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1 Introduction

Moduli stabilization by fluxes has been a cornerstone of realistic string models since the
advent of the string landscape. Early investigations of the GKP construction [1] such as
refs. [2–5] appeared to confirm the expectation that a generic flux will stabilize all complex
structure moduli of Calabi-Yau manifolds in either type IIB or F-theory compactifications.
Based on more recent studies, however, it was argued that in models with a large number of
complex structure moduli it should not be possible to stabilize all of them using fluxes [6–8].
The basic idea, known as the tadpole conjecture, is that the flux contribution to the D3-
brane tadpole scales linearly with the number of stabilized moduli, with a proportionality
constant that leads to an effective bound in many popular situations. This argument is part
of the swampland program (reviewed for example in [9, 10]), whose goal it is to determine
what the low-energy effective field theories are that can arise from a full-fledged theory of
quantum gravity like string theory.

The relation between the size of the tadpole and the number of stabilized moduli
can easily be tested (and hence falsified) in many examples. Moreover, with a somewhat
more precise definition of the “number of stabilized moduli”, the conjecture can be stated
essentially in classical Hodge theory, and could thus conceivably be proven rigorously inde-
pendent of complicated or unknown perturbative or non-perturbative quantum corrections.
Recent work along this line has provided evidence for the conjecture in the large complex
structure limits [11–13] and also in more general asymptotic limits [14]. A scenario includ-
ing a putative counterexample was presented in [15]. However, this counterexample was
more recently challenged in [16, 17].

The main aim of this paper is to shed light on the competition between the stabiliza-
tion of moduli and the size of the D3-brane tadpole in the deep interior of the moduli space
of type IIB flux compactification (see [18] for related work in F-theory). Our investigation
is based on a Landau-Ginzburg orbifold describing a non-geometric compactification with
h1,1 = 0, that was first studied with this purpose some 16 years ago in [19, 20]. It was shown
there that while the model is intrinsically non-geometric, the standard Hodge theoretic for-
mulas for the flux superpotential and tadpole continue to apply, based on the holomorphic
nature of the supersymmetric locus and thanks to powerful non-renormalization theorems
for the superpotential. Moreover, while the lattice of supersymmetric fluxes at the Fermat
point has such a large rank that brute force numerical searches for “short” flux vectors
compatible with tadpole cancellation are prohibitively expensive, some explicit fluxes were
found that lead to supersymmetric Minkowski and AdS vacua that are under full control
despite an O(1) string coupling. However, the exact content of the low-energy theory and
the full set of supersymmetric fluxes remained unexplored at the time.

In this work, we will show first of all that in the Minkowski vacua of the 19 Landau-
Ginzburg model presented in [19] in fact only a small subset of the 63 complex structure
moduli (that survive the orientifold projection) obtain a mass as a consequence of the
flux. Secondly, we will present a more complete list of supersymmetric fluxes saturating
the tadpole and leading to 4d Minkowski vacua, and show that all of them contain a
substantial number of massless fields. Thirdly, based on the evaluation of the cubic (and
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higher-order) terms in the superpotential, we show that not all of these massless fields
correspond to truly flat directions, although we are not able to show that all moduli are
actually stabilized. Based on these insights, we present a mathematically precise (if perhaps
somewhat simplified) formulation of the tadpole conjecture that can be tested non-trivially
over the entire moduli space.

We then turn to other aspects of the swampland program, in which context the com-
pactifications of [19, 20] were revisited in the recent works [21, 22], focusing only on the
stabilization of the three bulk complex structure moduli (that are mirror dual to the un-
twisted Kähler moduli in the mirror dual toroidal type IIA compactification). An intriguing
result of [22] was the presence of an infinite family of SUSY Minkowski vacua. In this infi-
nite family a quantized flux, which is unconstrained by the tadpole, goes to infinity. Here,
we discover similar infinite families of Minkowski vacua that include all complex struc-
ture moduli of the model. One might then have to accept that an infinite family of 4d
Minkowski solutions is part of the string landscape. This may sound contradictory to the
standard lore that the landscape is finite, that is, that there is a finite number of vacua
(and corresponding EFTs) below a certain energy cutoff [23, 24]. We argue that our infinite
families of Minkowski vacua are consistent with the finiteness conjecture since we expect
that for each family there is a tower of states becoming light.

Additionally, we revisit AdS solutions in these settings. There we find likewise new
infinite families of AdS solutions. The existence of these solutions was known based on
a study of simple models that restrict to the bulk moduli [20–22]. Those families are
reminiscent of the DGKT [25, 26] SUSY AdS vacua which are included in the mirror of
these construction. Here we show that such solutions also exist when taking all complex
structure moduli into account. We present explicitly two examples that have peculiar
features that are relevant to the swampland program.

2 Moduli stabilization in non-geometric backgrounds

Following [19], in this paper we focus on orientifolds of the 19 Landau-Ginzburg (LG)
model, with worldsheet superpotential

W =
9∑
i=1

Φ3
i . (2.1)

We orbifold by the Z3 symmetry Φi → ωΦi where ω = e
2πi
3 . It can be shown that the

model is the mirror dual of a rigid Calabi-Yau manifold (T 6/Z3 × Z3). A basis for the
(c, c) primary chiral superfields of the untwisted sector is given by the monomials ΦiΦjΦk

i 6= j 6= k 6= i. There are 84 of them and they can be identified as complex structure
moduli. In the untwisted sector of a LG model there is no (a, c) sector, but there could
be Kähler moduli in the twisted sector. However, in the case of a Z3 orbifold one finds
no non-trivial (a, c) primary superfields, so there are no Kähler moduli. Intuitively, the
orbifold is fixing the volume in string frame. Notice that this breaks S-duality in our setup.
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2.1 Orientifolds and fluxes

The different consistent orientifold projections were studied in [19]. Here we will focus only
on the first orientifold considered in [19], which combines the worldsheet parity operator
with the operator g1:

g1 : (Φ1,Φ2,Φ3, . . . ,Φ9)→ −(Φ2,Φ1,Φ3, . . . ,Φ9) . (2.2)

This reduces the number of complex structure moduli down to 63: 7 coming from Φ1Φ2Φi,
i = 3, 4, . . . 9,

(7
2
)

= 21 coming from (Φ1 + Φ2)ΦiΦj and
(7
3
)

= 35 coming from ΦiΦjΦk.
Using results from [27], the authors of [19] calculated the Ramond-Ramond charge of

the crosscap state in the orientifold (2.2), and showed that it amounts to 12 units of the
one elementary B-brane in the model, which can naturally be addressed as a “D3-brane”,
keeping in mind that this is really an abuse of language because the model is intrinsically
non-geometric.

Similarly, the possible Ramond-Ramond and Neveu-Schwarz fluxes, F3 and H3, can
be studied by consistency and comparison with the A-branes in the Landau-Ginzburg
theory, which are the analogues of supersymmetric three-cycles in ordinary Calabi-Yau
compactifications. This gives on the one hand their precise quantization condition, see
eq. (2.10) below, and on the other hand their contribution to the Ramond-Ramond tadpole
in the class of the orientifold. Including a possible contribution from mobile D3-branes,
the tadpole cancellation condition takes the standard form

Nflux =
∫
M
F3 ∧H3 = 1

τ − τ̄

∫
M
G ∧ Ḡ = NO3

2 −ND3 = 12−ND3 , (2.3)

where we have introduced the axio-dilaton τ = C0 + ie−φ and the G-flux G = F3 − τH3.
We emphasize that the familiarity of the expression (2.3), and other statements in

this section, should not belie the fact that their derivation and validity require delicate
consistency arguments from both worldsheet and spacetime considerations.

2.2 Non-renormalization theorems

In particular, as explained in [19], the flux superpotential is still given by the usual
GVW [28, 29] formula

W =
∫
M

(F3 − τH3) ∧ Ω , (2.4)

with the understanding that the integral just refers to the abstract pairing in Landau-
Ginzburg cohomology, and, crucially, receives no perturbative or non-perturbative cor-
rections, despite the fact that the volume is fixed at string size by the orbifold, and the
dilaton, as we will see, might be stabilized at strong coupling. This was argued via the
non-renormalization of the BPS tension of a D5-brane domain wall but it also passes other
non-trivial checks [19]. One may worry about brane instanton corrections. However, Eu-
clidean D3-branes are absent since h1,1 = 0 and D(−1) instantons do not contribute in
the large volume limit and are independent of the internal volume. This absence of D(−1)
instantons seems also consistent with the recent paper by Kim [30] that finds no D(−1)
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instantons if the O7-plane charges are locally cancelled by D7-branes. Here, we have no
O7-planes and D7-branes since h1,1 = 0. One can also ask why similar corrections should
be absent in the type IIA mirror dual. For example, in the DGKT construction [25], there
is only one suitable 3-cycle, since h2,1 = 0, and this cycle is threaded by H3-flux. So, one
does not expect brane instanton corrections in the dual setup either [31].

2.3 Conditions for supersymmetric vacua

To study N = 1, D = 4 supersymmetric vacua using the 4d effective action, we require, in
addition to the superpotential (2.4), also some knowledge of the Kähler potential K, which
is expected to receive both perturbative and non-perturbative string loop corrections. As
pointed out in [20] mirror symmetry implies that in the weak coupling, large complex struc-
ture limit, the Kähler potential for the dilaton and the complex structure moduli is given by:

K = −4 ln[τ − τ̄ ]− ln[i
∫
M

Ω ∧ Ω]. (2.5)

Note that this factor of 4 in front of the dilaton kinetic term does appear in the dimensional
reduction of the 10d type IIB supergravity action. However, for geometric compactifications
the proper 4d N = 1 chiral multiplets are related to the volume in Einstein frame [32]. The
above orbifold we are doing can be thought of as fixing the volume in string frame. Since
vol6,string = e

3
2φvol6,Einstein in geometric compactification the 4 becomes a 1, the rest being

absorbed into the term −2 ln(vol6,Einstein) in K. Given that our model is non-geometric
this does not happen. One could thus think of this factor as a small volume correction.
However, more precisely one should derive this factor of 4 using mirror symmetry [20]. This
factor does appear in the dimensional reduction of the 10d type IIA supergravity action
on orientifolds of Calabi-Yau manifolds [33]. If we appropriately restrict our H3-flux then
our setup is mirror dual to a type IIA string theory compactification on a rigid Calabi-Yau
manifold. Thus, our K and W as well as our solutions should agree with the type IIA
results, which is the case if we include this factor of 4. Note, that our setup is more general
than the IIA compactifications since upon mirror symmetry some of the H3-flux quanta
might become geometric or non-geometric fluxes on the type IIA side.

In this work we study both SUSY Minkowski and AdS vacua. The factor of 4 is
irrelevant for the discussion of Minkowski solutions but it has important consequences for
AdS solutions. In fact, without it we would not find fluxes that are unconstrained by
the tadpole cancellation condition and that are expected from the type IIA mirror dual
setup [25, 26]. The reason is that because of this factor of 4, the covariant derivative with
respect to the dilaton has an extra term:

DτW = − 1
τ − τ

∫
M

(
3G+G

)
∧ Ω = 0 . (2.6)

Together with
DaW =

∫
M
G ∧ χa = 0 , (2.7)

where χa is a basis of (2, 1) harmonic forms, one finds that in a supersymmetric solution
G can be written as:

GSUSY = Aaχa +A0
(
−3Ω + Ω

)
, (2.8)
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∑
i li 9 12 15 18

H(p,q) H(3,0) H(2,1) H(1,2) H(0,3)

Table 1. Correspondence between harmonic 3-forms and RR ground states for our LG model.

where Ω is the holomorphic 3-form and the A’s are complex coefficients. Notice that the
flux can have a (3, 0) component, which in turn implies that the supersymmetric flux is not
restricted to be imaginary self-dual (ISD). In fact, it provides an unbounded contribution
to the tadpole. The general formula for the tadpole is given by:

Nflux(GSUSY) = 81
√

3
2Imτ

(∑
a

|Aa|2 − 8|A0|2
)
. (2.9)

Notice that the additional condition W = 0 for Minkowski solutions implies that G ∈
H2,1(M), i.e., above we would have A0 = 0 and Nflux ≥ 0.

To describe and implement flux quantization, it is best to work with respect to an
integral basis of the middle cohomology lattice of the model, which measures charges of
supersymmetric A-branes. In the Landau-Ginzburg model (2.1), as reviewed in [19], prim-
itive cycles Γn are labelled by collections of 9 integers ni mod 3, i = 1, . . . , 9, which refer
to the orientation of an elementary integration cycle for each variable Φi (see appendix A).
These Γn are however not all linearly independent and also subject to various identifica-
tions. In the orbifold, a basis is in correspondence with the first 170 non-negative integers
written in binary notation with 9 digits, n = (n1, n2, . . . , n9), where ni = 0, 1. The identi-
fication by the orientifold (2.2) allows us to reduce the basis to 27 = 128 elements labelled
by n = (1, 1, n3, n4, . . . , n9), where ni = 0, 1. Let us denote their Poincaré dual 3-forms as
γn. We can expand the flux 3-form in this basis:

G =
∑

Nnγn − τ
∑

Mnγn , (2.10)

where Nn and Mn are integers, to ensure flux quantization.
Now our primary interest is finding fluxes such that we have a supersymmetric vacuum

at the Fermat point. That is, we need an appropriate choice of values for these integers
Nn and Mm such that equations (2.8) and (2.10) are compatible. To do this we remember
that harmonic forms in LG models are represented by RR ground states, which, in the
model at hand, are again labelled by nine integers:1

Ωl ←→ l =| l1 . . . , l9〉 with li = 1, 2 and
9∑
i=1

li = 0 mod 3 . (2.11)

The classification of these states according to the four Hodge types of cohomology classes
is shown in table 1. As we review in appendix A, their pairing with the integral classes γn
is given by ∫

γn ∧ Ωl = Bl ω
n·l with n · l =

∑
i

nil
i , (2.12)

1Note that we use Ωl to denote a basis of 3-forms and this should not be confused with the holomorphic
(3,0)-form Ω that does not have a subscript.
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where ω = e
2πi
3 and Bl = 1

39/2
∏
i

(
1− ωli

)
Γ( li3 ) is a factor that drops out of equation (2.7)

which then implies that∑
n

(Nn − τMn)ωn·l = 0 for all l with
∑
i

li = 12 , (2.13)

while equation (2.6) reduces to∑
n

(Nn − τMn)
(
−3ωn·l9 + ωn·l18

)
= 0 , (2.14)

where l9 = {1, 1, 1, 1, 1, 1, 1, 1, 1} and l18 = {2, 2, 2, 2, 2, 2, 2, 2, 2}. These are simple linear
equations and we can solve them in full generality although we are dealing with a large
number of moduli.

2.4 Higher-order derivatives of the superpotential

Having found fluxes that are supersymmetric at a particular point in moduli space, the
question arises whether this actually leads to a stabilization of all the moduli, i.e., the
absence of any continuous zero-energy deformations of the vacuum. A sufficient condition
for stability is that all scalar fields corresponding to the erstwhile moduli be massive.
However, even if in the presence of massless fields, non-trivial interactions can stabilize the
moduli at higher order in the deformation parameters. In other words, the deformations
could be marginal, but not exactly so.

In the language of singularity theory, a supersymmetric vacuum corresponds to a criti-
cal point of the superpotential2 (2.4). The absence of continuous deformations means that
the critical point is isolated, while the absence of massless fields means that the critical
point is non-degenerate. An example of a degenerate but isolated critical point is the origin
Φ = 0 of the superpotential W = Φ3.

In principle, the full dependence of the superpotential on all the moduli is encoded
through Ω in the formula (2.4). In practice, the explicit evaluation is generically pro-
hibitively complicated for more than a handful of variables. In our model at the Fermat
point, however, we can luckily evaluate all derivatives of the superpotential in terms of
elementary integrals, see appendix A, even if the full functional dependence remains inac-
cessible.

We will focus on this momentarily, but wish to point out that the second derivatives of
the superpotential (which in particular determine the masses of moduli) can in fact be eval-
uated much more easily for a generic Calabi-Yau through their relation with (what from its
role in the heterotic string is known as) the Yukawa coupling. Namely, the Yukawa coupling
captures the (0, 3)-component of the third derivative of the holomorphic three-form

Yabc =
∫

Ω ∧DaDbDcΩ , (2.15)

2In reality of course, the superpotential is not a function, but merely a section of a particular line bundle
over moduli space, as witnessed by the covariant derivatives in (2.7). Considerations of singularity theory be-
ing local are not directly affected by this distinction after an appropriate choice of holomorphic coordinates.
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or equivalently the expansion of its second derivative in terms of the (1, 2)-forms. Referring
specifically to table 3 of [34] the second derivatives of the flux superpotential with respect
to the complex structure moduli is given by

DaDbW = Da

∫
G ∧ χb =

∫
G ∧

(
−ieKY c

abχc
)
. (2.16)

where we have also used that the flux, being dual to an integral cycle, is covariantly con-
stant. To reiterate, the interest of this observation is that the Yukawa coupling is on
general grounds an algebraic function on moduli space, and is therefore much more easily
evaluated than the full moduli dependence of W .

In the case at hand, labeling the complex structure moduli by the corresponding l
vectors whose entries sum to 12 according to table 1, and utilizing appendix A, we find the
following second derivatives of W

DlaDlbW = 1
39

∑
n

(Nn − τMn)ωn·(la+lb−l9)
9∏
i=1

(
1− ωlia+lib−1)Γ( lia + lib − 1

3

)
. (2.17)

For the τ derivatives we find

DτDlaW = − 1
τ − τ

∫ (
3G+G

)
∧ χa , (2.18)

DτDτW = 3
τ − τ

∫
H3 ∧ Ω . (2.19)

At the particular point τ = ω we find

DτDlaW = − 1
39(1 + 2ω)

∑
n

(4Nn − (−1 + 2ω)Mn)ωn·la
9∏
i=1

(1− ωlia)Γ
(
lia
3

)
, (2.20)

DτDτW = 1
38(1 + 2ω)

∑
n
Mnωn·l9

9∏
i=1

(1− ωli9)Γ
(
li9
3

)
. (2.21)

When dealing with Minkowski vacua G ∈ H2,1(M) so the first equation simplifies to:

DτDlaW = − 1
39

∑
n
Mnωn·la

9∏
i=1

(1− ωlia)Γ
(
lia
3

)
, (2.22)

and the last equation reduces to DτDτW = 0. The multi-derivative of order r with respect
to the moduli fields labelled by l1, . . . , lr is given by (see appendix A for details):

∂l1∂l2 . . . ∂lrW = 1
39

∑
n

(Nn − τMn)ωn·(
∑

α
lα−(r−1)l9)

×
9∏
i=1

(
1− ω

∑
α
liα−(r−1)

)
· Γ
(∑r

α l
i
α − (r − 1)

3

)
.

(2.23)

3 Around the tadpole conjecture

In its original formulation [6], the tadpole conjecture states that “the fluxes which stabilize a
large number, h2,1 or h3,1, of complex structure moduli of a Calabi-Yau threefold or fourfold
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in a type IIB or F-theory compactification, respectively, make a positive contribution to
the D3-brane tadpole that grows at least linearly with the number of moduli”, i.e., there
is a constant α such that for a large number of moduli

(Flux tadpole) > α× (number of moduli) (3.1)

The conjecture was motivated by a number of failed attempts to find models in which a large
number of moduli can be stabilized explicitly by fluxes. Moreover, based on these examples,
it was also proposed that more specifically, α is at least 1/3. Since the formulation of the
conjecture, there have been a number of further tests and refinements, but to our knowledge
no substantial deviation or modification of (3.1) with α = 1/3 has yet been observed. A
typical difficulty in either proving or disproving the conjecture appear to be somewhat
fuzzy hidden assumptions on the portion of moduli space in which stabilization is to be
sought for. Specifically, investigations such as [12–16] focus around the large complex
structure in order to control both Kähler and superpotential, and dismiss any potential
violations at the boundary of that region. The methods of the present paper, as well as
its precursors [19, 22], avoid some of these difficulties and, although they apply in a rather
different region of moduli space, offer at least the same level of control. Without taking
sides, our concrete results motivate us to raise two points which we feel need to be taken
into account for a proper handle on the tadpole conjecture.

3.1 Hodge theoretic formulation

First of all, the conjecture (3.1) is stated without a precise definition of “stabilization of
moduli”. As our results illustrate, models located at special points in moduli space with a
high degree of symmetry will typically be missing mass terms for certain fields, depending
on their transformation properties, but these moduli can still be stabilized at higher order
in the deformation parameter.

Second, the conjecture focuses on the stabilization (however defined) of “all of a large
number of complex structure moduli” of a Calabi-Yau manifold by fluxes, with a universal
constant α. In fact, and certainly from the mathematical point of view, it seems just as
interesting to first investigate the interplay between the size of the flux tadpole and the
stabilization of only a subset of the moduli in a fixed model, and worry later about the
global problem and the universality of α.

To make progress, we propose3 to investigate a version of the tadpole conjecture that
can be formulated purely in Hodge theoretic terms, and that makes sense over the entire
moduli space. We do not claim to capture all subtleties of moduli stabilization, espe-
cially those related to perturbative and non-perturbative quantum corrections, or to the
stabilization of Kähler moduli. However, we feel that the actual problem is “in the same
universality class” of landscape problems in the sense of Douglas-Denef [35, 36]. Moreover,
our formulation has the advantage of being mathematically precise. We will spell out the

3A similar point of view appears to be taken in [14], but again restricted to the (strict) large complex
structure limit, as well as in the earlier work [18] in F-theory. We also thank Hossein Movasati for illumi-
nating discussions, especially about the possible role of the rank of the supersymmetric flux/Hodge lattice.
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proposal only for type IIB compactifications on Calabi-Yau threefolds, because this is the
class of models for which we have concrete results. We point out, however, that the (ob-
vious) reformulation for F-theory on Calabi-Yau fourfolds is even more closely related to
classical problems in Hodge theory.

Namely, given a Calabi-Yau threefold Y with complex structure moduli space4MY of
dimension dimMY = h2,1(Y )� 1, we may ask, for each point z ∈ MY , for the existence
of (non-zero) integral cohomology classes F3, H3 ∈ H3(Y,Z) and a value of the axio-dilaton
τ ∈ H in the upper half-plane, such that

G = F3 − τH3 ∈ H2,1(Yz)⊕H0,3(Yz) (3.2)

is a supersymmetric flux with respect to the complex structure corresponding to z. For
any such G, the flux tadpole

Q(G) =
∫
Y
F3 ∧H3 = 1

τ − τ̄

∫
Y
G ∧ Ḡ > 0 (3.3)

is a positive integer (if G is non-zero). We will call the sublattice

ΛSUSY
(τ,z) ⊂ H

3(Y,Z)⊕ τH3(Y,Z) (3.4)

of such fluxes, with rank ΛSUSY
(τ,z) =: rk(τ, z) the supersymmetric flux lattice, and the subset

MSUSY
Y = {(τ, z) ∈ H ×MY | rk(τ, z) > 0} ⊂ H ×MY (3.5)

for which ΛSUSY
(τ,z) is non-trivial the supersymmetric locus. The fact that Q is positive definite

gives ΛSUSY
(τ,z) an Euclidean structure.

MSUSY
Y is in general a complicated space, with many components of possibly different

dimensions, as well as other singularities. We understand the gist of the tadpole conjecture
as relating the codimension ofMSUSY

Y , as a measure for the number of “stabilized moduli”,
to the smallest flux tadpole that engenders it. The issue related to the first point raised
above is that because of the singularities of the supersymmetric locus, there are in general
different notions of dimension. Among these, the Zariski dimension, defined in terms
of the maximal ideal m at (τ, z) as dimZ

(τ,z)(MSUSY
Y ) = dim

(
m/m2), measures essentially

the number of fields that are left massless by the flux. On the other extreme, the Krull
dimension dimK

(τ,z)(MSUSY
Y ), defined by the longest chain of prime ideals of the local ring,

corresponds to the maximal number of truly marginal deformations. The fact that these are
no more than the number of massless fields is the classical inequality dimK

(τ,z)(MSUSY
Y ) ≤

dimZ
(τ,z)(MSUSY

Y ), with equality when the supersymmetric locus is smooth. The intuition
is that a large rank of the flux lattice corresponds to the intersection of many components
ofMSUSY

Y , and therefore leads to a large discrepancy between dimK and dimZ .
Now our results in the 19 LG model at the Fermat point (where ΛSUSY has extremely

large rank) indicate that while it is indeed difficult to find supersymmetric fluxes that make
4It is understood that the full construction involves an orientifold projection onto the invariant part of

the moduli space, fluxes have to be invariant, etc.
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all moduli massive with a bounded tadpole, higher order terms in the superpotential will
stabilize additional fields, although we have not been able to determine the exact number
of surviving continuous deformations. This leads us to propose that the tadpole conjecture
of [6] should be extended and tested over the entire moduli space as the mathematical state-
ment that the Zariski co-dimension of the supersymmetric locus of Calabi-Yau threefolds
is bounded linearly by the length of the shortest non-zero lattice vector,

codimZ
(τ,z)(M

SUSY) ≤ β ·min{Q(G) | G ∈ ΛSUSY
(τ,z) , G 6= 0} (3.6)

At this stage, the constant β might depend on Y , but would according to the “refined
tadpole conjecture” [6], be uniformly bounded as β = α−1 ≤ 3.

In the following subsection 3.2, we explain the relationship between the number of mas-
sive fields, i.e., the Zariski co-dimension, and the rank of the Hessian of the superpotential,
which is given in our model by eqs. (2.17), (2.20), (2.21), and which can more generally
be written in terms of the Yukawa coupling as (2.16). This last fact makes us particularly
hopeful that the tadpole conjecture in the form (3.6) is amenable to a mathematical proof
(or counterexample). Then, in subsection (3.3), we turn to the analysis of the higher-order
terms, given in our model by (2.23). As alluded to above, this is in general a complicated
problem in (high-dimensional!) singularity theory, and at this stage we will only describe
an algorithm for taking into account the first non-trivial correction.

3.2 The rank of the mass matrix for Minkowski solutions

For 4d N = 1 theories the Lagrangian is given by

L = −1
2Kī∂µϕ

i∂µϕ̄̄ − V , with V = eK
(
KīDiWDjW − 3|W |2

)
. (3.7)

Minkowski vacua satisfy the following relations

W = ∂τW = ∂aW = 0 , ∀a = 1, . . . , h2,1 . (3.8)

The Hessian matrix of the scalar potential for Minkowski vacua is then simply given by
Hī = ∂i∂̄V = eK(∂i∂kW )Kkl̄(∂l̄∂̄W ).5 To calculate the physical masses squared of
the complex scalar fields requires us to go to a canonical basis in field space using the
diffeomorphism P ij = ∂ϕi/∂ϕ̂j defined such that

− 1
2Kī∂µϕ

i∂µϕ̄̄ = −1
2KīPk

i∂µϕ̂
kP̄ ̄ l̄∂

µ ¯̂ϕl̄ = −1
2δī ∂µϕ̂

i∂µ ¯̂ϕ̄ . (3.9)

The masses squared are then given by the eigenvalues of the mass matrix M =
(P−1)THP̄−1. This can be rewritten as

Mim̄ = eK [(P−1)T (∂∂W )P−1]ijδjk̄[(P̄−1)T (∂̄∂̄W̄ )P̄−1]k̄m̄ . (3.10)

We see that the masses squared are necessarily positive semidefinite. This ensures the
stability of the solution and is a result of the preserved supersymmetry. However, while

5For Minkowski vacua one finds that the equations (3.8) imply that ∂i∂jV = 0.
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instabilities in the form of tachyons are forbidden, it is in principle possible that scalar
fields are massless. To answer the question of stability for a given solution with massless
scalars would then require one to calculate higher order terms in the scalar potential.6 If
some scalar fields in 4d N = 1 Minkowski vacua would remain flat directions, then one can
only trust these vacua if one can control all corrections to the superpotential, because any
kind of correction could lead to a runaway potential for the flat directions. Given the non-
renormalization theorems in [19, 20] that we reviewed above in subsection 2.2, we expect
that these models do not receive any correction to the superpotential (but only to the
Kähler potential). So, the existence of these Minkowski vacua is guaranteed independent
of the corrections and higher order terms.

Let us return to the mass matrix above in equation (3.10). It clearly involves in
addition to the superpotential also the inverse Kähler metric Kī. Given that we have
no control over corrections to the Kähler potential we generically do not know what the
masses of the scalar fields are. However, we can ask more modest questions like whether
all scalar fields are massive or how many scalar fields are massless. This can actually be
answered because the Kähler metric appears in the kinetic terms and is therefore a positive
definite matrix. For example, when calculating the determinant of Mim̄ one finds that it
is zero if and only if the determinant of ∂i∂kW is zero [22]. Thus, if the Hessian of the
superpotential has maximal rank then all scalar fields are massive. One can extend this
argument to show that the matrix rank of Mim̄ is the same as the matrix rank of ∂i∂kW :
assume there is a vector a in the nullspace of (∂∂W ), i.e., (∂∂W )a = 0. Then it follows
from the definition of Mim̄ in equation (3.10) that P̄ ā is in the nullspace of M . Since P
is a diffeomorphism P̄ ā is non-zero whenever a is non-zero. Thus, P provides a 1-1 map
between nullvectors of M and (∂∂W ) and both matrices have therefore the same rank.

3.3 Stabilization at higher order

We have just seen that although we cannot calculate the physical masses of the moduli
without knowledge of the Kähler potential, the number of fields that remain massless in any
given Minkowski vacuum can be determined just based on the Hessian of the superpotential,
i.e., the quadratic terms in the expansion around the critical point (3.8). It is easy to see
that this extends to higher order as well: a continuous family of supersymmetric vacua just
corresponds to a flat direction of the superpotential, a problem which by analyticity can be
studied with knowledge of all derivatives at the critical point. In practice, this can be ana-
lyzed order by order in the field expansion, which is still a very non-trivial problem, however.

To fix ideas, consider a theory with chiral fields ϕi, and superpotential W expanded
up to cubic terms around a critical point at the origin,

W = 1
2
∑
i,j

Hijϕ
iϕj + 1

3!
∑
i,j,k

Cijkϕ
iϕjϕk + higher order terms . (3.11)

If the Hessian Hij does not have full rank, there are some massless fields, and we would like
to know how many of them correspond to true moduli, in particular, whether the critical

6For example, a single real scalar field with V (φ) = φ4 would be massless but stabilized at φ = 0.
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point equations
∂iW = Hijϕ

j + 1
3Cijkϕ

jϕk + · · · (3.12)

admit any continuous solutions.
In reality, this depends on the higher order terms. For example, the superpotential

W = 1
2(ϕ − ψ2)2 clearly has a flat direction along ϕ = ψ2. However, in the expansion of

W up to cubic order ∂ϕW = ϕ − ψ2, ∂ψW = −2ϕψ and if we treated these truncated
equations exactly, we would conclude that ϕ = ψ = 0 is the only critical point. The correct
statement is that if we parametrize the deformation by the kernel of the quadratic term,
i.e., ψ, and eliminate ϕ = ψ2 with the help of the first equation, the second equation is
−2ψ3 = 0, and vanishes up to the order that we have kept track of, so we correctly cannot
conclude that the deformation is lifted.

In general, if we find that the equations (3.12) do not vanish up to cubic order in
the independent fields once the massive fields have been eliminated, we can conclude that
the deformation space actually has smaller dimension than the kernel of Hij . How many
more fields are stabilized at this order can be determined by solving a number of quadratic
equations. To be specific, assume that Hij has rank one, with H11 = 1. The first equation
∂1W = 0 is then solved if

ϕ1 = −H1jϕ
j − 1

3C1jkϕ
jϕk (3.13)

where the first sum is only over j 6= 1, but the second over all j, k. Since we are only
working up to third order in the independent fields (ϕj for j > 1), we can without harm
replace ϕ1 with −H1jϕ

j in the second term to solve ∂1W up to that order. Substituting this
result in the remaining equations, the linear terms drop out (because Hij had rank 1) and
we are left with a list of quadratic equations in only the independent fields. The reduction
in dimension is a bit subtle, and not necessarily given by the number of linearly independent
quadrics, but as soon as one quadric is non-zero, we can conclude that additional fields are
stabilized in the full problem.

The generalization to Hessians of higher rank is straightforward, and we have imple-
mented this for the study of moduli stabilization in the 19 Landau-Ginzburg model at the
Fermat point. The generalization to higher order in the fields if also fairly obvious, but we
will leave it for future work.

4 Minkowski solutions at fixed coupling

As we reviewed above, the superpotential does not receive perturbative or non-perturbative
corrections and thus supersymmetric Minkowski vacua are of particular interest in these 4d
N = 1 theories. Originally Minkowski vacua in these non-geometric settings were studied
in [19] by including all complex structure moduli. Follow-up papers [20–22] then restricted
to the three bulk torus complex structure moduli. It was shown in [20] that such vacua
cannot arise at parametrically large complex structure or weak coupling, thus confining
them to a barely explored part of the string landscape. In this section we will set the
axio-dilaton to

τ = C0 + ie−φ = ω = e
2πi
3 = −1

2 + i
√

3
2 . (4.1)
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So, we have a string coupling of order one and we will describe our attempts to systemat-
ically classify the solutions of the 19 model at this point in moduli space.

4.1 Massless fields in old solutions

The original work [19] presented three explicit Minkowski solutions of our model in their
section 4.5. These solutions were found essentially by happenstance, and no claim was
made as to their genericity or completeness. In view of the questions raised above, we have
now checked the rank of the corresponding Hessians for these three solutions. We find that
the second example of [19], given in the Ω-basis by7

G1 = 1
9

[
− Ω1,1,1,2,1,2,1,2,1 + Ω1,1,1,2,1,2,1,1,2 + Ω1,1,1,2,1,1,2,2,1 − Ω1,1,1,2,1,1,2,1,2

+ Ω1,1,1,1,2,2,1,2,1 − Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,1,2,2,1 + Ω1,1,1,1,2,1,2,1,2

]
(4.2)

and which makes a contribution Nflux = 8 to the D3-brane tadpole, gives masses to 14 of
the 64 scalar moduli. The first example of [19],

G2 = i
3
√

3

[
Ω1,1,1,1,2,1,2,1,2 − Ω1,1,1,1,2,1,2,2,1 − Ω1,1,1,1,2,2,1,1,2 + Ω1,1,1,1,2,2,1,2,1

]
(4.3)

with Nflux = 12 has 16 massive complex scalars. Finally, the third example:

G3 = 1
9

[
− Ω1,1,1,2,2,2,1,1,1 − Ω1,1,1,2,2,1,2,1,1 − Ω1,1,1,2,2,1,1,2,1 + Ω1,1,1,2,1,2,1,1,2 (4.4)

+ Ω1,1,1,2,1,1,2,1,2 + Ω1,1,1,2,1,1,1,2,2 − Ω1,1,1,1,2,2,2,1,1 − Ω1,1,1,1,2,2,1,2,1 (4.5)

− Ω1,1,1,1,2,1,2,2,1 + Ω1,1,1,1,1,2,2,1,2 + Ω1,1,1,1,1,2,1,2,2 + Ω1,1,1,1,1,1,2,2,2

]
(4.6)

with Nflux = 12 has 22 massive complex scalars.
These numbers being rather small compared to the total number of moduli, we have

set out to check on the one hand whether any of the remaining massless fields are stabilized
at higher order in the field expansion, along the lines sketched in section 3.3, and second
to search more systematically for Minkowski solutions in this model, hopefully covering all
possibilities.

Along these lines, we have found that while in the vacua corresponding to G1 and G3
above, the cubic terms in the superpotential do not lead to any further constraints on the
massless fields, in the vacuum corresponding to G2, the 64− 16 = 48 massless scalars are
subject to 10 linearly independent quadratic equations at that order, so indeed some of
them are actually stabilized and not true moduli. These results in themselves suggest that
this is not the full story, and that quartic terms and beyond will lead to further stabilization.
But we will leave this for future work and instead turn to the systematic search.

7While we reproduced the F3- and H3-fluxes in [19, section 4.5], we find a slightly different normalization
and phase for the G-fluxes.
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4.2 Symmetries and new solutions

The 19 model specified in equation (2.1) enjoys an obvious S9 permutation symmetry.
This symmetry is broken to S7 by the orientifold action in equation (2.2). We thus need
to study one representative of each S7 orbit. However, this is still a formidable task. For
example, there are billions of ways of choosing 12 non-zero Aa out of the 63 possible ones (cf.
eq. (2.8)) but the order of S7 is only 5040.8 Thus, we somewhat randomly generate roughly
eight hundred different Minkowski solutions that satisfy the tadpole cancellation condition
and have Nflux = 12. The maximum rank that we find for the mass matrix is 26. This is
consistent with the tadpole conjecture, which predicts that the number of massive fields
should be smaller than 36 given that the tadpole is 12. One example of this is given by:

G4 = −1
9

[
Ω1,1,1,2,2,1,1,2,1 − Ω1,1,2,1,2,1,1,2,1 − Ω1,1,2,2,1,1,1,2,1 + Ω1,1,2,2,2,1,1,1,1

− Ω1,2,1,2,2,1,1,1,1 − Ω2,1,1,2,2,1,1,1,1 + Ω1,2,2,1,1,1,1,2,1 + Ω2,1,2,1,1,1,1,2,1

− Ω2,2,1,1,1,1,1,2,1 + Ω2,2,1,1,2,1,1,1,1 + Ω2,2,1,2,1,1,1,1,1 − Ω2,2,2,1,1,1,1,1,1

]
. (4.7)

Next, we attempt to generalize the results to a full proof. We know that solutions which
are related by a permutation will have the same rank. Interestingly, we find that solutions
with different permutation symmetries can have the same rank. The solution G4 has an
S3 × Z2 × Z2 symmetry group. Another solution which also has rank 26 is

G5 = ω2

9

[
Ω1,1,2,2,2,1,1,1,1 − Ω1,2,1,2,2,1,1,1,1 − Ω2,1,1,2,2,1,1,1,1 + Ω2,2,1,1,2,1,1,1,1

+ Ω2,2,1,2,1,1,1,1,1 − Ω2,2,2,1,1,1,1,1,1 + Ω1,1,1,2,2,2,1,1,1 − Ω1,1,2,1,2,2,1,1,1

− Ω1,1,2,2,1,2,1,1,1 + Ω1,2,2,1,1,2,1,1,1 + Ω2,1,2,1,1,2,1,1,1 − Ω2,2,1,1,1,2,1,1,1

]
, (4.8)

which has an S3 × Z2 symmetry group.
We also discovered new solutions that satisfy the tadpole condition with Nflux = 12

and have different rank for the mass matrix. For example, the following solution has 20
massive fields respectively:

G7 = 1
9

[
− Ω1,1,1,1,2,1,2,1,2 + Ω1,1,1,1,2,1,2,2,1 + Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,2,1,2,1

+ ω(−Ω1,2,1,1,1,1,2,1,2 + Ω1,2,1,1,1,1,2,2,1 + Ω1,2,1,1,1,2,1,1,2 − Ω1,2,1,1,1,2,1,2,1

− Ω2,1,1,1,1,1,2,1,2 + Ω2,1,1,1,1,1,2,2,1 + Ω2,1,1,1,1,2,1,1,2 − Ω2,1,1,1,1,2,1,2,1)
]
, (4.9)

8This is somewhat overestimating the actual problem since whenever we choose an Aa that is not
invariant under the orientifold but rather gets mapped into Ab then we have to turn on Ab = Aa.
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and G8 below has 18 massive fields

G8 = 1
9

[
− Ω1,1,1,1,2,1,2,1,2 + Ω1,1,1,1,2,1,2,2,1 + Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,2,1,2,1

+ ω(−Ω1,1,1,2,1,1,2,1,2 + Ω1,1,1,2,1,1,2,2,1 + Ω1,1,1,2,1,2,1,1,2 − Ω1,1,1,2,1,2,1,2,1

− Ω1,1,2,1,1,1,2,1,2 + Ω1,1,2,1,1,1,2,2,1 + Ω1,1,2,1,1,2,1,1,2 − Ω1,1,2,1,1,2,1,2,1)
]
. (4.10)

Summarizing, besides the rank 14 for the mass matrix that we only found for Nflux = 8 we
found via an extensive search of solutions with Nflux = 12 the ranks 16, 18, 20, 22 and 26.
It is not clear to us whether there is a pattern emerging or not but it would be certainly
interesting to study this further.

We have also evaluated some higher-order corrections for these new solutions according
to section 3.3. Including all terms in the superpotential that are cubic in the fields, we find
that while for G4 and G5, the number of massless fields is not reduced compared to the
second-order level, for G7 we find 3, and for G8, 5 additional quadrics in the massless fields
that are linearly independent over C. This again is suggestive of an intriguing pattern that
we wish to study further in subsequent work.

Finally, we performed a search for flux configurations for which all scalar fields have
a mass. This is of course the case for generic choices of fluxes, however, in those cases
one overshoots the tadpole cancellation condition with the flux contribution by a lot. We
tried to identify flux configurations with a small contribution to the tadpole conjecture
that stabilize all moduli but we did not manage to find solutions with Nflux smaller than
69. So, also from this angle we did not find an inconsistency with the idea of the tadpole
conjecture that in principle allows full stabilization with Nflux > 64/3 ≈ 21.

4.3 Constraint on the G-flux

In order to tackle the question of what Minkowski solutions exist in our orbifold of the 19

model, we need to understand potential constraints that reduce the parameters of a search.
Here we summarize some constraints that we discovered when studying Minkowski vacua.

We found that it is useful to write

GMink =
∑

Aaχa ∈ H2,1(M) . (4.11)

Following [19, section 4.3], we can start by setting all but one of the Aa equal to zero so
that G = AΩl, where we switched to the Ωl basis discussed above in section 2.3. The
quantization condition in equation (2.10) then requires that for each n in our basis there
exist integers Nn and Mn such that

√
3Aωn·l = Nn − τMn . (4.12)

Since we chose τ = ω = e
2πi
3 , we find that |A|2 ≥ 1/3. This then implies that (cf.

equation (2.9) for A0 = 0)
Nflux = 81|A|2 ≥ 27 . (4.13)

– 16 –



J
H
E
P
1
2
(
2
0
2
2
)
0
8
3

This means, with only one non-zero Aa, it is impossible to find solutions within the tadpole
bound of 12. One can repeat a similar argument for two non-zero Aa’s and finds that their
contribution to the tadpole is at least 18 and therefore still too large. One can continue
this analysis but it becomes more and more tedious to derive the analytic bounds. We are
also more interested in an upper bound on the number of Aa that we can turn on in order
to make the analysis of this model tractable.

Let us therefore turn on the generic G-flux in equation (4.11) and write it explicitly as

GMink =
∑

l
AlΩl =

∑
n
Nnγn − τ

∑
n
Mnγn . (4.14)

This allows us to write the 63 complex Aa in terms of 126 real independent flux quanta.
Denoting all the different integer combinations of flux quanta (that are themselves integer)
schematically by Z, we find via an explicit calculation that all Aa can be brought into the
form

Aa = 1
9(Z + ωZ) . (4.15)

The above constraint implies that each Aa satisfies the constraint |Aa|2 ≥ 1/81. This
means that each non-zero Aa we turn on has to contribute at least 1 to the tadpole

Nflux = 81
∑
a

|Aa|2 ≥ number of non-zero Aa . (4.16)

Thus, for our 19 orientifold we can have at most 12 non-zero Aa before violating the tadpole
condition. Given that there exist Minkowski solutions with 12 non-zero Aa and tadpole
12 (cf. eq. (4.4)), we know that one can saturate the bound in this case. Likewise, there
is a solution with 8 non-zero Aa and Nflux = 8 (cf. eq. (4.2)). So, again in this case one
can saturate the bound. Given that in practice we only found solutions with Nflux ≤ 12
for either four, eight or twelve non-zero Aa’s, we believe that there are further constraints
that might potentially make a complete analysis of this model feasible. We leave this as
an interesting challenge for the future.

5 New infinite families

The original paper [19] established the existence of Minkowski vacua in the full 19 orientifold
model, while follow-up papers restricted only to a subset of moduli. Interestingly, in one of
these follow-up papers [22] the existence of infinite families of Minkowski and AdS vacua
for the torus bulk moduli was established. We will here now show that such infinite families
also exist in the full model where we will include all 63 complex structure moduli and the
axio-dilaton.

5.1 Two infinite families of Minkowski vacua

5.1.1 Generalization of a previous solution

We found it fairly straight forward to construct many different infinite families of Minkowski
vacua, when we allow the axio-dilaton τ to vary. It was pointed out at the end of subsection
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2.2 in [21] that the effective action is not invariant under SL(2,Z) symmetry. Nevertheless,
the Minkowski vacuum equations in equation (3.8) are transforming covariantly and infinite
families arise from SL(2,Z) transformations.9 This means that SL(2,Z) transformations
seemingly generate new (infinite families of) solutions. Note that the argument for the
breaking of the SL(2,Z) symmetry in [21] is due to the factor of 4 that appears in the Kähler
potential in equation (2.5). Given that the Kähler potential in equation (2.5) receives string
loop corrections this argument seems strictly speaking only applicable at weak coupling and
all our solutions are at strong coupling. So, while the scalar potential and for example the
masses of the scalar fields in a weakly coupled Minkowski solution do change under SL(2,Z)
transformations, we cannot say for sure that the same is true for all the vacua in our infinite
families, since we do not know the exact form of the corrections to the Kähler potential.

The family of solutions we present in this subsection is the first example given in [19,
section 4.5] (see eq. (4.3) above) generalized by an arbitrary integer parameter N ∈ Z. It’s
G-flux is given by

G = 3N + i
√

3(2−N)
18(N2 −N + 1)

(
Ω1,1,1,1,2,1,2,1,2 − Ω1,1,1,1,2,1,2,2,1

− Ω1,1,1,1,2,2,1,1,2 + Ω1,1,1,1,2,2,1,2,1
)
. (5.1)

The original solution in equation (4.3) is recovered for N = 0. The axio-dilaton for this
infinite family is given by

τ = C0 + ie−φ = 2N − 1
2 (N2 −N + 1) + i

√
3

2 (N2 −N + 1) . (5.2)

We see here, consistent with the argument in [20], that we are always at strong coupling
since

eφ = 2
(
N2 −N + 1

)
√

3
≥ 2√

3
. (5.3)

Let us recall from above that this is consistent with the fact that S-duality is broken in our
setup by the orbifold that freezes the string frame volume.

This infinite family of solutions has Nflux = 12 for any N ∈ Z so that the tadpole
cancellation condition equation (2.3) is satisfied without requiring any D3-branes. We find
that this particular solution has only 16 massive complex scalar fields. This is, maybe
somewhat surprisingly, independent of the value of N . The explanation for this is that the
Hessian of the superpotential has zeros in most of its entries. The few non-zero entries are
functions of N .

5.1.2 A family with tadpole 12 and 26 massive scalar fields

Let us present here another infinite family derived from the new solution we presented
above in equation (4.7). The family of solutions which has 26 massive complex scalar

9This is not the case for the AdS solutions we present below.
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fields, again independent of the free parameter N ∈ Z, has the G-flux

G = −(2−N) + i
√

3N
18(N2 −N + 1) (Ω1,1,1,2,2,1,1,2,1 − Ω1,1,2,1,2,1,1,2,1 − Ω1,1,2,2,1,1,1,2,1

+Ω1,1,2,2,2,1,1,1,1 − Ω1,2,1,2,2,1,1,1,1 − Ω2,1,1,2,2,1,1,1,1

+Ω1,2,2,1,1,1,1,2,1 + Ω2,1,2,1,1,1,1,2,1 − Ω2,2,1,1,1,1,1,2,1

+Ω2,2,1,1,2,1,1,1,1 + Ω2,2,1,2,1,1,1,1,1 − Ω2,2,2,1,1,1,1,1,1). (5.4)

The original solution in equation (4.7) above is recovered for N = 0. The axio-dilaton in
this infinite family is

τ = C0 + ie−φ = − 2N2 + 1
2 (N2 −N + 1) + i

√
3

2 (N2 −N + 1) . (5.5)

Given that the expression for the dilaton is the same as in the previous infinite family,
given in equation (5.2) above, these solutions again only exist at strong coupling.

5.2 Implications for the landscape and the swampland

5.2.1 The tadpole conjecture

Given that we work with large number of h2,1 = 63 complex structure moduli, the two
infinite families above, as well as the solutions discussed in subsection 4.2, serve as an in-
teresting test of the tadpole conjecture. Let us stress again that this test is being performed
in a strong coupling limit, away from the large complex structure point. In our solutions
at the highly symmetric Fermat point we did not find solutions with more than 26 massive
complex structure moduli within the tadpole bound of 12. This leads to 12/26 ≈ .46, which
is larger than α = 1/3 and thus provides a confirmation of the tadpole conjecture away
from the boundary of moduli space. Given the large number of parameters in this model
we have not been able to fully map out the solution space, so there is currently no proof
preventing the existence of Minkowski vacua with more massive scalars. Let us also stress
that we found that some scalars are stabilized by higher order terms. It would be very
interesting to further study higher order stabilization and check whether it is possible to
violate the tadpole conjecture in this way. It is certainly possible and maybe even expected
that higher order terms stabilize all moduli and thereby leave no flat directions. We hope
to analyze this further in the future.

5.2.2 The massless Minkowski conjecture

Recently another swampland conjecture called the massless Minkowski conjecture was for-
mulated in [37]. It states that 10d supergravity compactifications to 4d Minkowski space
always have in the spectrum a massless scalar field that is a linear combination of the inter-
nal volume modulus, the dilaton and the volume moduli parameterizing the volume of the
cycles transverse to the O-planes. This conjecture is connected to the tadpole conjecture
above, which constrains the number of fields that can be stabilized. However, the massless
Minkowski conjecture specifically only talks about massless fields and in principle allows a
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stabilization of all fields. It also does not require the presence of a large number of moduli
and is thus clearly distinct from the tadpole conjecture in several ways.

While the conjecture stipulates a (geometric) compactification of 10d supergravity,
which is not the case for the non-geometric model we study here, it is intriguing to note
that we always find massless fields in all our Minkowski vacua. So, one could speculate
that some version of this conjecture applies everywhere in moduli space.

As was already noted in [37], our non-geometric models have no volume moduli and
thus the massless scalars are among the complex structure moduli and the axion dilaton.
We checked and find that generically the axio-dilaton is not a flat direction. Thus, the
massless Minkowski conjecture would have to be generalized to allow any kind of modulus
to be massless in a Minkowski vacuum to cover also our setting.

5.2.3 Finiteness of vacua in quantum gravity

Lastly, we would like to address here the apparent existence of an infinite number of 4d
supersymmetric Minkowski vacua in our setup. There are arguments that quantum gravity
should only allow for a finite number of vacua, see for example [23]. This requirement was
promoted to a swampland conjecture in [24]. The finiteness of string theory vacua was
recently generalized and put on more mathematical footing in the tameness conjecture [38].
This made it also possible to proof that there is only a finite number F-theory flux vacua
with (imaginary) self-dual fluxes [39]. This might seem at first sight at odds with the
existence of the infinite families of Minkowski vacua that we find above.

A precise statement about the finiteness of vacua was given in [40, section 4]. It says
that below a fixed finite energy cutoff, there exist only a finite number of low energy effective
field theories consistent with quantum gravity. For the counting one has to quotient by the
moduli space. So, in our setup, if there would be flat directions we would have to quotient by
them, however, each of the Minkowski vacua in the infinite families above would be a valid
low energy effective theory below a certain cutoff. The latter point is exactly the loophole
that makes our infinite families consistent with the finiteness of vacua below a fixed cutoff:
in all infinite families the string coupling always runs to infinity. One therefore expects that
an infinite tower of massive states becomes light in this limit. So, for any given fixed cutoff
we only have a finite number of vacua that are valid. It would be interesting to make this
more precise. However, given that in our setup S-duality is broken, there are no weakly
coupled dual solutions within our setup, making a more detailed study rather difficult.

5.3 AdS vacua

It is also possible to study supersymmetric AdS solutions in this setting despite the fact
that the Kähler potential receives unknown large corrections as discussed above in subsec-
tion 2.2. This was explained in [19] in two different ways: on the one hand we simply have
to ensure that the G-flux is of the particular cohomology type given above in equation (2.8).
This choice is independent of gs corrections and therefore the existence of supersymmetric
AdS solutions is unaffected by potential corrections. Another way of seeing this is by ex-
panding the Kähler potential around the critical point and to allow for arbitrary corrections.
One then finds that the corrections to K are of the form K → K + δf(ϕ) + δf(ϕ). This
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can be undone by a Kähler transformation W → e−δf(ϕ)W . Since the covariant derivative
transform as DiW → e−δf(ϕ)DiW we see again that the existence of supersymmetric AdS
solutions with DiW = 0 is not affected by arbitrary corrections.

In these non-geometric settings AdS vacua have been studied in [20–22]. It was shown
in [20] that, restricting to the three torus bulk moduli, it is possible to find AdS vacua at
parametrically large complex structure and parametrically weak coupling. Thus, for those
solutions one has parametric control over all corrections and can trust the Kähler potential
at large complex structure. It would be interesting to extend this study to include all 63
complex structure moduli and check that all can be in the large complex structure limit
and are massive.10 Here we do not explore this avenue but rather keep working with our
Landau-Ginzburg model at the Fermat point.

If the G-flux is chosen to be of the form in equation (2.8):

GSUSY = Aaχa +A0
(
−3Ω + Ω

)
, (5.6)

then we are automatically guaranteed to have a supersymmetric AdS solution if A0 6= 0.
While we have shown in subsection 4.3 above that for Minkowski vacua we cannot have more
than twelve non-zero Aa without violating the tadpole this is not true for AdS solutions. In
particular, a generic solution will have generically all Aa non-zero and different. We have
generated many such solutions with the constraint that they satisfy the tadpole cancellation
in equation (2.3) with ND3 = 0. This means the fluxes exactly cancel the contribution from
the O3-planes. The G-flux for one such explicit solution with τ = e

2πi
3 is given explicitly

in appendix B. This solution has Nflux = 12 and therefore satisfies the tadpole condition
without any D3-branes. So, the only light fields are the 63 complex structure moduli and
the axio-dilaton.

The mass matrix for any 4d N = 1 supersymmetric AdS solution has off-diagonal
entries that lead to a mass splitting between the two real scalars in the chiral multiplets.
The Hessian of the scalar potential V is given by

∂i∂̄V = eK
[
(DiDkW )Kkl̄(Dl̄D̄W̄ )− 2Kī|W |2

]
,

∂i∂jV = −eK(DiDjW )W̄ . (5.7)

We see that the above involves the Kähler potential in a non-trivial way, which makes it
difficult to say something definitive given that K receives unknown correction at strong
coupling. In the previous Minkowski solutions, we saw that the rank of the matrix DiDjW

was rather small and most entries in the matrix were zero in these examples. This told us
that many scalar fields did not receive a mass through the fluxes that we have turned on.
Here however we find that the G-flux example given in appendix B leads to rank 64 for the
matrix DiDjW . This means that the scalar potential should involve all 64 complex scalars
although the fluxes only contribute 12 to the tadpole. This is in stark contrast with the
Minkowski solutions. Although we cannot calculate the masses explicitly here, given that

10This is the expected result at least for AdS solutions that are mirror dual to the DGKT construction [25].
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an AdS solution exists and given that all of the scalar fields appear in the scalar potential,
one might expect that generically all scalar fields will be massive in these solutions.11

While we have been able to generate many different such AdS solutions with Nflux = 12
and different mass matrix rank for DiDjW , we have not been easily able to extend these
solutions to infinite families. We leave this as an interesting challenge for the future.

5.3.1 A family with unbound tadpole

Here we want to generalize an observation made in [22] for the three bulk moduli to the
full-fledged model at strong coupling: there are AdS solutions at large complex structure
and weak coupling for which it is possible that Nflux → −∞ [22]. This would then require
that ND3 → +∞ to satisfy the tadpole condition in equation (2.3). For such solutions one
then expects to have gauge groups with parametrically large rank. This is very different
from Minkowski solutions where one expects a finite gauge group rank.

Here we present an infinite family of AdS solutions with two free parameters N,M ∈ Z,
M ≥ 0. The G-flux is given by

G = (2M + 1)
3

[(
Ω1,1,1,1,2,1,2,1,2 + Ω1,1,1,2,1,2,1,2,1 − Ω1,1,2,1,1,2,2,1,1 + Ω1,1,2,2,2,1,1,1,1

+Ω1,2,1,1,1,1,1,2,2 + Ω2,1,1,1,1,1,1,2,2 + Ω1,2,1,1,1,2,2,1,1 + Ω2,1,1,1,1,2,2,1,1

+Ω1,2,1,2,2,1,1,1,1 + Ω2,1,1,2,2,1,1,1,1 + Ω2,2,2,1,1,1,1,1,1
)

+N(−3 Ω1,1,1,1,1,1,1,1,1 + Ω2,2,2,2,2,2,2,2,2)
]
. (5.8)

The axio-dilaton depends only on M and for the string coupling to be positive we require
that M ≥ 0

τ = −1
2 + i

√
3 (2M + 1)

2 . (5.9)

We see that the string coupling goes to zero for large positive M values

eφ = 2√
3 (2M + 1)

. (5.10)

This means that in this solution we have parametric control over string loop corrections
and we expect that all such corrections to the Kähler potential are suppressed in the large
M limit. The tadpole cancellation condition takes the form

Nflux +ND3 = −9(2M + 1)(72N2 − 11) +ND3 = 12 . (5.11)

Given the constraint M ≥ 0 this can only be satisfied for N 6= 0. In that case, we see
from the above that we need to add ND3 = 12 + 9(2M + 1)(72N2− 11) D3-branes. So, we
expect solutions with an arbitrarily large gauge group rank. This is amusing but consistent
with other examples in the literature [42–46]. It was argued in [47] that AdS vacua do not
allow for a scale separation between the AdS scale and an infinite tower of massive states.
Thus, one cannot think of the gauge group as a genuine gauge group in AdS4 but rather

11In AdS stability requires that the masses squared are all above the Breitenlohner-Freedman bound [41].
This is guaranteed for all our solutions because they are supersymmetric.
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should think of it as a defect gauge group in a higher dimensional theory. The rank of such
defect gauge theories is not bounded (as should be clear from a stack of Dp-branes in 10d
flat space). In [22] it was shown that similar solutions at weak coupling and large complex
structure indeed seem to contain such a tower of light states. Actually, as was argued there,
the open string moduli on the D3-branes would also lead to a species bound [48–51] that
becomes small rather quickly.

6 Conclusions

Landau-Ginzburg techniques allow us to access string compactifications away from the
large complex structure limit even for a very large number of moduli. In particular, at
the Fermat point one has access to the values of the superpotential and all its derivatives.
Furthermore, as was pointed out and used a long time ago in the papers [19, 20], it is
possible to find explicit Landau-Ginzburg models that are mirror dual to rigid Calabi-Yau
and therefore have no Kähler moduli. Thus, compactifications of type IIB string theory on
those models give rise to scalar potentials that can depend on all moduli and therefore in
principle can give masses to all scalar fields. Here we have revisited those models to perform
a more systematic study of supersymmetric Minkowski and supersymmetric AdS vacua.

One of the motivations for our study is the so-called tadpole conjecture [6], according
to which, in violation of the well-informed intuition, it is in fact not possible to stabilize
all moduli using fluxes before these make an unacceptably large contribution to the D3-
brane tadpole. This question is usually studied in asymptotic limits near the boundary of
moduli space, where the effective action is best under control. Based on our results, which
rely on non-perturbative methods, we have proposed a version of the conjecture that is
valid throughout moduli space, and also makes a clear distinction between giving masses
to moduli and stabilizing them, potentially with a higher-order potential.

Among these results, we have for the first time determined how many complex structure
moduli are massive in the previously known Minkowski solutions and we find that only
14, 16 or 22 out of 63 complex structure moduli and the axio-dilaton have a non-zero
mass. Therefore, we carried out an extensive search for new Minkowski vacua and found
many more solutions that have more massive scalar fields. The maximal value that we
encountered is 26, so less than half of the scalar fields were massive. This agrees well with
the expectation of the tadpole conjecture [6] (in our reformulation) and thus provides a test
of this conjecture away from the boundary of moduli space. While we find no violations of
the tadpole conjecture in these Minkowski vacua, we have not been able to fully map out
the moduli space. We also found that higher order terms in the scalar potential stabilize
more scalar fields. Whether all fields can be stabilized or not is an important question that
we plan to address in the future.

The recently proposed massless Minkowski conjecture [37] stipulates that supergravity
compactifications to 4d Minkowski vacua always have massless scalars. While it does not
strictly apply to our non-geometric setting, it is intriguing to note that we always find
massless scalars in our Minkowski solutions. Thus we provide evidence for some version of
the massless Minkowski conjecture away from the supergravity limit.
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We have found that Minkowski vacua seem to generically come in infinite families.
We presented solutions in which a quantized flux, which does not appear in the tadpole
cancellation condition, can take arbitrary integer values. Increasing the absolute value
of this flux quanta leads to parametrically strong coupling. However, due to powerful
renormalization theorems [19, 20], our solutions still exist at strong coupling. This seems
at odds with the believed finiteness of the number of vacua in string theory. However, we
argue that the strong coupling limit should signal that a tower of string states becomes
light. This would mean that the number of vacua below any given fixed cutoff scale is always
finite, consistent with previous expectations [23, 24]. The finiteness of string theory vacua
has been recently revisited within the broader context of the tameness conjecture [38].
It was actually proven in [39] that there are only finitely many vacua in F-theory with
(imaginary) self-dual fluxes. This should be in line with our families of solutions for which
we argued that there is only a finite number below any fixed cut-off scale but it would be
interesting to study this point further.

Lastly, we have also studied supersymmetric AdS solutions. Here our goal was two-
fold: we have shown that for these AdS solutions it is possible to find superpotentials that
depend on all 63 complex structure moduli and the axio-dilaton, while still only having a
flux contribution to the tadpole that is equal to 12. We provide arguments that for those
AdS vacua generically there seems to be no correlation between the number of massive
scalar fields and the flux contribution to the tadpole cancellation condition.

We have also presented one explicit infinite family of AdS solutions that goes to asymp-
totically weak coupling. In this limit the flux contribution goes to minus infinity and needs
to be compensated for by D3-branes whose number goes to plus infinity. This thus leads
to weakly coupled AdS solutions with gauge groups of arbitrarily large rank.

Given that several recent developments in the swampland program are guided by intu-
ition from compactifications at large volume, large complex structure and weak coupling,
it is of greatest importance to study string theory away from these limits. The Landau-
Ginzburg models studied here, allow us to study non-geometric settings without any volume
modulus, they allow us to work at small complex structure with many moduli and they
even allow us to answer some questions at strong coupling. In this paper we have made
several new interesting discoveries in this rather unexplored realm and many more are
certain to await us.
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Figure 1. The integration cycles in a single variable Landau-Ginzburg model with worldsheet
superpotential W = x3.

A LG integrals

We summarize here the expansion of the Landau-Ginzburg periods

Wn =
∫

Γn
Ω (A.1)

that enter the superpotential (2.4)

W =
∑(

Nn − τMn)Wn (A.2)

when the G-flux is expanded according to (2.10) in the basis dual to the Γn, around the
Fermat point. This calculation is totally elementary and well-known to experts at least
from the days of [52].

A.1 Single variable integrals

With reference to figure 1, for n = 0, 1, 2 ∈ Z mod 3 we let δn := ωn[0,∞) ⊂ C 3 x

be the three independent rays along which x3 tends to real infinity, where ω = e2πi/3.
Then γn := δn − δn+1 for n = 0, 1, 2 span the lattice of cycles, subject to the one relation
γ0 + γ1 + γ2 = 0. For l = 1, 2, . . ., we have∫

δn
e−x

3
xl−1dx = ωn·l · 1

3 · Γ
(
l

3

)
(A.3)

and therefore
wn,l :=

∫
γn
e−x

3
xl−1dx = ωn·l(1− ωl) · 1

3 · Γ
(
l

3

)
. (A.4)

A.2 Taylor coefficients

Now, the deformation space of the 19 LG model (2.1) is parametrized by local coordinates
{tl, l = (l1, . . . , l9) ∈ {1, 2}9,

∑
li = 12} via the worldsheet superpotential

W(tl) =
9∑
i=1

x3
i −

∑
l
tlxl−1 (A.5)
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where xl =
∏
i(xi)li and 1 = (1, 1, 1, 1, 1, 1, 1, 1, 1). Then, for n = (n1, . . . , n9) ∈ {0, 1, 2}9,

Γn = ×iγni we can write the full moduli dependence of the period as

Wn(tl) =
∫

Γn
e−W(tl)d9x =

∫
Γn
e−W(0)

∞∑
K=0

1
K!

(∑
l
tlxl−1

)K
d9x

=
∫

Γn
e−W(0)

∞∑
kl=0

∏
l

(
tl
)kl

kl!
(
xl−1)kld9x

=
∞∑
kl=0

∏
l

(
tl
)kl

kl!
∏
i

∫
γni

e−x
3
i
(
xi
)∑

l kl(li−1)
dxi

=
∑
kl

∏
l

(
tl
)kl

kl!
∏
i

wni,
∑

l kl(li−1)+1

(A.6)

Equivalently, and perhaps more simply, we can evaluate the r-th multi-derivative as

∂

∂tl1

∂

∂tl2
· · · ∂
∂tlr

Wn(0) =
∫

Γn
e−W(0)

r∏
α=1

xlα−1d9x

=
∏
i

∫
γni

e−x
3
i
(
xi
)∑r

α=1(liα−1)
dxi =

∏
i

wni,
∑

α
liα−r+1 (A.7)

= 1
39 ·ω

n(
∑

α
lα−(r−1)1)∏

i

(
1−ω

∑
α
liα−(r−1)) ·Γ(∑α l

i
α−(r−1)

3

)
which is the expression we used in the main text in equation (2.23).

B The G-flux for an AdS solution

Here we give the explicit G-flux, discussed in subsection 5.3 above. It describes an AdS
solution that has Nflux = 12 and thus satisfies the tadpole cancellation condition without
D3-branes. The value of the axio-dilaton is τ = e

2πi
3 and all 64 complex scalars appear in

the Hessian of the superpotential since it has maximal rank 64. The G-flux is given by

G = 1
18

[ (
15− i

√
3
)

(−3Ω1,1,1,1,1,1,1,1,1 + Ω2,2,2,2,2,2,2,2,2)

× i
(
3i +
√

3
)

Ω1,1,1,1,1,1,2,2,2 − 4Ω1,2,1,1,2,1,1,1,2 + 2Ω1,1,2,1,2,1,1,1,2

+ i
(
3i +
√

3
)

Ω1,1,1,1,1,2,1,2,2 +
(
3 + i

√
3
)

Ω1,1,1,1,1,2,2,1,2 + i
(
3i +

√
3
)

Ω1,1,1,1,1,2,2,2,1

+
(
−5− i

√
3
)

Ω1,1,1,1,2,1,1,2,2 +
(
3 + i

√
3
)

Ω1,1,1,1,2,1,2,2,1 − 2i
√

3Ω1,1,1,1,2,2,1,1,2

+
(
6 + 2i

√
3
)

Ω1,1,1,1,2,2,1,2,1 + 2i
√

3Ω1,1,1,2,1,1,1,2,2 + 2Ω1,1,1,2,1,1,2,1,2

+ i
(
3i +
√

3
)

Ω1,1,1,2,1,1,2,2,1 + i
(
5i +

√
3
)

Ω1,1,1,2,1,2,1,2,1 +
(
1 + i

√
3
)

Ω1,1,1,2,1,2,2,1,1

+
(
2 + 2i

√
3
)

Ω1,1,1,2,2,1,1,1,2 + 4Ω1,1,1,2,2,1,1,2,1 +
(
−2− 2i

√
3
)

Ω1,1,1,2,2,1,2,1,1

+
(
−1− i

√
3
)

Ω1,1,1,2,2,2,1,1,1 + i
(
3i +
√

3
)

Ω1,1,2,1,1,1,1,2,2 +
(
3 + i

√
3
)

Ω1,1,2,1,1,1,2,1,2

+ i
(
3i +
√

3
)

Ω1,1,2,1,1,1,2,2,1 +
(
3 + i

√
3
)

Ω1,1,2,1,1,2,1,1,2 + i
(
3i +

√
3
)

Ω1,1,2,1,1,2,1,2,1
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+
(
3 + i

√
3
)

Ω1,1,2,1,1,2,2,1,1 + 2i
√

3Ω1,1,2,1,2,1,1,2,1 + 2Ω1,1,2,1,2,1,2,1,1

+
(
3 + i
√

3
)

Ω1,1,2,1,2,2,1,1,1 +
(
1 + i
√

3
)

Ω1,1,2,2,1,1,1,1,2 + i
(
i +
√

3
)

Ω1,1,2,2,1,1,1,2,1

+
(
1 + i
√

3
)

Ω1,1,2,2,1,1,2,1,1 +
(
1 + i
√

3
)

Ω1,1,2,2,1,2,1,1,1 +
(
−5− i

√
3
)

Ω1,1,2,2,2,1,1,1,1

− 8Ω1,2,1,1,1,1,1,2,2 +
(
2 + 2i

√
3
)

Ω1,2,1,1,1,1,2,1,2 + i
(
3i +
√

3
)

Ω1,2,1,1,1,1,2,2,1

+ 2i
(
i +
√

3
)
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