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Abstract: Speed matters. How the masses and spins of new particles active during
inflation can be read off from the statistical properties of primordial density fluctuations is
well understood. However, not when the propagation speeds of the new degrees of freedom
and of the curvature perturbation differ, which is the generic situation in the effective field
theory of inflationary fluctuations. Here we use bootstrap techniques to find exact analytical
solutions for primordial 2-,3- and 4-point correlators in this context. We focus on the
imprints of a heavy relativistic scalar coupled to the curvature perturbation that propagates
with a reduced speed of sound cs, hence strongly breaking de Sitter boosts. We show that
akin to the de Sitter invariant setup, primordial correlation functions can be deduced by
acting with suitable weight-shifting operators on the four-point function of a conformally
coupled field induced by the exchange of the massive scalar. However, this procedure
requires the analytical continuation of this seed correlator beyond the physical domain
implied by momentum conservation. We bootstrap this seed correlator in the extended
domain from first principles, starting from the boundary equation that it satisfies due to
locality. We further impose unitarity, reflected in cosmological cutting rules, and analyticity,
by demanding regularity in the collinear limit of the four-point configuration, in order to
find the unique solution. Equipped with this, we unveil that heavy particles that are lighter
than H/cs leave smoking gun imprints in the bispectrum in the form of resonances in the
squeezed limit, a phenomenon that we call the low speed collider. We characterise the
overall shape of the signal as well as its unusual logarithmic mass dependence, both vividly
distinct from previously identified signatures of heavy fields. Eventually, we demonstrate
that these features can be understood in a simplified picture in which the heavy field is
integrated out, albeit in a non-standard manner resulting in a single-field effective theory
that is non-local in space. Nonetheless, the latter description misses the non-perturbative
effects of spontaneous particle production, well visible in the ultra-squeezed limit in the
form of the cosmological collider oscillations, and it breaks down for masses of order the
Hubble scale, for which only our exact bootstrap results hold.
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1 Introduction

The exponential expansion of the universe in its earliest epoch not only generates the seeds
of primordial perturbations, but is also a generous particle factory that produces species of
all types which can be as heavy as the Hubble scale during inflation. Such massive states
can leave observable imprints on soft limits of cosmological correlators if they are coupled
to the curvature perturbation. From this perspective, inflation is a natural “cosmological
particle collider” that can probe energy scales as high as H ' 1014 Gev, beyond the reach
of any conceivable terrestrial accelerator [1–37]. Much of the explorations in “cosmological
collider physics” have been restricted to situations in which the scalar fluctuations and
additional matter fields propagate at equal speeds, namely the speed of light. This also
includes the recent works on the “cosmological bootstrap” allowing for exact analytical
results and where de Sitter invariance plays a key role [38–60]. In particular, de Sitter boost
symmetry implies that all fields must be propagating at equal speeds. In such situations,
the heavy degrees of freedom (m ≥ 3/2H) affect the correlators in two qualitatively different
ways: one is through a set of irrelevant EFT operators that emerge after integrating out the
massive fields. The resulting momentum space correlators are characterised by their simple
analytical structure, namely at tree-level they are rational functions of momenta with simple
poles. The EFT signal is generically suppressed by inverse powers of the heavy state, namely
with factors of (H/m)n. However, the EFT expansion misses the intrinsically cosmological
phenomenon of particle pair creation which induces effects that are non-perturbative in
inverse powers of mass, for example through the famous Boltzmann factor exp(−πm/H).
The resulting correlators exhibit non-analytic behaviours in momenta in the form of branch
cuts. For the special case of the bispectrum, the EFT signal dominates the three-point
function around the equilateral configuration, whereas the signal attributed to particle
production, which manifests itself as oscillations in the ratio between the long and short
mode momenta, dominates in the squeezed-limit (see figure 1).

In this work, we are interested in scenarios where de Sitter boosts are strongly broken
due to the sizeable coupling of the cosmological perturbations to the preferred time foliation
during inflation. In most of such scenarios, the scalar fluctuations acquire a subluminal
speed of propagation cs, aka the speed of sound, hence explicitly breaking de Sitter boosts.
We find that a reduced sound speed qualitatively changes the above picture, hence allowing
for novel signatures of heavy states. In particular, we unveil that supersonic massive
particles that are lighter than H/cs leave imprints as resonances in the squeezed limit of
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the bispectrum. We refer to this phenomenon as the low speed collider, and we show that
its signatures are vividly distinct from the usual EFT and particle production signals, both
in their mass and kinematical dependencies. In more details, we point out that the overall
size of the non-Gaussian signal attributed to the exchange of supersonic particles depends
on m only logarithmically as opposed to the case of cs = 1 where the bispectrum is dwarfed
either by the power-law suppression in the equilateral configuration or by the Boltzmann
exponential factor in the squeezed limit (see figure 1). In this sense, the subluminal speed
of propagation of the curvature perturbation makes its correlators more sensitive to the
UV-physics, as particles that are much heavier than the Hubble scale (yet lighter than H/cs)
do not decouple. As for the shape of non-Gaussianity, we find that the bispectrum due
to the exchange of such particles manifests peaky patterns in the squeezed limit, around
kL/kS ∼ cs mH , where kL and kS are the long and short modes. The overall characteristics of
the imprints left by massive fields in the bispectrum of the curvature perturbation, both for
cs = 1 and a low speed of sound, are summarised in figure 2.

In fact, the main features of the squeezed limit bispectrum in the regime of m < H/cs
can be understood in simple physical terms due to the existence of two characteristic times
in the dynamics of the system. One is the time at which the short mode of ζ exits the
sound horizon (cskS/a(t1) = H) and freezes, prior to which it was oscillating like a massless
field in flat space. The second instance is when the long mode’s physical momentum of
the exchanged field drops below its mass (i.e. kL/a(t2) = m), called mass-crossing in the
following, after which the heavy field decays as 1/a3/2(t) and before which it evolves like a
massless field. For particles with m� H/cs, t1 can occur before t2 such that between the
two events the short mode of ζ interacts with the long mode of the massive field as if the
latter was massless. This leads to an “infrared” growth of the three-point function in the
interval t1 < t < t2, which finally terminates as the massive field mode function starts to
decay. By and large, when t1 < t2, which is equivalent to kL/kS & cs

m
H , non-Gaussianity

takes a form very similar to the local shape. The opposite case with t2 < t1 gives rise to the
standard cosmological collider oscillations, manifesting themselves in what we call the ultra-
squeezed limit such that kL/kS � O(1)cs mH , and which encode the oscillations in eimt of the
massive field mode function with time after mass crossing. Furthermore, non-Gaussianity
in this ultra-squeezed limit is suppressed by (kL/kS)3/2 owing to the corresponding decay
of the mode function. Eventually, one expects the signal to be maximal when the two
characteristic times coincide (i.e. t1 = t2), giving rise to resonances for kL/kS ∼ cs

m
H ,

although the precise shape dependence of the signal in that region can only be found by
the proper computation we do in this paper.

The standard approach to the computation of cosmological correlators is the in-in
formalism in which unpacking the unitary evolution of the Heisenberg operators of interest in
perturbation theory results in a set of bulk time integral expressions for the correlators [61].
The lack of time translation symmetry in an expanding background often complicates the
evaluation of such time integrals, even more so in the presence of massive fields. In fact, even
equipped with de Sitter isometries, it was not until a few years ago that analytical expressions
were provided for the simplest possible tree-level correlators involving massive fields (such
as the four-point function of external massless fields mediated by heavy fields) [49, 50].
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de Sitter Invariant Collider

Configuration Equilateral Squeezed

Mass 
dependence

Non-Gaussian 
shape

equilateral/orthogonal 
(local single field EFT)
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/ 1/m2

Low Speed Collider 

Extended Equilateral Ultra-Squeezed

resonances
(non-local single field 

EFT)
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oscillations in kL/kS

Figure 1. In this table, we compare the qualitative properties of the imprints of heavy fields on the
bispectrum between the two setups of the de Sitter invariant (more generally cs = 1) and low speed
colliders. In the low speed collider signal, the massive field propagates faster than the curvature
perturbation and its generic sound speed cσ is set to unity by rescaling the spatial coordinates.
We highlight that the mass dependence of the low speed collider signal depends on the precise
kinematical configuration in the extended equilateral region O(1)cs mH . kL/kS 6 1, with the quoted
one corresponding to the equilateral limit.

More generally, the study of the cosmological collider physics has been largely limited
to the squeezed limit tail of the bispectrum where the time integrals that describe the
exchange of heavy fields factorises and can be easily computed. However, having analytical
expressions for correlators has high theoretical and observational merits. Theoretically, it is
interesting to study how a consistent time evolution that respects the celebrated physical
principles of unitarity, locality and causality is encoded in the late time correlators, which
are the fundamental observables in cosmology. This is not possible without having enough
theoretical data on the structure of cosmological correlators, at least in perturbation theory.
Furthermore, from an observational point of view, confronting the predictions of early
universe models on non-Gaussianity with future data from CMB and LSS experiments
requires templates that cover all kinematical configurations and as much theoretically
motivated situations as possible (see e.g. [62]).

In recent years, inspired by the tremendous successes of on-shell methods in scattering
amplitudes (for a pedagogical review see [63]), a significant number of works have been
devoted to a boundary viewpoint on correlators. In this approach, instead of following the
dynamics of the system in time, the boundary correlators are directly “bootstrapped” by
requesting consistency with unitarity, locality and symmetries (see the recent reviews [64, 65]
and also [66, 67] for some efforts in the direction of non-perturbative bootstrap in cosmology).
The focus of the recent bootstrap literature has been the de Sitter isometric correlators,
although similar methods have been invented and applied to boostless setups with massless
fields and more general backgrounds [68–82]. In this study we extend the reach of the
cosmological bootstrap program to boostless setups involving massive particles. One of our
core results is that, in a manner similar to [49, 50] in de Sitter invariant setups, the boostless
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bispectra and trispectra of ζ due to the tree-level exchange of scalars with arbitrary masses
and interactions can still be mapped onto the four-point function of a conformally coupled
field induced by the same intermediate heavy field, through a set of bespoke “weight-shifting”
operators (see [83] for an alternative approach). In our case though, a key difference arises
which is that in order to make a link between the dS invariant four-point function of the
conformally coupled field (which propagates at the speed of light) and the correlators of ζ
(which has a reduced speed of sound cs) the former must be analytically continued beyond
the physical domain allowed by momentum conservation. More specifically, the (s-channel)
four-point function of the conformally coupled field characterised by four spatial momenta
ka (a = 1, . . . 4) can be expressed in terms of a function of the ratios u = |k1 +k2|/(k1 + k2)
and v = |k1+k2|/(k3+k4), both of which are smaller than unity due to the triangle inequality.
Transforming to the bispectrum of external ζ fields with momenta ka (a = 1, . . . , 3) forces us
to re-scale the external size of the four-point momenta by cs while leaving the intermediate
momentum |k1 + k2| intact. This procedure is meaningful only if we think of the seed
four-point correlator as a function of the ratios above, analytically continued beyond the
respective unit disks (i.e. beyond u ≤ 1, v ≤ 1). Even with a known convergent series for
the seed four-point inside the aforementioned unit disks, finding the analytical continuation
outside is very challenging. In this paper, we bootstrap this seed four-point function directly
in the region of interest by leveraging locality, unitarity and analyticity. In more detail,
locality will be manifested as a set of boundary partial differential equations that the seed
four-point function must satisfy.1 The unitarity of the time evolution, encoded in an infinite
set of algebraic equations for the wavefunction coefficients which are called cosmological
cutting rules [84–88], will be employed in this work in order to partially fix the homogeneous
solution that can be added to the boundary PDE’s we alluded to above. The remaining
freedom in adding further homogeneous solutions will be removed by asking regularity of
the four-point function in the collinear limit. The non-perturbative effect of spontaneous
particle production cannot be described without taking into account the genuine dynamics
of the heavy field. However, all other key features of the correlators, including the hallmark
resonances and the logarithmic dependence on csm/H, can be reproduced and understood
in a simplified single-field picture in which the heavy field is integrated out, albeit in a
non-standard manner owing to the fact that it is relativistic at sound horizon crossing,
resulting in a non-local (in space) effective theory for π. Such kind of descriptions have
already been argued to provide (partial) UV-completions of the simplest setup of the EFT
of inflation [89], albeit without working out its predictions as we do here. The origin of this
non-local EFT can be simply understood: because of the relative slow motion of π with
respect to the one of σ, one can approximately consider that the latter instantaneously
responds to the dynamics of the former. By contrast to the standard integrating out
procedure leading to a local action, valid only for m� H/cs and in which the kinetic and
gradient terms of σ are neglected compared to its mass term, the non-local EFT stems from
solely neglecting the kinetic term of σ compared to its gradient and mass term, keeping the

1Here by locality we mean the properties that the boundary correlators inherit from the local equations
of motion of the bulk fields, in particular the exchanged massive field. See also [76] for locality constraints
on the wavefunction coefficients of massless fields.
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de Sitter invariant collider

(local) EFT signalparticle 
production signal

(non-local) EFT signalparticle 
production signal

Low speed collider
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kL/kS
<latexit sha1_base64="jGFIAkRugNVMgv3KOOGXyhDXVgM=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwVRNRdFl048JFRfuANoTJdNIOnUnCzI1YQlZu/BU3LhRx6ze482+ctlnU1gMXzpxzL3Pv8WPOFNj2j1FYWFxaXimultbWNza3zO2dhooSSWidRDySLR8ryllI68CA01YsKRY+p01/cDXymw9UKhaF9zCMqStwL2QBIxi05Jn7Ay/tAH0EKdKbLDueet5lmWeW7Yo9hjVPnJyUUY6aZ353uhFJBA2BcKxU27FjcFMsgRFOs1InUTTGZIB7tK1piAVVbjo+I7MOtdK1gkjqCsEaq9MTKRZKDYWvOwWGvpr1RuJ/XjuB4MJNWRgnQEMy+ShIuAWRNcrE6jJJCfChJphIpne1SB9LTEAnV9IhOLMnz5PGScU5q9i3p+XqZR5HEe2hA3SEHHSOquga1VAdEfSEXtAbejeejVfjw/ictBaMfGYX/YHx9Qv2OZoT</latexit>

kL/kS

Figure 2. In de Sitter invariant and more generally equal speed setups (left schematic plot), heavy
particles induce a non-Gaussian signal that around equilateral configurations (i.e. kL/kS ∼ 1) can
be captured by a local EFT description, while they leave characteristic oscillatory imprints in the
squeezed limit of the bispectrum (i.e. kL/kS � 1). In the low speed collider signal (right plot), a
supersonic particle lighter than H/cs manifests itself as a resonance in the extended equilateral
configurations (defined by O(1)cs mH . kL/kS 6 1, while the associated particle production effect
dominates the signal in the ultra-squeezed limit (i.e. kL/kS � 2cs). Unless the mass is close to the
Hubble scale, the resonance signal can be reproduced by adding an enough number of non-local
EFT operators of the type discussed in section 6.

latter two on equal footing. The resulting non-local EFT can be used at arbitrary order in
this expansion, with corrections to the leading-order result organized in positive powers of
temporal derivatives and giving rise to an infinite set of non-local operators. These would-be
corrections can be used to check the sanity of the EFT: while they lead to convergent results
in the domain of validity of the EFT, they diverge around the resonances for m close to
the threshold value 3/2H, a situation for which the EFT breaks down and only our exact
bootstrap results are applicable. Remarkably, the (leading-order) non-local EFT provides
one with simple templates for the bispectra: one-parameter families of shapes that depend
on α = csm/H, that generalise well known ones from the EFT of inflation recovered in
the large α limit, while describing the physics of the low speed collider and the associated
resonances for small α, see equations (6.38).

Roadmap and summary of the results

• In section 2, we introduce our setup of interest: the Goldstone boson of broken time
translation during inflation π, propagating at the speed of sound cs, coupled to a heavy
scalar field σ propagating at the speed of light. We concentrate on interactions between
the two governed by the ubiquitous lowest-order quadratic coupling π̇σ as well as the
cubic ones π̇2σ and (∂iπ)2σ, with our results that can be straightforwardly generalised
to other interactions with more derivatives. We explain our motivations for focusing on
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the qualitatively new regime m < H/cs with cs � 1,2 we give a qualitative overview
of the most salient features expected in that regime on simple physical grounds, and
we comment on possible UV-completions of our effective field theory.

• In section 3, we use diagrammatic rules to show how the building blocks of the
correlators of interest can be related to the building block entering the seed four-
point single-exchange diagram F̂ of a conformally coupled field ϕ interacting with σ
through the coupling gϕ2σ. Gluing these building blocks together, it is then easy to
deduce the (correction to the) power spectrum, the bispectrum and the trispectrum
of π (equivalently of the curvature perturbation ζ), mediated by the exchange of the
massive scalar field, from the seed correlator F̂ , upon considering a suitable soft limit
and acting via a set of weight-shifting operators. This schematically reads, for the
bispectrum:

Bζ(k1, k2, k3) =W
(
ki,

∂

∂ki

)
F̂ (csk1, csk2, csk3, k4 → 0; k3) , (1.1)

where, on the r.h.s., W depends on the operators that act at each vertex, and the
rescaling of the external “energies” by the speed of sound cs < 1 necessitates to deal
with the analytical continuation of the four-point function F̂ outside its domain of
physical configurations. In this section, we also describe the bootstrap tools used in
the following to explicitly compute that seed correlator.

• Section 4 is dedicated to the determination of F̂ . The latter (s-channel contribution)
depends on the two variables u = s/(k1 + k2), v = s/(k3 + k4) with s = |k1 + k2| the
momentum of the exchanged σ field. In the allowed kinematical domain, u and v are
less than one, and it was sufficient in ref. [49] to work out F̂ inside the corresponding
unit circle(s), which was done in terms of a double series expansion in u and u/v

(assuming u < v). However, that expansion is not convergent outside the unit disk,
whereas our weight-shifting operators require the evaluation of F̂ at

u→ k3
cs(k1 + k2) , v → 1

cs
. (1.2)

We hence set out to determine F̂ from first principles in terms of a new, convenient
and rapidly convergent series representation around u, v =∞. We use two bootstrap
tools to achieve this goal. We leverage locality through a boundary partial differential
equation that F̂ (u, v) satisfies. Then we solve this equation as a series expansion
within the strip of 1 < |u| < |v|, i.e.

F̂ ⊃
∞∑

m,n=0
(amn + bmn log(u))u−m

(
u

v

)n
, 1 < |u| < |v| , (1.3)

where the unusual logarithmic term is forced upon us by the structure of the boundary
equation. We further exploit unitarity in the form of a cosmological cutting rule for

2Up to a rescaling of coordinates, our results are more generally valid for any two sound speeds, with cs
then corresponding to their ratio.
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the four-point function in order to fix the remaining freedom in adding a homogeneous
solution of the boundary equation. The final result F̂ (u, v), which is the seed to
all the correlators of interest, has several characteristic features, mother of all the
specificities of the bispectrum: (i) a bump around u ∼ m/H as long as m/H � v, (ii)
oscillations for u < 1 that encode the standard pair creation effect, (iii) Eventually,
for (u, v)� m/H, F̂ takes the following simple form

F̂ = g2
(1
u

+ 1
v

)(
log

( 1
C(µ)

uv

u+ v

)
+ 1− γE

)
, (u, v)� m

H
, (1.4)

exhibiting the logarithmic running with mass that we mentioned before, with C(µ) ≈
m/H.

• In section 5, we extensively study the resulting correlators of π upon acting with the
weight-shifting operators. We first discuss the power spectrum and then move on to
the bispectra generated by the two cubic interactions, whose shapes we characterise
as a function of cs and m/H, focusing in turn, for the new regime of interest, on
the “generic” triangular configurations kL/kS � csm/H, on the oscillations in the
ultra-squeezed limit, and on the resonances occurring for kL/kS ∼ csm/H. We also
discuss the amplitude of the signal and the constraints set by perturbativity, finding
that the resonances can be observably large fNL ∼ (ρ/H)2(csm/H)−1 � 1, where
ρ/H . O(m) is the amplitude of the quadratic coupling.

• The section 6 deals with the non-local EFT. We first discuss its regime of validity and
work it out at the level of the seed theory of σ coupled to the conformally coupled
field. We then compute the corresponding four-point correlator F̂ in this EFT, which
offers a particularly transparent and clear picture of the physics of the low-speed
collider, and we also point out its intrinsic limitations. Eventually we show how the
non-local EFT enables one to derive simple one-parameter families of shape templates
(presented in equations (6.38)) that encapsulate the rich physics described in this
paper when varying the speed of sound and the mass of the exchanged field.

Notations. We adopt the following definition for the Fourier transformed fields:

f(x) =
∫

d3k
(2π)3 f(k) exp(ik.x) , f(k) =

∫
d3x f(x) exp(−ik.x) . (1.5)

The dS space will be charted by the following coordinates:

ds2 = a2(η)
(
−dη2 + dx2

)
, a(η) = − 1

η H
, (1.6)

where η is the conformal time. We will denote the comic time by t. We denote the Goldstone
boson of broken time translation during inflation by π and its canonically normalized field
by πc. The speed of propagation of π will be indicated by cs. The field ϕ will refer to the
conformally coupled field in dS (with m2

ϕ = 2H2). Derivation with respect to the conformal
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time η will be indicated by a prime. Four-point exchange diagram of a field with external
momenta k1, . . .k4 will be characterised by the energy variables3

s ≡ |k1 + k2| , t ≡ |k1 + k3| , (1.7)

and the external energies ka ≡ |ka| , a = 1, . . . 4 (notice that |k1 + k4| is not an independent
variable because of the conservation of momentum). We refer to the bispectrum of ζ by
Bζ(k1, k2, k3) and to the four-point exchange diagram of ϕ by F (k1, . . . , k4, s, t, u), i.e.

〈ζ(k1)ζ(k2)ζ(k3)〉 = Bζ(k1, k2, k3)(2π)3 δ3
( 4∑
a=1

ka

)
, (1.8)

〈ϕ(k1) . . . ϕ(k4)〉 = F (ka, s, t, u) (2π)3 δ3
( 4∑
a=1

ka

)
.

The symbol 〈. . . 〉′ will indicate a correlator with the factor (2π)3δ3(k1 + . . . ) stripped off.
We use natural units throughout and define the Planck mass as M2

Pl = 1/(8πGN ).

2 Physical setup, motivations and overview

2.1 Action and motivations

In this paper, we use the model-independent language of the effective field theory of infla-
tionary fluctuations [7, 90–92] to study the interactions between the curvature perturbation
ζ and a heavy scalar degree of freedom with a mass not far from the Hubble scale. We
work in the decoupling limit in which the gravitationally induced interactions are ignored,
we take the background spacetime as rigid de Sitter space, and we neglect subdominant
deviations from scale-invariance. In this setup, one can consider that ζ = −Hπ where π
is the Goldstone boson that non-linearly realises the broken time diffeomorphism during
inflation, and that π enjoys a shift symmetry. Up to first order in derivatives and cubic
order in the field, the Lagrangian for the π sector takes the standard form:

Sπ =
∫
dη d3x a2εH2M2

Pl

[ 1
c2
s

(
π′2 − c2

s(∂iπ)2
)
− 1
a

( 1
c2
s

− 1
)(

π′(∂iπ)2 + A

c2
s

π′3
)

+ . . .

]
,

(2.1)

where ε = −Ḣ/H2, cs is the sound speed of π and A is a Wilson coefficient naturally of
order one. The derivative self-interactions in π′(∂iπ)2 and π′3 give rise to well known shapes
of the bispectrum maximum near equilateral configurations (that can be approximated by
the so-called equilateral and orthogonal templates [93, 94]), and with the characteristic

3Energy is not a conserved quantity in a time dependent background. Nevertheless, the terminology
is useful in cosmology because, in the η → −∞ limit, time translation is restored and the dispersion
relation have the form E ∝ cs|k|/a(η). Moreover, the total energy pole of the correlators contains the
flat space amplitude in which cs|k| plays the role of the energies of the particles that participate in the
scattering process.
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amplitude fNL ∼ 1/c2
s − 1. In addition, we consider the interaction of π with an additional

scalar degree of freedom σ with a generic mass m and with the following free action:

S(2)
σ =

∫
dηd3x a2

(
1
2σ
′2 − c2

σ

2 (∂iσ)2 − 1
2m

2a2σ2
)
. (2.2)

In general σ can have a non-trivial speed of sound cσ. However, one can always redefine
spatial coordinates that absorb this and consider that cσ = 1, at the expanse of generating
additional cσ dependence in other parts of the action. While this can be done straight-
forwardly and would not change the applicability of our analysis (concerning the π − σ
interactions of interest in this paper, this would correspond to having cs being the ratio
between the propagation speeds of π and of σ), this would clutter the equations, so we stick
to cσ = 1 in the following. The dominant interactions between π and σ at low energies were
classified in [7] (see e.g. eqs. 62–65 there) and here, we focus on the following operators
giving rise to single-exchange contributions to the bispectrum:

Sπσ =
∫
dηd3x a2

(
ρaπ′cσ + 1

Λ1
π′2c σ + c2

s

Λ2
(∂iπc)2σ

)
, (2.3)

where, for future convenience, we have introduced the canonically normalized field πc =√
2εHMPl
cs

π. It is important to notice that the scale Λ2 is not arbitrary. Indeed, it only
emerges from the unitary gauge operator ∝ ρδg00σ, where δg00 → −2π̇ − π̇2 + (∂iπ)2

a2 upon
reintroducing π. Because of this, one has

1
Λ2

= −1
2

1√
2εcsMPl

ρ

H
. (2.4)

By contrast, Λ1 is not fixed by the non-linearly realised time-diffeomorphism invariance, as
the corresponding interaction is not only generated by δg00σ, but also by (δg00)2σ. The
scale ρ can be a priori arbitrary, but we will restrict to situations in which the corresponding
quadratic interaction in π′cσ can be treated perturbatively, namely ρ . m (see section 5.2.4
for a quantitative discussion).

In this paper, we are interested in the imprints left by heavy fields on inflationary
correlators. Following the EFT logic, when sufficiently heavy (a point we will elaborate
on below), the σ field can be integrated out in a standard way, i.e. one can replace σ in
the action by the low-energy solution to its equation of motion: neglecting the kinetic and
gradient terms of σ, one finds σ ≈ ρπ′c/(am2), upon which replacement the total action takes
the form (2.1) with a redefined Wilson coefficient Ã and a new speed of sound such that4

1
c̃2
s

= 1
c2
s

(
1 + ρ2

m2

)
. (2.5)

However, while this single-field EFT correctly reproduces the bispectrum for generic
triangular configurations, it fails to capture the non-perturbative effects of spontaneous

4Naturally, the coefficient of the π′(∂iπ)2 interaction being tied to the new speed of sound is verified
only with the specific value of Λ2 in (2.4), as both are consequences of the non-linearly realised time-
diffeomorphism invariance.
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particle production, notably giving rise to oscillations in the squeezed limit. Moreover, this
description is accurate only if the kinetic and gradient terms of σ are negligible compared
to its mass term in the action (2.2), around the relevant time for the dynamics of π, i.e.
around sound horizon crossing (considering that ρ . m and hence c̃s ≈ cs). This is valid
only for m� H/cs. When the sound speed is small, this leaves an interesting parameter
space H . m . H/cs in which the standard local EFT (2.1) (with redefined parameters)
fails to reproduce the impact of massive fields even in equilateral configurations. However,
as we will see in section 6, one can still integrate out σ in this regime (if its mass is not too
close to the Hubble scale), albeit in a non-standard way that results in a single-field effective
description that is non-local in space. In both cases though, the single-field description
misses again the cosmological collider oscillations characteristic of a heavy field of mass
m ≥ 3/2H. In the rest of this paper, we will consider a heavy field, leaving the study of
lighter fields for future work. Our exact bootstrap analysis will be valid for any such mass
and any sound speed cs. However, equipped with our analytical results, and given that
the situation with m � H/cs resembles the well understood one with cs = 1 for generic
kinematical configurations (albeit with appreciable differences in the squeezed limit), we
will mostly focus on the theoretical understanding and phenomenological implications of
the opposite regime of parameter space with m� H/cs, unique to a low speed of sound.

An additional motivation for concentrating on this regime comes from the following
important consideration: when the sound speed is low, the cutoff the EFT action (2.1)
becomes close to the Hubble scale, so that too heavy fields can not be self-consistently
included in the description.5 More quantitatively, the cut-off energy scale of the EFT of
inflation is given by (see e.g. [91, 95])

Λ = 1
(2πPζ)1/4

cs
(1− c2

s)1/4H , (2.6)

implying that the massive field σ can be described in the EFT only if

m < Λ ' 100 cs
(1− c2

s)1/4H . (2.7)

Hence, one finds that for cs ≤ 0.1, i.e. for the bulk of the low sound speed parameter space,
a self-consistent description requires that m < H/cs: heavier fields exceed the cutoff scale,
and should have been integrated out in the first place. Let us now add some cautionary
words: the Planck constraints on non-Gaussianity give a lower bound on the speed of sound
(assuming a pure cs-theory): cs ≥ 0.021(95%CL) [96] (not far from the value at which the
cutoff (2.6) approaches H and the theory becomes useless). Hence, in the following, when
we take the limit cs → 0 in some analytical formulae, this should be taken as a formal limit.
In practice, one can check that such formulae are very accurate as soon as cs . 0.1, and
are therefore fully applicable for theories that are indeed observationally relevant. When it
will come to numerical examples, our benchmark situation will be cs = 0.1, but we also
consider cs = 0.01. In that case, the bound (2.7) leaves barely room for a heavy field, of
mass m ≥ 3/2H, to be coupled to the pure cs-EFT of inflation, and some of our plots
should then be taken for mere illustrative purposes of relevant trends.

5We thank Luca Santoni for discussions about this point.
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2.2 Qualitative picture

Before exploring it in detail in this paper, one can understand in simple terms why the regime
m < H/cs is interesting, both theoretically and phenomenologically, and anticipate on its
most salient features. For a given k-mode, there exists two relevant times for the dynamics:

? Event (1): sound horizon crossing for π, such that k/a = H/cs, and at which the
uncoupled π freezes;

? Event (2): “mass crossing” for σ, such that k/a = m, before which the uncoupled
σ behaves as a quantum massless field in its vacuum, and after which it decays
and oscillates.

For m > H/cs, event (2) occurs before event (1), whereas the opposite is true for m < H/cs.
In that situation, there exists a window of time during which π, already outside its sound
horizon, quantum mechanically interacts with the σ field still following the Bunch-Davies
behaviour. This unusual situation leads to a growth of the power spectrum of π during that
interval of − log

(
m
H cs

)
e-folds, a growth that is stopped after event (2) and the decay of σ.

This IR “divergence”, regulated by the mass of σ, will show up as an unusual logarithmic
dependence of the π correlators on the combination m

H cs. The exact parameter dependence
can not be found without the full computation that we make in this paper, but this intuitive
picture does capture the correct physics.

This comparison of the relevant timescales is also useful to understand the different
regimes of the bispectrum depending on how squeezed the corresponding triangle is. Let
us consider for definiteness an isosceles triangle with k3 = kL < k1 = k2 = kS. As our
results will confirm, the relevant timescales to compare are now the ones of sound horizon
crossing of the short mode kS, and of mass crossing of the long mode kL, still called events
(1) and (2) for simplicity (see figure 3). In the usual situation with cs = 1, event (2)
always occurs before event (1). This results in the squeezed limit of the bispectrum probing
the super-Hubble oscillations of the massive field, manifesting as the cosmological collider
oscillations. In contrast, for csm/H � 1, event (1) can occur before event (2), even for some
squeezed triangles, resulting in three qualitatively different regimes for the bispectrum.

• The usual regime of the cosmological collider oscillations, with (2) before (1), now
becomes pushed to what one may call ultra-squeezed configurations with kL/kS �
csm/H (top situation in figure 3).6

• Instead, for kL/kS � csm/H, (1) occurs before (2) (bottom situation in figure 3),
resulting in a completely different signal, bearing resemblances with the local shape,
albeit with the IR divergence described above also showing up as a logarithmic
dependence in the number of e-folds − log

(
kS
kL

m
H cs

)
between (1) and (2).

• Eventually, when the two characteristic times coincide (middle situation in 3), for
kL/kS ∼ csm/H, the shape of the bispectrum exhibits “bump”-like features that we

6We will give more refined estimates in section 5.2.2 as for when the cosmological collider oscillations
actually dominate the signal, see eq. (5.18).
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will call resonances (with details depending on the cubic interactions), characteristic
of the low-speed collider.

Note that the argument for the presence of resonances for kL/kS ∼ csm/H is analogous to
the one explaining that standard EFT shapes peak in equilateral configurations: in that
case, the only characteristic time is sound horizon crossing for π, and the shape of the
bispectrum is maximised in kinematical configurations for which the three characteristic
times of the momenta coincide, i.e. in the equilateral limit. Indeed, if one of the mode is still
inside the sound horizon, its rapid oscillations average out and leave a small signal, whereas
the derivative interactions become inefficient outside the sound horizon. In our two-field
situation, in addition to sound horizon crossing for π, another characteristic time enters
the problem as we have explained, mass crossing for σ, also delineating the regimes before
which it rapidly oscillates, and after which it decays. For the same reason as above, one thus
expects the signal to be maximised for triangular configurations at which these characteristic
times coincide. These qualitative arguments will be explicitly confirmed quantitatively in
what follows, notably in section 6.2 within the single-field non-local EFT, but this simple
physical picture guarantees in a model-independent manner the robustness of the existence
of “resonances” in squeezed configurations when π interacts with a supersonic heavy field,
for instance when considering other interactions leading to more complicated diagrams.
These resonances are expected to gradually disappear as the mass of the exchanged field
diminishes, with the shape eventually becoming close to the local shape for a massless field.
However, note that even in that case, resonances were already noticed in [97], albeit in
an approximate and much simpler computation, for the “quantum” contribution to the
bispectrum (see e.g. section 4.3 and figure 8 in [97]), with the characteristic time of the
exchanged field being simply Hubble crossing, hence resulting in a resonance for kL/kS ∼ cs
for the reasons described above.

2.3 Comments on UV completions

It is perfectly legitimate to consider our starting point action (2.1)–(2.3) as our theory
of interest, and compute observables within its framework, which is what we will do in
the rest of this paper. But just like our theory can be (approximately) described by the
local EFT action with redefined parameters for m� H/cs, it is interesting to see how our
setup itself may emerge as a low-energy effective description of some more fundamental
theory. One such possible UV completion can be found by considering a 3-field model
with π propagating at the speed of light coupled to two interacting massive fields, also
propagating at unit speed, and with quadratic Lagrangian

L/a3 = −1
2(∂µπc)2+ρ̃ π̇cF1−

1
2(∂µF1)2− 1

2(∂µF2)2− 1
2M

2
1F2

1−
1
2M

2
2F2

2−M2
12F1F2 . (2.8)

Such a Lagrangian is commonplace in explicit realizations of inflation. For instance, it
describes fluctuations in nonlinear sigma models, where ρ̃ is related to the deviation of the
background trajectory from a geodesic in field space, i.e. it describes turns in a multifield
landscape, and the F1 field directly coupled to πc corresponds to the fluctuation in the
direction of the acceleration of the background fields orthogonal to the instantaneous
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Figure 3. Schematic representation of the different kinematical regimes of the bispectrum. Event 1
is the sound horizon crossing of the short mode kS, and event 2 is the mass crossing of the long
mode kL.

velocity (see e.g. [98–102]).7 Such an origin is not at all needed for our discussion though,
and the action (2.8) can be considered on its own at the level of the EFT of fluctuations
only.8 In a two-field setup, i.e. with F2 = 0, the Lagrangian (2.8) provides one with a
typical UV completion of the EFT of inflation upon integrating out the massive field F1
(see e.g. [95, 102, 118, 119] for early works and [103, 120] for recent applications). The
same logic follows here, but the interaction between the entropic fields F1,2, through the
off-diagonal mass term in (2.8), plays an important role. To better understand this, it is
useful to introduce the mass eigenstates σ1,2 in terms of which the action (2.8) reads

L/a3 = −1
2(∂µπc)2 + ρ̃ π̇c(cos(θ)σ1 + sin(θ)σ2)− 1

2(∂µσ1)2 − 1
2(∂µσ2)2 − 1

2m
2
1σ

2
1 −

1
2m

2σ2
2

− ρ̃

2
√

2εHMpl

(∂iπc)2

a2 (cos(θ)σ1 + sin(θ)σ2) (2.9)

7Other (derivative) interactions between the entropic fields F1,2 are also present in general in these
models, see e.g. [103].

8On a different note, the reduced sound speed of the curvature perturbation in our setup needs not emerge
as an effective description at low energy, but it can be a “fundamental” property of the inflationary scenario
formulated at the level of the full fields driving inflation, like in single- and multi-field DBI inflation [104–106].
More generally, the existence of different sound speeds is a generic property of multifield scenarios with
higher derivative terms, and some of its consequences have been studied in various works [97, 101, 105–117],
although under the assumption that the couplings between fields propagating at different speeds is negligible
around the times of sound horizon crossings, i.e. in a very simplified context that does not take into account
the crucial aspects studied in this work.

– 13 –



J
H
E
P
1
2
(
2
0
2
2
)
1
3
7

with θ the angle of the rotation matrix between the “flavor” (F1,2) and the mass (σ1,2) basis,
such that the “portal” field F1 equals cos(θ)σ1 + sin(θ)σ2, where one uses the terminology
introduced in ref. [33], and one can choose m1 larger than m2. Here we have reinstored in the
second line the unavoidable cubic terms in the Lagrangian that are fixed by the non-linearly
realised time-diffeomorphism invariance, keeping in mind that the quadratic interaction in
ρ̃π̇cF1 comes from a term ∝ ρ̃δg00F1 in the unitary gauge, see the discussion in section 2.1.
Let us now consider a situation with a hierarchy m1 � m ≥ 3/2H such that one can
integrate out the heaviest mass eigenstate σ1 while keeping σ2 in the low-energy description.
Paralleling the discussion in section 2.1 and upon the replacement σ1 → ρ̃ cos(θ)/m2

1 π̇c,
this leads to our starting point action (2.1)–(2.3) (upon the redefinition πc → csπc so that
πc =

√
2εHMPl
cs

π still holds, and with the identification σ2 = σ), with parameters

1
c2
s

= 1 + ρ̃2 cos2(θ)
m2

1
and ρ = ρ̃ cs sin(θ) . (2.10)

Note that a small sound speed requires ρ̃2 � m2
1 and that the applicability of the resulting

EFT necessitates m2
1 � H2/c2

s [95, 119], i.e. m2
1/H

2 � ρ̃2/m2
1 cos2(θ) � 1. In this UV

completion, eq. (2.10) entails that ρ ' m1 tan(θ), where remember that a perturbative
treatment of the quadratic coupling demands ρ . m, while one has m1 � m in the first
place for σ to be consistently kept in the EFT (recall the bound (2.7)). This has a clear
physical interpretation: for a generic mixing angle, the portal field F1 is a linear combination
of the mass eigenstates σ1,2 with similar weights, and the coupling between π and the
portal field cannot at the same time generate a small speed of sound, while leaving a weak
coupling between πc and σ. Instead, this can be realised for a small mixing angle θ � 1,
as the portal field is then mostly aligned with the heaviest mass eigenstate responsible for
the low sound speed, leading to a reduced strength of the coupling ρ between πc and the
“misaligned” field σ.

Naturally, the effective theory stemming from integrating out the σ1 field misses the
associated particle production effects in the squeezed limit. The full cosmological collider
signal from such many-field theories has been computed recently [33] and exhibits a rich
structure, especially for comparable masses or/and generic mixing angles, notably resulting
in modulated oscillations with several frequencies (see also [121]). But in our situation
of interest here with a hierarchy m1 � m, the exponential suppression of the particle
production effects as a function of the mass entails that the full (many-field) cosmological
collider signal is, for practical purposes, indistinguishable from the one computed in the
two-field effective field theory involving π and σ only.9 It would be interesting to study if
the correlation functions studied in this work with the EFT (2.1)–(2.3) as a starting point
faithfully reproduce the ones of the UV completion discussed here in the entire range of
triangular configurations. The answer to such a question would anyway depend on the
specific type of UV completion considered, and in the following, we content ourselves with
characterising primordial correlators within our setup.

9If the mixing angle θ is so small that the cosmological collider signal originating from σ2 is similar to
the one originating from σ1, the whole cosmological collider signal becomes uninterestingly small, as well as
the effects studied in this paper, whose amplitudes are governed by the size of the coupling ρ.
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3 Cosmological collider bootstrap and the speed of sound

3.1 Mode functions and diagrammatic rules

In this section we recap the standard in-in formalism which will be used later for writing
the bulk integral expressions for the cosmological correlators of interest in this paper. Of
course, following the cosmological bootstrap philosophy, we will not directly evaluate these
time integrals and use instead the bootstrap techniques to directly solve for the boundary
correlators that these bulk integrals represent.

First of all, for future reference, we quote the positive frequency and negative frequency
mode functions for πc and σ:

π±c (k, η) = iH√
2c3
sk

3 (1± icskη) exp(∓icskη) , (3.1)

σ+(k, η) =
√
πH

2 exp(−πµ/2) exp(iπ/4)(−η)3/2H
(1)
iµ (−kη) , (3.2)

σ−(k, η) =
√
πH

2 exp(πµ/2) exp(−iπ/4)(−η)3/2H
(2)
iµ (−kη) , (3.3)

where

µ =

√
m2

H2 −
9
4 , (3.4)

H
(1)
iµ and H(2)

iµ are the Hankel functions of order iµ and of respectively the first and second
type, and we recall that we consider heavy fields with m

H ≥
3
2 in this paper.

Having selected the interaction in (2.3), we set out to calculate the correlation functions
of π mediated by σ. Using the in-in approach [61], the n-point function can be written as〈

π̂(k1, η0) . . . π̂(kn, η0)
〉

(3.5)

=
〈
T̄

(
e

+i
∫ η0
−∞(1+iε) dη Hint(η)

)
π̂(k1, η0) . . . π̂(kn, η0)T

(
e
−i
∫ η0
−∞(1−iε) dη Hint(η)

)〉
I
,

where η0 is the end of inflation conformal time, and the subscript I indicates that the
operators and the vacuum are in the interaction picture, and T (T̄ ) denotes the time-order
(anti-time-order) operation. To leading order in the couplings, the two-point function of π
induced by σ is dominated by the diagram on the top of figure 4, which we refer to Diagram
A hereafter. As for the three point function, two possible diagrams arise (see figure 4 below):
they are formed by the exchange of the particle σ between the left and the right vertex.
For both diagrams, the right vertex is given by the linear mixing term π̇cσ, while the left
vertex is either π̇2

cσ (Diagram B1) or (∂iπc)2σ (Diagram B2). By expanding the formal
in-in expression for the correlator in eq. (3.5), the Feynmann rules for the diagrams can be
summarised in the following steps:

• each vertex is labeled as “+” or “-”, so a diagram with N vertices entails 2N con-
tributions. Plus (minus) vertices come with a factor of “+i” (“−i”). Each vertex is
associated with a conformal time (ηi, i = 1, . . . , N) which is integrated over.

– 15 –



J
H
E
P
1
2
(
2
0
2
2
)
1
3
7

Diag. A
k

⇡

k

⇡

k

Diag. B1
k1

⇡

k2

⇡

k3

⇡

k3

Diag. B2
k1

⇡

k2

⇡

k3

⇡

k3
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<latexit sha1_base64="lb+sxt9GYy+yS2TkOnhmNnXnoMo=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiSi6LLoxmUF+4AmhMl00g6dTMLMjVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7Z+49YSq4Bsf5tipr6xubW9Xt2s7u3v6BfVjv6iRTlHVoIhLVD4lmgkvWAQ6C9VPFSBwK1gsntzO/98iU5ol8gGnK/JiMJI84JWCkwK57wwRyL+VFQLGn+Sgmgd1wms4ceJW4JWmgEu3A/jKP0CxmEqggWg9cJwU/Jwo4FayoeZlmKaETMmIDQyWJmfbz+e4FPjXKEEeJMiUBz9XfEzmJtZ7GoemMCYz1sjcT//MGGUTXfs5lmgGTdPFRlAkMCZ4FgYdcMQpiagihiptdMR0TRSiYuGomBHf55FXSPW+6l03n/qLRuinjqKJjdILOkIuuUAvdoTbqIIqe0DN6RW9WYb1Y79bHorVilTNH6A+szx8nTZSC</latexit>

⇡̇c�
<latexit sha1_base64="lb+sxt9GYy+yS2TkOnhmNnXnoMo=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiSi6LLoxmUF+4AmhMl00g6dTMLMjVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7Z+49YSq4Bsf5tipr6xubW9Xt2s7u3v6BfVjv6iRTlHVoIhLVD4lmgkvWAQ6C9VPFSBwK1gsntzO/98iU5ol8gGnK/JiMJI84JWCkwK57wwRyL+VFQLGn+Sgmgd1wms4ceJW4JWmgEu3A/jKP0CxmEqggWg9cJwU/Jwo4FayoeZlmKaETMmIDQyWJmfbz+e4FPjXKEEeJMiUBz9XfEzmJtZ7GoemMCYz1sjcT//MGGUTXfs5lmgGTdPFRlAkMCZ4FgYdcMQpiagihiptdMR0TRSiYuGomBHf55FXSPW+6l03n/qLRuinjqKJjdILOkIuuUAvdoTbqIIqe0DN6RW9WYb1Y79bHorVilTNH6A+szx8nTZSC</latexit>

⇡̇c�
<latexit sha1_base64="Gn2O82BwEx6ORop6cMCwxmxfLdo=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUiUVCMYKFsYi0YfUhMhxndaqnVi2g1RFHVj4FRYGEGLlI9j4G5w2A7Qc6UpH59xr33tCwajSjvNtrayurW9slrbK2zu7e/v2wWFHJanEpI0TlsheiBRhNCZtTTUjPSEJ4iEj3XB8nfvdByIVTeI7PRHE52gY04hipI0U2JWaJ5DUFLGAQk/QAJ/eN6Cn6JCjwK46dWcGuEzcglRBgVZgf3mDBKecxBozpFTfdYT2s/x9zMi07KWKCITHaEj6hsaIE+VnsyOm8MQoAxgl0lSs4Uz9PZEhrtSEh6aTIz1Si14u/uf1Ux1d+hmNRapJjOcfRSmDOoF5InBAJcGaTQxBWFKzK8QjJBHWJreyCcFdPHmZdBp197zu3J5Vm1dFHCVQAcegBlxwAZrgBrRAG2DwCJ7BK3iznqwX6936mLeuWMXMEfgD6/MHcnCXUw==</latexit>

(@i⇡c)
2�

<latexit sha1_base64="GpVYjnsngMuUnqG3DibhrJsl1Qs=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovgqiRF0WXRjcsK9gFNDJPppB06k4SZiVBD8VfcuFDErf/hzr9x2mahrQcuHM65d+beE6acKe0439bS8srq2nppo7y5tb2za+/tt1SSSUKbJOGJ7IRYUc5i2tRMc9pJJcUi5LQdDq8nfvuBSsWS+E6PUuoL3I9ZxAjWRgrsQ6+X6NxL2fi+FhDkKdYXOLArTtWZAi0StyAVKNAI7C/zDMkEjTXhWKmu66Taz7HUjHA6LnuZoikmQ9ynXUNjLKjy8+n2Y3RilB6KEmkq1miq/p7IsVBqJELTKbAeqHlvIv7ndTMdXfo5i9NM05jMPooyjnSCJlGgHpOUaD4yBBPJzK6IDLDERJvAyiYEd/7kRdKqVd3zqnN7VqlfFXGU4AiO4RRcuIA63EADmkDgEZ7hFd6sJ+vFerc+Zq1LVjFzAH9gff4AWPaVJg==</latexit>

⇡̇2
c�

Diag. A
k

⇡

k

⇡

k

Diag. B1
k1

⇡

k2

⇡

k3

⇡

k3

Diag. B2
k1

⇡

k2

⇡

k3

⇡

k3
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<latexit sha1_base64="VNNgfv1vEnsL9ikzg61kh7YsFZc=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyyCqzIjii6LblxWsA/oDCWTZtrQJDMkd4Q69EvcuFDErZ/izr8xbWehrQcuHM65N7n3RKngBjzv2ymtrW9sbpW3Kzu7e/tV9+CwbZJMU9aiiUh0NyKGCa5YCzgI1k01IzISrBONb2d+55FpwxP1AJOUhZIMFY85JWClvlsNBgnkQcqngeFDSfpuzat7c+BV4hekhgo0++6XfYFmkimgghjT870Uwpxo4FSwaSXIDEsJHZMh61mqiGQmzOeLT/GpVQY4TrQtBXiu/p7IiTRmIiPbKQmMzLI3E//zehnE12HOVZoBU3TxUZwJDAmepYAHXDMKYmIJoZrbXTEdEU0o2KwqNgR/+eRV0j6v+5d17/6i1rgp4iijY3SCzpCPrlAD3aEmaiGKMvSMXtGb8+S8OO/Ox6K15BQzR+gPnM8fT2eTgg==</latexit>

⇡̇�

<latexit sha1_base64="7Q9+KJGG7fVVBCjnwn0VxWRqbv0=">AAAB+nicbVDLSgMxFL3js9bXVJdugkVwVWaKosuiG5cV7APasWTSTBuaZIYko5Sxn+LGhSJu/RJ3/o1pOwttPXDhcM69yb0nTDjTxvO+nZXVtfWNzcJWcXtnd2/fLR00dZwqQhsk5rFqh1hTziRtGGY4bSeKYhFy2gpH11O/9UCVZrG8M+OEBgIPJIsYwcZKPbfU7ccm6yZscl/tajYQuOeWvYo3A1omfk7KkKPec7/sGyQVVBrCsdYd30tMkGFlGOF0UuymmiaYjPCAdiyVWFAdZLPVJ+jEKn0UxcqWNGim/p7IsNB6LELbKbAZ6kVvKv7ndVITXQYZk0lqqCTzj6KUIxOjaQ6ozxQlho8twUQxuysiQ6wwMTatog3BXzx5mTSrFf+84t2elWtXeRwFOIJjOAUfLqAGN1CHBhB4hGd4hTfnyXlx3p2PeeuKk88cwh84nz9/VJQm</latexit>

⇡̇2�
<latexit sha1_base64="uvioRDCJMkD8BJBrpgMjw9diHQg=">AAACAXicbVDLSgMxFM34rPU16kZwEyxC3ZSZouiy6MZlBfuAzjhk0kwbmmSGJCOUoW78FTcuFHHrX7jzb8y0s9DWAxcO59yb3HvChFGlHefbWlpeWV1bL22UN7e2d3btvf22ilOJSQvHLJbdECnCqCAtTTUj3UQSxENGOuHoOvc7D0QqGos7PU6Iz9FA0IhipI0U2IdVL0FSU8QCCr2Ent7XPUUHHAV2xak5U8BF4hakAgo0A/vL68c45URozJBSPddJtJ/lj2NGJmUvVSRBeIQGpGeoQJwoP5teMIEnRunDKJamhIZT9fdEhrhSYx6aTo70UM17ufif10t1dOlnVCSpJgLPPopSBnUM8zhgn0qCNRsbgrCkZleIh0girE1oZROCO3/yImnXa+55zbk9qzSuijhK4AgcgypwwQVogBvQBC2AwSN4Bq/gzXqyXqx362PWumQVMwfgD6zPH5IbllM=</latexit>

(@i⇡)
2�

<latexit sha1_base64="VNNgfv1vEnsL9ikzg61kh7YsFZc=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyyCqzIjii6LblxWsA/oDCWTZtrQJDMkd4Q69EvcuFDErZ/izr8xbWehrQcuHM65N7n3RKngBjzv2ymtrW9sbpW3Kzu7e/tV9+CwbZJMU9aiiUh0NyKGCa5YCzgI1k01IzISrBONb2d+55FpwxP1AJOUhZIMFY85JWClvlsNBgnkQcqngeFDSfpuzat7c+BV4hekhgo0++6XfYFmkimgghjT870Uwpxo4FSwaSXIDEsJHZMh61mqiGQmzOeLT/GpVQY4TrQtBXiu/p7IiTRmIiPbKQmMzLI3E//zehnE12HOVZoBU3TxUZwJDAmepYAHXDMKYmIJoZrbXTEdEU0o2KwqNgR/+eRV0j6v+5d17/6i1rgp4iijY3SCzpCPrlAD3aEmaiGKMvSMXtGb8+S8OO/Ox6K15BQzR+gPnM8fT2eTgg==</latexit>

⇡̇�

<latexit sha1_base64="VNNgfv1vEnsL9ikzg61kh7YsFZc=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyyCqzIjii6LblxWsA/oDCWTZtrQJDMkd4Q69EvcuFDErZ/izr8xbWehrQcuHM65N7n3RKngBjzv2ymtrW9sbpW3Kzu7e/tV9+CwbZJMU9aiiUh0NyKGCa5YCzgI1k01IzISrBONb2d+55FpwxP1AJOUhZIMFY85JWClvlsNBgnkQcqngeFDSfpuzat7c+BV4hekhgo0++6XfYFmkimgghjT870Uwpxo4FSwaSXIDEsJHZMh61mqiGQmzOeLT/GpVQY4TrQtBXiu/p7IiTRmIiPbKQmMzLI3E//zehnE12HOVZoBU3TxUZwJDAmepYAHXDMKYmIJoZrbXTEdEU0o2KwqNgR/+eRV0j6v+5d17/6i1rgp4iijY3SCzpCPrlAD3aEmaiGKMvSMXtGb8+S8OO/Ox6K15BQzR+gPnM8fT2eTgg==</latexit>

⇡̇�
<latexit sha1_base64="VNNgfv1vEnsL9ikzg61kh7YsFZc=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyyCqzIjii6LblxWsA/oDCWTZtrQJDMkd4Q69EvcuFDErZ/izr8xbWehrQcuHM65N7n3RKngBjzv2ymtrW9sbpW3Kzu7e/tV9+CwbZJMU9aiiUh0NyKGCa5YCzgI1k01IzISrBONb2d+55FpwxP1AJOUhZIMFY85JWClvlsNBgnkQcqngeFDSfpuzat7c+BV4hekhgo0++6XfYFmkimgghjT870Uwpxo4FSwaSXIDEsJHZMh61mqiGQmzOeLT/GpVQY4TrQtBXiu/p7IiTRmIiPbKQmMzLI3E//zehnE12HOVZoBU3TxUZwJDAmepYAHXDMKYmIJoZrbXTEdEU0o2KwqNgR/+eRV0j6v+5d17/6i1rgp4iijY3SCzpCPrlAD3aEmaiGKMvSMXtGb8+S8OO/Ox6K15BQzR+gPnM8fT2eTgg==</latexit>

⇡̇�

<latexit sha1_base64="mT9cjBHMXFhWWQK3amDuWB4fEdw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3Wb9ac+vuHGSVeAWpQYFmv/rVGyQsi1EaJqjWXc9NTZBTZTgTOK30Mo0pZWM6xK6lksaog3x+7JScWWVAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7EheMsvr5LWRd27qrsPl7XGbRFHGU7gFM7Bg2towD00wQcGHJ7hFd4c6bw4787HorXkFDPH8AfO5w/DwY6n</latexit>⇡c
<latexit sha1_base64="mT9cjBHMXFhWWQK3amDuWB4fEdw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3Wb9ac+vuHGSVeAWpQYFmv/rVGyQsi1EaJqjWXc9NTZBTZTgTOK30Mo0pZWM6xK6lksaog3x+7JScWWVAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7EheMsvr5LWRd27qrsPl7XGbRFHGU7gFM7Bg2towD00wQcGHJ7hFd4c6bw4787HorXkFDPH8AfO5w/DwY6n</latexit>⇡c

<latexit sha1_base64="lb+sxt9GYy+yS2TkOnhmNnXnoMo=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiSi6LLoxmUF+4AmhMl00g6dTMLMjVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7Z+49YSq4Bsf5tipr6xubW9Xt2s7u3v6BfVjv6iRTlHVoIhLVD4lmgkvWAQ6C9VPFSBwK1gsntzO/98iU5ol8gGnK/JiMJI84JWCkwK57wwRyL+VFQLGn+Sgmgd1wms4ceJW4JWmgEu3A/jKP0CxmEqggWg9cJwU/Jwo4FayoeZlmKaETMmIDQyWJmfbz+e4FPjXKEEeJMiUBz9XfEzmJtZ7GoemMCYz1sjcT//MGGUTXfs5lmgGTdPFRlAkMCZ4FgYdcMQpiagihiptdMR0TRSiYuGomBHf55FXSPW+6l03n/qLRuinjqKJjdILOkIuuUAvdoTbqIIqe0DN6RW9WYb1Y79bHorVilTNH6A+szx8nTZSC</latexit>

⇡̇c�
<latexit sha1_base64="lb+sxt9GYy+yS2TkOnhmNnXnoMo=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiSi6LLoxmUF+4AmhMl00g6dTMLMjVhCfsWNC0Xc+iPu/BunbRbaeuDC4Zx7Z+49YSq4Bsf5tipr6xubW9Xt2s7u3v6BfVjv6iRTlHVoIhLVD4lmgkvWAQ6C9VPFSBwK1gsntzO/98iU5ol8gGnK/JiMJI84JWCkwK57wwRyL+VFQLGn+Sgmgd1wms4ceJW4JWmgEu3A/jKP0CxmEqggWg9cJwU/Jwo4FayoeZlmKaETMmIDQyWJmfbz+e4FPjXKEEeJMiUBz9XfEzmJtZ7GoemMCYz1sjcT//MGGUTXfs5lmgGTdPFRlAkMCZ4FgYdcMQpiagihiptdMR0TRSiYuGomBHf55FXSPW+6l03n/qLRuinjqKJjdILOkIuuUAvdoTbqIIqe0DN6RW9WYb1Y79bHorVilTNH6A+szx8nTZSC</latexit>

⇡̇c�

<latexit sha1_base64="mT9cjBHMXFhWWQK3amDuWB4fEdw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3Wb9ac+vuHGSVeAWpQYFmv/rVGyQsi1EaJqjWXc9NTZBTZTgTOK30Mo0pZWM6xK6lksaog3x+7JScWWVAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7EheMsvr5LWRd27qrsPl7XGbRFHGU7gFM7Bg2towD00wQcGHJ7hFd4c6bw4787HorXkFDPH8AfO5w/DwY6n</latexit>⇡c
<latexit sha1_base64="mT9cjBHMXFhWWQK3amDuWB4fEdw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3Wb9ac+vuHGSVeAWpQYFmv/rVGyQsi1EaJqjWXc9NTZBTZTgTOK30Mo0pZWM6xK6lksaog3x+7JScWWVAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7EheMsvr5LWRd27qrsPl7XGbRFHGU7gFM7Bg2towD00wQcGHJ7hFd4c6bw4787HorXkFDPH8AfO5w/DwY6n</latexit>⇡c

<latexit sha1_base64="mT9cjBHMXFhWWQK3amDuWB4fEdw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3Wb9ac+vuHGSVeAWpQYFmv/rVGyQsi1EaJqjWXc9NTZBTZTgTOK30Mo0pZWM6xK6lksaog3x+7JScWWVAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7EheMsvr5LWRd27qrsPl7XGbRFHGU7gFM7Bg2towD00wQcGHJ7hFd4c6bw4787HorXkFDPH8AfO5w/DwY6n</latexit>⇡c
<latexit sha1_base64="mT9cjBHMXFhWWQK3amDuWB4fEdw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3Wb9ac+vuHGSVeAWpQYFmv/rVGyQsi1EaJqjWXc9NTZBTZTgTOK30Mo0pZWM6xK6lksaog3x+7JScWWVAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7EheMsvr5LWRd27qrsPl7XGbRFHGU7gFM7Bg2towD00wQcGHJ7hFd4c6bw4787HorXkFDPH8AfO5w/DwY6n</latexit>⇡c

<latexit sha1_base64="mT9cjBHMXFhWWQK3amDuWB4fEdw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3Wb9ac+vuHGSVeAWpQYFmv/rVGyQsi1EaJqjWXc9NTZBTZTgTOK30Mo0pZWM6xK6lksaog3x+7JScWWVAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7EheMsvr5LWRd27qrsPl7XGbRFHGU7gFM7Bg2towD00wQcGHJ7hFd4c6bw4787HorXkFDPH8AfO5w/DwY6n</latexit>⇡c
<latexit sha1_base64="mT9cjBHMXFhWWQK3amDuWB4fEdw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5vZT3Wb9ac+vuHGSVeAWpQYFmv/rVGyQsi1EaJqjWXc9NTZBTZTgTOK30Mo0pZWM6xK6lksaog3x+7JScWWVAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7EheMsvr5LWRd27qrsPl7XGbRFHGU7gFM7Bg2towD00wQcGHJ7hFd4c6bw4787HorXkFDPH8AfO5w/DwY6n</latexit>⇡c
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Figure 4. In this work we study in detail the three depicted single-exchange diagrams for the two-
and three-point correlation functions of πc. The white rectangle represents the linear mixing operator
π̇cσ, whereas the gray rectangle and the crossed circle stand for the π̇2

cσ and (∂iπc)2σ vertices,
respectively. We also obtain the results for the three corresponding single-exchange four-point
functions, with interactions either π̇2

cσ or (∂iπc)2σ at each vertex.

• an internal line (with momentum s) that connects two vertices is assigned an appropri-
ate propagator, depending on the label of its vertices. Such bulk-to-bulk propagators
(corresponding to σ) come in four different types that are defined by:

G++(s, η, η′) = σ−(s, η′)σ+(s, η)θ(η − η′) + σ−(s, η)σ+(s, η′)θ(η′ − η) , (3.6)
G+−(s, η, η′) = σ+(s, η′)σ−(s, η) , (3.7)
G−−(s, η, η′) = σ+(s, η′)σ−(s, η)θ(η − η′) + σ+(s, η)σ−(s, η′)θ(η′ − η) , (3.8)
G−+(s, η, η′) = σ−(s, η′)σ+(s, η) , (3.9)

where η and η′ correspond to the conformal times of the vertices at each end (for real
arguments, G−− = G∗++ and G−+ = G∗+−).

• lines that connect a plus vertex (minus vertex) to the boundary, contribute a bulk-to-
boundary propagator π−c (k, η)π+

c (k, η0) (π+
c (k, η)π−c (k, η0)).

• vertices with spatial derivatives come with a factor of ik, where k is the momentum
of the field that carries the derivative. As for a time derivative, the operator ∂η act
on the corresponding mode function, which might be either in the bulk-to-bulk or the
bulk-to-boundary propagator that enters the vertex.10

10Notice that the time derivative does not act on the step function θ(η − η′) since, in contrast to
reference [122] for instance, we are using the canonical version of the in-in formalism where (in presence of
operators with time derivatives) the interaction part of the Hamiltonian is not opposite to the interaction
part of the Lagrangian (see [123] for a related discussion).
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3.2 Conformally coupled field and the weight-shifting operators

The correlators of the conformally coupled (cc) scalar in dS space exhibit a simpler algebraic
structure than the correlators of massless and massive fields. This is the direct result of the
simplicity of its mode function:

ϕ±(k, η) = − H√
2k
η exp(∓ikη) . (3.10)

Furthermore, the objects of primary interest in cosmology, namely the correlators of
massless fields in dS can be obtained by acting with bespoke weight-shifting operators on
the correlators of the conformally coupled field ϕ (aka the “cc field”). Using this method,
all the exchange diagrams of the four-point function of a massless scalar field mediated by a
massive field (including spinning ones) were computed in recent years [49, 50]. The weight-
shifting operators can be systematically derived by leveraging the dS SO(4, 1) isometry
group. Nevertheless, regardless of the dS boost symmetry, the map between the correlators
of the conformally coupled and the massless fields can be understood in terms of a set of
relations between the corresponding mode functions (and derivatives thereof) [49]. For
example, the mode function πc is related to ϕ via a straightforward operation:

π±c (k, η) = πc(k, η0)1
η

(1− k∂k)h±(csk, η) , (3.11)

where we have defined

h±(k, η) ≡ η0
ϕ±(k, η)
ϕ±(k, η0) = η exp(∓ikη) , (3.12)

πc(k, η0) ≡ π±c (k, η0) = H

(2c3
sk

3)1/2 . (3.13)

For future references we also define ϕ(k, η0) ≡ ϕ±(k, η0) = Hη0/(2k)1/2. An analogous
equation to (3.11) holds for the first derivative of πc, i.e.

∂ηπ
±
c (k, η) = πc(k, η0)c2

sk
2 h±(csk, η) , (3.14)

and higher derivatives of πc can be similarly expressed by virtue of its equation of motion.
We will see in the remainder of this section that using these relations all the single-exchange
diagrams of π, irrespective of the nature of the vertices, can be obtained by applying
appropriate boundary operators on the four-point exchange diagram of ϕ depicted in figure 5,
in which the intermediate field σ interacts with ϕ via the simple cubic interaction g ϕ2 σ.

We begin by explicitly writing down the contribution of the exchange diagram depicted
in figure 5 to four-point correlator of ϕ evaluated at the end of inflation η = η0. Following
a similar notation to appendix B of [49], the answer is given by

〈ϕ(k1, η0)ϕ(k2, η0)ϕ(k3, η0)ϕ(k4, η0)〉′ = η4
0 H

2

2k1k2k3k4
F (k1, . . . , k4; s) + t− andu−channels ,

(3.15)
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in which

F = F++ + F+− + F−+ + F−− , (3.16)

where

F±±(k1, . . . , k4;s) =− g2

2H2

∫ η0

−∞(1∓iε)

dη

η2

∫ η0

−∞(1∓iε)

dη′

η′2
e±i(k1+k2)η e±i(k3+k4)η′G±±(s,η,η′) ,

(3.17)

F±∓(k1, . . . , k4;s) = g2

2H2

∫ η0

−∞(1∓iε)

dη

η2

∫ η0

−∞(1±iε)

dη′

η′2
e±i(k1+k2)η e∓i(k3+k4)η′G±∓(s,η,η′) .

(3.18)

Above, different components of the s-channel diagram are written in terms of four “energy”
variables {k1, k2, k3, k4, s ≡ |k1 + k2|}.

It is noteworthy that, for physical values of energies (namely {ka, s} ⊂ R+), F−− and
F+− are given by the complex conjugates of F++ and F−+. Moreover, dilatation symmetry
implies that the correlators of ϕ scale as

〈ϕ(λk1) . . . ϕ(λkn)〉′ = 1
λ2n−3 〈ϕ(k1) . . . ϕ(kn)〉′ . (3.19)

As a result, F±± and F±∓ can be expressed as

F±±(ka; s) = 1
s
F̂±±(u, v) , F∓±(ka; s) = 1

s
F̂±∓(u, v) , (3.20)

from which it follows that

F = 1
s
F̂ (u, v) , F̂ = F̂++ + F̂−− + F̂+− + F̂−+ , (3.21)

where we have defined the energy ratios

u ≡ s

k1 + k2
, v ≡ s

k3 + k4
. (3.22)

For physical configurations, the triangle inequality implies that

0 ≤ u ≤ 1 , 0 ≤ v ≤ 1 , physical configurations. (3.23)

However, relating our diagrams to F will incorporate the analytic continuation of F as a
function of ka(a = 1, . . . , 4) and s (or equivalently F̂ as a function of u and v) in a domain
that should at least cover all the real and positive values of u and v (especially the region
defined by u > 1 and v > 1). The single-exchange diagrams of π can be related to the soft
limit of the quantity F defined above by means of appropriate weight-shifting operators.
Using the relationships (3.14) and (3.11) we infer that

• using (3.14) inside the in-in expressions of all diagrams, the quadratic vertex

η−3∂ηπ
±
c (k, η)σ±(k, η)

– 18 –



J
H
E
P
1
2
(
2
0
2
2
)
1
3
7

k1

'

k2

'

k3

'

k4

'

s = |k1 + k2|

5

Figure 5. The four-point exchange diagram of ϕ mediated by a massive scalar.

can be related to the cubic vertex

η−4ϕ±(csk, η)σ±(k, η)ϕ±(ksoft, η) .

Above, the momentum of one the external cc fields is taken to zero (ksoft → 0). The
mere purpose of this soft cc field in the cubic vertex is to contribute a factor of η to
the in-in expression, hence adjusting the power of conformal time in the quadratic
vertex. It is also crucial that the energy of the other external cc field is re-scaled
with cs while the energy of the intermediate field σ is left intact. Notice that the
prescription above and others that follow go the same for all combinations of positive
and negative frequencies in the product of the fields.

• in Diagram B1, the left vertex (in momentum space) gives the following contribution
to the in-in time integral:

η−2∂ηπ
±
c (k1, η)∂ηπ±c (k2, η)σ±(|k1 + k2|, η) . (3.24)

This term is proportional to

∂2

∂(k1 + k2)2

(
η−4ϕ±(csk1, η)ϕ±(csk2, η)σ±(|k1 + k2|, η)

)
, (3.25)

where here, the derivative operator generates a factor of η2 and raises the power of
η−4 in the vertex ϕ2σ to η−2 in the vertex π′2c σ.

• in Diagram B2 the left vertex (in momentum space) takes the following form:

k1.k2η
−2π±c (k1, η)π±c (k2, η)σ±(|k1 + k2|, η) . (3.26)

Using (3.11), this can be recast into

k1.k2(1− k1∂k1)(1− k2∂k2)
(
η−4ϕ±(csk1, η)ϕ±(csk2, η)σ±(|k1 + k2|, η)

)
, (3.27)

up to an energy dependent prefactor. Another simplification occurs in that the term
in parenthesis depends on k1,2 only through the combination (k1 + k2). Therefore
∂k1 = ∂k2 = ∂(k1+k2) (notice that s = |k1 + k2| is an independent variable), and
consequently we can write

(1− k1∂k1)(1− k2∂k2) =
(
1− (k1 + k2)∂k1+k2 + k1k2∂

2
k1+k2

)
. (3.28)
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The resulting relationships between the building blocks of the π and ϕ correlators are
depicted in figure 6, where we have included the appropriate powers of external energies
and prefactors. Converting πc to the curvature perturbation ζ, given by

ζ = −Hπ = − cs√
2εMPl

πc , (3.29)

we finally arrive at the relationships below between the four-point function F and our
desired correlators:

Power spectrum. Diagram A. The correction to the power spectrum of ζ is extracted
from the double soft limit of the four-point function of the cc field:

∆Pζ(k)
Pζ(k) = ρ2

g2H2 (csk) lim
ksoft→0

F (csk, ksoft, csk, ksoft; k) , (3.30)

i.e.
∆Pζ
Pζ

= csρ
2

g2H2 F̂

(
u = 1

cs
, v = 1

cs

)
, (3.31)

where Pζ(k) is the standard vacuum contribution to the scalar power spectrum

Pζ = 2π2Pζ
k3 , Pζ = H2

8π2εcsM2
Pl
. (3.32)

Notice that the arguments of F̂ are bigger than unity for cs < 1. Therefore, evaluating the
right-hand side above already involves an analytic continuation outside the physical domain
of momenta for the seed correlator.

Bispectrum. Diagrams B1-B2. The corresponding bispectra are related to the soft
limit of F followed by an appropriate weight-shifting operator. They are given by

BB1
ζ =

(
− 4π3ρ

c
1/2
s g2Λ1

)
P3/2
ζ

k1k2k3
lim

ksoft→0

∂2

∂(k1 + k2)2F (csk1, csk2, csk3, ksoft; k3)

+ t− andu−channels , (3.33a)

BB2
ζ =

(
− 4π3ρ

c
1/2
s g2Λ2

)
P3/2
ζ

k3
1k

3
2k3

k1.k2

× lim
ksoft→0

(
1− (k1 + k2) ∂

∂(k1 + k2) + k1k2
∂2

∂(k1 + k2)2

)
F (csk1, csk2, csk3, ksoft; k3)

+ t− andu−channels . (3.33b)

It useful to write the final result in terms of F̂ and its partial derivatives, i.e.

BB1
ζ (k1, k2, k3) = α1

g2k1k2k3(k1 + k2)3

(
2∂u + u∂2

u

)
F̂ (u, v) + t− andu−channels . (3.34a)

BB2
ζ (k1, k2, k3) = α2 k1.k2

g2k3
1k

3
2k

2
3

(
1 + u∂u + c2

sk1k2
k2

3
u3[2∂u + u∂2

u]
)
F̂ (u, v)

+ t− andu−channels . (3.34b)
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with

u = k3
cs(k1 + k2) , v = 1

cs
, (3.35)

and where we have defined

α1 = − 4π3ρ

c
3/2
s Λ1

P3/2
ζ , α2 = − 4π3ρ

c
1/2
s Λ2

P3/2
ζ . (3.36)

Trispectrum. It is also immediate to combine the building blocks relationships of
figure 6 to compute the three different four-point correlation functions of ζ mediated
by the exchange of σ, built out of our two cubic vertices. We obtain the trispectra
Tζ = 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉′, with obvious notations:

T
π̇2
cσ−π̇2

cσ
ζ = β1,1k12

g2k1k2k3k4(k1 +k2)3(k3 +k4)3

(
2∂u+u∂2

u

)(
2∂v+v∂2

v

)
F̂ (u,v)+2perm.

(3.37a)

T
π̇2
cσ−(∂iπc)2σ

ζ = β1,2
g2k1k2k3k4(k1 +k2)3

k3.k4
k2

3k
2
4

×
(
2∂u+u∂2

u

)(
1+v∂v+ c2

sk3k4
k2

12
v3[2∂v+v∂2

v ]
)
F̂ (u,v)+5perm. (3.37b)

T
(∂iπc)2σ−(∂iπc)2σ
ζ = β2,2

g2k1k2k3k4k12

k1.k2
k2

1k
2
2

k3.k4
k2

3k
2
4

×
(

1+u∂u+ c2
sk1k2
k2

12
u3[2∂u+u∂2

u]
)(

1+v∂v+ c2
sk3k4
k2

12
v3[2∂v+v∂2

v ]
)
F̂ (u,v)+2perm.

where here

u = k12
cs(k1 + k2) , v = k12

cs(k3 + k4) (3.38)

with

β1,1 =
8π4P2

ζH
2

c4
sΛ2

1
, β1,2 =

8π4P2
ζH

2

c3
sΛ1Λ2

, β2,2 =
8π4P2

ζH
2

c2
sΛ2

2
. (3.39)

Eventually, note that our results hold for any value of cs including values larger than
unity (remember that up to a rescaling of spatial coordinates, cs can be considered as
the ratio between the propagation speeds of π and of σ). However, this regime does not
require extra theoretical work, as the observable correlation functions are then mapped to
the seed four-point correlation function F̂ with arguments (u, v) inside the unit disk (see
eqs. (3.31), (3.35) and (3.38)), which has been computed in [49]. A straightforward but
interesting consequence is that due to the stretching between k-space and (u, v) space by
the sound speed, the usual cosmological collider oscillations, only present for the bispectrum
in the squeezed limit for cs = 1, can extend to the whole triangular configurations up to
equilateral ones, see [83] for related plots. This has a clear physical origin in terms of the
characteristic timescales discussed in section 2.2, as the first situation in figure 3 then occurs
for all triangles.
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Figure 6. In this table we have collected the relationships between the building blocks of the
correlators of πc and those of the four-point function of ϕ. By multiplying the operators that act on
each vertex in Diagrams A, B1 and B2 and for the trispectra, one can deduce the weight shifting
operators that relate the full diagrams to F̂ , as presented by equations (3.31), (3.34) and (3.37).
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3.3 Bootstrap toolkit

In this subsection, we describe the bootstrap tools that we adopt in this work in order to
deduce the four-point function F̂ (u, v) in our region of interest. This contains a summary
of already known features but also new results on their own.

3.3.1 Analyticity and polology

The singularities of the cosmological correlators have demonstrated constraining power in
dictating their entire structures [49, 74, 76, 77, 84]. For Bunch-Davies initial conditions,
these singularities are absent for physical configurations, and this by itself is an indispensable
input for the bootstrap program. However, two general types of poles appear once the
correlators are analytically continued in their kinematical arguments:

• the total energy pole is defined by the following hyperplane in the space of energy
variables,

kT = E1 + · · ·+ En = 0 , Ei ≡ ciki , (3.40)

where Ei = ciki are the energies of the external fields with ci’s standing for the speed
of propagation for each external field in the correlation function. Near the singularity,
the correlator behaves as

correlator ∝ 1
kpT

, (3.41)

where p is fixed by dimensional analysis [74]

p = 1 +
∑
α

(∆α − 4) . (3.42)

Here α runs over all vertices in the diagram, and ∆α is the energy dimension of the
operator that acts at the vertex (for the exceptional cases of p = 0 and p = −1 the
singularity behaves as log(kT ) and kT log(kT ), respectively.) The residue of the total
energy pole is proportional to the scattering amplitude associated with the same
diagram in flat space [38, 41, 84].11

• The subdiagram (partial) energy poles are associated with the total energy of the
subdiagrams that emerge after cutting an internal line in the original graph. The
residue of such a pole is proportional to the amplitude that each subdiagram defines.
The degree of the singularity is determined by the same formula as equation (3.42).

We are going to review the singularity structure for individual components of the correlator
F , namely F++ and F+− (F−− and F−+ are not independent quantities). For simplicity,
we only analytically continue in the external energies ka and maintain s as real and positive.
The advantage of looking at the ++ and +− components separately is that the analytic
continuation of each is already defined by the time integrals in equation (3.17) in certain

11An exceptions to this rule arises when the leading order scattering amplitude of the theory vanishes.
See [124] for some discussions about this point, in the context of the DBI theory.
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domains in the complex plane. Moreover, as we discuss shortly, a cutting rule can only be
stated for the ++ part and not for the whole correlator.

The domains of analyticity of the formulae (3.17)–(3.18) are determined by the con-
vergence of the time integrals in the ultraviolet (i.e. at η → −∞ limit), and they are
given by

F++ : {(ka, s)| Im(ka) < 0, s > 0} , (3.43)
F+− : {(ka, s)| Im(k1,2) < 0, Im(k3,4) > 0, s > 0} ,

or equivalently

F̂++ : {(u, v)| Im(u) > 0, Im(v) > 0}
F̂+− : {(u, v)| Im(u) > 0, Im(v) < 0} .

We begin by F+−, which is simply the product of two three-point functions

F+− = 1
2f3(k1 − iε, k2 − iε, s)f∗3 (k3 − iε, k4 − iε, s) , ka > 0, s > 0 . (3.44)

Above, we have defined

f3(k1, k2, s) = 1√
s
f̂3(u) ≡ ig

H

∫ 0

−∞

dη

η2 e
i(k1+k2)ησ−(s, η) , (3.45)

across the area {(k1, k2, s)|Im(k1,2) < 0, s > 0} (or Im(u) > 0). This three-point function12
corresponds to the one that emerges after cutting the internal line of the four-point exchange
diagram. It will be sufficient to bootstrap this three-point function, and F+− will simply
follow from (3.44).

The sole singularity of the three-point function f3 is the total energy pole located at

EL = k1 + k2 + s = 0 , or u = −1 . (3.46)

This will contribute as a (left) partial energy pole to the full correlator F . There will equally
be a right partial energy pole located at

ER = k3 + k4 + s = 0 , or v = −1 . (3.47)

The singularity of f3 can be easily revealed by the direct inspection of the time integral:
singularities can only arise in the UV part of the integral, where the integrand is exponentially
suppressed unless the external energies sum to zero. Near the limit EL → 0, the integral
is dominated by its behaviour at large conformal time, where the mode function σ− can
in effect be replaced by σ− → −

H√
2s
η exp(isη), and the behaviour of f3 in the vicinity of

EL = 0 is found to be

lim
u→−1+iε

f3(k1, k2, s) = − ig√
2s

log(1 + u) . (3.48)

12The reason we call f3 a three-point is that it is proportional to the wavefunction coefficient ψϕϕσ in the
late time wavefunction of the universe [49, 125], this quantity might be thought as a three-point function
associated with a putative dual theory that lives on the boundary. The actual three-point correlation
function 〈ϕϕσ〉 is instead proportional to Re[f3/σ+(s, η0)].
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The coefficient ig in front is the three-particle amplitude ϕϕ→ σ. Also, the degree of the
divergence agrees with eq. (3.42) because the diagram has a single vertex with a relevant
operator ϕ2σ resulting in p = 0.

The analytical structure of f3 alongside the boundary equations and the cutting rules,
discussed in future sections, will form enough ingredients to pinpoint F++ as well (see
figure 7 where the analytical structure of F̂++ is represented). So, even though we will not
directly need them, for completeness we briefly review the divergences of F++. Near kT = 0
(or equivalently u+ v = 0), the double-time integral is dominated by the regime where both
vertices are evaluated at infinite past. As a result, the time integral simplifies to [49]

lim
u+v→0+iε

F̂++ = g2

v2 − 1(u+ v) log(u+ v) . (3.49)

The right-hand side is proportional to the s-channel two-to-two scattering of ϕ exchanged
by σ (which is given by Aflat = 1

sflat
= 1

(k3+k4)2−s2 ) and the degree of divergence corresponds
to p = −1 in equation (3.42).

As for the partial energy pole, the residue is totally fixed by unitarity (see the discussion
below). But it could also be seen directly at the level of the time integral that near EL = 0,
the integral is dominated by the η → −∞ limit, and F++ reduces to

lim
u→−1+iε

F++ = − ig

2
√

2s
log(1 + u) f∗3 (−k∗3,−k∗4, s) . (3.50)

We see that in this case F++ factorises into the product of the three-particle amplitude ig
and a three-point correlator (with deformed arguments13). A similar factorisation occurs
near ER = 0 (i.e. v = −1).

3.3.2 Locality: boundary differential equations

It was pointed out in [49] that the Ward identities associated with the dS boost symmetries
imply two boundary differential equations for the four-point function F̂

O(u, ∂u)F̂ (u, v) = g2 u v

2(u+ v) , (3.51)

O(v, ∂v)F̂ (u, v) = g2 u v

2(u+ v) ,

where

O(u, ∂u) ≡
[
u2(1− u2)∂2

u − 2u3∂u +
(
µ2 + 1

4

)]
. (3.52)

The r.h.s. of the equations above corresponds to the contact correlator ϕ4, which emerges
after the operator O(u, ∂u) has turned the exchange interaction into a contact one
(see (3.53) below).

Here we outline the direct derivation of these boundary equations based on locality,
without any reference to the dS boost symmetry — in this case, locality is synonymous

13As a technical side, notice that −k∗3,4 are within the domain of analyticity of f3, namely the lower half
complex plane of the k3,4 space.
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u =
k3

cs(k1 + k2)

particle 
production 
singularity

Figure 7. The analytical structure of F̂++ as a function of complex u. Motivated by the fact that
in the bispectra formulae (3.34) we set v = 1/cs, we have taken v to be a positive and bigger than
1 parameter. Moreover, in contrast with the ordinary case of cs = 1, these equations also imply
that u = k3/cs(k1 + k2) is allowed to lie outside the unit disk. The shaded region is the annulus
where the expression (4.21) is valid. There are three branch points, located on the real axis at u = 0
(due to the particle production effect discussed in section 4.5), at u = −1 (due to the partial energy
singularity (3.50)) and finally at u = −v (due to the total energy singularity (3.49)). The four-point
function should have no divergence near the collinear limit (u = 1), see section 4.3.

of the fact that the four-point function is induced by the propagation of σ in the bulk
of spacetime. Therefore, we begin with the bulk differential equations that govern the
bulk-to-bulk propagators in the in-in formalism [49], i.e.[

∂2
η −

2
η
∂η + s2 + m2

η2H2

]
G±±(s, η, η′) = (η′H)2δ(η − η′) , (3.53)[

∂2
η −

2
η
∂η + s2 + m2

η2H2

]
G±∓(s, η, η′) = 0 ,

where s is the energy of the exchanged field. These bulk equations can be converted into
boundary equations for F by trading the derivatives with respect to time for the derivative
with respect to momentum, when acted on the plane wave exp(icskη), namely

η∂η exp(ics kη) = k∂k exp(icskη) . (3.54)

After performing a number of integration by parts one arrives at

O(u, ∂u) F̂±±(u, v) = g2 u v

2(u+ v) , (3.55)

O(u, ∂u) F̂±∓(u, v) = 0 , (3.56)

plus the same copies of equations with operator O(v, ∂v) substituted on the left-hand side.
It follows from the above equations that the full correlator F̂ will satisfy the same equation
as the first line above. The second equation holds for the three-point function f̂3 as well.

The differential equations (3.55) and (3.56) can be solved for F̂++ and F̂+−(or f̂3) by
supplementing enough initial conditions in specific limits of the kinematics. As emphasised
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in subsection 3.3.1, one such constraint derives from forbidding singularities in physical
configurations, in particular at the collinear limit u = 1 (or v = 1). To illustrate this point,
let us begin by solving the homogeneous equation (3.56) for the three-point function. The
most general ansatz is given by

f̂3(u) = A+f+(u) +A−f−(u) , (3.57)

where f± are two linearly independent solutions to the homogeneous boundary equation:

f+(u) = 2F1

(1
4 −

iµ

2 ,
1
4 + iµ

2 ; 1
2; 1
u2

)
, (3.58)

f−(u) = 2
u
× 2F1

(3
4 −

iµ

2 ,
3
4 + iµ

2 ; 3
2; 1
u2

)
(3.59)

Each of these two functions exhibit branch point singularities at u = ±1. Near the
collinear singularity u = +1 we have

f+ → −
√
π

Γ(1/4 + iµ/2)Γ(1/4− iµ/2) log(1− u) ,

f− → −
√
π

Γ(3/4 + iµ/2)Γ(3/4− iµ/2) log(1− u) .
(3.60)

Asking the cancellation of this logarithmic singularity in the linear combination (3.57) and
matching onto the flat space limit (u→ −1 + iε) in (3.48), we arrive at

f̂3(u) = ig

2
√

2π

(
Γ(1/4+ iµ/2)Γ(1/4− iµ/2)f+(u)−Γ(3/4+ iµ/2)Γ(3/4− iµ/2)f−(u)

)
.

(3.61)

It is worth mentioning that the choice of basis (3.58)–(3.59) is particularly convenient for
expanding f̂3 (and, as we will see later, the homogeneous part of F̂++), because they are
both fully analytic across the region Im(u) > 0 (the only branch cut of f± stretches from
−1 to +1, i.e. it lies on the boundary of the analytical domain14).

3.3.3 Unitarity: cosmological cutting rules

Recently, the implications of perturbative unitarity for the structure of cosmological cor-
relators were studied in a series of works [84–88]. It was shown that the unitarity of
the evolution translates into an infinite number of constraints on the coefficients of the
perturbative wavefunction of the universe. These constraints appear as a set of cutting rules
that recursively relate the discontinuity of a Feynman diagram to a linear combination of the
products of the discontinuity of its subdiagrams. Instead of the wavefunction coefficients,
below we derive a cutting rule directly for our object of interest, namely F̂++.

14A different set of basis functions F±(u) was used in [49] with branch cuts positioned on the positive
imaginary axis. The introduced basis functions f±(u) better suit us because we are working with specific
continuations of F̂++(u, v) and f̂3 that are entirely analytical on the upper-half plane of the complex space
(u, v) (see section 4.2 of [87] for a related discussion).
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Underlying the derivation of the Cosmological cutting rules are the Hermitian analyticity
of the bulk-to-boundary propagator, which for our setup is the simple fact that

ϕ∗+(k, η) = ϕ+(−k∗, η), k ∈ C , (3.62)

where ϕ is the conformally coupled mode function (3.10), and the factorisation of the
imaginary part of the bulk-to-bulk propagator in the wavefunction picture. This last
property can be easily converted into a statement about G++:

G∗++(s, η, η′) +G++(s, η, η′) = σ−(s, η)σ+(s, η′) + η ↔ η′ . (3.63)

Together with the time-integral definition of F++ (3.17), this property enables us to write
down the following cutting rule:

F̂++(u, v) + F̂ ∗++(−u∗,−v∗) = −1
2 f̂3(u)f̂∗3 (−v∗)− 1

2 f̂3(v)f̂∗3 (−u∗) , (3.64)

valid within the upper half of the complex plane of (u, v).15 This relation has the anticipated
format: a specific linear combination of the analytically continued four-point exchange
diagram factorises into the sum over the product of its constituent three-points. This cutting
rule will serve as an essential ingredient in solving the boundary equation for F̂++. As a
corollary, it follows from the above equation that near the left partial energy pole, namely
u = −1, F̂++ reduces to (3.50). This is so because near the singularity the second term on
the l.h.s. is finite, hence negligible, while on the right-hand side only the first term diverges.

4 Seed four-point function

Having established the relationships (3.31) and (3.34), our task now reduces to finding the
four-point function F (ka; s) (or equivalently F̂ (u, v)). This correlator was bootstrapped
in [49] by means of locality and consistent factorisation of the four-point function on its
partial energy poles (namely when k1 + k2 + s and k3 + k4 + s are simultaneously sent to
zero). However, the final analytical result presented in the aforementioned paper contains a
power series expansion which schematically looks like

F̂ (u, v) ⊃
∞∑
m=0

∞∑
n=0

cm,nu
2m+1 (u/v)n , |u| < |v| , (4.1)

where cm,n’s are mass dependent constants (a similar expression holds for the opposite
regime, i.e. |u| > |v|, upon replacing u↔ v). This expansion is perfectly convergent when
u and v are both inside the unit circle, i.e. |u| ≤ 1, |v| ≤ 1; this includes all physical
configurations of the quadrilateral (i.e. 0 ≤ u ≤ 1, 0 ≤ v ≤ 1). In this work, we are
interested in the opposite case: upon analytic continuation of F̂ , our setup probes values
of u (and v) larger than unity, hence beyond the unit disk and where the above series

15Note that −u∗ and −v∗ lie in the upper half of the complex plane as well.
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expansion is no longer applicable.16 We also take a different pathway in our derivation
as compared to [49]. We use the boundary equation supplemented with the cosmological
cutting rule to solve for F̂++ and subsequently arrive at F̂ , whereas the earlier derivation
was based on factorisation in the u → −1, v → −1 limit and regularity at the junction
u = v for the full correlator F̂ .

4.1 Ansatz for the particular solution

As we saw before, the correlators of π are written as the outcomes of the action of the
weight-shifting operators on the seed four-point function F̂ (u, v) with arguments that can
be outside or inside the respective unit disks (i.e. |u| < 1, |v| < 1). This is clear from the
substitutions u→ s

cs(k1+k2) and v → s
cs(k3+k4) made in (3.31) and (3.34). In fact, one can

probe an interesting limit by sending cs → 0 while keeping the energies (ka, s) fixed.17
This is equivalent to sending u and v to infinity, where the boundary equations for F̂++
simplify to:

−u4∂2
uF̂++ − 2u3∂uF̂++ = g2

2
uv

u+ v

−v4∂2
v F̂++ − 2v3∂vF̂++ = g2

2
uv

u+ v
, |u| � 1, |v| � 1 . (4.2)

The most general solution to the above equations, after imposing the symmetry u↔ v, is
given by

F̂++ = −g
2

2

(1
u

+ 1
v

)
log

(
u+ v

uv

)
+ a

(1
u

+ 1
v

)
+ b

uv
+ c , u, v →∞ , (4.3)

where a, b and c are constant, and in retrospect one can check that dropping the µ-dependent
terms in the boundary equations was indeed consistent for u� µ. Another feature of the
solution is the appearance of branch points at u = 0 and u = −v. For v ∈ R+ + iε, the
branch cut falls within the interval [−v, 0], in u-space. It is noteworthy that the behaviour
near the branch point u = −v is dictated by the total energy singularity of F̂++ in eq. (3.49).
In contrast, since the above relation was derived for large u, v it is not applicable near u = 0.

For finite values of u and v, the Taylor expansion of the r.h.s. of the boundary equation,
namely

O(u, ∂u)F̂++ = O(v, ∂v)F̂++ =


g2

2
∑∞
n=0(−1)n un+1

vn |u| < |v|

g2

2
∑∞
n=0(−1)n vn+1

un |u| > |v|
, (4.4)

16Along the lines of appendix C of [49], one can pursue an alternative approach by resumming the power
series inside the unit circle and analytically continue to the whole complex plane. In practice, however, this

will involve Kampé de Fériet functions p+qFr+s

({
a1, . . . ap : b1, b

′
1 . . . b1, b

′
q

c1, . . . cr : d1, d
′
1, . . . ds, d

′
s

}
, x, y

)
which are defined

as power series of their arguments x, y only within the unit disk |x| < 1, |y| < 1 (we were unable to find
an asymptotic expansion for these functions outside this region in the literature). For the purpose of our
computation one needs to go beyond the unit disk of x and we found it more insightful to solve the bootstrap
equations there from first principles.

17Note that this should be thought as a formal limit. Physically speaking, however, the EFT of inflation
becomes strongly coupled when cs → 0, see the discussion below eq. (2.6).
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suggests the following ansatz for a particular solution

F̂p =
∞∑

m,n=0
(amn + bmn log(u))u−m

(
u

v

)n
, 1 < |u| < |v| . (4.5)

Above, since we are expanding across an annulus (see figure 7), we allow for both positive
and negative powers of u, i.e. m might be bigger than n or not. The restriction to non-
negative integers m and the addition of the logarithmic term are both motivated by the
asymptotic limit of the first term in (4.3):

lim
1�|u|<|v|

F̂++ = g2

2

(1
u

+ 1
v

)[
log(u) +

∞∑
n=0

(−1)n
n

(
u

v

)n]
. (4.6)

In the next section we solve for the series coefficients amn and bmn hence finding F̂++(u, v)
inside the indicated domain. One can then easily extend the solution to the opposite side
(i.e. 1 < |v| < |u|) by virtue of the symmetry under the exchange of u and v.

4.2 Series coefficients and resummation

Plugging the ansatz (4.5) inside the boundary equation leads to a set of recursive relations
for the series coefficients amn and bmn that can be solved. We go straight to the final answer
here and leave the details of the derivation to appendix A.1. To express the result, it proves
useful to switch to a new set of coefficients defined by

Bk,n ≡ b(n−k)n, Ak,n ≡ a(n−k)n , −∞ < k ≤ n , (4.7)

with which we write

F̂p =
∞∑
n=0

n∑
k=−∞

(
Ak,n +Bk,n log(u)

)
uk

vn
, 1 < |u| < |v| . (4.8)

The only non-vanishing elements of the matrices Ak,n and Bk,n can be found in eqs. (4.13)–
(4.20). We show in appendix A.1 that the logarithmic piece in the particular solution (4.8)
resums to

∞∑
n=0

n∑
k=−∞

Bk,n log(u)u
k

vn
= g2

4

(
f+(u)f−(v) + f−(u)f+(v)

)
log(u) . (4.9)

Furthermore, the first contribution can be repackaged into
∞∑
n=0

n∑
k=−∞

Ak,n
uk

vn
= 1

8π2 cosh(πµ)Γ(3/4 + iµ/2)Γ(3/4− iµ/2) f−(v)
∞∑
l=0

pl
1
u2l (4.10)

+ 1
8π2 cosh(πµ)Γ(1/4 + iµ/2)Γ(1/4− iµ/2) f+(v)

∞∑
l=0

ql
1

u2l+1

+
∞∑
l=0

Yl(u, v) 1
v2l+1 ,
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where

pl = g2
22l−1Γ

(
1
4 + l+ iµ

2

)
Γ
(

1
4 + l− iµ

2

)
Γ(1+2l)

(
H2l+H− 3

4 + iµ
2
−H− 3

4 +l+ iµ
2

+(µ→−µ)
)
, (4.11)

ql = g2
22lΓ

(
3
4 + l+ iµ

2

)
Γ
(

3
4 + l− iµ

2

)
Γ(2l+2)

(
−1+H2l+1 +H− 1

4 + iµ
2
−H− 1

4 +l+ iµ
2

+(µ→−µ)
)
,

and

Yl(u,v) =−g2
4lΓ

(
5
4 + l+ iµ

2

)
Γ
(

5
4 + l− iµ

2

)
Γ
(

5
4 + iµ

2

)
Γ
(

5
4−

iµ
2

)
Γ(2l+3)

u

v
(4.12)

+g2
√
πu2

8v2 Γ
(7

4 + l+ iµ

2

)
Γ
(7

4 + l− iµ2

)
5F̃4

(
1,1, 3

2 , l−
iµ
2 + 7

4 , l+
iµ
2 + 7

4
7
4−

iµ
2 ,

iµ
2 + 7

4 , l+2, l+ 5
2

; u
2

v2

)

−g2
√
πu3

8v3 Γ
(9

4 + l+ iµ

2

)
Γ
(9

4 + l− iµ2

)
5F̃4

(
1, 3

2 ,2, l−
iµ
2 + 9

4 , l+
iµ
2 + 9

4
9
4−

iµ
2 ,

iµ
2 + 9

4 , l+
5
2 , l+3 ; u

2

v2

)
,

with 5F̃4 the regularized hypergeometric function, which is regular on the entire unit circle
for the parameters here.

Series coefficients. For n = odd, the only non-zero components are given by,

B−2l,n = g2

8π2
22l+n cosh(πµ)

Γ(2l+1)Γ(n+1) Γ
(1

4 + l+ iµ

2

)
Γ
(1

4 + l− iµ2

)
(4.13)

×Γ
(1

4 + n

2 + iµ

2

)
Γ
(1

4 + n

2 −
iµ

2

)
, l≥ 0 ,

A2l,n = g2

4
2n−2lΓ(2l)
Γ(n+1)

Γ
(

1
4 + n

2 + iµ
2

)
Γ
(

1
4 + n

2 −
iµ
2

)
Γ
(

3
4 + l+ iµ

2

)
Γ
(

3
4 + l− iµ

2

) , 1≤ l≤ n−1
2 , (4.14)

A−2l,n =− g2

16π2
cosh(πµ)22l+n

Γ(2l+1)Γ(n+1)Γ
(1

4 + l+ iµ

2

)
Γ
(1

4 + l− iµ2

)
(4.15)

×Γ
(1

4 + n

2 + iµ

2

)
Γ
(1

4 + n

2 −
iµ

2

)
×
(
−H2l−H− 3

4 + iµ
2

+H− 3
4 + iµ

2 +l+(µ→−µ)
)
, l≥ 0 , (4.16)

where Hν are Harmonic numbers.
Similarly, for n = even we find:

B−2l−1,n = g2

4π2
22l+n cosh(πµ)

Γ(2l+2)Γ(n+1)Γ
(3

4 + l+ iµ

2

)
Γ
(3

4 + l− iµ2

)
(4.17)

×Γ
(1

4 + n

2 + iµ

2

)
Γ
(1

4 + n

2 −
iµ

2

)
, l≥ 0 ,

A2l+1,n =−g
2

4
22l+nlΓ(2l)

Γ(n+1)
Γ
(

1
4 + n

2 + iµ
2

)
Γ
(

1
4 + n

2 −
iµ
2

)
Γ
(

5
4 + l+ iµ

2

)
Γ
(

5
4 + l− iµ

2

) , 0< l≤ n−2
2 , (4.18)
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A1,n =−g
2

8
2n

Γ(n+1)
Γ
(

1
4 + n

2 + iµ
2

)
Γ
(

1
4 + n

2 −
iµ
2

)
Γ
(

5
4 + iµ

2

)
Γ
(

5
4−

iµ
2

) , (4.19)

A−2l−1,n =− g2

8π2
22l+n cosh(πµ)

Γ(2l+2)Γ(n+1)Γ
(3

4 + l+ iµ

2

)
Γ
(3

4 + l− iµ2

)
Γ
(1

4 + n

2 + iµ

2

)
(4.20)

×Γ
(1

4 + n

2 −
iµ

2

)(
1−H2l+1−H− 1

4 + iµ
2

+H− 1
4 +l+ iµ

2
+(µ→−µ)

)
, l≥ 0 .

The merit of the expression (4.10) is that, unlike the original series (4.8), the dependence
on u/v is fully resummed. This will be especially useful in computing the power spectrum,
for which we set u = v = 1/cs, or for the t− and u-channel contributions to the squeezed
limit bispectrum (with k3 → 0) where u/v approaches unity.

4.3 Fixing the homogeneous solution

Having derived the particular solution to the boundary equation for F̂++, we now move to
the freedom in adding to it any solution of the homogeneous differential equations. It is
crucial to observe that the particular solution derived above cannot describe the entire F̂++
for a few reasons: (i) once continued to the |u| > |v| region, F̂p is not smooth at u = v,
(ii) F̂p is plagued by a spurious pole at u = 1, and (iii) it does not satisfy our cutting
rule (3.64). Below we demonstrate that imposing regularity at u = 1 and the cutting rule
totally determines the homogeneous solution. Therefore, the regularity of the final answer
at u = v will be an automatic output.

Cutting rule. Incorporating the homogeneous solutions to the boundary equations
O(u, ∂u)F̂h = O(v, ∂v)F̂h = 0, the most general ansatz for F++ becomes:

F̂++(u, v) =
∑
m,n

(
am,n + bm,n log(u)

)
un−m

vn
+
∑
±±

β±±f±(u)f±(v) , 1 < |u| < |v| ,

(4.21)

where β±± are four free parameters that we will identify later. It will be sufficient to exploit
the cutting rule (3.64) across the following domain:

D ≡ {(u, v)|u = Re(u) + iε, v = Re(v) + iε, 1 < |u| < |v|} , (4.22)

within which the f±(u) basis functions display the following properties:

f∗+(−u+ iε) = f+(u+ iε) , f∗−(−u+ iε) = −f−(u+ iε) , Im(f±(u)) = 0 . (4.23)

Using these equalities together with the expression for f3 in (3.61), the cutting rule can be
recast into

F̂++(u−iε,v−iε)+F̂ ∗++(−u−iε,−v−iε) = (4.24)

− g
2

8π
(
Γ(1/4+iµ/2)2Γ(1/4−iµ/2)2f+(u)f+(v)−Γ(3/4+iµ/2)2Γ(3/4−iµ/2)2f−(u)f−(v)

)
.
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It can be viewed that all the amn elements in F̂++ disappear from the l.h.s. of the cutting
rule above. The logarithmic pieces partially cancel against each other, leaving behind a
residual term that survives due to the simple fact that

log∗(−u+ iε) = −iπ + log(u) .

Putting everything together and equating the coefficients of the f±(u)f±(v) terms on both
sides of the cutting rule, we find

Im(β+−) = Im(β−+) = −πg
2

8 , (4.25)

Re(β++) = − g2

16πΓ(1/4 + iµ/2)2Γ(1/4− iµ/2)2 , (4.26)

Re(β−−) = g2

16πΓ(3/4 + iµ/2)2Γ(3/4− iµ/2)2 . (4.27)

The real parts of β−+ and β+− and the imaginary parts of β++ and β−− are so far arbitrary.
They will be dictated by requesting the regularity of F̂++ in the collinear limit.

Cancellation of the collinear singularity. The ansatz (4.21) exhibits a spurious pole
at u = 1 unless we appropriately tune the parameters β±±. The potential singularity stems
from (i) the logarithmic divergence in the basis functions f± given in eq. (3.60), and (ii) the
last term in (4.10) involving Ak,n elements with k ≥ 0. Near u = 1, the latter behaves as

∑
m,n

amn
un−m

vn
∼ log(u− 1) (c1(µ)f−(v) + c2(µ)f+(v)) , (4.28)

where

c1(µ) =−1
2g

2 cosh(πµ)
8π3/2 Γ(3/4+ iµ/2)Γ(3/4− iµ/2) (H−3/4+iµ/2 +log(2)+(µ→−µ)) ,

(4.29)

c2(µ) =−1
2g

2 cosh(πµ)
8π3/2 Γ(1/4+ iµ/2)Γ(1/4− iµ/2) (−1+H−1/4+iµ/2 +log(2)+(µ→−µ)) .

(4.30)

Asking the cancellation of the logarithmic divergence in the particular solution (4.28) against
the one in the homogeneous part (the last term in (4.21)) we arrive at

Reβ+− = − πg2

8 cosh(πµ) −
g2

8

(
H−3/4+iµ/2 + log(2) + (µ→ −µ)

)
, (4.31)

Reβ−+ = πg2

8 cosh(πµ) −
g2

8

(
− 1 +H−1/4+iµ/2 + log(2) + (µ→ −µ)

)
, (4.32)

Im(β−−) = πg2

8
Γ
(

3
4 + iµ

2

)
Γ
(

3
4 −

iµ
2

)
Γ
(

1
4 + iµ

2

)
Γ
(

1
4 −

iµ
2

) , (4.33)

Im(β++) = πg2

8
Γ
(

1
4 + iµ

2

)
Γ
(

1
4 −

iµ
2

)
Γ
(

3
4 + iµ

2

)
Γ
(

3
4 −

iµ
2

) . (4.34)
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In summary, we identified all real and imaginary components of the free parameters β±±
by imposing the cutting rule and the regularity at the collinear limit. Since there is no
more free parameter in (4.21), it must have all the other properties that F̂++ is supposed to
possess. Specifically, we demonstrate in appendix A.3 that our solution has the anticipated
singularities when the total or the partial energies vanish.

4.4 Full correlator

For real values of energies, i.e. u, v ∈ R+, the full correlator F̂ is twice the real part of
the sum of F++ (4.21) and F+− (3.44). Using also (3.61) and after some algebra, the final
answer simplifies to

F̂ = 2
∑
m,n

am,n
un−m

vn
+ g2

2

(
f+(u)f−(v) + f−(u)f+(v)

)
log(u) (4.35)

+ g2

4πΓ4
(3

4 + iµ

2

)
Γ4
(3

4 −
iµ

2

)
f−(u)f−(v)

− g2

4

(
log(2)− 1 +H− 1

4 + iµ
2

+ (µ→ −µ)
)
f−(u)f+(v)

− g2

4
(
log(2) +H− 1

4 + iµ
2

+ (µ→ −µ)
)
f+(u)f−(v) , u, v ∈ R , 1 < u < v

where the first term has the convenient (partial) resummation (4.10). Given that f±(u) do
not display any discontinuity across the interval (1,∞), we did not have to specify the iε
prescription within their arguments above.

In addition to (4.35), we also need the correlator within the unit disk. This region
becomes of particular interest when we evaluate the three-point function of π in the ultra-
squeezed limit kL

2kS � cs. Within the domain of u < v < 1, F̂ was given in [49] as a double
series in powers of u and u/v, plus a specific homogeneous solution to the boundary equation.
Below, we quote the expression for F̂ , except that here we expand the homogeneous solution
gh(u, v) in terms of our basis functions f±

F̂ =
∞∑

m,n=0
cm,nu

2m+1
(
u

v

)n
+ πg2

2 cosh(πµ)gh(u, v) 0 < u < v < 1 , (4.36)

where

gh(u, v) = − i2 cosh(πµ)
Γ
(

1
4 + iµ

2

)
Γ
(

1
4 −

iµ
2

)
Γ
(

3
4 + iµ

2

)
Γ
(

3
4 −

iµ
2

)f+(u+ iε)f+(v + iε) (4.37)

+
(

1− i

2 cosh(πµ)
) Γ

(
3
4 + iµ

2

)
Γ
(

3
4 −

iµ
2

)
Γ
(

1
4 + iµ

2

)
Γ
(

1
4 −

iµ
2

)f−(u+ iε)f−(v + iε)

+ i

2 cosh(πµ)f+(u+ iε)f−(v + iε)−
(

1− i

2 cosh(πµ)
)
f−(u+ iε)f+(v + iε) ,

cmn = (−1)n(n+ 1)(n+ 2) . . . (n+ 2m)[(
n+ 1

2

)2
+ µ2

] [(
n+ 5

2

)2
+ µ2

]
. . .

[(
n+ 1

2 + 2m
)2

+ µ2
] .
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Two remarks are in order about this result. First, due to the discontinuity of the basis
functions across u, v ∈ [0, 1], the iε term had to be inserted inside the arguments of f±.
Secondly, the expression (4.36) can be readily used even if v was bigger than one, as long
as u remains less than v hence guaranteeing the convergence of the series. In summary, the
formula (4.36) together with (4.35) defines the correlator F̂ (u, v) across the entire span of
the (u, v) space.

4.5 Asymptotic limits of the seed correlator

Large energy ratios

In the z � max{1, µ} regime, f± can be approximated by the series expansion

f+(z) = 1 + 1
z2

(
µ2

2 + 1
8

)
+ . . . , (4.38)

f−(z) = 2
z

+ 1
z3

(
µ2

3 + 3
4

)
+ . . . . (4.39)

Inserting the above expressions in (4.35) and keeping only the leading order terms in u−1

and v−1, we arrive at

F̂asymp = g2
(1
u

+ 1
v

)(
log

( 1
C(µ)

uv

u+ v

)
+ 1− γE

)
, u, v ∈ R+ , u, v � max{1, µ}

(4.40)

where we have defined

C(µ) = 2 exp
(1

2H−1/4+iµ/2 + 1
2H−1/4−iµ/2 − γE

)
. (4.41)

This simple formula for F̂asympt will subsequently generate analytical expressions for the
correlators of π (associated with diagrams A, B1 and B2) in the cs � 1 regime. Notice that
the usual non-analyticities due to particle production, which enter the correlator through
oscillatory factors such as u±iµ, are absent in F̂asympt. This owes to the fact that we are
expanding the correlator around u, v =∞, while u/v is held fixed. In contrast, the branch
cut attributed to the particle production is visible only in the vicinity of the origin (i.e. u
or v equal to zero), as we will review shortly.

It can be verified that there is no contribution to F̂ at order 1/u2 or 1/v2, and the first
correction to (4.40) arises at order O( 1

uv ), given by

∆F̂2 = g2
Γ
(

3
4 + iµ

)
Γ
(

3
4 − iµ

)
πuv

. (4.42)

As long as u and v are large, this correction remains small since it does not grow with
µ (in fact, Γ(3

4 + iµ)Γ(3
4 − iµ) < Γ(3

4)2 for real µ). However, the NNLO term, namely
the cubic order terms in inverse powers of u and v, eventually dominates over F̂asymp
for µ & max{u, v}, invalidating the asymptotic formula above (see equation (B.1) in
appendix B).
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Figure 8. The four-point function F̂ (u, v) multiplied by mass squared as a function of µ, for
fixed values of u and v. Left: The dashed line indicates Fasympt (4.40). The 1/µ2 behaviour of
F̂ (u � 1, v � 1) is not reached before µ grows larger than max(u, v). Right: In contrast to the
previous case, when u and v are both within the unit disk, F̂ starts to decay as 1/µ2 for µ & 1. In
both diagrams we have normalized to g = 1.

Notice that the mass of σ enters the asymptotic correlator (4.40) only through the
C(µ) factor, which goes as

lim
µ�1

C(µ) = µ− 1
24µ +O(µ−2) (4.43)

in the large mass limit. Actually, this behaviour is accurate already for µ & 1, while for
smaller values, C(µ) deviates from this behaviour to monotonously reach the constant value
0.68 at µ = 0. All in all, one can qualitatively remember that for all masses m ≥ 3/2H as
relevant here, C(µ) can be thought of as simply ≈ m/H. Therefore, according to (4.40),
intermediate heavy fields that are still lighter than max{u, v}×H induce four point-functions
that vary with the mass but only logarithmically — they are not suppressed by the inverse
power of mass squared, nor by the Boltzmann factor exp(−πµ) that characterises the
particle production effects in dS space. For very heavy particles, the µ−2 decline in the
correlator is expected from an EFT standpoint: once σ is integrated out (at tree-level and
at leading order in derivatives to yield a local EFT) it can impact the correlators of ϕ only
through the quartic EFT operator g2

H2(µ2+9/4)ϕ
4, leading to the anticipated µ−2 decay. In

fact, we recover this behaviour in the large mass limit once we include the corrections to
F̂asympt which become important for µ� max{u, v}, as illustrated in figure 8. In contrast,
for the ordinary case of u and v both lying within the unit disk, according to figure 8 the
correlator starts to decay as µ−2 as soon as µ grows larger than unity. Naturally, these
observations, formulated in term of the seed four-point correlator, matches the discussion
on the two qualitatively different regimes of the exchanged field being lighter or heavier
than H/cs in section 2.1, and that will be further elaborated upon in sections 5 and 6.
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Small energy ratio u� 1

The ultra-squeezed configuration of the bispectrum, such that kL
kS
� cs, can be deduced from

F̂ by sending u→ 0 while keeping the second argument at the fixed value v = 1/cs. This
limit corresponds to a collapsed quadrilateral with two of its adjacent sides approaching zero.
In this kinematical limit, the four-point F̂ becomes entirely dominated by the homogeneous
solution gh in (4.36), and is given by

lim
u→0,v=1/cs

F̂ = πg2

2 cosh(πµ)
∑
±
ξ±(cs, µ)u

1
2±iµ , (4.44)

where

ξ−= 1
π

2− 3
2 +iµ

Γ
(

1
2 +iµ

)(isinh(πµ)−1)Γ(iµ) (4.45)

×
[
Γ(3/4+iµ/2)Γ(3/4−iµ/2)f−(c−1

s +iε)−Γ(1/4+iµ/2)Γ(1/4−iµ/2)f+(c−1
s +iε)

]
,

ξ+ = ξ−(µ→−µ) .

In the asymptotic form (4.44), the non-analytic dependence on the energy ratio u through
the oscillatory phases u±iµ is the famous hallmark of particle production in de Sitter
spacetime. We will discuss the dependence of this signal on cs and µ in section 5.2.2.

5 Inflationary correlators and the low speed collider

5.1 Power spectrum

The power spectrum for arbitrary cs is analytically given by equation (3.31) and is plotted
in figure 9 as a function of cs and µ. In the regime csm/H � 1, the fractional shift in the
power spectrum of ζ induced by the exchange of σ follows from (3.31) and (4.40):

∆Pζ
Pζ

= 2ρ2c2
s

H2

(
log

( 1
2csC(µ)

)
+ 1− γE

)
for cs

m

H
� 1 . (5.1)

The fractional correction to the power spectrum has been computed numerically in [9]
from the bulk picture, and our analytical formula agrees with the results there (figure 5).
Moreover, it has been observed to vanish more rapidly than cs in the low sound speed
limit. Our analytical result (5.1) confirms this, and additionally provides one with the
corresponding cs-dependence analytically, including the unusual logarithmic dependence.
Just like the asymptotic limit of the four-point seed function (4.40), the correction to
the power spectrum (5.1) decreases with m/H only logarithmically. Nevertheless, as we
discussed in section 4.5, this growth eventually turns into the 1/µ2 fall off behaviour once
we consider the order one corrections to (4.40) (and the subsequent correction to the above
formula) that arise for µ & 1/cs (see figure 9).

The logarithmic mass dependence of the power spectrum is a sign that, within the
mass range 1 � m/H � 1/cs, the intermediate heavy field cannot be integrated out to
yield a local action with terms suppressed by powers of 1/m2. At first glance, this might
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Figure 9. Left: The fractional shift in the power spectrum of ζ (due to the exchange of σ) as a
function of the speed of sound. The black curve is the exact result (3.31), and the dashed red is the
asymptotic behaviour (5.1) for a small enough mass csm/H � 1. Right: The same quantities for
different values of µ. As expected, for masses in Hubble units of order 1/cs and heavier (in this case
µ ∼ 10) the small sound speed results starts to deviate from the exact one. In both diagrams we
have set ρ/H = 1.

seem at odds with the ordinary EFT reasoning: the energy scale at which the cosmological
correlators are generated is Hubble, and we expect heavier degrees of freedom to be irrelevant.
This argument has an important caveat that we can integrate out only those fields that
are non-relativistic at the time of sound-horizon crossing. Fluctuations of π at this time
have energies of order Hubble. However, the gradient energy of the σ fluctuations with the
same spatial scale is of order H/cs. This shows that every degree of freedom lighter than
H/cs should be kept in the EFT as a dynamical field simply because, at the sound-horizon
crossing, its gradient energy is comparable to its mass, namely it is relativistic. The origin
of the logarithmic mass dependence of the power spectrum will be transparent within the
non-local EFT studied in section 6.

5.2 Bispectrum

5.2.1 Generic configurations

Acting with the weight-shifting operators given by (3.34) on the asymptotic form of the
four-point function F̂ (u, v) in (4.40), one can obtain the bispectra associated with Diagrams
B1 and B2, up to leading order in cs. After summing over all three channels (in other
words, symmetrising among k1, k2 and k3), we find

BB1
low speed(k1, k2, k3) = (−α1c

2
s)
e2

2−2e1e3
e1e3

3
= (−α1c

2
s)

∑
i<j k

2
i k

2
j

(k1k2k3)3(k1 +k2 +k3) , (5.2)

BB2
low speed(k1, k2, k3) =

(
α2cs

2

) 1
e3

3e1

[
−(γE +1)e4

1 +(3+4γE)e2
1e2 (5.3)

−2e2
2−(6γE +2)e1e3−e1

3∑
a=1

ka(e2
1−2e2−2k2

a) log
(

ka
csC(µ)e1

)]
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where ei’s are the symmetric polynomials, i.e.

e1 = k1 + k2 + k3 , e2 = k1k2 + k1k3 + k2k3 , e3 = k1k2k3 .

In order to derive the above formulae we assumed that, for all channels, the energy ratio u
(which is equal to k3

cs(k1+k2) for the s-channel) is much bigger than µ and unity, whichever is
the maximum. This condition is equivalent to:

cs
m

H
� min

{
k1

k2 + k3
,

k2
k1 + k3

,
k3

k1 + k2

}
. (5.4)

In other words, the asymptotic forms of the bispectra presented above are applicable only in
the regime csm/H � 1 of particular interest, and for not too squeezed triangles, i.e. it holds
for kL/kS � csm/H. We will see later how the bispectrum behaves when these conditions
are not met, first in the ultra-squeezed configurations in 5.2.2, second in the complementary
region of extended equilateral configurations O(1)cs mH . kL/kS 6 1, in sections 5.2.3 and 6,
covering all values of cs and of m/H.

Let us now highlight the interesting features of (5.2)–(5.3):

• The low speed bispectrum associated with Diagram B1 does not depend on the
intermediate mass at all. From the boundary point of view, this is so because
the only mass-dependent combination in the asymptotic four-point function (4.3) is
proportional to (1/u+ 1/v) which gets annihilated by the weight-shifting operator
(2∂u + u∂2

u). In contrast, Diagram B2 in the cs � 1 limit varies with mass through
C(µ). Nevertheless, much like the power spectrum, both diagrams start to decay like
1/µ2 when the intermediate field becomes much heavier than H/cs (for which the
cs � 1 approximation above is not valid). The logarithmic mass dependence of the
bispectrum finds a simple explanation in terms of the effective non-local single field
theory which we discuss in detail in section 6. Equivalently, as we described intuitively
in 2, this logarithmic dependence can be seen as a consequence of an IR “divergence”
between sound horizon crossing of the short mode and mass crossing of the long one.
Given that ∂iπ/a decays more slowly outside the sound horizon than π̇ (like η versus
η2), one can convince oneself from the bulk integrals that only diagram B2 is affected
by that effect, explaining the difference in that respect between (5.2) and (5.3).

• The kT = 0 singularity of the bispectrum directly follows from the total energy
singularity of the four-point seed function (at u = −v). But since the above analytical
formulae for the bispectra are very simple, as a non-trivial cross-check, here we directly
look at their amplitude limit. Around the total energy pole (kT = cse1 = 0), both
diagrams behave as

lim
e1→0

BB1,B2
low speed ∝

e2
2

e1e3
3
. (5.5)

This accords with the general relationship between the correlator and the associated
amplitude given in equation 4.35 of [84], which reduces to

lim
kT→0

Bζ = constant× Re
(

iA3
kpTk

2
1k

2
2k

2
3

)
, (5.6)
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for the special case of the three-point function. Here A3 stands for the three-particle
amplitude due to the exchange of σ. To verify this equation, we first observe that in
both cases the degree of the total energy singularity is unity (i.e. p = 1). According
to the formula (3.42), this simply follows from the dimensions of the vertices, namely
[π̇cσ] = 3 and [π̇2

cσ] = [(∂iπc)2σ] = 5. Second, we need the flat space amplitudes
associated with Diagrams B1 and B2 (summed over all channels), both of which
simplify to

lim
cs�1

AB1,B2
3 (k1, k2, k3) = constant× e2

2
e3
, (5.7)

at low speeds. Comparing this result with the right-hand side of (5.5) confirms the ex-
pected relation between the three-point function and the three particle amplitude (5.6).
As an aside, notice that the proportionality of AB1

3 and AB2
3 was not an accident. It

is due to the fact that the vertices π̇2σ and (∂iπ)2σ are related through the equation
of motion of π accompanied with the field redefinition π → π + πσ.

• Unlike the ultra-squeezed regime (i.e. kL/kS � csm/H), equations (5.2)–(5.3) apply
to the mildly-squeezed configurations, such that

cs
m

H
� kL

kS
� 1 , mildly-squeezed regime . (5.8)

In this limit, one finds

lim
csm/H�

kL
kS
�1
BB1
low speed = 1

2π

(
cs
Pζ

) 1
2 ( ρ

Λ1

)
Pζ(kL)Pζ(kS)

(
1− kL

2kS
+O

(
k3
L
k3
S

))
(5.9)

lim
csm/H�

kL
kS
�1
BB2
low speed = −1

2π

(
cs
Pζ

) 1
2 ( ρ

Λ2

)
(5.10)

×Pζ(kL)Pζ(kS)
(

5+ kL
2kS

[
19+4γE−4 log

(
kL

4csµkS

)]
+O

(
k3
L

k3
S

))
.

This behaviour, coinciding at leading order in kL/kS with the one of the local shape,
violates Maldacena’s single-clock consistency condition [126, 127], implying that the
asymptotic expressions (5.2)–(5.3) cannot be mimicked by any local cubic operator
involving π only. Naturally, this is consistent with the fact that for a small sound
speed and in the window of mass m/H � 1/cs, the heavy field σ can be integrated
out (see section 6), albeit only to yield a Lagrangian that is non-local in space.
It is customary to define the shape function of the bispectrum, such that

Bζ(k1, k2, k3) = (2π)4S(k1, k2, k3)
(k1k2k3)2 A2

s (5.11)

where As denotes the amplitude of the curvature power spectrum, which in the scale
invariant limit, and neglecting the small corrections from the exchange of the massive
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Figure 10. The shapes of the bispectra S(k1/k3, k2/k3), normalized to unity in the equilateral
limit (k1 = k2 = k3), for Diagram B1 (left) and Diagram B2 (right). Here we have set cs = 3× 10−2

and µ = 2. Both the approximate local-shape behaviour eqs. (5.9)–(5.10), and the resonances near
squeezed configurations typical of the low speed collider are well visible.

field, simply coincides with Pζ in eq. (3.32). We will discuss the amplitudes of the
non-Gaussian signals studied here in section 5.2.4, but their shapes, normalized to
unity in the equilateral limit, can be seen in figure 10. The behaviours (5.9)–(5.10),
implying a power-law growth proportional to (kS/kL) in the mildly-squeezed regime,
are readily visible. As we will discuss shortly, the corrections to (5.2)–(5.3) tame this
growth as triangles become more squeezed, leaving behind bump-like features around
kL/kS ∼ csm/H, also well visible.

5.2.2 Ultra-squeezed configurations

In the ultra-squeezed limit kL
2cskS → 0, the bispectra are found by acting with the weight-

shifting operators (3.34) on the asymptotic formula (4.44). The overall behaviour of the
ultra-squeezed bispectrum is not qualitatively different than that of the canonical case,
in which the signal is characterised by oscillations in log(kL/kS) with frequency µ and an
amplitude that decays as (kL/kS)3/2. Nonetheless, the amplitude and the phases of the
oscillations are subject to important modifications sensitive to cs. The analytical formulae
for the bispectra in this limit are given by:

lim
kL�2cskS

BB1,B2
ζ = AB1,B2(cs, µ)Pζ(kL)Pζ(kS) (5.12)

×
(
kL
kS

) 3
2

cos
(
µ log

(
kL

2cskS

)
+ φB1,B2(cs, µ)

)
,

where

AB1 = −
(
(4µ2 + 5)2 − 16

) 1
2

25/2πcsP
1
2
ζ

(
ρ

Λ1

)
π

cosh(πµ) |ξ+(cs, µ)| , (5.13)
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AB2 = (9µ2/4 + 1) 1
2

πcsP
1
2
ζ

(
ρ

Λ2

)
π

cosh(πµ) |ξ+(cs, µ)| ,

φB1 = Arg[(−µ2 + 2iµ+ 3/4)ξ+(cs, µ)]
φB2 = Arg[(1 + 2iµ/3)ξ+(cs, µ)]

and we recall that ξ+(cs, µ) is defined in eq. (4.45). These expressions simplify for large
masses µ� 1, as long as csµ� 1. To see this, we use eqs. (4.38)–(4.39) to find

lim
1�µ�c−1

s

ξ+ = −2−3/2(1− i)
µ

2−iµeπµ/2 . (5.14)

For larger masses, i.e. µ & c−1
s , one can check that a slightly modified version of the above

formula, namely

lim
1�µ, cs�1

ξ+ ≈ −
2−3/2(1− i)

µ
2−iµe(

π
2−cs)µ , (5.15)

still captures the overall behaviour of ξ+ as soon as cs 6 0.1. In conclusion, for µ � 1
we find

lim
1�µ, cs�1

AB1 = − 1

25/2csP
1
2
ζ

(
ρ

Λ1

)
µ e−(π2 +cs)µ , lim

1�µ, cs�1
φB1 = −π4 − µ log(2) (5.16)

lim
1�µ, cs�1

AB2 = 3
2

1

csP
1
2
ζ

(
ρ

Λ2

)
e−(π2 +cs)µ , lim

1�µ, cs�1
φB2 = 5π

4 − µ log(2) . (5.17)

In [9], it was noted that the conventional Boltzmann suppression factor exp(−πµ) for
cs = 1 was turned into exp(−πµ/2) for a sufficiently low speed of sound. Our analysis both
confirms this and gives the more accurate dependencies (5.16)–(5.17) in exp(−(π/2 + cs)µ),
with (5.15) being very accurate already for cs 6 0.1 and µ ≥ 5.

As a final remark, notice that the ultra-squeezed limit formula (5.12) receive corrections
from a few sources: (i) the particular solution to F̂ (u, v) (i.e. the first term in (4.36)), (ii)
the subleading terms in the series expansion of f± around u = 0, and (iii) the t− and
u-channels that have been neglected in eq. (4.44). At leading order in u and for large
µ’s, (i) is of order u/µ2 and is therefore always suppressed, as long as u . 1. However,
corrections from point (ii) are small only if u � µ−1/2 . 1. The contribution of the
other two channels to the three-point function scale as P (kL)P (kS)(kL/kS)2, and hence are
eventually subdominant in sufficiently squeezed configurations.18 By and large, asking these
corrections to be small refines the regime of the validity of (5.12) by updating the upper
bounds on kL/kS. For each diagram we find:

Diagram B1: kL
kS
� min{2csµ−1/2, 2c−3

s µ2e−(π+2cs)µ} , (5.18)

Diagram B2: kL
kS
� min{2csµ−1/2, 2c−3

s e−(π+2cs)µ} ,

where we have implicitly assumed µ & 1.
18This is true only for the bispectrum. For F̂ , however, the other two channels contribute an offset given

by F̂offset ∼ −4g2cs (log(2µcs) + γE − 1) to the oscillatory part of F̂ in equation (4.44).
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5.2.3 Low speed resonances

The analytic expressions for the bispectra, given as inputs an arbitrary speed of sound, the
mass of the intermediate field and the triangle configuration, are provided by eq. (3.34)
alongside (4.35)–(4.36) and eqs. (4.9)–(4.12). Before discussing the amplitudes of the
bispectra in section 5.2.4, here we concentrate on characterising their overall shapes.
Hence, in figures 11, 12 and 13, we plot the shape function (defined in (5.11)) in isosceles
configurations (i.e. k1 = k2), normalized to unity for equilateral triangles, for various values
of the parameters cs and µ, for both diagrams B1 and B2. We cover all types of triangles by
varying the ratio k3

2k1
from small values for squeezed triangles, through 1/2 for equilateral

configurations, to 1 for flattened ones. When relevant and for comparison, we also plot
the corresponding low speed signal (5.2)–(5.3) (orange dashed), the cosmological collider
one (5.12) (red dashed), as well as the standard local EFT one (blue dashed) that would
result from integrating out the heavy field (see e.g. the discussion around eq. (2.5)). The
main characteristics of the signals are as follows:

• Let us first concentrate on the qualitatively new regime of particular interest, i.e.
small cs and csm/H (figure 11). There, the B2 shape is characterised by a pronounced
“resonance” where it reaches its maximum, around k3/k1 ' csm/H. This bump of
symmetric profile (in logarithmic scale) has an amplitude (compared to the equilateral
configuration) that grows as cs or/and m/H diminishes, with an enhancement factor
∼ O(1)/(5csµ). Away from the resonance, one can see that the low speed result
for larger values of k3/k1, and the cosmological collider one for smaller values, very
well describe the signal. The latter remark also applies to the B1 shape, but its
resonance signal is more complex: not only does it comprise a local positive maximum,
attained for k3/k1 ' 2csm/H and with an enhancement ∼ O(1)/(10csµ); but it
is also characterised by a second “resonance” for more squeezed triangles k3/k1 '
0.5csm/H , at which the signal reaches a local (negative) extremum of similar amplitude.
Eventually, the shape goes to zero between the two extrema at the intermediate value
k3/k1 ' csm/H.

• As one increases µ, roughly above 0.1/cs for Diagram B1 and 0.2/cs for Diagram B2,
the extremum of the shape B2 fades away, as well as the upward peak of shape B1.
Instead, the downward peak of shape B1 remains distinctly visible even at larger values
(see the plot (µ = 5, cs = 0.1) in figure 12), before it eventually also fades away as µ
approaches 1/cs.19 Eventually, note that even when the resonances have disappeared
and the shapes monotonously decrease from equilateral to squeezed triangles (where
the oscillations appear), the shapes significantly differ from those of the local EFT
cubic operators π̇3 (for Diagram B1) or π̇(∂iπ)2 (for Diagram B2) if one has not
reached the regime µ� 1/cs (see e.g. figure 12 top right).

19For 0.6 . csµ . 1, one can check that the downward extremum turns upward (before fading away for
larger values). However, this is an artefact of considering the shape normalized to its value in the equilateral
limit. One can check indeed that the shape function there changes sign around csµ ' 0.6, whereas the shape
at the location of the (downward) resonance is always of the same sign (the one of α1).
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Figure 11. Shapes S(k1, k1, k3) of the bispectra for isosceles triangles, normalized to unity in
equilateral configurations, for diagrams B1 (left) and B2 (right), and for (µ = 1, cs = 0.01) (top)
and (µ = 1, cs = 0.1) (bottom). The dashed red and orange curves represent respectively the
ultra-squeezed (5.12) and the low speed signals (5.2)–(5.3).

• The features described above are characteristic of a subluminal speed of propagation
for π. In other words, for a speed of sound close to unity, the two shapes monotonously
decrease from unity (at k3/k1 = 1) before reaching the oscillatory phase (see figure 12,
bottom, for cs = 0.7).

• Eventually, note that in the large mass limit µ� 1, the character of the resonances
becomes maximally distinct from that of the particle production effect in dS space.
This is so because increasing the mass of the intermediate field makes the oscillations in
the ultra-squeezed regime exponentially dim, irrespective of the value of cs. Conversely,
the resonances characteristic of the low speed collider survives as long as we keep
cs . µ−1 (see figure 13).
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Figure 12. Shapes S(k1, k1, k3) of the bispectra for isosceles triangles, normalized to unity in
equilateral configurations, for diagrams B1 (left) and B2 (right), and for (µ = 5, cs = 0.1) (top)
and (µ = 2.2, cs = 0.7) (bottom). The dashed red and blue curves represent respectively the
ultra-squeezed signal (5.12) and the one that would result from the local EFT after integrating out
the heavy field.

5.2.4 Size of non-Gaussianity and perturbativity

So far, we have concentrated on characterising the shape of the bispectrum, but we now
discuss its amplitude. As customary, a convenient overall measure of the bispectrum is
the amplitude of the shape function in the equilateral configuration, more precisely, with
the usual convention, the parameter fNL = 10

9 S(k, k, k). This provides a fair estimate of
the signal for m� H/cs, for which the shapes are maximal in equilateral configurations
and the dependence on parameters anyway follows from the usual EFT treatment. For
the new regime of interest m � H/cs, the shapes are maximal near the resonances, but
the enhancement of the signal there compared to the equilateral limit is known, going
as (csm/H)−1 (see the previous section), so we first stick to the usual fNL parameter for
simplicity, and concentrate on this most interesting regime.
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Figure 13. Shapes S(k1, k1, k3) of the bispectra for isosceles triangles, normalized to unity in
equilateral configurations, for diagrams B1 (left) and B2 (right) and (µ = 10, cs = 0.01).

From the definition of the shape (5.11), the expression (3.32) for the leading-order
power spectrum, and the results (5.2)–(5.3) for the bispectra, one then finds

f
(1)
NL = 5

18π
ρ

Λ1

(
cs
Pζ

) 1
2

, f
(2)
NL = 5

36π
ρ

Λ2

(
cs
Pζ

) 1
2
[
8−3γE+3 ln

( 1
3csC(µ)

)]
, for cs

m

H
� 1 ,

(5.19)
for diagrams B1 and B2 respectively. Except for the mild and understood logarithmic
dependence on csC(µ) for diagram B2, both thus share the parametric dependence fNL ∼
ρ

Λ1,2

(
cs
Pζ

) 1
2 . It is instructing to discuss first diagram B2, as remember that the scale Λ2

suppressing the corresponding cubic interaction is determined by the quadratic coupling ρ
through the non-linearly realised symmetry of time-diffeomorphism invariance, i.e. both
terms come from the interaction proportional to ρδg00σ in the unitary gauge, see the
discussion after eq. (2.3) and the explicit relation (2.4).20 The latter can be simply rewritten

in terms of the amplitude of the power spectrum as H
Λ2

(
cs
Pζ

) 1
2 = −π ρ

H , in such a way that
f

(2)
NL simplifies to

f
(2)
NL = − 5

36

(
ρ

H

)2
[
8− 3γE + 3 ln

( 1
3csC(µ)

)]
, (5.20)

20We are assuming that cσ = 1, so that no rescaling of the spatial coordinates is needed for our analysis to
apply. It is straightforward to generalise our results to more general cases, but it would make the discussion
more complex without much physical differences: we are interested in the qualitatively new regime in
which the ratio between the speed of π and the one of σ is small. If we stick to subluminal propagation
speeds, and consider the lower bound on the speed of propagation of π coming from Planck constraints [96],
cs ≥ 0.021(95%CL), or even simply the lower bound on cs to prevent strong coupling c2

s �
√
Pζ , the speed

of propagation of σ can not appreciably deviate from the speed of light.
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i.e. the amplitude of the non-Gaussian signal from diagram B2 is tied to the amplitude of
the quadratic coupling.21

At first sight, this seems to limit the size of the bispectrum to tiny values, as one
may think that the requirement of treating perturbatively the quadratic coupling requires
(ρ/H)2 � 1. However, more room is actually left in our situation of interest. It is actually
not completely straightforward to assess what is the correct perturbativity criterion. For
instance, from the correction to the power spectrum coming from the exchange of σ that
scales as ∆P/P ∼ (ρ/H)2c2

s for csm/H � 1 (see eq. (5.1) and neglecting the logarithmic
dependence), one may think that the bound is considerably weakened to (ρ/H)2 � 1/c2

s.
Instead, if one uses the standard lore criterion that the quadratic mixing term should be
negligible compared to the rest of the quadratic action around the relevant time characteristic
of the dynamics of π, namely around sound horizon crossing, one straightforwardly finds
instead a more stringent bound (ρ/H)2 � 1/cs. However, none of these reasonings are
actually correct. Quite simply, the perturbative treatment of the quadratic coupling is
warranted if and only if the uncoupled mode functions of π and σ, which are taken as
building blocks in the perturbative approach, faithfully reproduce the dynamics governed
by the full quadratic action. If this is the case, then the use of these uncoupled mode
functions will provide a correct approximation to the computation of both 2-point, but also
3-point and all higher-order correlation functions. However, one can numerically compute
all correlation functions and assess the accuracy of the perturbative approach against exact
(numerical) results, and one can check that this requires ρ . m in the regime of interest.
This ensures that the dynamics of σ is not substantially modified by the coupling to πc.
One should keep in mind indeed the asymmetry between the two fields: the power spectrum
of πc is much larger than the one of σ at all times. For instance, around sound horizon
crossing for πc, when σ is still sub-Hubble, πc ∼ 1√

cs
σ, and the hierarchy is even bigger at

later times when (the uncoupled) πc has frozen and σ has further decayed. This hierarchy
also intuitively explains why the correction to the power spectrum is smaller than just what
the perturbativity bound would imply, (∆P/P )/(ρ/m)2 ∼ (csm/H)2 � 1: even when one
approaches the perturbative bound and the dynamics of σ is substantially modified by the
coupling to πc, the effect on πc of much larger amplitude is comparatively much weaker.

As the discussion above points out once more, the existence of the two sound speeds and
hence of different characteristic times (by contrast to only sound horizon crossing usually) is
such that conventional back-of the envelope estimates do not hold. For instance, comparing
the size of the cubic action compared to the quadratic one at sound horizon crossing would
give H/Λ1,2 � cs, which do not necessarily encode the correct criterion for treating the
cubic interactions perturbatively. Such a proxy for the full computation is not needed
though: we have computed the non-Gaussian signal, of size fNL ∼ (ρ/H)2 . (m/H)2, and
it largely satisfies the perturbative criterion fNL

√
Pζ � 1.22 The non-Gaussian signal in the

equilateral configuration can thus be observationally large, scaling like fNL ∼ (m/H)2 � 1
21From eqs. (3.37), one can easily deduce that the dimensionless amplitude of the trispectrum in generic

configurations parametrically reads τNL ∼ 1
c2

s

(
ρ
H

)2.
22We implicitly consider that natural values of Λ1 are of order Λ2, in which case the two cubic interactions

are suppressed by the same scale.
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when saturating the parametric bound for treating ρ perturbatively. However, one should
keep in mind that the bispectrum signals we have computed add to the unavoidable one
generated by the derivative self-interactions of π in (2.1), overall of equilateral type and
of amplitude 1/c2

s. Our signal is hence a subdominant component to the total one in the
equilateral configuration, although, as we will see below, it is actually not negligible when
taking into account all numerical factors beyond the scalings here.

More importantly, as we have stressed, the signal induced by the interactions with the
heavy field is enhanced near the resonances compared to the one in equilateral configuration,
scaling like f resNL ∼ 1/(csm/H)(ρ/H)2. At the same time, the standard EFT shapes decrease
in the squeezed limit like kL/kS, so that the “contamination” from the self-interactions of π,
in the resonance region kL/kS ∼ csm/H , is only f contamination

NL ∼ m/(Hcs). The ratio of the
two is thus f resNL/f

contamination
NL ∼ (ρ/m)2, so that the two signals can become of the same

amplitude there, leading to visible resonances. Beyond these instructive scalings, these
features can be confirmed quantitatively by explicitly representing the total signal including
all numerical factors, as can be seen in figure 14 for the representative set of parameters
(cs = 0.05, µ = 2) and for various values of ρ ∼ µ. For simplicity, there, we only showed the
part of the signal that is entirely fixed by symmetries. Namely, for the self-interactions of π,
we took into account only the one in π̇(∂iπ)2, and for the interactions with σ, we similarly
only considered the one in σ(∂iπ)2 (Diagram B2). We checked that the contribution from
Diagram B1 does not change the picture for Λ1 ∼ Λ2, although of course, the effect of
the resonance can be made even more visible by considering smaller values of Λ1, or/and
fine-tuning the value of the Wilson coefficient A in (2.1). We note that the resonance signal
from Diagram B2 is always negative (see (5.20) and the shapes e.g. in figure 11), just like
the one from the π̇(∂iπ)2 interaction, hence the fact that the total signal does not present a
dip, but truly a bump-like feature. Given these results, it would naturally be interesting to
further study our setup by treating the π̇σ interaction non-perturbatively, which we leave
for future work.

6 Non-local single field effective field theory

In the previous section we saw that the exchange of heavy supersonic particles between the
curvature fluctuations leaves a characteristic imprint as resonances in the shape of the three-
point correlation function as long as the massive field is lighter than H/cs. Moreover, the
variation of the two- and three-point functions with respect to the mass of the intermediate
particle is only logarithmic. In this section, we show that both of these properties, and
more generally the features of the signal that are not attributed to the non-perturbative
particle production, can be explained by estimating the corresponding exchange diagram
with a non-local contact interaction that emerges after integrating out the heavy field. We
provide a number of numerical and analytical justifications in favor of such approximation
for µ & O(1). At the same time, we demonstrate that the (non-local) single field description
breaks down when µ . 1 or when the three-point function configuration is ultra-squeezed.
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Figure 14. Shape S(k1, k1, k3) of the total bispectrum for isosceles triangles, found by adding the
effects from the self-interactions in π̇(∂iπ)2 and the effect of Diagram B2 (see the main text), for
cs = 0.05, µ = 2 and ρ/m = (0, 2, 3, 4) (black, brown, blue, red).

6.1 Mode function analysis

It is most convenient to look at the four-point seed function F̂ (u, v) in order to establish
the regime of validity of the (non-local) single field picture. It goes without saying that the
same single-field description will apply to the desired three-point functions. Nevertheless,
it is sufficient for us to look back at the four-point function, and the three-points simply
follow from the weight-shifting operators acted on F̂ (u, v). To that end and at the cost of
being pedantic, here we introduce a new field ϕ̃ that propagates with the speed of sound cs
and has the same mass and cubic interaction as those of the ϕ field, namely m2 = 2H2 and
gϕ̃2σ (remember that ϕ propagates at speed one). As a result, the four-point function of
ϕ̃ due to the exchange of σ is the same as F̂ (u, v) where this time u and v are manifestly
cs-dependent, namely we have

u = s

cs(k1 + k2) , v = s

cs(k3 + k4) . (6.1)

Before studying the cosmological four-point correlator, let us first look at this field theory
in the H → 0 limit (with m held fixed) by computing the two-to-two scattering of the ϕ̃
particles due to the tree-level exchange of σ. The answer is given by

A (ϕ̃(p1)ϕ̃(p2)→ ϕ̃(p3)ϕ̃(p4)) = g2

c2
s(p1 + p2)2 − |p1 + p2|2 −m2 + t− andu−channels ,

(6.2)

where A is the scattering amplitude, and (Ei = cspi,pi) are the 4-momenta of the ϕ̃
particles (which are all taken to be incoming such that ∑i pi = ∑

i pi = 0). Provided that
the ratios

c2
s(p1 + p2)2

|p1 + p2|2 +m2 ,
c2
s(p1 + p3)2

|p1 + p3|2 +m2 , and
c2
s(p1 + p4)2

|p1 + p4|2 +m2 (6.3)
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are small, the resulting scattering amplitude at leading order in cs becomes

A2ϕ̃→2ϕ̃ ≈ −
g2

|p1 + p2|2 +m2 + t− andu−channels . (6.4)

At this order in cs, this amplitude arises from neglecting the time derivative of σ compared
to its spatial derivatives, which amounts to treating σ as a non-dynamical field that can be
solved in terms of ϕ̃, i.e.

σ ≈ 1
−∇2 +m2 gϕ̃

2 . (6.5)

Inserting σ back inside the Lagrangian, we obtain a single field theory for ϕ̃ characterised
by a non-local quartic interaction

LI = g2

2 ϕ̃
2 1
−∇2 +m2 ϕ̃

2 . (6.6)

Obviously, this quartic non-local contact term generates the same 2-to-2 amplitude as (6.4).
In fact, the corrections to (6.4) can be captured by adding an infinite tower of operators

that are organized in powers of ∂2
t . These operators simply follow from solving σ as

σ = 1
−�+m2 g ϕ

2 = g

−∇2 +m2

∞∑
n=0

(
−∂2

t

−∇2 +m2

)n
ϕ̃2 , (6.7)

and plugging it back inside the action to find

LI = g2

2 ϕ̃
2 1
−∇2 +m2

∞∑
n=0

(
−∂2

t

−∇2 +m2

)n
ϕ̃2 . (6.8)

It might seem straightforward to use the same picture as above in the cosmological setting
by neglecting the time derivatives of σ in the exchange diagram of interest. However, the
analysis gets more complicated due to the time dependence of the background. Before
making further progress, it proves useful to switch to the following field variables

Σ ≡ a2(η)σ , f = a(η)ϕ̃ , (6.9)

in terms of which the Lagrangian becomes

S =
∫
dη

(
1
2f
′2 − c2

s

2 (∂if)2 + η2H2

2 Σ′2 − η2H2

2 (∂iΣ)2 − 1
2(m2 − 2H2)Σ2 − gf2Σ

)
.

(6.10)

The virtue of these field redefinitions is that f (aka the Sasaki-Mukhanov variable) behaves
as a massless field in flat space at all times (as a virtue of its carefully chosen mass), while
with the chosen rescaling of σ the cubic term f2Σ is left with no explicit time dependence.
In order to inspect under what circumstance the field Σ can be regarded as non-dynamical,
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it is useful to think of the exchange diagram 5 as a contribution to the quartic part of the
wavefunction of the universe at late times (i.e. η0 → 0),23 i.e.

Ψ{f(k), η0} = exp
(
− 1

2!

∫
k
ψ2(k)f(k)f(−k)− 1

4!

( 4∏
i=1

∫
ki

)
ψ4(ki)f(k1) . . . f(k4) + . . .

)
.

Here f(k) is the boundary value of the field f (in momentum space), ψn’s are the so called
wavefunction coefficients, and . . . stand for higher order corrections to the wavefunction.
To avoid cluttered notation, here we have neglected the dependence of Ψ on the boundary
value of Σ. In the tree-level approximation, the wavefunction is given by

Ψ{f(k)} = exp(iS[fcl(k, η),Σcl(k, η)]) , (6.11)

where S is the action of the theory, with fcl and Σcl satisfying the classical equations of
motion, i.e.

δS

δfcl
= δS

δΣcl
= 0 , (6.12)

which have to be solved with the following boundary conditions

fcl(k, η0) = f(k) , Σcl(k, η0) = Σ(k) , (6.13)
fcl(k,−∞(1− iε) = Σcl(k,−∞(1− iε) = 0 .

In the wavefunction approach, computing the contribution of the single-exchange diagram
in figure 5 to ψ4(k1, . . . ,k4) reduces to solving the equation of motion for Σ, which is[
H2η2∂2

η +2H2η∂η+H2η2(q1 +q2)2 +(m2−2H2)
]

Σ =−g f(q1)f(q2) exp(ics(q1 +q2)η) ,
(6.14)

with the boundary conditions (6.13) (with Σ(k) = 0, since there is no external Σ leg in the
diagram). The source on the r.h.s. of this equation is formed by the product of two factors
of fcl in the free theory, i.e.

fcl(qi, η)|free = f(qi) exp(icsqiη) , i = 1, 2 . (6.15)

Also, for the purpose of computing the s-channel contribution to ψ4, the momenta (q1,q2)
should be equated with (k1,k2) or (k3,k4). The unique solution to (6.14) can be written as

Σsol = Σ(q1, q2, η)f(q1)f(q2) . (6.16)

Subsequently, this solution should be inserted back inside the action Scl in order to compute
ψ4. Σsol is quadratic in f , hence the quartic piece in the wavefunction originates from

23For the purpose of the following discussion we do not need a thorough review of the wavefunction
method. The interested reader can look at e.g. appendix A of [84].
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two contributions, namely the kinetic term of Σ in (6.10) and the cubic interaction. The
resulting four-point up to an unimportant prefactor is

ψ4(k1, . . . ,k4) =
(
i g

∫ 0

−∞(1−iε)
dη eics(k3+k4)η Σ(k1, k2, η) + (k1,k2)↔ (k3,k4)

)
+ t− andu−channels . (6.17)

Given the quartic wavefunction coefficient ψ4, the correlator of ϕ̃ can be computed by the
following relation [125]

〈ϕ̃(k1) . . . ϕ̃(k4)〉′ = −2
( 4∏
i=1
〈ϕ̃(ki)ϕ̃(−ki)〉′

)
Reψ4(k1, . . . ,k4) . (6.18)

We are going to argue that when cs � 1, for most part of the (q1,q2) space it is a good
approximation to ignore the time derivatives of Σ in (6.14). As a result, one finds24

Σ0(q1, q2, η) = − g

H2η2(q1 + q2)2 +m2 − 2H2 e
ics(q1+q2)η . (6.19)

The obvious sanity check is to ensure that the time derivative of Σ0 are indeed negligible
compared to the r.h.s. of eq. (6.14), which is to ask

1
g

∣∣∣(H2η2∂2
η + 2H2η∂η)Σ0(q1, q2, η)

∣∣∣� 1 . (6.20)

For the s-channel, (q1, q2) can be set to (k1, k2) or (k3, k4). Therefore we arrive at two
inequalities:

∣∣∣(η2∂2
η + 2η∂η)

eics(k1+k2)η

η2s2 + µ2 + 1/4
∣∣∣� 1 ,

∣∣∣(η2∂2
η + 2η∂η)

eics(k3+k4)η

η2s2 + µ2 + 1/4
∣∣∣� 1 . (6.21)

Switching to the dimensionless variable x = sη, one finds

r(u, x) = |(x2∂2
x + 2x∂x) eix/u

x2 + µ2 + 1/4 | � 1 , (6.22)

r(v, x) = |(x2∂2
x + 2x∂x) eix/v

x2 + µ2 + 1/4 | � 1 .

In principle, we need these inequalities to hold for every η in order for Σ0 to be an accurate
solution to (6.14). However, the integrand of (6.17) (after Wick rotation) is exponentially
small when either of the comoving scales (k1 + k2) and (k3 + k4) are deep inside the sound
horizon (i.e. cs(k1 + k2)η � 1 and cs(k3 + k4)η � 1). Therefore, as far as computing the
four-point function ψ4 is concerned it is sufficient to ensure that the inequalities (6.21)
are maintained around and after the sound-horizon crossing of the aforementioned scales,

24We are forced to add a homogeneous solution to Σ0 in order to comply with the boundary condition
Σ(q1, q2, η0) = 0. However, it can be easily verified that the contribution of such piece to ψ4 vanishes once
η0 is sent to zero for heavy fields.
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namely for |x| . u (or v). Plotting r(u, x) across the |x| < u domain in figure 15, one finds
that (this can also be easily understood analytically):

• for very heavy fields (i.e. µ� 1), the ratio r(u, x) is small for every u > 0. This means
that, for large masses, the non-local single field description is accurate in describing
the exchange diagram irrespective of the four-point configuration (i.e. for any positive
values of u and v).

• for µ & 1, r(u, x) is negligible only if both u and v are much greater than one. In
other words, the single-field picture fails to reproduce F̂ (u, v) when u or v approach
unity and µ is of order 1.

• for barely heavy fields m ' 3/2H, r(u, x) becomes of order one when x nears
1/2. This is around mass crossing of the intermediate momentum, namely when
sη ∼ m/H ∼ O(1) (for the three-point function, which is related to F̂ in the soft
limit k4 → 0, this time coincides with mass crossing of the s-channel k3).

The conclusion of the above observations is that the time derivative terms in (6.14) can
be treated perturbatively when µ� 1 or when µ & 1 is an order one number but u and v
are much greater than one.

At the level of the action and zeroth order in time derivatives, the manipulations that
led to (6.17) are nothing but solving the real space equation of motion for Σ by neglecting
its time derivatives and plugging the result back inside the action to find a non-local quartic
operator. Assuming r � 1, one can even go beyond the leading order approximation and
solve Σ to full order in ∂η, finally arriving at

Σ = − g

H2
1

η2∂2
η + 2η∂η − η2∇2 + µ2 + 1

4
f2 , (6.23)

= − g

H2
1

−η2∇2 + µ2 + 1
4

∞∑
n=0

[
(η2∂2

η + 2η∂η)
−1

−η2∇2 + µ2 + 1
4

]n
f2 .

Plugging this solution back inside the action yields the following non-local EFT for ϕ̃:

LEFT = a2(η)
[

1
2 ϕ̃
′2 − c2

s

2 (∂iϕ̃)2 − a2(η)H2ϕ̃2
]

(6.24)

+ g2

2H2a
2(η)ϕ̃2 1

−η2∇2 + µ2 + 1
4

∞∑
n=0

[
(η2∂2

η + 2η∂η)
−1

−η2∇2 + µ2 + 1
4

]n
a2(η)ϕ̃2 .

By replacing the two-field action (2.2)–(2.3) with this non-local single field EFT one can
compute the corresponding seed four-point function F̂ (u, v). However, as we will discuss
shortly, the four-point function that results from summing over the infinite tower of non-local
operators above, although very informative, cannot converge to the exact answer.
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Figure 15. Plot of r(u, x) (6.22) for various values of u and µ. The validity of the EFT requires
r � 1 for |x| . u, see the text after eq. (6.22).

6.2 The four-point function from the non-local EFT

Assuming that it is legitimate to treat the time derivatives of Σ perturbatively, one can
exploit the effective non-local Lagrangian (6.24) to compute ϕ̃’s four-point function. The
equivalent of F̂ (u, v) for this four-point function is given by

F̂EFT(u, v) = −g
2

2 Im
{∫ 0

−∞
dxeix/v

1
x2 + µ2 + 1

4

∞∑
n=0
On(x, ∂x)eix/u + u↔ v

}
, (6.25)
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where

On(x, ∂x) =
[
(x2∂2

x + 2x∂x)
(

−1
x2 + µ2 + 1

4

)]n
, (6.26)

x = sη is a dimensionless time variable, and we have added the subscript “EFT” to indicate
that this four-point function is induced by the non-local EFT (6.24).

The leading order four-point function (n = 0 in (6.25)) can be re-written as

F̂n=0
EFT(u, v) = −g2

{∫ 0

−∞
dx sin

[(1
u

+ 1
v

)
x

] 1
x2 + µ2 + 1

4

}
, (6.27)

where the characteristic features of the non-local EFT appear: a single time integral owing
to the instantaneous force carried by σ leading to a contact interaction, and the competition
between the plane-wave oscillations of the cc field (the sin term) and the propagator of the
heavy field. Performing the integration results in

F̂n=0
EFT = g2 e

−cEi(c)− ecEi(−c)
2(µ2 + 1/4)1/2 , c ≡

(
µ2 + 1

4

)1/2
(1/u+ 1/v) , (6.28)

where Ei(z) is the exponential integral function. F̂n=0
EFT is plotted (for a fixed v � 1) in

figure 16, and it is contrasted with the exact answer F̂ (u, v) that equations (4.35) and (4.36)
define. Consistently with the analysis of the previous section, we find that for µ = 2, as
long as u and v are much greater than unity, F̂n=0

EFT is in perfect agreement with the exact
solution to the exchange diagram. In contrary, the mismatch between the two grows around
u ∼ 1 and the EFT result obviously does not contain the cosmological collider oscillations
at small u. As for µ = 1, somewhat surprisingly, we find little difference between the two
four-point functions, when u� 1. This might appear to contradict what we learned from
the plot of r(u, x) in figure 15, which was that (for µ . 1 and u� 1) the time derivatives
are important around x ∼ m/H ∼ O(1). In retrospect, this overall agreement shows that
integration around mass crossing of the intermediate momentum gives a tiny contribution
to the whole four-point (6.17) in these kinematical configurations. Nevertheless, unlike the
case with µ & 1, the corrections to the leading order four-point function induced by lighter
fields cannot be captured by higher derivative operators in the EFT (6.24), as demonstrated
in the left plot of figure 16. Actually, doing so only makes the predictions worse as the
would-be corrections become more and more important, signaling that the non-local EFT is
simply not applicable there. Finally, for very heavy particle µ� 1, F̂EFT almost flawlessly
reproduces the full answer, as demonstrated in figure 17.

It is instructive to draw a rough picture of the EFT four-point function behaviour
by directly looking at the bulk time integral in equation (6.27). Since we are ultimately
interested in the squeezed limit bispectrum, let us already switch to the bispectrum
kinematics by setting v = 1/cs � u = kL

2cskS . Moreover, we take the intermediate field to be
very heavy for the following discussion and refer to the integrand of (6.28) by I(x, kL/kS),
where remember that x = kLη is the dimensionless conformal time. We consider two limiting
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cases of interest, namely:

• Short mode exits the sound horizon before the mass crossing of the long mode ( kL
2cskS �

m/H): This regimes corresponds to the third timeline in figure 3. It is useful to look
at the qualitative behaviour of I(x, kL/kS) for different values of x, i.e.

I(x, kL/kS) ∼ g2



sin(2cskSx/kL)
x2 , kL

2cskS . |x| < +∞ ,

2cskS
kL

1
x
, m

H . |x| .
kL

2cskS ,

2cskS
kL

H2

m2 x , 0 < |x| . m
H .

(6.29)

The first time interval corresponds to the time span across which the short mode
is inside its sound horizon and the integrand is highly oscillatory. The second time
stretch is between the sound horizon crossing of the short mode and the mass crossing
of the long mode. During this time the massive field is relativistic, therefore we expect
that over this period the non-local interaction that it mediates (due to its supersonic
character) is the largest. On the contrary, after the mass crossing of the long mode (the
third line above), the massive particle slows down (becomes non-relativistic) and the
associated interaction effectively turns into a local one, hence the 1/m2 suppression.
The qualitative behaviour of I(x, kL/kS) in (6.29) indicates that F̂EFT receives its
dominant contribution from the second and the third intervals above, i.e. when the
short mode is outside the sound horizon. As a result we find

F̂ (kL/kS) ∼ g2 2cskS
kL

(
− log

(2csm
H

kS
kL

)
− 1/2

)
. (6.30)

Indeed this result very well captures the general trend of the exact EFT four-point
given by (6.28). This can be seen by taking the limit of c → 0 (or equivalently
u, v →∞), where we find

lim
c→0

F̂n=0
EFT = −g2

(1
u

+ 1
v

)(
log

[
u+ v

uv
(µ2 + 1/4)1/2

]
− 1 + γE

)
, (6.31)

which is close to the simplified result in (6.30) after the replacements u→ kL/2cskS
and v → 1/cs. Notice that, in harmony with the conclusions of section 6.1, F̂n=0

EFT
agrees with the full four-point function in the same limit (equation (4.40)), at leading
order in 1/µ.

• Short mode exits the sound horizon after the mass crossing of the long mode ( kL
2cskS �

m
H ): this regime corresponds to the first timeline in figure 3. In this case we can
approximate I(x, kL/kS) by

I(x, kL/kS) ∼ g2



sin(2cskSx/kL)
x2 , m

H . |x| < +∞ ,

m2

H2 sin(2cskSx/kL) , kL
2cskS . |x| .

m
H ,

H2

m2
2cskS
kL

x , 0 < |x| . kL
2cskS .

(6.32)
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The first line corresponds to the time where the massive mode is highly relativistic.
However, during this time frame the short mode is always deep inside the sound
horizon, hence no important contribution to the four-point function arises. The
same happens when the long mode become non-relativistic but the short mode is
inside its sound horizon. Therefore the most important contribution comes after
the sound horizon exit of the short mode (third line) where the massive particle is
non-relativistic and it mediates a local interaction, leading to the following behaviour
in the squeezed limit:

F̂ (kL/kS) ∼ g2H
2

m2
kL
cskS

. (6.33)

This is compatible with the asymptotic form of (6.28) in the c→∞ limit, namely

lim
c→∞

F̂n=0
EFT = g2 u

µ2 + 1/4 . (6.34)

• Short mode exits the sound horizon around the same time as the mass crossing of the
long mode(kL/kS ∼ 2cs mH ): This is the resonance limit (second timeline in figure 3).
To see that F̂EFT should undergo a local maximum around this point, it is enough to
observe that (6.30) grows by decreasing kL/kS down to the minimum at which this
formula is applicable, namely kL/kS ∼ 2cs mH . For more squeezed configurations (6.33)
takes over and F̂ (kL/kS) decreases. As a result, the four-point should reach a maximum
somewhere in the resonance region, i.e. kL/kS ∼ 2cs mH .

6.3 Limitations of the non-local EFT

The non-local EFT operators in eq. (6.24) do not resum to the exact theory. This can be
seen in a few different ways:

• Around u = −1 and v = −1, according to (3.50), the full four-point function F̂ (u, v)
has a logarithmic partial energy singularity. However, the four-point function F̂EFT
induced by the non-local EFT operators have no such singularity at any order in the
(time) derivative expansion. This is simply because the latter is a sum over an infinite
set of non-local contact terms, which can at best have total energy singularities but
not partial energy ones.

• Around u = 0 (at fixed v), F̂EFT is analytic, whereas the full correlator exhibits a
non-analytic behaviour characterising the particle production effect in dS space (see
e.g. eq. (4.44)). This discrepancy is very natural from the point of view of the non-local
single-field EFT (6.24): the pair creation effect in dS comes from the dynamics of the
massive field, which is ignored in this picture.

• Related to the previous point, the dS pair creation affects the correlator not only in
the squeezed limit but in any configuration. The mass dependence of such effects are
non-perturbative in 1/µ (like in the famous Boltzmann suppression factor exp(−πµ)).
As a non-trivial example, consider the next to leading order correction to (4.40) in the
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Figure 16. In this figure, we contrast the four-point function computed by means of the non-local
EFT namely F̂EFT, with the full result F̂ (u, v). Here, F̂n≤m

EFT indicates the four-point function that
comes out of summing over the first m+ 1 operators in the action (6.24). Right: for a typical heavy
particle with m/H ∼ O(1), the non-local EFT prediction for u > 1 improves by including more
higher (time) derivative terms in the action. In agreement with our analysis in section 6.1, adding
more terms does not help the precision for u < 1. That is where the dynamics of σ including the
particle production effects and the associated oscillations become operative. Left: for masses that are
close to 3H/2, including more terms in the action heightens the mismatch between the two results,
signaling the divergence of the non-local EFT expansion with not so heavy intermediate particles.

expansion around u, v =∞, given by (4.42). In the µ→∞ limit, this correction is of
order µ exp(−πµ), hence non-perturbative in µ−1. At the same time, the four-point
function from the EFT, given by (6.25), cannot mimic this correction at any order in
the time derivative expansion. It is so simply because

F̂EFT(−u,−v) = −F̂EFT(u, v) , (6.35)

as can be easily seen from eq. (6.25), whereas the correction (4.42) is quadratic in the
energy ratios, hence invariant under (u, v)→ (−u,−v).

Despite the listed reasons above, in the approximation of u & 1, v & 1 and µ & 1, the
numerical comparison in figure 16 demonstrates that by including more terms in the
derivative expansion (6.25) the four-point function of the non-local EFT gets closer and
closer to the full answer. It is beyond the scope of this work to provide a rigid proof for
this statement (however, see appendix B for the analytical study of the NLO four-point,
namely F̂n=1

EFT, obtained by keeping only the n = 1 term in (6.25)). We leave a dedicated
study of this non-local EFT to future works.

6.4 Non-local Lagrangian for π and non-Gaussian templates for the low-speed
collider

Instead of resorting to the four-point function of the conformally coupled field in the
limit where the non-local EFT (6.24) applies, we could have directly derived a single field,
non-local EFT for π. We note that this procedure has been first discussed in [89] in a
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slightly different but similar context, following the same logic, albeit without computing
the resulting bispectra. Paralleling the same steps as before, up to cubic order in the field
and leading order in time derivative, the Lagrangian (2.2)–(2.3) turns into

Sπ,induced =
∫
dη d3xa2(η)

(
ρ2

2 π
′
c

1
m2−2H2−H2η2∇2π

′
c+ ρ

a(η)Λ1
π′2c

1
m2−2H2−H2η2∇2π

′
c

+ ρc2
s

a(η)Λ2
(∂iπc)2 1

m2−2H2−H2η2∇2π
′
c

)
. (6.36)

Obviously, computing the power spectrum and the bispectrum by means of this Lagrangian
yields the same answer as acting with the proper weight-shifting operator on the four-point
F̂n=0
EFT (6.28). Explicitly, this gives(

∆Pζ
Pζ

)
EFT

= c2
sρ

2

H2
e−2αEi(2α)− e2αEi(−2α)

2α , (6.37)

in excellent agreement with the exact computation in the domain of validity of the EFT,
and where we have defined α = cs(µ2 + 1/4)1/2. As for the resulting shape for each diagram,
they read

Sπ̇
2σ

EFT(k1, k2, k3) =−1
8

Λ2

Λ1

(
ρ

H

)2 k1k2

k2
3

(6.38a)

×
[2k3

kT
+αexp

(
αkT
k3

)
Ei
(
−αkT

k3

)
−αexp

(
−αkT

k3

)
Ei
(
αkT
k3

)]
+2perm ,

S
(∂iπ)2σ
EFT (k1, k2, k3) = 1

16

(
ρ

H

)2 (k2
3−k2

1−k2
2)

k1k2
(6.38b)

×
[
−2k1k2

k3kT
+ 1
α

(
1+ αk1

k3

)(
1+ αk2

k3

)
exp

(
−αkT

k3

)
Ei
(
αkT
k3

)
− 1
α

(
1− αk1

k3

)(
1− αk2

k3

)
exp

(
αkT
k3

)
Ei
(
−αkT

k3

)]
+2perm ,

Notice that at this order the normalized shapes of the bispectra depend on cs and µ

only through the combination α ≈ csm/H, confirming the intuitive expectation developed
in section 2 that this is the important “order parameter” for the low speed collider.25
Remarkably, these two one-parameter family of shapes generalise the two well known ones
from the EFT of inflation — generated by π̇3 and π̇(∂iπ)2 interactions — to which they
boil down in the limit α� 1, with subleading terms in a large α expansion systematically
encoding the effects of successive higher-derivative corrections. When α drops below unity,
these shapes become qualitatively different and accurately encode the physics of the low
speed collider and the associated resonances described in section 5.2.3.

25Actually, one can replace
(
µ2 + 1/4

)1/2 =
(
m2

H2 − 2
)1/2

by m/H without lack of rigor. Indeed, the
appearance of −2H2 in the denominators in eq. (6.36) comes from neglecting the time derivatives when
integrating out the massive field at the level of the canonically normalized fields in conformal time (6.9).
Instead, these terms would be absent upon neglecting time derivatives when integrating out σ in cosmic
time. Using m2 − 2H2 or m2 simply results into a reorganization in the EFT between the leading order
term and the higher-order corrections, but leads to the same all order result. The only advantage of using
the first option is that it leads to a more rapidly convergent EFT, providing us with a better agreement
with the exact result at leading-order.
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Figure 17. In this plot, the leading order four-point function F̂n=0
EFT associated with a very heavy

field (µ� 1) is shown to be very close to the full result, irrespective of the size of u.

Naturally, when using the templates (6.38a)–(6.38b), one should bear in mind their
domains of validity. For instance, the two theories with (µ = 1, cs = 0.1) and (µ = 10, cs =
0.01) share the same parameter α. Nonetheless, the latter theory is well within the realm
of the EFT, whereas the former is not. To further illustrate the (non) applicability and
level of accuracy of the non-local EFT picture, in figure 18 we have confronted the exact
shape function of the bispectrum (for both diagrams) with the one (6.38a)–(6.38b) that the
leading-order non-local EFT forecasts. In sympathy with the analysis of section 6.1, we see
that for order one µ’s the two curves start to diverge from each other once the triangle is
squeezed to k3/k1 ∼ 2cs. This corresponds to u ∼ 1 for the s− channel (for the other two
channels we have u ∼ c−1

s � 1, indicating that their contribution is very well captured by
F̂n=0
EFT). Even more, as we have seen in figure 16 (left), the qualitative agreement between

the exact and leading-order EFT results is somewhat an accident, as the EFT is simply not
convergent for this set of parameters. Instead, in the other depicted situation with a larger
mass, µ = 5 and cs = 0.01, the leading order non-local EFT perfectly estimates the shape
of the bispectrum.

7 Conclusion

In this work, we extended the reach of the cosmological bootstrap program to realistic and
phenomenologically interesting situations where de Sitter boosts are explicitly broken by the
subluminal speed of the curvature perturbation ζ, i.e. cs � 1. We showed that, using a set
of bespoke weight-shifting operators, the boostless bispectra and trispectra of ζ induced by
the exchange of massive particles can be linked to the de Sitter invariant exchange diagram
of the conformally coupled field four-point correlator. In contrast with the ordinary case of
cs = 1, the corresponding weight-shifting operators incorporate rescalings of the external
energies of the conformally coupled field by the speed of sound, while at the same time
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Figure 18. Shapes S(k1, k1, k3) of the bispectra for isosceles triangles, normalized to unity in
equilateral configurations, for diagrams B1 (left) and B2 (right), and for (µ = 1, cs = 0.1) (top)
and (µ = 5, cs = 0.01) (bottom). The black curve is the exact bootstrap result and the red curve
corresponds to the leading-order non-local EFT predictions (6.38a)–(6.38b).

the momentum of the massive particle is held fixed. This implies that for the purpose of
our computation the seed four-point function has to be analytically continued beyond the
physical region delineated by momentum conservation |k1 + k2| ≤ (k1 + k2), (k3 + k4). This
continuation is non-trivial, and in fact the expressions provided for this seed solution in the
literature are not globally applicable as they entail series expansions organized in powers
of e.g. |k1 + k2|/(k1 + k2), which do not converge outside the kinematical domain allowed
for the four-point configuration. Therefore, one central task in our study was to bootstrap
this four-point function from first principles in the appropriate domain before being able to
derive useful formulae for the bispectra. This goal was achieved by employing some of the
recently developed cosmological bootstrap techniques derived from locality, analyticity and
unitarity in the form of a boundary equation that this four-point function satisfies alongside
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information about the structure of its singularities and finally a cutting rule that relates it
to its three-point building blocks.

Following the concrete prescription outlined above, we computed the bispectrum of
ζ for any value of the mass of the heavy particle exchanged and any value of the (ratios
between the) sound speed(s). We discovered that supersonic particles that are much lighter
than the energy scale H/cs and are coupled to ζ leave a characteristic signature in the
form of a resonance in the squeezed limit of the bispectrum. This resonance cannot be
imitated by adding any number of local operators to the EFT of single field inflation,
and it occurs around kL/kS ∼ cs mH . We further showed that, unlike the case with cs = 1,
the size of the signal has a logarithmic dependence on the mass of the new species. This
logarithmic mass dependence originates from an IR divergence that accumulates over time
after sound-horizon exit of the short mode kS until mass crossing of the long mode kL.
We also characterised the signal away from the resonance, be it the oscillations of the
cosmological collider signal arising in ultra-squeezed configurations kL/kS � cs, or the
approximate local-shape behaviour for kL/kS � cs

m
H .

Beyond the non-perturbative effects of spontaneous particle production, clearly visible
in the ultra-squeezed limit, we demonstrated that the features of the bispectrum described
above can be alternatively explained with a simplified non-local single field picture. Indeed,
because the interactions mediated by the heavy field propagate at a speed much faster than
the one of ζ, one can approximately consider that the former instantaneously responds
to the dynamics of the latter. This leads to an effective single-field theory in terms of ζ
only, which emerges after Taylor expanding the time derivatives of the massive field in its
propagator; a manipulation that gives rise to an infinite set of non-local operators in the
EFT, which are organized in positive powers of temporal derivatives. This non-local EFT
provides one with simple templates for the bispectra: one-parameter families of shapes that
depend on α ≈ csm/H, that generalise the ones from the EFT of inflation recovered in
the large α limit, while describing the physics of the low speed collider and the associated
resonances for small α. Nevertheless, we showed that the corresponding EFT breaks down
for particles with masses of order the Hubble scale, for which only our exact bootstrap
results are applicable.

Our work can be extended in a few directions:

• Multiple exchange diagrams. Incorporating other interactions between π and σ
gives rise to more complicated double-and triple-exchange diagrams for the bispectrum.
Such interactions can lead to a larger non-Gaussian signal and it would be tantalizing
to relate those diagrams to a new set of higher order seed correlators (of the ϕ field).
The problem would then reduce to bootstrapping such seed solutions using bootstrap
techniques similar to the ones used in this work.

• Data analysis and prospects for detection. It would be interesting to quantify
the overlap of the new shapes described in this paper, notably the ones (6.38a)–(6.38b),
with the equilateral/orthogonal and local templates, to use Planck data to constrain
the resonances associated with the low speed collider, including when treating the
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linear mixing π̇σ non-perturbatively, as well to assess to which extent these can be
probed by future non-Gaussian searches.

• Non-local single field EFT. In this work we showed that integrating out a heavy
supersonic scalar that couples to the Goldstone boson π through the specific inter-
actions specified in (2.3) results in the non-local action (6.36). The set of non-local
operators that appear in this action are not the most general ones that can in principle
materialise. It would be interesting to systematically classify the consistent set of
such operators, which may arise due to the effect of supersonic particles with generic
couplings and spins.
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A Aspects of the seed four-point function

A.1 Derivation of am,n’s and bm,n’s

Inserting the ansatz (4.5) for the particular solution inside the boundary equation (3.55),
one finds the following recursive relations for am,n and bm,n:[

µ2 + 1/4 + (n−m)2 − (n−m)
]
bmn = (n−m− 2)(n−m− 1)bm+2,n , (A.1)[

µ2 + 1/4 + (n−m)2 − (n−m)
]
am,n = (n−m− 2)(n−m− 1)am+2,n

+ (2n− 2m− 3)bm+2,n − (2n− 2m− 1)bm,n ,

alongside the following consistency conditions on elements with m = 0, 1:

n(n− 1)a1n + (2n− 1)b1n = 1
2g

2(−1)n+1 , (A.2)

n(n+ 1)a0n + (2n+ 1)b0n = 0 ,
b1n = 0 (n ≥ 2) ,
b0n = 0 (n ≥ 1) .

– 63 –



J
H
E
P
1
2
(
2
0
2
2
)
1
3
7

From the above equations we infer that

b0n = b2n = 0 , (A.3)

b10 = b11 = 1
2g

2 ,

a1n = g2(−1)n+1

2n(n− 1) (n ≥ 2) ,

a0n = 0 (n ≥ 1) ,
a2n = 0 (n ≥ 3) .

It will come in handy to introduce an alternative set of variables:

Bk,n ≡ bn−k,n , Ak,n ≡ an−k,n , −∞ < k ≤ n , (A.4)

which satisfy

Bk,n

(
µ2 + 1

4 + k2 − k
)
−Bk−2,n (k − 2)(k − 1) = 0 , (A.5)

Ak,n

(
µ2 + 1

4 + k2 − k
)
−Ak−2,n (k − 2)(k − 1) = (2k − 3)Bk−2,n − (2k − 1)Bk,n .

It follows from the first equation above that

Bk,n = 0 (k ≥ 1) , (A.6)

and also that all the Bk,n elements with k ≤ 0 are fixed by B0,n and B−1,n, and they are
given by

B−(2l+1),n = 1
6(9/4 + µ2)B−1,n

(
7
4 + iµ

2

)
l−1

(
7
4 −

iµ
2

)
l−1

(2)l−1 (5/2)l−1
(l ≥ 0) , (A.7)

B−2l,n = 1
2(1/4 + µ2)B0,n

(
5
4 + iµ

2

)
l−1

(
5
4 −

iµ
2

)
l−1

(2)l−1 (3/2)l−1
(l ≥ 0) .

In the expressions above, ql stands for the Pochhammer symbol ql ≡
Γ(q + l)

Γ(q) . As for Ak’s,
let us first look at the special cases k = 1, k = 2, for which we find

A1,n = − B−1,n
(µ2 + 1/4) , A2,n = B0,n

(µ2 + 9/4) . (A.8)

For k > 1, (A.6) implies

A2l,n = B0,n
(µ2 + 9/4)

(1)l−1
(

3
2

)
l−1(

7
4 −

iµ
2

)
l−1

(
7
4 + iµ

2

)
l−1

(l ≥ 1) , (A.9)

A2l+1,n = − B−1,n
1/4 + µ2

(
1
2

)
l

(1)l(
5
4 −

iµ
2

)
l

(
5
4 + iµ

2

)
l

(l ≥ 0).
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The last two relations together with a1,n≥2 given by (A.3) fix the B0,n and B−1,n elements
in terms of g2, namely

B−1,2p = g2

2

(
1
4 + µ2

)
2p(2p− 1)

(
5
4 + iµ

2

)
p−1

(
5
4 −

iµ
2

)
p−1(

1
2

)
p−1

(1)p−1
(p ≥ 1), (A.10)

B0,2p+1 = g2

2

(
9
4 + µ2

)
2p(2p+ 1)

(
7
4 + iµ

2

)
p−1

(
7
4 −

iµ
2

)
p−1

(1)p−1
(

3
2

)
p−1

(p ≥ 1) .

Furthermore, without loss of generality we can set

B−2l,2p = B−2l−1,2p+1 = 0 (p ≥ 1 , l ≥ 0) . (A.11)

Now we move onto the elements of Ak,n with k ≤ 0, the values of which are tied to the
elements of Bk,n through the following recursion relation:

Ak,n

(
µ2+ 1

4 +k2−k
)
−Ak−2,n(k−2)(k−1) =Bk,n

(2k−3)
(
µ2+ 1

4 +k2−k
)

(k−2)(k−1) −(2k−1)

 .
(A.12)

First of all, we have the freedom to set

A0,2p+1 = A−1,2p = 0 (p ≥ 0) , (A.13)

and it follows from (A.12) and (A.11) that

A2l,2p+1 = A−2l−1,2p = 0 (p ≥ 0, l ≥ 0) . (A.14)

Then equation (A.12) in conjunction with (A.7) leads us to the rest of the Ak,n elements:

A−2l,2p+1 = −g
2

2
cosh(πµ) 22l+2p−2

π2Γ(2l + 1)Γ(1 + 2p+ 1) (A.15)

× Γ
(1

4 + l + iµ

2

)
Γ
(1

4 + l − iµ

2

)
Γ
(3

4 + p+ iµ

2

)
Γ
(3

4 + p− iµ

2

)
(
−H2l −H− 3

4 + iµ
2

+H− 3
4 + iµ

2 +l + (µ→ −µ)
)

(p ≥ 1 , l ≥ 0) ,

A−2l−1,2p = −g
2

2
cosh(πµ) 22l+2p−2

π2Γ(2l + 2)Γ(2p+ 1)

× Γ
(3

4 + l + iµ

2

)
Γ
(3

4 + l − iµ

2

)
Γ
(1

4 + p+ iµ

2

)
Γ
(1

4 + p− iµ

2

)
(
1−H2l+1 −H− 1

4 + iµ
2

+H− 1
4 + iµ

2 +l + (µ→ −µ)
)

(p ≥ 1 , l ≥ 0) .

It can be further verified that the above results for the Ak,n and Bk,n matrices are consistent
with the earlier conditions in (A.3). Putting everything together and after doing some
algebraic simplification we finally arrive at the results presented by eqs. (4.13)–(4.20).
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A.2 Partial resummation of the series

It is possible to fully resum the logarithmic part of the series in (4.5) by writing
∞∑

m≥0,n≥0
bmnu

−m(u/v)n =
∑
n≥0

∑
−∞<k≤0

Bk,n
1
u−k

1
vn

(A.16)

=
∑

l≥0,p≥0
B−2l,2p+1

1
u2l

1
v2p+1 +

∑
l≥0,p≥0

B−(2l+1),2p
1

u2l+1
1
v2p .

Now a simplification arises due to the fact that the B−2l,2p+1 and B−(2l+1),2p elements
(given by eqs. (4.13) and (4.17)) have a factorised dependence on l and p. Separating the l
and p dependent blocks and exploiting the series expansion of the hypergeometric function

2F1(a, b; c; z) = ∑∞
n=0

(a)n(b)n
(c)nn! z

n together with the simple fact that (q)n
(q − 1)n

= n+ q − 1
q − 1

for q 6= 1, we arrive at eq. (4.9).
It is useful to partially resum the rest of the elements in the series, namely those that

involve the Ak,n components. Contrary to the previous case of (4.9), here the dependence
on u and v will not factorise. To see this, we reorganize the series in the following manner∑

am,n
un−m

vn
=
∞∑
l=0

∞∑
p=0

A−2l,2p+1
1

u2lv2p+1 +
∞∑
l=0

∞∑
p=0

A−2l−1,2p
1

u2l+1v2p (A.17)

+
∞∑
p=0

p∑
l=1

A2l,2p+1
u2l

v2p+1 +
∞∑
p=0

p−1∑
l=0

A2l+1,2p
u2l+1

v2p .

Due to the factorised dependence of Ak,n on k and n, the summation over l and p above
can be separately performed within the first two terms. However, for the third and the
fourth contributions, this is not possible simply because the upper limit of l depends on p.
After doing some algebra, the first two series simplify to the first two terms on the r.h.s.
of (4.10), while the last two series above reduce to the third term, where the dependence
on u/v is fully resummed.

A.3 Singularity structure of F̂++

Partial energy pole

At we discussed before, the partial energy singularities of F̂++ emerge when either of u or
v are sent to −1 + iε. It can be directly inferred from the time integral that in this limit
F̂++ behaves as (3.50) (the v → −1 limit follows from the symmetry under the exchange of
u and v). As a non-trivial cross-check, this behaviour can be checked at the level of the
final answer (4.21). We start with the particular solution: the part with am,n’s elements is
singular in the u→ −1 limit because of the first two terms on the r.h.s. of (A.17), which
go as

∞∑
p=0

∞∑
l=0

A−2l,2p+1
1

u2lv2p+1 → c1(µ) log(u+ 1)f−(v) , (A.18)

∞∑
p=0

∞∑
l=0

A−2l−1,2p
1

u2l+1v2p → −c2(µ) log(u+ 1)f+(v) ,
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while the second two terms remain finite in this limit. Here, the coefficients ci(µ) are the
same as those defined in the collinear limit (4.29)–(4.30). Moreover, using eq. (4.9), the
logarithmic piece in the particular solution behaves as

lim
u→−1+iε

log(u)
∑
n≥0

∑
−∞<k≤0

Bk,n
1
u−k

1
vn

= − ig
2π3/2

4 log(1 + u)

×
[ 1

Γ(1/4 + iµ/2)Γ(1/4− iµ/2)f−(v)− 1
Γ(3/4 + iµ/2)Γ(3/4− iµ/2)f+(v)

]
.

(A.19)

We have to add to all this the homogeneous solution of (4.36) which inherits the logarithmic
divergences of f±(u) in the u→ −1 limit, namely

lim
u→−1+iε

f+(u) = −
√
π

Γ(1/4 + iµ/2)Γ(1/4− iµ/2) log(1 + u) , (A.20)

lim
u→−1+iε

f−(u) =
√
π

Γ(3/4 + iµ/2)Γ(3/4− iµ/2) log(1 + u) .

Putting everything together and using the properties (4.23) to simplify f̂∗3 (−u∗), one finally
arrives at equation (3.50).

Total energy singularity

The second type of singularity emerges when the sum of the external energies in the diagram
(i.e. kT ) vanishes. In this limit, from the knowledge of the time integral, we expect F̂++ to
take the form in equation (3.49). Here we explicitly check this by looking at (4.35). We
first note that the logarithmic part and the homogeneous piece in (4.35) are both regular
around kT = 0 inasmuch they are sums over factorised functions of u and v, hence the
analyticity of the u→ −v limit. The same conclusion goes for the first two terms in (A.17).
Consequently, the total energy singularity can arise only from the third and the fourth term
in (A.17). Starting from the former, we find

lim
u→−v

∞∑
p=0

p∑
l=0

A2l,2p+1
u2l

v2p+1

= lim
u→−v

∞∑
l=0

g2u2l

2v2l+1
Γ(2l)

Γ(2l + 2)3F2(1, 3/4 + l − iµ/2, 3/4 + l + iµ/2; 1 + l, 3/2 + l, v−2)

=
∞∑
l=0

g2

8l2
v

v2 − 1(u/v)2l

= g2

4
v

(v2 − 1) log(1 + u/v)(1 + u/v) + analytic in u/v, (A.21)

where in the third line we have sent l to infinity and used the following property of the
hypergeometric functions26

lim
l→∞

3F2(1, l + a, l + b; l + c, l + d, v−2) = v2/(v2 − 1) . (A.22)

26We were unable to find this result in any standard text book of special functions. Nevertheless, using
Mathematica, we numerically examined its validity to a high level of precision.
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The non-analytic part of the fourth term in (A.17) can be extracted in a similar way:

lim
u→−v

∞∑
p=0

p∑
l=0

A2l+1,2p
u2l+1

v2p

=− lim
u→−v

∞∑
l=0

g2

4(2l2+3l+1)
u2l+1

v2l+2 3F2(1,5/4+l+iµ/2,5/4+l−iµ/2;3/2+l,2+l,1/v2) ,

= g2 v

v2−1
∑
l

1
8l2 (u/v)2l = g2

4
v

(v2−1) log(1+u/v)(1+u/v)+analytic in u/v . (A.23)

As a result we arrive at eq. (3.49).

B The asymptotic limit of F̂ (u, v) at u, v →∞

In this appendix, we first compute the NLO and NNLO corrections to the asymptotic limit
of F̂ (u, v) in (4.40). Then we compare the result with the predictions of the non-local EFT
(defined with (6.24)).

Having (4.12), it is straightforward to read off the NLO term in the u, v → ∞ limit
of (4.35) (while u/v is held fixed). It turns out that, up to cubic order in the inverse of the
energy ratios u and v, F̂ (u, v) only entails elementary functions of the ratio u/v, and it is
given by

1
g2 F̂ (u,v)≈−

(1
u

+ 1
v

)(
log
(
C(µ)u+v

uv

)
+γE−1

)
(B.1)

−
(u+v)

((
µ2 + 9

4

)(
u2 +v2)+

(
2µ2− 3

2

)
uv
)(

log
(
C(µ) (u+v)

uv

)
+γE

)
6u3v3

+ 11
36

(u+v)
((
µ2 + 27

44

)(
u2 +v2)−( 9

22−2µ2
)
uv
)

u3v3 +
Γ
(

3
4−

iµ
2

)2
Γ
(
iµ
2 + 3

4

)2

πuv
.

This result shows in particular that (4.40) is a viable estimation of F̂ (u, v) as long as
µ� max(u, v).

It is instructive to compare (B.1) with the prediction of the non-local EFT (6.24). In
the (time) derivative expansion, the leading order four-point (6.28) is found to be

F̂n=0
EFT = −g2

(1
u

+ 1
v

)(
−1 + γE + log

[
(µ2 + 1/4)1/2

(1
u

+ 1
v

)])
(B.2)

− g2

36(µ2 + 1/4)
(1
u

+ 1
v

)3 (
6 log

[
(µ2 + 1/4)1/2

(1
u

+ 1
v

)]
+ 6γE − 11

)
+O(c4

s) .

Up to this order in the speed of sound (namely O(c3
s)) and at leading order in the large

mass regime (µ2 + 1/4)� 1, this result agrees with (B.1).27 The NLO Lagrangian in (6.24)
27The agreement to order O(c3

s) in the large mass limit is somewhat an accident as it is evident from the
plot of figure 16 that around u ∼ 1 (namely for larger cs’s in a fixed kinematics) the LO Lagrangian fails to
reproduce the four-point function F̂ . The deviations between the two arise at higher orders in the expansion
around cs = 0.
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corrects (B.2) by the following amount

F̂n=1
EFT = g2

6
1

µ2 + 1/4

(1
u

+ 1
v

)
− g2

3

( 1
u3 + 1

v3

)
log

[
(µ2 + 1/4)1/2

(1
u

+ 1
v

)]
(B.3)

+ g2

36

(1
u

+ 1
v

)(
(5− 12γ)

( 1
u2 + 1

v2

)
+ 4(3γ − 2)

uv

)
+O(c4

s) .

By explicit comparison with the full four-point function (B.1), it can be seen that F̂n=1
NL

corrects the analytical mass dependence of (B.2) up to orderO
(
(µ2 + 1/4)−1). In conclusion,

except for the last term in (B.1) which is non-perturbative in 1/µ (hence invisible at any
order in the derivative expansion) the remaining terms are captured by the LO and NLO
operators in the non-local EFT (6.24), up to order O

(
(µ2 + 1/4)−1) in the large mass regime.
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