technique. We follow the notation of ref. [17] and consider the remainders

R
(2, j)
h =

∑
i∈B

rihi , (5.1)

with j ∈ {0, Nf}, Nf being the number of quarks treated as massless, h representing the
helicity configuration and hi denoting elements of the basis of pentagon functions B of
ref. [71]. The reconstruction approach of ref. [17] works with parity even functions. For
this reason, the ri were decomposed as

ri = r+
i + tr5

s2
12
r−i , (5.2)

and the functional reconstruction approach was applied to the parity even functions r±i .
The result was then presented in terms of a basis r̃(±)

i of the combined space spanned by
the r+

i and r−i . Furthermore, the ri in ref. [17] were normalized by an amplitude-dependent
helicity weight Φh in order to make them little-group invariant. Our method is able to
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Remainder dim(span(r̃(±)
i )) max([Num(r̃(±)

i )]) dim(span(r̃i)) max([Num(r̃i)])
R

(2,0)
−++ 171 50 87 35

R
(2,Nf )
−++ 57 24 29 15
R

(2,0)
+++ 62 32 31 20

R
(2,Nf )
+++ 12 18 6 8

Table 1. Improvements in the number of basis functions and in the mass dimension of the numerators
with known factors pulled out when moving from a basis r̃(±)

i with definite parity to a basis r̃i with
mixed parity.

handle functions that are not little-group invariant and therefore benefit from simplifications
arising from manifesting this behavior. Therefore, we apply our approach to the functions

ri = Φhri . (5.3)

As is by now standard practice, we exploit the fact that the ri are linearly dependent and
thus can be written as

ri =
∑
j

r̃jMji , (5.4)

where the r̃j are a subset of the ri such that they form a basis of the space spanned by the
ri and Mji is a matrix of rational numbers. We choose the basis elements r̃i such that their
numerator mass dimension in common denominator form is minimized. We then determine
the matrix Mji from numerical evaluations of the rj and standard linear algebra techniques.

As is natural to expect, we observe that the number of linearly independent coefficients
drops by approximately a factor of two when considering the mixed-parity ri as opposed to
the parity-even r±i . Furthermore, we observe that the mass dimension of the associated
numerators is improved. We summarize these observations in table 1. Finally, we note
that the rational numbers appearing in Mji are smaller than those appearing in the
analogous matrix in the work of ref. [17], with the largest denominators being ∼ 107

and ∼ 109 respectively.

5.1 Five-point phase-space geometry

In this section, we report on the set of irreducible singular varieties up to codimension
two that are relevant for the 0 → qqγγγ amplitudes at two loops. That is, we describe
V(1) and V(2) of eq. (4.4). This set is expected to be sufficient for any five-point massless
scattering process at two loops, if the basis of transcendental functions from ref. [71] is
employed. The required primary decompositions were computed making use of Singular.
While Singular implements a number of general algorithms for primary decomposition, we
found it necessary to supplement such algorithms to perform and prove the decompositions
in the harder cases. We describe the details of our techniques in appendix B.

At five point the set of denominator factors that we use to construct D(1) and D(2) are
of the form

〈ij〉 , [ij] , 〈i|j + k|i] . (5.5)
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In total there are 35 such invariants:
(5
2
)

= 10 angle brackets, an equal number of square
brackets, and 5

(4
2
)
/ 2 = 15 three-particle spinor chains. This is the same set of invariants

employed for planar five-parton scattering in ref. [32] with 5 additional three-particle spinor
chains obtained from non-cyclic permutations.

Let us now discuss the irreducible varieties in this space, up to the symmetries. The
symmetries of five-point massless phase space are given by all 5! = 120 possible permutations
of the external legs, as well as parity. At codimension one, the set D(1) is generated by two
ideals not related by symmetry, namely

J1 =
〈
〈12〉

〉
R5
,

J2 =
〈
〈1|2 + 3|1]

〉
R5
.

(5.6)

Using Singular it can be shown that these ideals are prime. Hence, the associated varieties
are irreducible and generate V(1). At codimension two, D(2) is generated by the action of
the symmetries on 11 ideals. Five of these ideals are generated by a pair of two-particle
spinor contractions. They, alongside their primary decompositions, are given by〈

〈12〉, 〈13〉
〉
R5

= P1 ∩ P2 ∩ P3 ,〈
〈12〉, 〈34〉

〉
R5

= P3 ∩ P4 ,〈
〈12〉, [12]

〉
R5

= P5 ,〈
〈12〉, [13]

〉
R5

= P6 ,〈
〈12〉, [34]

〉
R5

= P1(12543) ∩ P 1(34512) .

(5.7)

This defines P5 and P6 while the other Pi are given by

P1 =
〈
〈12〉, 〈13〉, 〈23〉, [45]

〉
R5
,

P2 =
〈
λα1
〉
R5
,

P3 =
〈
〈12〉, 〈23〉, 〈34〉, 〈45〉, 〈15〉, 〈13〉, 〈14〉, 〈24〉, 〈25〉, 〈35〉

〉
R5
,

P4 =
〈
〈12〉, 〈34〉, λα1 [15] + λα2 [25]

〉
R5
.

(5.8)

Three of the generators of D(2) are ideals that are generated by a two-particle and a three-
particle contraction. These ideals, alongside their primary decompositions, are given by〈

〈12〉, 〈1|2 + 3|1]
〉
R5

= P1 ∩ P2 ∩ P3 ∩ P6 ,〈
〈12〉, 〈3|1 + 2|3]

〉
R5

= P1 ∩ P 1(34512) ∩ P3 ∩ P4(12453) ,〈
〈12〉, 〈3|1 + 4|3]

〉
R5

= P3 ∩ P7 ,

(5.9)

where

P7 =
〈
〈12〉, 〈3|1 + 4|3], λα1 [14][35] + λα2 [25][34]

〉
R5
. (5.10)

Finally, the last three generators of D(2) are ideals that are generated by a pair of three-
particle spinor contractions. They, alongside their primary decompositions, are given
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
20 10 2 30 10 60 120 15 30 20

Table 2. Counting of the number of distinct irreducible varieties generated by each of the Pi that,
under the action of parity and permutations of the external momenta, generate the set V(2).

by 〈
〈1|2 + 3|1], 〈1|2 + 4|1]

〉
R5

= P2 ∩ P 2 ∩ P3 ∩ P 3 ∩ P8 ,〈
〈1|2 + 3|1], 〈2|1 + 3|2]

〉
R5

= P1 ∩ P 1 ∩ P3 ∩ P 3 ∩ P9 ,〈
〈1|2 + 3|1], 〈2|1 + 4|2]

〉
R5

= P3 ∩ P 3 ∩ P10 ,

(5.11)

where

P8 =
〈
〈1|2 + 3|1], 〈1|2 + 4|1], 〈1|2 + 3|2 + 4|1〉, λ↔ λ̃,

− 〈54〉〈21〉〈31〉 − 〈53〉〈21〉〈41〉+ 〈52〉〈31〉〈41〉, λ↔ λ̃
〉
R5
,

P9 =
〈
〈1|2 + 3|1], 〈2|1 + 3|2], λ̃α̇1 〈12〉〈13〉 − λ̃α̇2 〈12〉〈23〉 − λ̃α̇3 〈23〉〈13〉, λ↔ λ̃

〉
R5
,

P10 =
〈
〈1|2 + 3|1], 〈2|1 + 4|2],
λα1 [13][14][25] + λα2 [12][24][35] + λα3 [13][24][35], λ↔ λ̃

〉
R5
.

(5.12)

In the above ideal definitions, λ↔ λ̃ means to add another generator obtained by applying
the parity operation to the previous one. We use the notation Pi as it can be shown that all
the Pi are prime (see appendix B.3). This implies that the elements of D(2) are all radical.
We note that while there are 11 inequivalent ideals up to symmetries generated by two
denominator factors, there are only 10 inequivalent irreducible varieties up to symmetries.
By permuting the external momenta, and/or applying the parity operation, the varieties
associated to the Pi generate V(2). In table 2, we list the counting of the number of varieties
generated by each of the prime ideals P1 through to P10. In total there are 317 distinct
irreducible varieties.

5.1.1 Symbolic powers

In this section, we discuss the practical computation of symbolic powers of the Pi in
section 5.1. The maximal symbolic power of each ideal Pi that we compute is controlled by
the structure of the r̃i, which is determined numerically. We list the largest power of each
Pi that we need to compute in table 3. We remark that for P5, P8 and P10, no computation
is required as J 〈1〉 = J for any ideal J . We also note that the constraints coming from
the symbolic power of P3 can be seen to be trivial. Specifically, one can rearrange the
constraints of little group and mass dimension on monomial exponents, (2.80) and (2.79),
to give

n∑
j=1

j∑
i=1

αij = 1
2

(
d+

∑
k

φk

)
and

n∑
j=1

j∑
i=1

βij = 1
2

(
d−

∑
k

φk

)
. (5.13)
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Pi 1 2 3 4 5 6 7 8 9 10
ki 10 9 18 3 1 4 3 1 3 1

Table 3. List of highest symbolic exponents ki such that the associated symbolic power P 〈ki〉
i must

be computed to construct the Ansatz for the rational prefactors in R(2,0)
−++. The ideals Pi are given

in eqs. (5.7) to (5.12).

That is, the total degree of both the angle bracket and square bracket variables are fixed
independently by little group and mass dimension. This implies that

M
d,~φ

=M
d,~φ
∩ P 〈

1
2(d+

∑
k
φk)〉

3 =M
d,~φ
∩ P 〈

1
2(d−

∑
k
φk)〉

3 . (5.14)

This allows us to avoid constructing explicit symbolic powers for P3. To construct the
remaining symbolic powers, we make use of the Cohen-Macaulay property of Rn in the
following two ways.

1. Relation to Maximal-Codimension Ideals: the ideals P2 and P6 are maximal
codimension. Therefore, by eq. (2.110), the symbolic powers are equivalent to the
ideal powers. Specifically, we use

P
〈k〉
i = P ki for i ∈ {2, 6} . (5.15)

Next, as ideal intersection is associative, by eq. (5.14) we have that for any Pi

M
d,~φ

(
P
〈k〉
i

)
= M

d,~φ

(
P
〈k〉
i ∩ P 〈k〉3

)
for k ≤ 1

2

(
d+

∑
k

φk

)
, (5.16)

alongside the analogous equation for P 3. In practice, if we wish to compute P 〈k〉i ,
then k is such that the inequality in eq. (5.16) holds. Therefore, for the purposes of
our algorithm, it is sufficient to compute P 〈k〉i ∩ P 〈k〉3 . For two ideals, P4 and P7, we
see from eqs. (5.7) and (5.9) that this intersection is again of maximal codimension.
By definition, the symbolic power commutes with the intersection (see eq. (2.108)).
This allows us to apply eq. (2.110) and compute the symbolic power through the ideal
power. Specifically, we use

P
〈k〉
4 ∩ P 〈k〉3 =

〈
〈12〉, 〈34〉

〉
R5

k
, (5.17)

P
〈k〉
7 ∩ P 〈k〉3 =

〈
〈12〉, 〈3|1 + 4|3]

〉
R5

k
. (5.18)

2. Saturation of Maximal Codimension Ideals: in order to compute symbolic
powers of the remaining two ideals, P1 and P9, we make use of ideal saturation. We
refer the reader to appendix B.1 for theoretical details on saturation. In this context,
we exploit that ideal saturation removes primary components. Specifically, we compute
the symbolic power of a (radical) ideal whose set of associated primes contains P1
or P7 and remove extraneous components of the symbolic power by saturation. If
we can find a relevant maximal-codimension radical ideal, then its symbolic power is
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again the ideal power. This strategy is natural as the Pi are constructed from the
primary decompositions of maximal-codimension ideals. In particular, we use that

P
〈k〉
1 ∩ P 〈k〉3 =

〈
〈12〉, 〈13〉

〉
R5

k :
〈
λ1,0

〉∞
R5
, (5.19)

P
〈k〉
9 =

〈
〈1|2 + 3|1], 〈2|1 + 3|2]

〉
R5

k :
〈
〈45〉[45]

〉∞
R5

(5.20)

and these saturations can be computed with Gröbner basis methods.

Finally, with generating sets of each of these ideals in hand, we contract each generator
in all possible ways with spinors to reach a set of polynomials in spinor brackets and thereby
find a generating set of the associated ideal in R(q)

5 .

5.2 Implementation and results

We now retrace the steps of the Ansatz construction algorithm presented in section 4,
and provide details regarding their implementation. To perform the algebro-geometric
operations we make extensive use of the computer algebra system Singular [57] through
its Mathematica interface [72] and through the Python interface syngular [73]. We note
a generally useful facility in Singular: the qring declaration. This allows one to work
directly in the quotient rings Rn and Rn.

Let us start from the analytic study of codimension-one and codimension-two varieties.
For one primary decomposition, we used the algorithm of Gianni, Trager and Zacharias [62]
as implemented in Singular under the command primdecGTZ. For the other decompositions,
we supplemented this algorithm with the techniques described in appendix B. To remove
sub-varieties, we made use of the command sat, as described in appendix B.1. To check
primality, we made use of the test presented in appendix B.3.

For the numerical warm-up, we implemented in Python both the algorithm for generating
finite-field points on irreducible varieties, described in section 3.2, and the lifting procedure
to obtain p-adic solutions close to singular varieties, described in section 3.3. The required
maximally independent sets were computed with the Singular command indepSet. In
order to solve the univariate polynomial equations of eq. (3.24) over a finite field, we used
the command factor from the package sympy [74]. In practice, we observed that it is
always possible to choose a maximally independent set such that the system of equations
for the dependent variables is linear, which guarantees the existence of a solution in Fp.

The algorithm for building the Ansatz from the gathered numerical data, described in
section 4.2, was implemented in Mathematica. When performing polynomial reductions,
e.g. when applying eq. (2.48) to intersect vector spaces with ideals, we found it important
to tune the choice of variable ordering to minimize the size of the Gröbner bases. This
increases the speed of polynomial reduction. In order to perform the linear algebra when
constructing the Ansatz we employed private codes for sparse linear algebra over a finite
field.13 The p-adic and finite-field evaluations of the rational prefactors that we used in
this work were performed using in-house implementations of the respective fields and the
analytic results of ref. [17].

13We thank Mao Zeng for the use of an in-house implementation of sparse linear algebra techniques over
a finite field.
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Remainder R
(2,0)
−++ R

(2,Nf )
−++ R

(2,0)
+++ R

(2,Nf )
+++

max dim[Md̃,~0] 41301 2821 7905 1045

max dim[M
d,~φ

(J)] 566 20 18 6

Table 4. Summary of effect of algorithm on Ansatz dimension. The row labeled “max dim[Md̃,~0]”
corresponds to the largest Ansatz dimension for each basis function when using the little-group
invariant techniques of ref. [17]. The d̃ correspond to third column of table 1. The row labeled “max
dim[Md,~φ(J)]” gives the largest Ansatz dimension for each amplitude when the codimension-two
scaling constraints are taken into consideration.

The results of our Ansatz construction procedure are summarized in table 4. For all
helicity amplitudes, we observe a large decrease in the size of the Ansatz when applying our
procedure. As a result of using this Ansatz, we therefore find a large reduction in the size of
the expressions for the rational functions in the helicity amplitudes. We provide our results
in the supplementary material attached to this paper, in the form of files of two types:

(a) Machine-readable expressions for the primary decompositions of eqs. (5.7) to (5.12)
and, in particular, for the generating sets for the associated prime ideals. These can be
found in the files generatingIdeals.m and generatingIdeals.py, in the languages
Mathematica and Python 3.8 respectively. The Python file also computationally
checks the equalities in eqs. (5.7), (5.9) and (5.11). Furthermore, it employs the
method described in appendix B.3 to check the primality of all ideals Pi in section 5.1.

(b) Expressions for the rational functions in the helicity amplitudes. The appropriate
helicity configuration and Nf power are encoded in the first part of the file names,
each taking the form

2l_{helicity configuration}{Nf power}

where {helicity configuration} refers to the subscript h from eq. (5.1) and can
be either pmmpp or pmppp, i.e. one of the two independent helicity configurations; and
where {Nf power} refers to the j superscript in eq. (5.1), it is blank for j = 0 or _nf
for j = Nf . These files are arranged into two classes:

(b.1) Files ending in _coo.json contain the sparse matrices Mji from eq. (5.4). The
term coo refers to the notation used to store the matrix, which is the coordinate
list format, i.e. a map from tuples of indices (j, i) to the values Mji for all non
zero entries of the matrix.

(b.2) Files ending in _spinors.m contain the bases r̃j from eq. (5.4). The notation
used is SP for spinor angle brackets, and SPT for spinor square brackets. Using a
package such as S@M [75] it is straightforward to match at a random phase-space
point the product r̃jMji to the functions ri as given in ref. [17].
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6 Summary and outlook

In this work, we have developed an algorithm to construct compact Ansätze for rational
prefactors of master integrals and transcendental functions in gauge theories. To this
end, we made use of tools of algebraic geometry to further our understanding of rational
functions of Weyl spinors associated to complexified momentum space. We began by
interpreting the spinor-helicity formalism in the language of algebraic geometry, discussing
that physical polynomials of Weyl spinors belong to a polynomial quotient ring associated
to the variety induced by momentum conservation. We then showed that elements of this
set with appropriate Lorentz transformation properties live in a further polynomial quotient
ring, which we used to systematically account for the relations arising from momentum-
conservation and Schouten identities. Next, we discussed the singularities of rational
prefactors in terms of irreducible varieties. In particular, we began a systematic study of the
singular structure of these rational functions via primary decompositions. We understood
the singular structure of a rational function in terms of a set of irreducible varieties and the
order of vanishing/divergence of the function on those varieties. Importantly, this allows us
to study the singular structure of a rational function not only on codimension-one varieties
but also on higher codimension varieties. We understood the analytic consequences of
this higher codimension data by connecting it to an important set of polynomials with
well-defined vanishing behavior on these surfaces: the symbolic power of an ideal. This
allowed us to construct refined Ansätze for rational prefactors that match the singular
behavior on higher codimension varieties. In order to practically apply this strategy, we
introduced p-adic numbers, which make it possible to balance the stability benefits of finite
fields with the a non-trivial measure of size in the number field. With this numerical tool,
we constructed an algorithm to classify the set of symbolic powers to which the numerators
of rational prefactors belong, thereby allowing us to construct the refined Ansätze. These
Ansätze have a strongly reduced number of free parameters that need to be fixed by
numerical evaluations over finite fields. As an example application, we reconsidered the
two-loop finite remainders for the production of three photons at hadron colliders. We
studied them on both codimension-one and codimension-two singular varieties, and built
Ansätze that we organized in a way reminiscent of a partial-fraction decomposition. We
then constrained these Ansätze using remarkably few evaluations to reconstruct the analytic
form of the rational prefactors.

A number of future directions deserve to be explored. Firstly, it is clear that the
behavior of rational prefactors in gauge theory amplitudes on higher codimension singular
varieties is highly non-trivial. It would be interesting to understand the physical origin
of this behavior. Secondly, it would be interesting to investigate other techniques for
constructing primary decompositions, such as those discussed in ref. [76]. Thirdly, an
important next step is to implement a modern multi-loop toolchain using p-adic numbers.
At a technical level, implementations such as Caravel [77] are sufficiently flexible that
changing the number field to Qp is simply a matter of implementing the new numeric type.
Nevertheless, it will be interesting to explore the (p-adic) numerical stability properties
of the numerical unitarity algorithm in singular regions. We leave these studies to future
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work. Additionally, it would be interesting to explore applying our approach to rational
functions of independent Mandelstam variables. This would avoid working in a quotient
ring which could simplify some steps of the procedure, while coming at the cost of obscuring
gauge-theoretic simplifications that are only possible when working with spinors. Finally, it
would also be interesting to consider evaluating rational prefactors near higher codimension
varieties, simplifying the linear system which needs to be solved to fit the Ansatz in an
approach similar to that of ref. [30]. Altogether, we foresee applications to as-yet unknown
scattering amplitudes.
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A Glossary of algebraic-geometry terms

In this appendix, we recall some of the algebraic definitions of a number of properties that
ideals may have, alongside some useful operations on ideals. A pedagogical introduction
to this material can be found in ref. [54]. To avoid repetition, in the following let A be a
commutative Noetherian ring, J and K be ideals of A, and a and b be elements of A.

Properties. We start by reviewing a number of algebraic properties. First, recall that
in eq. (2.29) we introduced the concept of an ideal being radical by noting that, in an
algebraically-closed field, it is equivalent to the ideal of the variety of the ideal itself. The
algebraic definition of radicality is

J is radical if ak ∈ J ⇒ a ∈ J . (A.1)

Second, recall that in eq. (2.87) we defined the irreducibility property for varieties,
and in eq. (2.89) we introduced prime ideals as those ideals corresponding to irreducible
varieties. The algebraic definition is

J is prime if ab ∈ J ⇒ either a ∈ J or b ∈ J . (A.2)

While radical ideals can be uniquely decomposed as the intersection of prime ideals, the
same is not true for non-radical ideals.

This leads us to the third property we discuss here, as we recall from eq. (2.90) that
an arbitrary ideal can be decomposed as an intersection of primary ideals. The algebraic
definition is

J is primary if ab ∈ J ⇒ either a ∈ J or bk ∈ J . (A.3)
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Note that this definition is secretly symmetric because if A is commutative, then the roles
of a and b can be reversed. We see from considering eqs. (A.1) and (A.2) that a prime ideal
is both radical and primary. Also, while the radical of a primary ideal is a prime ideal, not
all primaries are necessarily powers of primes, e.g.

〈
x2, y

〉
is primary with associated prime

〈x, y〉, but the former is not a power of the latter.
Finally, in eq. (2.101) we introduced a special class of prime ideals: maximal ideals.

The algebraic definition of such an ideal is

J is maximal if there is no proper ideal K of A such that J ⊂ K . (A.4)

If the field is algebraically closed then the variety associated to a maximal ideal corresponds
to a single point.

Operations. We now review three relevant operations on ideals. First, eq. (A.1) suggests
a definition of the radical operation

√
J namely

√
J =

{
a : ak ∈ J for some k ∈ Z>0

}
. (A.5)

We can say that J is radical if J =
√
J . Starting from this definition, the equivalence in

eq. (2.29) is Hilbert’s Strong Nullstellensatz (see chapter 4 of [54]).
Second, we discuss the ideal quotient J : K of two ideals J and K, defined as

J : K = {r ∈ A such that rK ⊆ J} . (A.6)

If J is a radical ideal, then there is a geometric interpretation of the ideal quotient J : K.
Specifically, for ideals J and K over an algebraically closed field, where J is a radical ideal,
it can be shown that [54, section 4.4, Corollary 11]

V (J : K) = V (J)\V (K) , (A.7)

where the overline on the right hand side denotes the Zariski closure. Geometrically, one
can see that the ideal quotient can be useful to simplify primary decompositions (see
appendix B.1).

Third, as not all ideals J are radical, it is useful to introduce also the concept of ideal
saturation. It consists of iterated ideal quotienting until the result is unchanged

J : K∞ = J : Ks such that J : Ks = J : Ks+1 . (A.8)

The smallest such exponent s is called the saturation index. We find it useful to define
J : a∞ for a single element a of A as J : 〈a〉∞. The geometric analogue of saturation is set
difference of varieties. Specifically, for two ideals J and K over an algebraically closed field
we have [54, section 4.4, Theorem 10]

V (J : K∞) = V (J)\V (K) , (A.9)

where the overline on the right hand side again denotes the Zariski closure. Note that
eq. (A.9) generalizes eq. (A.7), in that there is no requirement of radicality of J .
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B Primary-decomposition techniques

In this section, we provide details of the techniques used to perform the primary decompo-
sitions presented in eqs. (5.7) to (5.12). While there exist general algorithms for primary
decomposition (see e.g. chapter 8 of ref. [56]), due to the high dimensionality of the ideals
we consider, it is often convenient to exploit more tailored but less algorithmic approaches.
We show that to reproduce the results of section 5.1 it is sufficient to apply a primary
decomposition algorithm, to just the ideal

〈
〈12〉, 〈13〉

〉
R5

. Using the implementation of the
algorithm of Gianni, Trager and Zacharias (GTZ) [62] under the primdecGTZ command
of Singular, this operation only takes a few seconds. Subsequently, one can use ideal
saturation alongside a check of primality to find the remaining primary components.

We begin in section B.1 with a discussion of the effect of ideal saturation on primary
decompositions. In section B.2 we review the concepts of extension and contraction. This
then allows us to construct a test for proving that an ideal is prime in section B.3.

B.1 Primary decompositions and saturation

Ideal saturation is intimately related to removal of sub-varieties from a larger variety.
It is then interesting to consider how we can use this geometric intuition to simplify
a primary decomposition calculation when we already have some understanding of the
involved varieties.

Let us first set up the problem in the algebraic context, and then consider the geometric
interpretation. In the following we will work in a polynomial ring, and suppress the ring
label on ideals for simplicity. Consider an ideal J , its primary decomposition reads

J =
nQ(J)⋂
i=1

Qi , with
√
Qi = Pi , (B.1)

where each Qi is a primary ideal. At this stage, we may or may not know explicit generating
sets of the primaries Qi and the associated primes Pi. We wish to consider the effect that
saturation by an ideal K has on J and on its primary decomposition. To this end, we recall
that ideal saturation commutes with ideal intersection, i.e. for any ideal K we can write

J : K∞ =
nQ(J)⋂
i=1

(Qi : K∞) . (B.2)

It is therefore sufficient to understand the effect of ideal saturation on each prima-
ry component.

Consider now the case where K is generated by a single polynomial f . It follows from
ref. [61, Lemma 4.4] that there are only two possible outcomes of saturation by 〈f〉, either

1) f ∈
√
Qi, ⇒ Qi : 〈f〉∞ = 〈1〉 ,

2) f 6∈
√
Qi, ⇒ Qi : 〈f〉∞ = Qi .

(B.3)

Let us consider this geometrically. In case 1, the variety V (f) contains V (Pi). Hence, by
eq. (A.9) it removes the variety. In case 2, V (f) does not contain V (Pi), but it may still
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intersect it on some higher codimension variety. The removal of this higher codimension
variety is, however, “filled back in” by the Zariski closure, and we get the same result back.

Let us now consider what happens if we saturate by a more general ideal. First, recall
that saturation by an ideal is the intersection of the saturation by the generators [54, chapter
4.4, Proposition 13], i.e.

J : 〈f1, . . . , fm〉∞ =
m⋂
i=1

J : 〈fi〉∞ . (B.4)

Let K = 〈f1, . . . , fm〉. The result of Qi : K∞ now has one of two possibilities:

1) Every generator of K is in
√
Qi ⇒ Qi : K∞ = 〈1〉 ,

2) Some generator of K is not in
√
Qi ⇒ Qi : K∞ = Qi .

(B.5)

If we consider these results in the context of eq. (B.2), we see that we can quite generally
use saturation to remove primary components in a controlled manner.

We now discuss how we derived the results of eqs. (5.7) to (5.12). We make use of
the following heuristic procedure. Consider an ideal J and a sequence of primary ideals
{K1, . . . ,Kn}. Define

Ji = Ji−1 : K∞i and J0 = J. (B.6)

We know from the above discussion that each of the Ji admits a primary decomposition
with potentially fewer primary components Ji−1. This occurs because the saturation by Ki

has potentially removed a subset of the primary components. We consider the final element
of the sequence, Jn, as a candidate for a primary component of J . We (heuristically) check
that Jn is primary by checking that it is prime using the test in appendix B.3. If this is
the case, we also consider the Ki for which Ji 6= Ji−1 as other good candidates for primary
components of J and construct a tentative primary decomposition of J given by

J ′ = Jn ∩

 ⋂
i:Ji 6=Ji−1

Ki

 . (B.7)

We then check if eq. (B.7) is indeed a primary decomposition of J by computing J ′ and
checking if J ′ = J . To derive the results of section 5.1, we apply the procedure to each
codimension-two ideal of which we wish to obtain a primary decomposition, taking the set
of Ki to be the set of permutations/parity conjugates of assoc(

〈
〈12〉, 〈13〉

〉
R5

), which we
compute using the command primdecGTZ in Singular. While this procedure is heuristic,
it was sufficient to derive and prove the results of eqs. (5.7) to (5.12).

B.2 Extension and contraction

In order to set up our approach to check if an ideal is prime, we first introduce two concepts
of fundamental importance, namely extension and contraction. In this appendix, we mostly
follow ref. [56, chapter 8.7].

Let us consider the polynomial ring F[X] with X = {X1, . . . , Xn}, an ideal J ⊆ F[X]
generated by the polynomials {p1, . . . , pn}, and let us split X into two disjoint sets Y and
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Z. The extension of J , denoted as Je, is defined as the ideal generated by the infinite set
J in F(Y )[Z], that is in the polynomial ring in Z over the field of fractions F(Y ). A more
practical but nevertheless equivalent definition of Je can be taken to be

Je =
〈
p1, . . . , pn

〉
F(Y )[Z] . (B.8)

The original polynomial ring is contained in the new one, i.e. F[X] ⊂ F(Y )[Z], since in the
latter polynomials in the variables Y are also allowed to be denominators. We will refer to
F [X] as the original ring, and to F (Y )[Z] as the extended ring.

Given an ideal J of F(Y )[Z], we define the contraction of J as the ideal Jc through

Jc = J ∩ F[X] . (B.9)

As we return to the original ring, contraction could be considered as a type of inverse
operation to extension. Considering eq. (B.9), we see that given an ideal J of the extended
ring, its contraction is the subset of polynomials in J which do not involve denominators.
We stress that this definition can of course be applied to any ideal of F(Y )[Z], not just
those obtained from extensions of ideals in F[X]. It can be shown that the contraction
operation commutes with intersection, that is for two ideals J1, J2 of F(Y )[Z] we have [56,
Lemma 8.97]

(J1 ∩ J2)c = Jc1 ∩ Jc2 . (B.10)

Contraction can be computed by means of ideal saturation [56, Lemma 8.91]. Consider
an ideal K of F(Y )[Z], and a Gröbner basis G(K) such that G(K) does not involve any
denominator, Kc can be computed through

Kc =
〈
G(K)

〉
F [X] : f∞ . (B.11)

We stress that here G(K) is now being used to generate an ideal in the original ring, rather
than the extended ring. Here f is a polynomial defined as

f = lcm{HC(g) ∈ F[Y ] : g ∈ G(K)} , (B.12)

where HC denotes the head coefficient, which is the coefficient of the lead monomial (LM)
defined in eq. (2.42), and lcm stands for least common multiple. Starting from a reduced
Gröbner basis GR(K),14 we can obtain a Gröbner basis G(K) which is free of denominators
by multiplying through each entry of GR(K) by the lcm of its denominators. Therefore, the
polynomial f can be thought of as the lcm of all denominators of GR(K).

It is interesting to consider what happens if one takes an ideal J , performs extension,
and then contraction thereafter. Together, the two operations constitute a map J ⊆
F[X] → Jec ⊆ F[X], where we denote the extended-contracted ideal as Jec. It can be
shown that J ⊆ Jec, while the reverse inclusion is in general not true. Therefore, we see
that contraction is not the inverse of extension, as some information may be lost.

Let us now consider how to compute the ideal Jec directly from J . To this end, we
introduce a particular “block” ordering �, where Z � Y . Using this ordering, we construct

14A reduced Gröbner basis has unit head coefficients.
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G�(J), a Gröbner basis of J in the original ring with respect to �. It can be shown that
G�(J) is also a Gröbner basis of Je in the extended ring [56, Lemma 8.93]. The fact that
we have a single set of polynomials which is a generating set of J and Je in their respective
rings allows us to relate Jec to J . To this end, we turn to eq. (B.12), and take K = Je. We
see that G(K) can be taken as G�(J) as G�(J) is a Gröbner basis of an ideal in the extended
ring, Je, that has no denominators. Furthermore, this means that G�(J) can be used to
compute the polynomial f of eq. (B.12). Finally, recall that

〈
G�(J)

〉
F [X] = J , so we can take

the ideal J itself in the right hand side of eq. (B.12). Therefore, the extended-contracted
ideal can be computed as

Jec = J : f∞ . (B.13)

It is interesting to ask if we can recover J , given Jec. The answer to this question lies
in the following splitting lemma [56, Lemma 8.95]

J = (J + f s) ∩ (J : f s) , (B.14)

where s is the saturation index defined in eq. (A.8). While this splitting lemma holds for
any polynomial f , if we take f according to eq. (B.12) then the right-hand term J : f s in
the intersection is nothing but the extended-contracted ideal Jec. Therefore, we obtain an
expression for J in terms of Jec.

B.3 A primality test for equi-dimensional ideals

In this section, we make use of the extension/contraction operations to arrive at a test for
checking whether a certain class of ideals is prime. Specifically, we will consider ideals which
we know to be equi-dimensional. These are ideals for which every element of the primary
decomposition has the same dimension as the original ideal, that is, there are no embedded
components. This class of ideals is sufficient for our use case as the ideals which form the
set D(2) at five-point are all equi-dimensional (see eq. (4.3) and section 5.1). Specifically,
consider a maximal-codimension ideal J in a Cohen-Macaulay ring, such as Rn. Then, it
follows that J is equi-dimensional [78, Theorem 17.6]. Crucially, as all ideals Pi in eqs. (5.7)
to (5.12) can be computed as saturations of an equi-dimensional ideal, they must also be
equi-dimensional.

To determine if an equi-dimensional ideal J is prime, we recall that

J = (J + f s) ∩ Jec , (B.15)

where the polynomial f is defined according to eq. (B.12) and Je ⊂ F(Y )[Z]. For the
purposes of our test, we stress that Y is a maximally independent set of J , such that Je is
a zero-dimensional ideal. We are going to test the left-hand term (J + f s) for redundancy
in the intersection, and the right-hand term Jec for reducibility. Given equi-dimensionality,
by definition no primary component of J can have lower dimensionality. Therefore, if
either term in the intersection is of lower dimensionality then it must be redundant. This
implies that

J is prime iff Jec is prime and dim(J + f s) < dim(J) . (B.16)
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To check if Jec is prime, we can use that Je being prime implies that Jec is prime as
well [56, Lemma 8.97]. The easiest way to check if Je ⊆ F (Y )[Z] is prime is to check if a
(reduced) lexicographical Gröbner basis of Je takes the form

G (Je) = {Z1 − ζ1(Y ), . . . , Zn − ζn(Y )} , (B.17)

where ζi ∈ F(Y ). If this is the case then Je is a maximal ideal and maximal ideals are prime.
This check can be done semi-numerically by taking Y in a finite field, as in section 3.2.

We then want to show that (J + f s) is redundant in the intersection. Since J is
equi-dimensional, this is the case if (J + f s) is of lower dimension. So redundancy can
be reduced to dimension testing for (J + f s). However, computing the dimensionality of
(J + f s) can be quite computationally expensive if the polynomial f is of high degree.
However, we can make use of a further splitting lemma embedded in ref. [56, Lemma 8.52].
Consider ab ∈ I. Let µ be the saturation index of b in I, then

I = (I + a) ∩ (I + bµ) . (B.18)

Therefore, it is sufficient to check that the dimensionality of (J + fi) drops for each factor
fi of f . Furthermore, there may be several Y such that the associated Je is manifestly
maximal. Thus, there is some freedom in the choice of Y . It can be helpful to iterate
through all choices of Y such that Je is maximal and choose that with the simplest f .

Lastly, let us stress that failure to find a linear Gröbner basis for Je does not imply
reducibility of V (J), while it can be shown that failure of (J + f s) to drop in dimension
does imply reducibility of V (J). Using this test, together with ideal intersection, one can
easily and efficiently prove the primary decompositions given in section 5.1.

C The bracket polynomial quotient ring

In section 2.2, we claimed that the ring of polynomials that only pick up little-group scalings
under Lorentz transformations, Rn, is isomorphic to R(q)

n , a quotient ring of the polynomial
ring Sn. In this appendix, we develop this statement mathematically.

We begin by connecting Sn to Rn. We use a ring homomorphism φ : Sn → Rn, that
acts on the variables in Sn as

φ(〈ij〉) = λi1λj0 − λi0λj1 and φ([ij]) = λ̃i0̇λ̃j1̇ − λ̃i1̇λ̃j0̇ . (C.1)

We note that as φ is a ring homomorphism, for all a, b ∈ Sn it satisfies φ(ab) = φ(a)φ(b) and
φ(a+ b) = φ(a) + φ(b). Therefore it is sufficient to define the action of φ on the variables of
Sn. Physically, it is clear that the map φ is re-expressing any polynomial in spinor brackets
in terms of the spinor variables. That is, φ implements eq. (2.4). Let us now consider the
image of the map φ in Rn. By construction, it is the requisite subset of Rn, i.e.

Rn = {φ(x) : x ∈ Sn} . (C.2)

By the so-called “second isomorphism theorem” [56, Corollary 1.56] this means that

Rn ∼= Sn/ker(φ) . (C.3)

– 59 –



J
H
E
P
1
2
(
2
0
2
2
)
1
4
0

That is, the image of φ, Rn, is isomorphic to the quotient of Sn by the kernel of the map φ.
In other words, physically inequivalent polynomials in spinor brackets can be identified with
the elements of Sn which are inequivalent modulo the elements of Sn which φ maps to zero.

Given an ideal J of Rn, let us now consider how to construct the ideal J ∩Rn of Rn. To
this end, consider a homomorphism φ′ : Sn → Sn/[π−1

Sn,Rn
(J)], where φ′ takes the same form

as eq. (C.1), but where the right hand side is considered in Sn/[π−1
Sn,Rn

(J)]. The kernel of
φ′ is an ideal of Sn consisting of all polynomials in spinor brackets that map to elements of
J . Importantly, ker(φ′) contains ker(φ) and so πSn,Sn/ker(φ)[ker(φ′)] is the associated ideal
in the quotient ring Sn/ ker(φ). We have therefore constructed an ideal of Rn by eq. (C.3).

To be able to make practical computations with functions of spinor brackets, we
must be able to identify the kernel of ring homomorphisms. It turns out that kernels of
homomorphisms similar to φ and φ′ can be computed with Gröbner basis techniques. In
full generality, consider a ring homomorphism

ψ : F[X1, . . . , Xn] −→ F[Y1, . . . , Ym]/〈a1, . . . , ak〉F[Y1,...,Ym] , (C.4)

where we know explicit representatives in F[Y1, . . . , Ym] of the ψ(Xi). Now, define the ideal

K = 〈a1, . . . , ak, X1 − ψ(X1), . . . , Xn − ψ(Xn)〉F[X1,...,Xn,Y1,...,Ym] , (C.5)

where by ψ(Xi) we mean a representative in F[Y1, . . . , Ym]. It can then be shown that [65,
Proposition 15.30]

ker(ψ) = K ∩ F[X1, . . . , Xn] . (C.6)
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