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Introduction

The construction and classification of six-dimensional superconformal field theories (6d

SCFTs) via string and M/F-theory is a momentous result of the recent past. This endeavor

has sent shock waves through all lower dimensional classification efforts, providing new

tools and perspectives to construct theories, geometrize (and thus understand the origin of)

the dualities they enjoy, and map out their interdependencies across dimensions.

The simplest geometric engineering of a 6d SCF'T requires putting Type IIB string

theory on the orbifold C?/T'spg, with I a finite subgroup of SU(2). This setup preserves



(2,0) supersymmetry, and all (2,0) SCFTs can be classified according to their ADE-type [1-
3]. For (1,0) supersymmetry the landscape of models is much richer (the first string and
brane constructions date back to [4-12]), and a full classification has been achieved only very
recently in the context of F-theory [13] (see [14] for a review circa 2018, whose notations
we will adopt throughout this paper).

One of the most pressing dynamical questions dealing with (S)CFTs is the structure
of the renormalization group (RG) flow of which they are fixed points.!? For 6d SCFTs
we distinguish two types of supersymmetry-preserving deformations which trigger an RG
flow out of the ultraviolet (UV) SCFT onto its moduli space [16-19]: tensor branch flows
obtained by giving vacuum expectation values (vevs) to tensor multiplet scalars,? where
the deep infrared (IR) theory is a quiver gauge theory (which breaks conformal invariance);
and Higgs branch flows obtained by giving vevs to hypermultiplet scalars which are charged
under the flavor symmetry, where the endpoint of the flow is a new IR SCFT with generically
smaller flavor symmetry.® A quantity which captures the intuition that along RG flows
high-energy degrees of freedom are integrated out is the a anomaly of the SCFT, which can
be understood as a measure of the degrees of freedom of the theory. Along any RG flow
the “a-theorem” should be satisfied, namely Aa = ayy — aig > 0. (In fact a > 0, and the
equality holds if and only if there are no local degrees of freedom [20, 21].) This is a direct
generalization of Zamolodchikov’s result in two dimensions [22] and its four-dimensional
analog for the A/ =1 a anomaly [23, 24].

Tensor branch flows are well-understood for all 6d SCFTs (starting from [25, section 7]),
and the corresponding a-theorem was proven in [16]. On the contrary, the Higgs branch
case has remained elusive, and a proof of the a-theorem is known [26] only for a certain class
of models known as T-brane theories [27].* (Prior evidence was provided in field theory
in [28, 29], and then confirmed holographically in [30, 31].)

Most interesting for our purposes in the (1,0) landscape is the theory of N Mb-branes
probing the intersection between a Horava-Witten Eg wall and the orbifold C? /T ADE, &
theory we will refer to as “ADE-type orbi-instanton” following [32]. This is the theory of N
small Eg instantons probing the orbifold [4, 6, 33]. Its M-theory engineering is specified by
the following data: the number N of Mb-branes (i.e. the number of tensor multiplets of the
SCFT), the order k of the orbifold (for type A or D), and a choice of “boundary condition”
at infinity, namely an element of Hom(I'apg, Eg) specifying how the orbifold group embeds
into Eg (whose details will be spelled out in section 2).

In the F-theory language of [13] we can think of an orbi-instanton as a decoration of a
rank-N E-string theory

[Es] 12+ 2 (1.1)
N
to
B 125 q], (1.2)
N

!As M. Strassler once put it [15], ‘Go with the flow’.

2These parameterize the separations between M5s or NS5s in brane constructions — see table 1.
3There also exist mixed branches. We will comment on them where appropriate.

“See [14, section 8] for a summary of known results on tensor branch and Higgs branch flows.



where G is a group with ADE Lie algebra g associated to the finite orbifold group I'apg via

the usual SU(2) McKay correspondence.® The decorated % curve adjacent to Eg “gauges”
the rank-1 E-string [Fg]1 on the left of (1.1) (the Eg algebra being supported on a —12
noncompact curve), i.e. gauges a subalgebra g of Eg, leaving behind a commutant. Exactly
which commutant is preserved as a flavor symmetry factor of the SCFT is specified by
the M-theory boundary condition. The rightmost noncompact —2 curve supporting G
provides another flavor symmetry factor of the SCFT, which for us will just be a spectator.’
Importantly, [13, section 7] argued that there exists one F-theory configuration of decorated
curves per boundary condition on the M-theory side (i.e. the information carried by the
boundary condition is fully geometrized in F-theory), and [36] used this observation to
construct a dictionary between M-theory and F-theory for orbi-instantons of any ADE type.
For type A, [37] gave an algorithm which allows to construct the full tensor branch and
matter content of the 6d SCFT,” and to identify the SCFT Higgs branch with a certain Eg
moduli space (including its quaternionic dimension).®

In spite of much effort to construct these orbi-instantons, the structure of the Higgs
branch RG flows that connect them is still terra incognita. As is clear from the following
short list of references, the known results are few and far between. The existence of Higgs
branch RG flows between orbi-instantons of fixed type and at fixed order of I'ypg but
with different boundary conditions was pointed out already in [27, section 6.1.2] and [13,
section 7.5], and the first explicit examples (analyzed via the 6d anomaly polynomial) were
presented in [43, section 4.2 & 4.3]. Later [36, section 4] proposed an explicit hierarchy
of RG flows in the k& = 4 case of A-type orbi-instantons where, as we will see, there are
ten inequivalent choices of boundary condition (corresponding to ten different F-theory
configurations). These are “mixed” flows however, which sometimes can also involve a small
instanton transition reducing the number N of tensor multiplets by one unit (turning a
tensor into twenty-nine hypermultiplets [6]). We will come back to this point in appendix A.
Much more recently [44, section 4] has analyzed the k = 2,3 and partially the k = 4,6 cases
in type A while also changing N, proposing a hierarchy of flows for these values of k (with
the expectation that a similar logic applies to any k).”

Abstracting from specific examples, the question as to whether there exists a hierarchy
of Higgs branch RG flows for orbi-instantons of any type, and whether this translates into
a Hasse diagram of elements of Hom(T'zpg, Es) was asked in [32, p. 31],'° but no answer

®For an introduction on the “geometric” SU(2) McKay correspondence see e.g. the old but pedagogical
reference https://math.ucr.edu/home/baez/joris_van hoboken platonic.pdf, or [34, Chap. 6]. The F-
theory engineering of (1.2) was first constructed in [35], and their matter content derived in [9] by requiring
gauge anomaly cancellation on the tensor branch. This assumed a “trivial” boundary condition which
preserves the full Eg; see (2.5) and (2.6) below.

5That is, we will not consider RG flows triggered by vevs for hypermultiplets charged under it.

"See also [38-40] for previous results.

8See also [41]. For the undecorated rank-N E-string the Higgs branch was already identified in [16,
section 5]. The rank-1 E-string can also be seen as arising at the end of a Higgsing tree of 6d SCFTs with
larger tensor branch [42, figure 5].

In [45] it was noted that for the torus compactifications of A-type orbi-instantons engineering the 4d
N = 3 S-folds known as Té\fk and Sg,k (where G corresponds to the strong-coupling summand [G] of §, in
the notation introduced in section 2.2.1), different choices of boundary condition are related by RG flow.

10Much like what happens for T-brane theories with nilpotent orbits of the flavor symmetry algebra g [46],
where the relevant homomorphisms are elements (embeddings) of Hom(su(2), g).

-3 -


https://math.ucr.edu/home/baez/joris_van_hoboken_platonic.pdf

was provided. In this paper we will provide an answer to these questions for type A (and
propose a way forward to analyze type D in the conclusions). We fix the number N of M5’s
(i.e. our flows do not involve small instanton transitions) and the order k of the orbifold and
derive the full hierarchy of Higgs branch RG flows between orbi-instantons with different
boundary conditions, at the origin of their tensor branch. Namely, we only deal with Higgs
branches “at infinite (gauge) coupling”, in the parlance launched by [47].

On the mathematics side this translates into a natural proposal for a Hasse diagram
of (injective) homomorphisms (i.e. embeddings) p € Hom(Zy, Es) for type A (Hom(Dy, Eg)
for type D), where the partial ordering p; = p2 is physically obtained via an operation
performed on the tensor branch of the SCFTs known as “quiver subtraction” [48]. In
the case of nilpotent orbits O, of a Lie algebra g (i.e. homomorphisms p : su(2) — g
by Jacobson-Morozov [49]), quiver subtraction between the tensor branch descriptions of
two SCFTs (two 6d “electric quivers”) is equivalent [41, 50, 51] to performing a so-called
“Kraft-Procesi transition” between two orbits [52-54],!1 and the partial ordering p1 = po
(given by inclusion of their closures O,, C O, as varieties) is exactly reproduced in field
theory by the hierarchy of allowed Higgs branch RG flows of T-brane theories. That is, the
Hasse diagram of nilpotent orbits mimics closely the hierarchy of RG flows of [46]. In the
case of Hom(Zg, E3) there is no known notion of Kraft-Procesi transition, even though the
physics of 6d SCFTs suggests a similar concept should exist. We will come back to this
point in the conclusions.

In practice, to perform the subtraction we first construct the 3d “magnetic quiver” [56]
associated with the 6d electric quiver of an SCFT (i.e. its full tensor branch description);
we propose that a flow 77 — 73 exists between two SCFTs 7; if we can subtract the
corresponding 3d magnetic quivers (in a technical sense introduced in section 2.3), as first
noted in [44] for A-type orbi-instantons and in the general spirit of [57]. When this happens,
we have an ordering p; > po, the orbi-instanton 7; being defined by the homomorphism
pi € Hom(Zy, Es) (for fixed N), i.e. by the boundary condition in M-theory. To add
strength to this proposal we check that Aa > 0 (i.e. compatibility with the a-theorem) for
each allowed flow by computing the exact a anomaly of the SCFTs. At each step of the
RG flow hierarchy we write down the flavor symmetry that is preserved by the boundary
condition. In this way, we are able to produce very intricate Hasse diagrams, an example of
which is given in figure 3. The remainder of this paper is dedicated to explaining how to
obtain such partially ordered diagrams for any N, k as well as the meaning of the labels and
decorations that appear therein. We unearth many subtleties for high values of k, which
were overlooked by previous references (since they focused on specific cases for which they
do not arise). We will dedicate due space to explain their physical meaning.

This paper is organized as follows. We begin in section 2 by constructing orbi-instantons
of type A in M-theory: we introduce Kac labels, their Type IIA realization, and their
associated 3d magnetic quivers. In section 3 we showcase the technology just introduced in
the k = 6 case, produce the Hasse diagram of homomorphisms, and point out a number of

" The transition modifies the singularity type of a nilpotent orbit closure (see [53, Thm. 3.2] for su, [54,
Thm. 2] for so and usp, and [55, Thm. 1.2] for the exceptional cases) to that of the next along the partially
ordered set — see e.g. the tables in [50, section 7] for a few su examples.



205 6 ‘ o7 28 2 S
Mb5-branes X
M9-wall X X X X X
NS5-branes X
D6-branes X X
O8-plane X X X X
D8-branes X X X X

Table 1. A - means the brane is sitting at a point along that direction; X means it is infinitely
extended along that (noncompact) direction. The tensor branch of the SCFT is parameterized by
the separations along x of the M5’s (NS5’s). We choose to place the M9 or O8 at the origin of z°:
when all M5’s (NS5’s) are coincident at 2° = 0 we reach the CFT point of the orbi-instanton since
their separations are proportional to the gauge couplings (see e.g. (4.20)), i.e. we are at the origin of
the tensor branch and the CFT possesses a Higgs branch at infinite coupling.

physically interesting facts. In section 4 we move to generic k, and discuss some subtleties
which only arise for high-enough k. Finally we present our conclusions in section 5. In
appendix A we collect the Hasse diagrams for k£ = 2,...,20, and draw a comparison with
the result of [36, figure 1] for k = 4. The figures appearing in the appendix are also included
as ancillary files with the arXiv submission for the convenience of the reader.

2 Orbi-instantons of type A and Kac labels

2.1 M-theory engineering

Consider N M5’s probing the intersection between an Eg wall (sometimes denoted M9)
and a singularity C2/Tapg (with T' € SU(2) a finite ADE group). Let us focus on type
A, i.e. the orbifold is C?/Z;. The M-theory brane scan, as well as its reduction to Type
ITA (which will be important in the next section), is presented in table 1. This setup
provides the M-theory engineering of N small Fg instantons in the heterotic string probing
the singularity C?/Z;,, which requires a choice of boundary condition [27, section 6.1.2]:
the latter corresponds to turning on a flat Eg connection (holonomy) at infinity on C?/Zy.
These flat connections are one-to-one with homomorphisms 71(S%/Z;) — Es which are
in turn one-to-one with homomorphisms p : Zj — Eg, which are classified [58]. In fact a
holonomy at spatial infinity S%/Z; (i.e. the sphere surrounding the singularity of C?/Z;,)
around the Z; one-cycle is a representation p : Z; — Eg which can be nicely encoded in a
choice of “Kac label” [37], i.e. a choice of positive integers

O ngs

0O—0—0—0—0—0— 0 —O0 (2.1)
n1 no  n3 ng  ns ng Ny Ny



such that
5

k= Z a;nj1 +4ngy + 3nzy + 2ngy . (2.2)
j=0
That is, the integers n; are the multiplicities of the Coxeter labels a; of the affine FEg
Dynkin diagram

3’ 0 ag
1 1 2 3 4 5 6| 4 2
EE(;): 0—0—0—0—0—0 —0 — 0. (2.3)
ap a1 s a3 a4 as ag  ar

In turn, the Coxeter labels are integers such that Z?:o a;jA7" = 0 for the Cartan matrix
Adi of SV 12

In other words, the requirement (2.2) defines a partition of k in terms of the integers
{1,...,6,4',2",3'} only,'® with multiplicities {ny,...,ng, na,no,nz }. We will denote the
most general such partition (Kac label) by

k — [1n1 , 2712, 3713, 4714’ 5715, 6”6, 4/n4/ , 2/712/ , 3/713/] (24)

where of course some of the parts may be absent.!* The subalgebra § of Eg that is unbroken
by the Kac label is the commutant of the image p(Zj) C Es, and its Dynkin diagram is
easily obtained by deleting the nodes appearing in the partition (2.4) (i.e. the nodes for
which n; is nonzero), together with an Abelian subalgebra making the total rank 8 [58,
section 8.6], i.e. a summand of the form @, u(1);.'> (We will comment on its physical
interpretation in section 3.3.) These are the so-called pseudo-Levi subalgebras of Eg, which
can be obtained via the Borel-de Siebenthal algorithm. E.g. Kac label

k=[1%=11,...,1] (2.5)
k times

exists for any k, and preserves the full Fg flavor symmetry coming from the wall (since it
“kills” only the extending node «aq of Eél)
behind the full Eg Dynkin).

Let us now go back to the F-theory configuration (1.2). For type A, I'apg = Zj, (i.e.
g = su(k) in that formula); then for the above choice (2.5) of Kac label the full Eg flavor

symmetry is preserved and the fully blown-up configuration of curves (i.e. performing all

with Coxeter label 1 and multiplicity k, leaving

necessary base blow-ups, as explained in [25, 35]) becomes

su(1) su(2) su(k—1) su(k) su(k) su(k)
By 120 202 2 22 [SU) (2.6)
=

2For an introduction to Kac-Moody algebras see e.g. [59, section 7] and the original reference [58]. For
simple calculations in Sage (e.g. calculating the explicit form of A’ for Eél)) see https://doc.sagemath.org/
html/en/thematic_ tutorials/lie/affine.html.

13We will use a prime on 2, 3,4 as a bookkeeping device to distinguish them from their “unprimed” version.

14 As is standard, exponentiation by n; means multiplication by n; (as in (2.2)), so that af = 0.

15The maximal subalgebras that do not contain u(1) summands are the semisimple regular ones; those
that do are non-semisimple regular. The former are preserved by Kac labels with a single part, the latter by
those with more than one part.
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Notice that this requires N > k, and we will assume this is the case throughout. We label
the compact curves starting from 0, i.e. —1 is the zeroth curve and does not support any
gauge algebra. The first —2 curve sits in position 1, and supports a trivial su(1) algebra.
The leftmost su(k) compact curve (i.e. the one in position k) has Ny = 1 fundamental
hypermultiplets, as required by gauge anomaly cancellation on the tensor branch. The
curves [F3]12 make up a rank-2 E-string as in (1.1).

On the other hand, the choice of Kac label [2, 1¥72], which exists for all k& > 2, preserves
E7 @ u(1) (since it kills both ag and a1),'% and corresponds to the F-theory configuration

su(2) su(3) su(k—1) su(k) su(k) su(k)

[E7] 1 2 ... 2" [SUk)], (2.7)

[Ne=1] [Ne=1]
with a partially gauged rank-1 E-string on the left (since Eg is broken to E7, which is now
supported on a —8 noncompact curve).

We close this section with a comment on notation. In the mathematics literature the
decorated affine Dynkin diagram (2.1) is known as (a choice of) “Kac coordinates” or “Kac
diagram”, and plays a central role in Zg-gradings (more generally, gradings by an Abelian
group)'” of complex Lie algebras g, which is the same as homomorphisms from Zj to the
(inner and outer) automorphisms group Aut(g) of g [58] (see also [60-62]). (The pseudo-Levi
subalgebras of g are just the fixed point subalgebras of a Zg-grading for some k, and more
specifically are fixed points for an inner automorphism. The fixed point subalgebras for
the outer automorphisms do not have a name in the literature.) In fact Kac has solved
the problem of classifying Zy-gradings of Eg(C), i.e. the complex Eg Lie algebra. In the
rest of this paper we will instead use the compact real form of Eg, as well as real forms
of the other Lie algebras, i.e. su, so, usp, Fg, E7. Even when we write G, we mean the
Lie algebra g associated with the compact Lie group. (We decided to keep the notation
[G] to make contact with the existing extensive literature on the subject.) Notice however
that the global structure of the (zero-form) flavor symmetry group plays an important
role in the finer classification of 6d SCFTs. For orbi-instantons, this group (together with
its consequences for four-dimensional compactifications) was recently determined in [63,
section 4].

2.2 Type IIA configurations

It is interesting to perform a reduction from the M-theory configuration described above to
Type IIA string theory. This will make transparent the different origins of various flavor
symmetry factors, and will allow us to identify certain universal features of the Hasse
diagram of homomorphisms in Hom(Zy, Eg).

Consider M-theory on S} x S'/Zs with gauge symmetry Eg x Eg [64, 65]. The gauge
degrees of freedom are confined to the two ten-dimensional boundaries of S'/Zs, and the

YFor k =2, [2,1F72] = [2], which instead preserves E7 @ su(2).

1If A is any group, then an A-grading of g is a decomposition of g as a direct sum of subspaces g, such
that [ga, gs] is contained in gas. Since [ga, go] = [gb, §a], We must have g = goa s0 A is Abelian. Therefore
any grading of g is a grading by an abelian group A, and this is the same as a homomorphism from A to
Aut(g) [58].



theory in the “bulk” (i.e. between them) is just Type ITA. In fact in perturbative Type
ITA (reducing along Slh), each of the two Eg walls becomes an O8 -plane plus 8 D8-branes,
which are needed to cancel the total D8 charge (i.e. Romans mass Fp) in the compact
space provided by the finite interval.'® This is now a Type I’ background, with string
coupling proportional to the radius of Sl%/[. To see why this is the case, let us focus on one
of the two ends (O8-planes) of the interval (i.e. the interval S1/Zs effectively becomes the
semi-infinite line R parameterized by x% in table 1). Because D8-branes are a source for
the dilaton (i.e. Type I’ string coupling), the latter is piecewise-linear with discontinuous
derivative at the D8 locations along the interval. If all of the 8 D8’s sit on the orientifold
we have constant dilaton and a perturbative so(16) gauge symmetry in 9d. We can break
50(16) — s0(14) @ u(1) by pulling one D8 out (leaving 7 on top of the O87); if we further
tune its location to a critical value it is possible to make the dilaton (i.e. string coupling) blow
up exactly at the location of the O8~ [66]. When this happens, there is a non-perturbative
enhancement s0(14) @ u(l) — Eg of the gauge symmetry, and the whole O8-D8 system
lifts to an M9 wall (since the radius of Si; which the former wraps is also blowing up).
To see the enhancement one has to consider a number of DO-branes becoming tensionless
at the O-plane (since Tpg ~ 1/g! "), furnishing the remaining states needed to complete
the Eg BPS algebra [67]. The setup generalizes straightforwardly. For example, to see the
enhancement s0(12) @ su(2) — E7 we pull out 2 D8’s and tune both their positions to the
critical value [66, section 3.

[12, section 5] used the above results on string dualities to claim that N Mb5-branes
probing the intersection between an M9-wall (i.e. only one side of the Eg x Eg Horava-Witten
setup) and a C2/Z;, orbifold (with Si; now a fiber of the orbifold, C & C* x S') reduce
to N NSb’s intersecting k D6-branes, both probing an O8-D8 system, with the eighth D8
sitting away from the orientifold at a critical value along % such that the Type IIA dilaton
diverges at the O-plane. In the language of the previous section, the M-theory setup has
trivial boundary condition at infinity, i.e. Kac label k = [1¥]. Table 1 contains the ITA
“brane scan”, whereas the brane configuration is drawn in figure 1.

Notice that, upon T-dualizing to Type IIB and lifting to F-theory, we obtain precisely
the configuration in (2.6) with the single hypermultiplet representing a perturbative D7-
brane (T-dual to the eighth D8), i.e. an I; locus of the F-theory discriminant, and the Eg
flavor symmetry being carried by an Fg seven-brane wrapping a noncompact —12 curve.
The origin of the tensor branch of the SCFT is the point where all NS5’s are coincident; the
generic point on the tensor branch corresponds instead to separating all NS5’s (i.e. blowing
up all compact —2 curves in the F-theory configuration).

With these general rules in mind, it is now possible to construct Type ITA configurations
corresponding to orbi-instantons with any allowed boundary condition. That is, every Kac
label corresponds to one Type IIA O8-D8-D6-NS5 brane setup. Rather conveniently to us,
these setups have already been classified in [56] by exploiting simple combinatorics which
takes as input the Kac label and produces the setup as an output. (On the other hand, the

18We work in conventions whereby the charge of an Op® is £2P~° that of a Dp-brane, so 8 D8’s are
needed to cancel the charge of an O87, which carries negative tension and charge.



su(l) su(2) su(k—1) su(k) su(k) su(k)
Bs]1 2 2 - 2 2 2.2

N [SU(K)]

Figure 1. Type IIA reduction of N M5’s probing the M9-C?/Z;, intersection with Kac label [1¥].
Solid vertical lines represent D8-branes (with their number written on top); the dashed vertical line
is the O87; solid horizontal lines represent D6-branes (with their number written on top); a circle
represents an NS5 (all N of them being stacked together in the top frame). The “zeroth” gauge
algebra is empty, i.e. there are no D6-branes crossing (or ending on) the O8. Top: origin of the
tensor branch (SCFT). Middle & Bottom: low-energy quiver gauge theory with su gauge algebras
(i.e. generic point on the tensor branch of the SCFT).

F-theory quiver can be obtained from the algorithm of [37].) The classification requires
the introduction of one last ingredient, known as the O8*-plane [66],'Y which carries —9
D8 charge and can be thought of as the product of pulling out an extra D8-brane from
the O8~.

2.2.1 Some O8-D8-D6-NS5 brane configurations for k = 6

Let us now showcase a few entries in the M-theory/Type IIA /F-theory dictionary which
will be instructive for our purposes. Pick k = 6. A selection of Kac labels, i.e. of SCFTs
(having fixed N and k), and their ITA engineerings is tabulated in table 2.

These examples hopefully make clear one feature which will be universal for all k’s: the
commutant of Kac label inside Eg generically contains a “strong-coupling” summand [G],
which can be thought of as being associated with the D8’s that are on top of the O8 but
do not cross any D6 (once the dilaton diverges and we lift everything to M-theory), plus a
“weak-coupling” summand g which is immediately visible in perturbative ITA and as such is
identified with the worldvolume gauge symmetry of a substack of D8’s, those that have left
the O8 and are crossing a stack of D6’s further inside the quiver. (Open strings stretched
from the D8’s to the stack of D6’s the former cross provide fundamental hypermultiplets.)

19This is necessary to describe the non-perturbative extension of Type I [68, 69] which allows to construct
the 5d rank-1 SCFTs known as E; and Eo, thereby completing the original list of [70].



2 6 M

(6] [SU(3) x SU(2)] |i|_.L.L JI[HE E su(6)
3 4 1 .3 an
1 : ] 5(u(4) 2] u(l))

5.1] [SU(5)] | e - > su(4) @ u(1)
4 2 2 .4
: ; = s(u(2) & u(2)

4,2] [SO(10)] : 3l BN PO = H su(2) @ su(2) @ u(l)
4 3 1 .4

) : ; = (u(3) & (1))

[4,12] 50(10)] : 41,561, 6,6 HE - ~ su(3) @ u(1)
5 3 .5

) (4] | .3.6].6, 6 e = su(3)
5 1 1 1 .5 .

8.2.1] (Eo] 3] 5] 6 I 6, 6 E @EP s(u(;) L??f;(;?) f?f;(l))
5 2 1 .5

3,19 | 6] 31,45 GI 6,..5% H— g ;(2%)@ e;fml()l))
6 2 .6

[29] [Er] E | 2 46| 6 L6 E E E s5u(2)
6 1 1 .6

2 19 - J RN S o
6 1 1 .6

2.1 (4] | 2I 3 4 5 GI L E Emmnm s(u(;)ﬁs(n)
7 1 .7

(1] [Es) E| 1.2, . GI 6, .6 E — EEEEE su(1) =0

Table 2. Hasse diagram of nilpotent orbits of su(6) identified within the Higgs branch RG flow
hierarchy of A-type orbi-instantons for & = 6. A D8 on which n D6’s end sits in position n (starting
from n = 0) in the ITA setup; it corresponds to a row of n boxes in the Young tableau. A substack
of m D8’s has 9d gauge symmetry su(m); multiple substacks have gauge symmetry given by (2.8).
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The former is tabulated in the second column of the table, whereas the latter in the last.
Looking at the ITA configurations (in the third column) engineering the tensor branch of
the given SCFT, we see that the strong-coupling factor is “associated” with the zeroth D6
segment, which is empty (i.e. there are no D6’s there and the gauge algebra is of course
trivial). In the F-theory language, the —1 curve is undecorated and the strong-coupling
factor comes from [G]1 as in (2.7). On the other hand, if the —1 curve were decorated (in
other words, if the zeroth segment were populated by D6’s, engineering a nontrivial gauge
algebra) —as we will see for other Kac labels not included in table 2— then the D8’s which
cross that segment would engineer a weak-coupling su or so flavor symmetry summand
(depending on whether there is or there is not a half-NS5 stuck on the O8).

Another important feature we wish to highlight from the above selection of Kac labels
is the following. For 6 = [15] the substack that has left the O8 is composed of a single DS,
realizing the Ny = 1 hypermultiplet in (2.6). One can reach this configuration by subsequent
Higgsings starting from the [6] label in the top row. Indeed looking a the fourth column we

789) trapped segments of D6’s we

see that by subsequently sliding off to infinity (along z
can reach all configurations which sit in the rows below. (One then goes back to the brane
configuration in the third column via simple Hanany-Witten moves.) The weak-coupling
summand g of the flavor symmetry algebra can then be read off as the 9d gauge symmetry
on the D8 worldvolumes:

e (@un) o

)

where the summation is over D8 substacks that cross some nonempty D6 segment and f; is
the number of branes in the i-th substack. (The s(-) simply removes the center-of-mass
u(1).2%) Further, to each ITA configuration (i.e. ending pattern of D6’s on D8’s) one can
associate (the transpose of) a Young tableau [27]: each row represents a D8 on which a
number of D6’s end, the number being equal to the number of boxes in that row. Via the
well-known correspondence between Young tableaux, integer partitions of an integer, and
nilpotent orbits of an su algebra [49] (see also [46, section 3.1], whose conventions about
partitions and tableaux we adopt here), one can also understand (2.8) as the centralizer of
the su(6) nilpotent orbit associated with the integer partition of 6 given by the Kac label in
the first column. It is then clear that the Higgsings tabulated in table 2 realize the Hasse
diagram of nilpotent orbits of su(6), a point we will spell out in greater detail in section 3.2.

One may also wonder what happens if we Higgs a strong-coupling summand of the flavor
symmetry algebra and whether this generates the full Hasse diagram of nilpotent orbits of
this factor (which can be classical or exceptional). However there are two problems with
this expectation. The first is that very few nilpotent orbits of such a summand would have
dimension smaller or equal to the Higgs branch dimension of a rank-1 or rank-2 E-string
(quaternionic dimension 30 and 59 respectively), i.e. [Eg]1 and [E3]12 respectively. Second,
doing so would necessarily generate a small instanton transition whereby the E-string is

20 A physical way to see this is to consider the Wess-Zumino term in the action of the D8 stack. Expanding
it, one notices that the center-of-mass 1(1) on the stack participates in a Stiickleberg term with the RR
potential C7 = C7 A €52, which renders it massive and therefore decouples it from the low-energy spectrum
of the 6d theory [71, section 3.2].
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turned into a bunch of hypermultiplets, thereby reducing the number N of tensor multiplets.
We find it most transparent to describe the full hierarchy of RG flows for fized N, and
generate one Hasse diagram of homomorphisms in Hom(Zy, Eg) per value of N. This is
a somewhat different perspective with respect to the one used in [36, 44] where flows at
fixed k but varying N are described for a few cases of small k. In section 3.6 we will show
how one can produce such “mixed” flows by only considering flows at fixed N followed by
a “jump” between the hierarchy of RG flows at N and N — 1, so that we never need to
discuss the case of mixed flows separately.

Let us close with a simple observation which will play a role in section 4.3. For k = 6,
Kac labels contain all unprimed integers 1,...,6, meaning we can embed the entire list of
integer partitions of 6 inside the former. Looking at table 2 we see that we can read off
such partitions directly from the Type IIA configurations engineering the tensor branch of
the SCF'Ts, by subtracting adjacent gauge algebra ranks. E.g. [5,1] is obtained as 5 — 0 = 5,
6—5=1,6—6=0, and so on.

2.3 Magnetic quivers

We will now introduce the 3d magnetic quiver associated with the 6d electric one, where
by the latter we mean the low-energy quiver gauge theory describing the SCF'T on its
tensor branch, the prototypical example of which is (2.6) (in the F-theory language we
have adopted).

The electric quiver can be obtained by reading off the spectrum of fundamental strings
stretched between D6-branes in an O8-D8-D6-NS5 engineering of the SCFT. In analogy
to 3d N = 4 D3-D5-NS5 setups in Type IIB [72], where the electric quiver is obtained by
stretching F1’s between D3-D5’s and the magnetic one by stretching D1’s between D3-NS5’s
(i.e. applying mirror symmetry [73]), one can also define a magnetic quiver for D6-D8-NS5
setups which are T-dual to the D3-D5-NS5 ones (along 2345 in table 1). Moving away
all NS5’s from the D6’s and suspending the latter between the D8’s, we can see that the
magnetic object is now a D4-brane (T-dual along 2345 to a D1). One can then read off
the theory on the worldvolume of the stretched D4’s following the simple rules introduced
in [56], thereby producing the 3d magnetic quiver of the 6d SCFT. For orbi-instantons these
are N' = 4 unitary quivers [37]. Importantly for us, as shown in [56] the Coulomb branch of
the 3d magnetic quiver “at infinite coupling” captures the Higgs branch of the 6d electric
quiver at the origin of the tensor branch, i.e. the point where all gauge couplings are infinite
and new massless degrees of freedom arise from light D2-branes. (A 6d observer sees the

D2’s stretched along x016

as instantons for the D6 gauge theory [74], propagating as strings
inside °%.) In turn, the geometry and quaternionic dimension of the Coulomb branch can
easily be computed in terms of closures of nilpotent orbits of classical or exceptional Lie
algebras, for which the technology is well-established [49].

For orbi-instantons of type A the magnetic quivers have been worked out in full
generality (i.e. for any k and Kac label) in [56, section 3.6], and we will heavily exploit their
results. In particular, once we compute the magnetic quivers we can proceed to “subtract”
them, which simply means subtracting the ranks of the U(n) gauge nodes of the two quivers

in an ordered way. (We will see a few concrete examples below.)
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Quiver subtraction was then shown [75] to be equivalent to a “Kraft-Procesi (KP)
transition” between nilpotent orbits,?! which for T-brane theories (defined by a pair of
nilpotent orbits of a Lie algebra) is the same as a Higgs branch RG flow [46]. Motivated by
this and by the fact that Higgsings in Lagrangian quivers with 8 supercharges can always
be organized into a Hasse diagram (via decomposition of the Higgs branch into symplectic
leaves) [57],%? we expect the subtraction (when allowed) to provide an ordering p; = pa
between homomorphisms p; : Z; — Eg at fixed k and N (i.e. varying only the Kac label
giving the boundary condition in M-theory).

2.3.1 Quiver subtraction and Kraft-Procesi transitions

Let us show how quiver subtraction works in practice by means of a couple of examples.
Consider Kac labels [6] and [5,1] for k = 6 in table 2. The electric quivers can be read off
of the ITA brane setups; in F-theory notation they read

6] 7 — su(6) & su(3) @ su(2) : [SUB) xSUR) 1 "2 "5 ... [sU(6)],

[N=6]
(2.9a)
su(5)  su(6) su(6) su(6)
5,11 & f=su@) @@ ou(l): [SUEIT 2 2 22 [SUE).
(2.9b)

The magnetic quivers at infinite coupling (i.e. at the origin of the tensor branch) read instead

3N

[6] : 1—2—3—4—5—6—(N+5)—(2N+4)—(3N+3)—(4N+2)—(5N+1)—6}V—4N—2N (2.10a)
3N

[5,1] : 1—2—3—4—5—6—(N+4)—(2N+3)—(3N+2)—(4N+1)—5N—6}V—4N—2N (2.10b)

where — or | denotes a hypermultiplet, and n a U(n) gauge group. The quivers in (2.10) are
unbalanced [86], namely the condition that the number of flavors equals twice the number of
colors, N = 2N, is not satisfied by some of the gauge nodes; e.g. 6+ (2N +3) # 2- (N +4).

Subtracting the two quivers node-by-node in the obvious way (i.e. subtracting the ranks
of U groups in the same position) we get

1-1-1-1-1. (2.11)

Since the ranks of all gauge groups in (2.11) are non-negative, this is an allowed subtraction.
However (2.11) is also unbalanced; “rebalancing” it with the rules in [57, appendix A.2]
and [87, section 3.2],% i.e. adding flavors as necessary such that Ny = 2NN, at each gauge

21 This quiver “arithmetic” has been further extended by introducing the notions of quiver addition [76-78],
implosion [79-81], inversion [82], and folding [83-85].

228ee also [75, section 3] for a quick summary of this idea.

#3See also [88, section 3] and [77].
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node,?* we obtain the affine Dynkin diagram of su(6),

1_/1_ 1¥ ’ (2.12)

which means to go from the [6] magnetic quiver to the [5, 1] a matter field charged under
su(6) is taking a vev. We denote this flow by an edge labeled by a5 in the Hasse diagram
of RG flows for k = 6. Remembering that in our conventions the [6] is associated with
the partition (-)" and [5,1] with (—)t, taking transposes once more we see that this is the
well-known a5 KP transition from the integer partition [2,1%] of 6 to [1°] [53, section 6]:
namely 6[16] C @[2714] and the transverse Slodowy slice S C @[27141 to Ofye) is a so-called
minimal singularity (i.e. the closure of the minimal nilpotent orbit) given by collapsing
the cotangent bundle of P [54, 89]. Because we initially took transposes, we are actually
flowing from [6] to [5,1], which is just the transpose of the statement Opjs) C Op q4) (of
quaternionic dimension 0 and 5 respectively). This is a general feature of the Hasse diagrams
we will produce.

In general we have an a; KP transition whenever the product of the quiver subtraction

1
o 14.¥1 . (2.13)

In the next section we will also see examples of 0; KP transitions, where as the notation

(after rebalancing) is of the form

implies the product of the subtraction is an affine Dynkin diagram of D type:

0:1-2-2—-..—2-2-1. (2.14)

Finally, in figure 12 we will also see examples of ¢; KP transitions.?

Consider now the quiver subtraction between two 3d magnetic quivers corresponding
to electric ones given by Kac labels which involve primed parts. For instance, take [4,2']
and [2"3]. The electric quivers are

su(6) su(6) su(6) su(6)
1 2 2 ... 2

/ / _ .

[4,2] & § = su(8) ® u(l) : by SU(6)] . (2.150)
b(6) su(6) su(6) su(6)  su(6)

27] ¢ § = s0(16) : ;}_8}52 " sue). (2.15b)

Here - denotes one (full) hypermultiplet in the two-index antisymmetric representation of

24With the understanding that gauge nodes neighboring a given U(n) node act as flavors for the latter.
The 6d RG flow [6] — [5, 1] can be understood as a complex Fayet-Iliopoulos deformation of the 3d magnetic
quiver associated with [6], which in turn is equivalent to rebalancing the product of the quiver subtraction [87,
section 3.2].

25See [78, table 1] for a complete list of possible types of KP transitions.
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Figure 2. Type IIA brane configurations engineering the k& = 6 orbi-instantons with Kac label
[4/,2] and [23] respectively. The setup for [4/,2'] engineers a two-index antisymmetric of su(6)
(coming from D6-image D6 strings), and there is a half-NS5 stuck on the orientifold. We can Higgs
the su(6) down to usp(6) by sliding off to infinity the stuck NS5 along the O8: this corresponds to

an A-type KP transition (see e.g. [4,2'] SN [2%] in figure 3).

su(6), which is complex and as such carries a U(1) flavor symmetry with algebra u(1). (The
antisymmetric hypermultiplet comes from open strings stretched between the physical D6’s
in the zeroth segment and their images “beyond” the O8 [12].25) In fact we know that
[47,2'] preserves su(8) @ u(1), and this explains the physical origin of the second summand.
(For a more precise statement see the discussion in section 3.3.) On the other hand the
50(16) symmetry preserved by [2%] (since the fundamental of usp is pseudo-real) is already
rank-8, and in fact there are no hypermultiplets charged under any other gauge algebra
but the Ny = 8 of usp(6). Both flavor symmetries have a weak-coupling origin, as is clear
from their ITA setups drawn in figure 2: both have a nonempty zeroth gauge algebra (i.e.
decorated —1 curve) engineered by the D6 segment ending on the O8 (respectively, half-NS5
stuck on the O8) with flavor hypermultiplets charged under it.
The magnetic quivers at infinite coupling read

3N+3
[4',2] : 1—2—3—4—5—6—(N+6)—(2N+6)—(3N+6)—(4N+6)—(5N+6)—(6N‘+6)—(4N+3)—(2N+1) ,
(2.16a)
3N+3
[2’3] : 1—2—3—4—5—6—(N+6)—(2N+6)—(3N+6)—(4N+6)—(5N+6)—(6N‘+6)—(4N+3)—(2N).
(2.16b)

Subtracting the two we get a single unbalanced node, 1. Since its origin in (2.16a) is an
underbalanced node by 1 flavor, to rebalance it with the rules in [87, section 3.2] we need
to add an extra flavor on top of the 2 which would saturate the Ny = 2N, equality, so that
we end up with 1 — (the box representing flavor hypermultiplets). The Coulomb branch
of this 3d N = 4 quiver is the Ay Kleinian singularity, i.e. C2/Z3 [51]. More generally,
whenever the product of the subtraction is of the form

A1 -1i], (2.17)

the KP transition is of type A; 1 : C2/T's = C2?/Z;, i.e. the transverse Slodowy slice to the
orbit is an A-type Kleinian singularity.?”

From [53, section 3] we expect another Ay KP transition between e.g. the integer
partitions [4,1%] and [3,2,1] of 6; taking transposes and matching with the entries in our

263ce [90] for a similar observation for 4d A’ = 2 06-D6-D4-NS5 brane setups.
2TDue to mirror symmetry, a 3d magnetic quiver whose Coulomb branch is a; has Higgs branch given by
A;. Likewise for 0, ¢; and D;, E; respectively. See e.g. [82, table 2].
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table 2 we see that the Kac labels involved in such a transition should be [3,1?] and [3,2, 1]
respectively. Computing the magnetic quivers we obtain

3N

(3,2,1] : 172737475767(N+3)7(2N+1)73N74N75N76}V74N72N , (2.18a)
w

3,1%] 1-2—3-4-5—6—(N+2)—(2N+1)—3N—4N—5N—6N—4N—2N . (2.18b)

Subtracting and rebalancing we get 1 — , hence an A, KP transition as expected from
[4,12] 22, (3,2, 1], though with [3,2, 1] flowing into [3, 17)].

3 An interesting case study: kK =6

We are finally in a position to showcase the full hierarchy of infinite-coupling Higgs branch
RG flows for A-type k = 6 orbi-instantons at fixed N. The hierarchy of flows (i.e. Hasse
diagram) is drawn in figure 3. The algorithm to obtain such a diagram for any N,k is as
follows. (We will see in the next section a few subtleties and novelties that only arise for
k>1.)

i) Write down all possible Kac labels for the chosen k as in (2.4).

it) Write down the 6d electric quiver for each Kac label, i.e. orbi-instanton tensor branch,
following the algorithm in [37].

ii1) Compute the 3d infinite-coupling magnetic quivers associated with the 6d electric
quivers according to the rules in [56].

iv) Compute all possible subtractions between 3d magnetic quivers according to the rules
in [48] and rebalance if necessary. For a chosen 3d magnetic quiver (i.e. Kac label)
only a subset of all other quivers can be consistently subtracted from it. Associate an
edge to an allowed subtraction, where the edge is labeled by the (re)balanced quiver
subtraction, i.e. KP transition of type (2.13), (2.14), or (2.17).

Following these simple steps we arrive at an undecorated Hasse diagram, where each node
is labeled by its Kac label.

3.1 The a anomaly

To add strength to the proposed algorithm we check consistency with the a-theorem, i.e. we
compute the 6d a anomaly of each SCFT and check that Aa > 0 for any allowed subtraction.
The a anomaly of orbi-instantons can be extracted from the anomaly inflow calculation
in [37, section 3.4], and reads:

3 16

a = 5w, p)ar — = (w, why 15 (N = 0) +k (6 (N = 0)° + 6k (N — o) + 2> +13) | +
48 1
+ 7<w,w>ﬁ4 [k+ (N —o)]+ m[ — 502 + 18900 (N — o) + 14415k+

+ k2 (251 4 3680 + 576k" ) + 1440k (N — o) (9 + 2k%) + 2880 (N — 0)” (5 + 2k?) +

+3840 (N = 0)*] +400 > (w-w,a)®* =96 Y (w- w,a)’, (3.1)

acA+ acAt
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27] © 03,2, 1]

[4',12]
Qg

y[3',2,1]

y
2,17 @
L As
y
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Figure 3. The Hasse diagram of homomorphisms in Hom(Zg, F3), i.e. hierarchy of Higgs branch

RG flows of A-type orbi-instantons for N M5-branes and k = 6. The legend of colors and decorations
is included in section 3.7.
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where (w, w)yr =w - M - w and (w, p)yr = w - M - p are inner products of

w = (n27n3>n47n57 ne, 1y, o, nS/) 5 (32&)
p=(1,1,1,1,1,1,1,1) (3.2b)

with respect to the inverse Cartan matrix M = A(Fg)~! of Es. (A - denotes matrix
multiplication.) We choose the following basis for the simple roots:

01 -10 0 0 0 O
00 1 -10 0 0 O
00 0 1 -10 0 0
1 -1
o 00 0 O 0 O ’ (3.3)
00 0 0 0 1 -10
00 0 0 0 0 1 -1
1 1 1 _1_1_11
2727272727272 2
00 0 0 0 0 1 1

so that the Cartan matrix reads A(Eg) = E - E*. The fundamental weights w of Fg are the
rows of (E*)~!, A% is the set of 120 positive roots a of Eg, and (,) denotes the R® inner
product. The quantity o = 2?21 n; + p depends on the specific Kac label, where p has to
be determined case by case. In the “case” notation of [37, section 3.2], we have:

(ng +nyg) /2, for cases 1 and 5,
p=1 (ny +ny —1)/2, for cases 2 and 3, (3.4)
(ng + 2ng +ngo —1) /3 for case 4, with I[(= ng + 2ngy + ney mod 3) = {0,1,2}.

As is clear, a can only depend on N, k and the choice of Kac label (via ¢ and w), and its
large- N leading term is easily shown to scale like N3 and to be universal, as it should [30, 31].
The values of (3.1) for k = 6 are tabulated in table 3. Finally, we note that the (incomplete)
hierarchy induced by Aa > 0 must be equivalent to the procedure used in [43] to derive
some allowed flows between orbi-instantons, namely to subtracting the UV and IR 6d
anomaly polynomials.?®

3.2 Embedding the su(6) nilpotent orbits Hasse diagram

Having constructed an explicit hierarchy of RG flows, we can now analyze its most salient
features, and propose decorations to visually convey physical properties of the flows. This
is where the usefulness of the Type ITA pictures stands out.

As we have already noticed in section 2.2.1 we can embed the Hasse diagram of su(6)
nilpotent orbits into the bottom part of the homomorphisms Hasse diagram for k = 6. Kac
labels which map to integer partitions of 6 in the obvious way (i.e. to nilpotent orbits) are
colored in red. The Hasse diagram of the nilpotent orbits is indicated by red dashed edges
in figure 3, which also carry the information about which KP transition generates the RG
flow at each step. Notice that in our case the Hasse diagram is order-reversed, i.e. we have

Z8Computing a can only tell us if a given Kac label sits higher than another in the hierarchy, but not if
and when a flow bifurcates. Therefore it is not enough to obtain the complete RG flow hierarchy.
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Kac label exact 6d a anomaly Kac label exact 6d a anomaly

[6] BHUN® - 288N? — BN + 230 [3,2,1] NS — 288N? — 2N 4 39887
37 BUNS 4 SN DN B2 [y]  EMNS SN Ty 420
3,3 BANS 4 BEN? BTN 4 485 3,2,1] NG — S N? 4 S9N 4 4
[3%] EAN® - BN 4 EBN 4 8 417 A4 N3 4 2B N? BTy 4 ST
0,2 AN SMNLUDNGH 1 NS SN 4 MY 4 2
4,2 HOLNS_SSLNP_IAN L MS 17 BUNS_SsIn?_ iy s
2] B4 N3 4 LLAONZ B2y 4 202 [2',2,1?] 204 N3 — B0 N2 4 1881 4 21593
[4',2] 2304 N3 4 1O N2 _ 59 4 585 [2%,17] 204N — 1440N? 4 B8BLN — 572
[4,2] oA NS - BAN? 4 IBLN 4 2L 3,17 204 N3 — UBNZ 4 SB N 4 28257
[2%,2] BN 4 BEN? BN 4 B8 3,17 ZAN® - S8 N? 4 LI N - ST
2, 27] BUNG - UBEN? 4 GPN 4 0320 [2/,1%] BUN? - THON? 4 T899 N 4 1G0T
[23] @N:s o %]\ﬂ + &?83]\7 7 4;?57 [27 14] @N3 _ 135;36 N2 + 25(7559N o 3670003
[5’ 1] @Nd _ %]\ﬂ + %N + @77 [16] @Nd _ 19396]\]2 + 53(7)19N _ 9429122
[3',2/,1] AN 4 B2 N 4 1B N 4 1038

Table 3. Explicit values of the 6d a anomaly for all A-type k = 6 orbi-instantons.

implicitly applied the so-called Lusztig-Spaltenstein map [49, Thm. 6.3.2] to the original
one in [53, section 3] (because of our convention on transpose tableaux from table 2), which
we reproduce in figure 4 for the convenience of the reader.

The identification between homomorphisms and nilpotent orbits of su(6) has a clear
physical interpretation. Each Kac label labeling nodes which are connected by dashed edges
preserves, according to the algorithm explained below (2.4), a rank-8 maximal subalgebra f
of Eg which contains a strong-coupling and a weak-coupling summand. These summands
are written down in table 2. The weak-coupling summand is literally the centralizer of the
nilpotent orbit associated with an integer partition of £ = 6 giving the boundary condition
of k D6’s ending on the D8’s, following the same logic as in [46]. In the fourth column of
that table we exhibit the ending pattern of the D6’s on the D8’s explicitly. To each ending
pattern there is an associated Young tableau (as explained e.g. in [46, section 3.1]). From
that we can readily perform the Higgsing/KP transition by sliding off to infinity along x"8°
one or more trapped segments of D6, landing us onto the next Young tableau. We can
finally perform a few Hanany-Witten moves [91, section 3.2] to go back to the configuration
in the third column, i.e. a D8 with n D6’s ending on it should cross the n-th segment of D6’s
(with n = 0 the zeroth segment which crosses the O8, which may contain zero D6-branes).

Therefore this portion of the hierarchy of RG flows (in which the Hasse diagram of
su(6) nilpotent orbits embeds) realizes the possible ways of “peeling off” D8-branes from
the “maximal” substack of 6 for Kac label [6] (see the first row in table 2), and placing
them further inside the quiver compatibly with gauge anomaly cancellation, i.e. D6 charge
conservation [91, section 2 & 3]. On the other hand, the D8’s that sit on the O8 are
responsible for the strong-coupling summand of the flavor symmetry, i.e. the one adjacent
to the undecorated —1 curve (i.e. empty gauge algebra) corresponding to zeroth segment
with 0 D6-branes. These do not generate the Hasse diagram of the nilpotent orbits of the
su or so algebra. We will see an explicit example in section 3.5.
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Figure 4. The su(6) nilpotent orbits Hasse diagram (in terms of integer partitions of 6) with its KP
transitions [53]. We draw the diagram in a staggered form (whenever a flow bifurcates) to visually
convey which IR SCFT (i.e. Kac label) has larger 6d a anomaly. See table 3 for the actual values of
a at fixed N.
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3.3 Physical meaning of u(1) summands

A u(1) summand in the leftover flavor symmetry f is present if and only if there is more
than one part in the Kac label, i.e. if we kill more than one node in the affine Fg Dynkin.
That is, f will be a non-semisimple regular subalgebra of Ejg.

It is interesting to understand the physical origin of these summands. Looking at the
ITA pictures of Kac labels which do contain a u(1) it is tempting to think that this is
always associated either with a single D8-brane crossing some D6 segment, or with the
center-of-mass motion of more than one D8’s (the center of mass obviously coinciding
with the D8 in the case of a single brane), or even with the rotation symmetry of a
single hypermultiplet in a complex representation. However we have to keep in mind that
the D8 stack center-of-mass degree of freedom is removed from the 6d dynamics as per
formula (2.8),%” and this statement has a counterpart in the F-theory construction of the
same theories: the u(1) symmetry summand is actually “delocalized” in the geometry, i.e.
is not associated with a single component of the F-theory discriminant (see the discussion
in [46, section 7] and [93]).

Moreover we have to distinguish “candidate” u(1) symmetries which are visible on the
tensor branch from genuine ones which persist at its origin (i.e. in the SCFT). In [93] a
general analysis was performed to determine which u(1) summands persist in the SCFT as
many candidate u(1)’s actually suffer from an Adler-Bell-Jackiw (ABJ) anomaly, and thus
do not constitute genuine global symmetries at the CFT point.?® There it was found that for
orbi-instantons with generic N,k and Kac label [1¥] there is only one ABJ-free combination
of candidate u(1) symmetries (see around [93, eq. (4.17)]), under which only matter in
the plateau of the quiver (i.e. when the gauge algebra rank stabilizes to k) is charged.
Indeed the global symmetry (neglecting the global structure of the flavor group) of A-type
orbi-instantons was determined to be Eg @ su(k) @ u(1) for £ > 2 and Eg @ su(2) @ su(2)
for k = 2.3

In M-theory this u(1) arises as a subalgebra of the rotation symmetry of probe M5-branes
inside the M9 (in absence of the orbifold), i.e. along 2719 in table 1: s0(4) = su(2); Hsu(2)y.

29Tn the examples of table 2 the center of mass is located in the first segment for all Kac labels participating
in the su(6) nilpotent orbits Hasse diagram. To see this, we temporarily depart from our standard notation
introduced below (2.6), and label the intervals from ¢ = 1. Call f; the number of D8’s in the i-th interval;
then the weighted sum ) ifi/8 = 14/8 (e.g. [4.2] has (4-142-2+2-3)/8 = 14/8) is invariant throughout
those Kac labels. (The related quantity ng; = — Z;;ll Jfi [30, eq. (2.16)] is the F> flux integer of the dual
AdS7 vacua of [31, 92], i.e. 2mng = f52 F> — BFy, with 27Fy; = nos = r; — ri—1 [30, eq. (2.15)] the Romans
mass in the i-th interval with r; D6-branes.)

30That is, for a hypermultiplet of charge ¢ under a flavor u(1) summand and in a representation R of the
gauge algebra there is a contribution of the form

Iaps D %Fu(l) Trr Fy

to the eight-form anomaly polynomial of the tensor branch quiver, coming from a square diagram in 6d
with one flavor current and three gauge currents. Here F,1y and Fy are the flavor u(1) and gauge field

strengths respectively.

, su(k)
31The ABJ-free combination is absent for generic k and N = 1, i.e. [Es] 1 [SU(k)], and for k = 2 and

su(l) su(2) su(2) su(2)
: 2 | -+ 2 [SU(2)]. In the former case the right flavor symmetry algebra
Ne=1

enhances as su(k) ® u(1) — su(k + 1), whereas in the latter as su(2) @ u(1) — su(2) @ su(2) [93].

generic N, i.e. [Eg] 1
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The latter factor is the algebra of the R-symmetry of the 6d SCFT, and adding the Zj, orbifold
preserves a u(l) C su(2); for generic k and the full su(2); for k = 2 (whereas it preserves
nothing in type D or E). In F-theory this ABJ-free u(1) is actually delocalized in the
geometry [93, section 6], and this is reflected in the fact that the anomaly-free combination
is a sum of the u(1) carried by the single D8 (or hypermultiplet in another complex
representation) and the u(1) subalgebras inside the u(N;) symmetries of N¢ bifundamentals
in complex representations (for su(r;) gauge algebras with r; > 3). Finally, since the [1¥]
theory is the progenitor of all other orbi-instantons by “fission and fusion” [32], the above
statements carry over to all other Kac labels. Therefore, when a label contains more than
one part and thus its f contains (at least) one u(1) factor, the latter combines with the one
preserved by the orbifold to generate the ABJ-free combination.

3.4 Partially embedding the s0(16) nilpotent orbits Hasse diagram

Certain Kac labels preserve a weak-coupling s0(2n) factor, with the possibilities 2n =
16,...,8 being realized for k = 6. These can only come from hypermultiplets in the
(pseudo-real) fundamental representation of a usp gauge algebra engineered by the zeroth
stack of D6-branes crossing the O8 (in the absence of a stuck NS5-brane). In the IIA setup
these hypermultiplets are carried by D8’s crossing the nonempty zeroth D6 segment. E.g.
consider Kac label 23] with electric quiver given in (2.15b) (also reproduced below) and ITA
setup on the right of figure 2. Peeling off iteratively D8’s and placing them further inside
the quiver we can reach a few other configurations with a smaller-rank so flavor symmetry,
but we are never able to generate the full Hasse diagram of s0(16) nilpotent orbits.
Consider for instance the two flows

[2°] 2 [22,2] 2 [4,2],  [2°] 2 [222] 2 [22,17]. (3.5)
The difference in the respective a anomalies along the flow can be read off from table 3:
Aaps) e 9 = %521\72 - 3;81\7 - % :
Aapz 942 = L752N2 - %N - % ) (3.6)
Aapye gy 12] = %521\[2 — ?N — ?’f’% .

Clearly, these are positive for N > k = 6. The electric quivers corresponding to these
theories are:

usp(6) su(6) su(6) su(6) s5u(6)
23] <5 § = 50(16) : [Nf1:8] 2 2 2 --- 2 [SU(6), (3.72)

o usp(4) su(6) su(6) su(6)
[2%,2] <> § = 50(12) ® su(2) B u(l) : 1 2 2 ... 2 [SU(6)], (3.7b)

[Ny=6] [Ny=2]

usp(2) su(6) su(6) su(6) su(6)
[4,2] < § = s0(8) @ su(4) @ u(1) : 2 2 2 ... 2 [SUBY, (3.7c)

1
[Ne=4] [Nr=4]

usp(4) su(5) su(6) su(6) su(6)
1 2 2 2 .- 2

22 121 : § = s0(14 1) :
[2%,17] 1 f = s0(14) D u(1) ) )

[SU6)]  (3.7d)
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Figure 5. Type IIA branc configurations engincering the flows [2/3] 2% [22,2] 2% [4,2/] for
k = 6. The so weak-coupling summand gets broken as s0(16) — s0(12) — s0(8) with extra su or
u summands.
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Figure 6. Type ITIA brane configurations engineering the flows [2/3] 2% [2/2,2] 2 [22,12] for
k = 6. The so weak-coupling summand gets broken as s0(16) — s0(12) — so0(14) with extra su or
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u summands.

In the first flow we give vev to hypermultiplets charged under s0(16) and then to those
charged under s0(12), breaking those symmetry factors to a subalgebra. Likewise for the
second. The ITA realization of the flows is in figures 5 and 6. We immediately notice that,
starting from s0(16) and peeling off D8’s; we can generate a few smaller-rank so’s, potentially
together with other su or u summands: any smaller-rank so summand is generated by
sliding off to infinity a trapped segment of D6’s that crosses the O8 (see the first step in the
flow of figure 6), whereas the su summands by those that do not anymore, i.e. after peeling
off some D8’s from the O-plane and sliding off to infinity trapped segments from those
D8’s to the first NS5 (see the second step in the flow of figure 6). Moreover we know from
the most general Kac label in (2.4) that the smallest-rank so subalgebra we can ever hope
to get is s0(8) (label [4™4,3"8 272 1™ 2] for sufficiently high k, with 4,2 necessarily
present). Looking at the Hasse diagram for k£ = 6 in figure 3 we recognize its presence with
Kac label [4,2], so we know that s0(8) is one “end” to a partial Hasse diagram of so0(16)
nilpotent orbits.

On the other hand, looking at the flows in figures 5 and 6, one might expect the
sequence of Higgsings to end when there are no D6’s left in the zeroth segment, i.e. the
usp gauge algebra is empty. If there are leftover D8’s close to the O8 (i.e. crossing this
empty segment), they must be responsible for a strong-coupling so flavor summand. This
expectation is indeed borne out. Looking back at the flows in (3.5), we can push them
further, and obtain:

2] 28 122 2] 2 (4,2 2% 6] (3.8a)
usp(6) usp(4) usp(2) usp(0)

(23] 28 272 2] & [2212] 25 [3,2/,1] 2 [5,1], (3.8b)
usp(6) usp(4) usp(4) usp(2) usp(0)

where we have indicated the gauge algebra on the —1 curve (i.e. zeroth segment of D6-branes
crossing the O8) at each step. The difference in the a anomaly for the last steps along the
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Figure 7. Partial Hasse diagram of RG flows starting from Kac label [2/3] for k = 6. In both
termini of the bifurcation we end up with no so summand, even though we started with the full
50(16) at the other terminus.

flow can be read off from table 3, and is given by:

1152 o 480 19
Aa[472/}*>[6] = TN _ TN o o 7
1152 480 1423
Aage sy =~ N = =N+ 0, (3.9)
1152 o 864 10877
Aa[372’,1]—>[5,1] = TN — 7]\[ 4 0

These are again clearly positive for N > k = 6. The electric quivers at the last step are
given by (2.9):

6] 6 § = su(6) B su(3) Bsu(2) . [SUB) xSU@1 2 5" sue),

[Nt=6]
(3.10a)
su(5) su(6) su(6) su(6)
[5,1] <> f =su(5) dsu(4) du(l): [SUB)|1 [Nf2:4} [Nf2:1] 2 - 2 [SU(6)].
(3.10b)

We see that we have completely lost the weak-coupling so summand. The Type ITA picture
for both of these KP transitions is shown in figure 7. There are other 0; transitions such

that we end up with empty zeroth gauge algebra,
21 20 3,17, [2,2/,1%]) % [4,17), (3.11a)
usp(2) usp(0) usp(2) usp(0)

— 94 —



whose differences in a anomalies along the flow are

1152N2  2784N 114601

A o319 =~~~ F 555 (3.12)
1152N?  1632N 15153 '
Aap 12 54,12 = - T T o + 0
both of which are obviously positive for N > k = 6. The electric quivers are
3,13 E 2 1 B1 s Sy Ly SU(6
) = Ddsu(l)bu : ,
3,19 & f = By & su(2) & u(1) 1 2, W2y 2 SUE)
(3.13a)
su(4) su(5) su(6) su(6)
[4,1°] & f=s0(10) ®su(3) ®u(l): [SO(10)]1 2 2 2 ... 2 [SU(6).
[Ny=3] [Ne=1]
(3.13Db)

Here we notice the second effect mentioned above: sometimes we can have an empty usp
gauge algebra (in position zero) and still an so flavor summand, which is necessarily strongly
coupled. Since we cannot perform other Higgsings in the zeroth segment, the 9; transitions
must end here, and to continue flowing we are forced to use a; transitions. Another example
of this is
su(4)  su(6) su(6)
[4,2] < § = 50(10) ® su(2) ®su(2) @ u(l) : [SO(10)] 1 2 2 - 2 [SU(6)]. (3.14)
[Ne=2] [Ny=2]
Both Kac labels with strong-coupling so summands are reached via d-type KP transitions.
Then, since the product of this transition is an empty zeroth segment, we can no more
use trapped D6’s (in that segment) to Higgs the gauge algebra, so this is an endpoint for
0-type KP transitions, and the flows lying below it in the Hasse diagram necessarily come
from a-type KP transitions. (Incidentally, [4,2] offers an example where the u(1) summand
in § is clearly delocalized in the F-theory geometry, not being associated with any matter
representation. Therefore it must be the ABJ-free combination under which matter in the
plateau is charged. The same holds for [4,2'] and [2/?,2] in (3.7).)
The above observations 7) explain why it is not possible to embed the full Hasse diagram

of nilpotent orbits of s0(16) inside the homomoprhisms Hasse diagram for & = 6 (or higher k,
since 50(16) is the biggest so summand we can ever generate from (2.4) and k = 6 is already
large enough to accommodate it via one or more of its Kac labels); and i) explain in terms
of D6 Higgsings in ITA the d-type KP transitions that do appear in the homomorphisms
Hasse diagram. In light of the above two points, we have decided not to highlight the few
50(16) orbits that do appear in the homomorphisms Hasse.

3.5 The O8*-plane

Consider Kac label [3"%]: it preserves f = su(9). This may sound surprising at first, as we
cannot generate such a summand from the weak-coupling symmetry on a stack of D8’s: even
if all 8 of them sit together in one segment, they would generate at most su(8). One may
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Figure 8. Type IIA engineering of the orbi-instanton for k¥ = 6 and Kac label [3/?]. Left: naive
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expectation. Right: non-perturbative configuration in Type I’ which involves the O8* [66].

then hope that its origin is inherently strongly coupled, so that the IIA origin is unclear.
However this cannot be the case, as the electric quiver has a nonempty zeroth gauge algebra:

su(6) su(6) su(6) su(6)
1 2 2 ... 2

(3] < f = su(9) : [SU(6)]. (3.15)

[Nl.zl’NfZQ]
3

Because of the su algebra on the zeroth segment, we know there must be a half-NS5 stuck
on the O8, so that the IIA setup is the one in figure 8, which is surprisingly similar to
the one on the right of figure 2, were it not for the presence of a half-hypermultiplet in
the three-index antisymmetric representation of su(6) due to which the gauge anomaly
cancellation condition gets modified nontrivially with respect to familiar su cases without
such a representation. (Notice that the : of su(6) is pseudo-real and as such the internal
symmetry of one half-hypermultiplet in this representation is trivial, so(2 - ) = so(1) = 0.)
For the zeroth segment that condition (which is written down e.g. in [31, eq. (3.10)]) reads:

1
2:6=(~6)+6+M, (3.16)

where —6 is the quartic Casimir of the « of su(6) [94, section 3], and M is the number of
fundamental flavors (i.e. D8-branes) in that segment needed to cancel the gauge anomaly,
equivalently to satisfy D6 charge conservation. Solving this simple equation gives us M = 9,
that is we must have 9 D8-branes there, not 8. This is only possible if the O-plane is of the
type O8* rather than O8~, given the former has precisely —9 D8 charge.

Thus we discover that harmless-looking Kac labels can in fact hide surprising facts in
ITA, or better the non-perturbative completion of Type I which contains the O8* [70]. One
may now wonder whether it is possible for £ = 6 to generate the full su(9) nilpotent orbits
Hasse diagram by successively peeling off D8’s from the 9 stack, similarly to what we saw
in section 3.2 for su(6). However the su(9) summand cannot be Higgsed further via a; or
A; KP transitions (as would be required in the su(9) nilpotent orbits Hasse diagram [53]).
Instead, the next Higgs branch RG flow is implemented by a 93 KP transition to Kac label
[2"2, 2], whose electric quiver is

usp(4) su(6) su(6) su(6)
[272,2] < § = 50(12) @ su(2) © u(1) : L2 2 ... 2 [SU(6). (3.17)
[Ne=6] [N=2]
This is not the end of the story though. In fact [3"%] obviously generalizes to [3'%/3] for any k
which is a multiple of 3: only those k can ever preserve an su(9). We will see in section 4.2
that depending on the actual value of k/3 we can have configurations with or without the
O8*. For a configuration with the O8* (i.e. with su(9)), for k£ a multiple of 3 and k > 9, we
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will see that the homomorphisms Hasse diagram can and indeed does accommodate the full
su(9) nilpotent orbits Hasse diagram, as expected. As a preview, consider Kac label [3/3]
for k = 9; its electric quiver is

su(9) su(9) su(9)

(3] & f = s5u(9) : U(9)]. (3.18)

[Ny=9]
The su(9) has weak-coupling origin, and as such can be further Higgsed via a; or A; KP
transitions which correspond, in the type ITA engineering, to peeling off branes from this

stack of 9 D8-branes. This way we can generate the full Hasse diagram of nilpotent orbits
of su(9).

3.6 Combining small instanton transitions and Higgs branch RG flows

Finally, let us comment on the existence of “mixed” flows and how to detect them. By this
we mean that we keep the type of the orbi-instanton fixed (A-type throughout this paper),
the order k of the M-theory orbifold, but we vary both the boundary condition (i.e. we flow
among Kac labels) and N, i.e. we allow for small instanton transitions reducing the number
of tensor multiplets in the theory.

This is the approach followed in [36] and [44]; both references analyzed a few examples
for low k and proposed a hierarchy of Higgs branch RG flows between Kac labels which
also involves some (or all) N — N — 1 transitions (until N = 1). In appendix A we will see
explicitly how the proposed hierarchy of [36, section 4] for k = 4 fits into our formalism.

Here we content ourselves with explaining how to transition from the homomorphisms
Hasse diagram for fixed k at number N of tensor multiplets, to that at N — 1 (so that this
generates the full list of diagrams all the way to N = 1). To do this, we subtract from each
node of the diagram at N all nodes of the same diagram at N — 1, and find all the nodes
(i.e. Kac labels) in the former that allow a quiver subtraction with all nodes of the latter.
This defines the Kac labels from where (by doing a small instanton transition N — N — 1)
we can land on the top label(s) of the next diagram. Activating Higgs branch RG flows one
can then generate the full N — 1 Hasse diagram, and so on.

For each k we color such nodes in green. In the case of k = 6 the lowest node of the N
diagram from which we can jump to the N — 1 diagram is [6] as shown in figure 3. A feature
of the RG flows that first appears at k£ = 6 is that there are two possible starting points
for the flow between orbi-instantons, and it is not possible to flow from one to the other.
Naturally, to get the full RG flow at NV — 1 we must be able to flow to both of these “top
nodes”, and our green highlighted nodes are precisely these. Among the flow hierarchies
that we have explicitly computed, we see the same behavior persists for all £ > 6.

3.7 Legend of decorations

To sum up, the decorations appearing in the hierarchy of RG flows for k = 6 at fixed N in
figure 3 are as follows.

e Each node represents an orbi-instanton, labeled by its Kac label.
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Figure 9. Ratio of the number of Kac labels ¢(k) and the number of integer partitions p(k)
for k= 2,...,150.

o All edges represent allowed Higgs branch RG flows (i.e. Aa > 0) and are labeled by
the product of quiver subtraction between the 3d magnetic quivers associated with the
6d electric ones (giving the tensor branch description of the orbi-instantons). These

subtractions can in turn be understood as KP transitions.

e Red nodes denote Kac labels which correspond to the nilpotent orbits (i.e. integer

partitions) of su(6).

e Red dashed edges correspond to KP transitions between such nilpotent orbits, i.e. to

the su(6) Hasse diagram.

e Green nodes denote Kac labels (i.e. SCFTs) from which, by performing a small
instanton transition N — N — 1, we can jump to the homomorphisms Hasse diagram
of orbi-instantons for the same k& but with N — 1 tensor multiplets (rather than N as

we started from).

4 Subtleties for high £

In this section we assume that k£ be large, i.e. we want to describe phenomena which only
arise for sufficiently high k and are (partially) absent in the & = 6 case study of section 3.
We expect all interesting phenomena to take place already in the window 6 < k < 20, so
that one would not learn anything new by taking k£ > 1. We have checked that this is
indeed the case with an algorithmic scan, and we have collected the Hom(Zy, F5) Hasse
diagrams for k£ = 2,...,20 in appendix A.

A very heuristic argument for the above statement is the following. One can compute
the ratio between the number ¢(k) of Kac labels of k£ and the number p(k) of integer
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partitions of k, whose generating functions read respectively

-\ k_ 1
Frall) = O = G A A a e -
Zpartitions(k) = ip(k)ﬂfk = ﬁ ! = ! ) (41b)
k=0 =2 (2)e

with (¢; ¢)so the g-Pochhammer symbol. Plotting this ratio for k = 2,...,150 in figure 9,
we see that it peaks around k = 20, reaches 1 around k = 70 and quickly goes to zero
afterwards. Since the number of Kac labels ¢(k) for a given k increases rapidly up to k ~ 20
compared to that of integer partitions p(k) of k, one could heuristically expect most new
features to appear in this interval.

4.1 Embedding su Hasse diagrams

The biggest su summand preserved by the general Kac label (2.4) is su(9) when k is a
multiple of 3, and su(8) when it is not. In light of the results of section 3.2, it is then
natural to ask whether we can always embed the full su(9) or su(8) nilpotent orbits Hasse
diagram inside the homomorphisms Hasse diagram for any sufficiently high k. From k£ > 7
onward the one-to-one correspondence between a subset of Kac labels and integer partitions
of k ceases to exist, because the former only use integers up to 6 whereas the latter up to k.
One may then think that this introduces a difficulty in identifying the Hasse diagram of
s5u(8) or su(9) nilpotent orbits inside the full homomorphisms Hasse diagram. However one
can resort once again to the Type IIA intuition whereby the nilpotent orbits are one-to-one
with the ways in which we can peel off D8-branes from a “maximally populated” stack. Let
us work out the cases k = 7, 8,9 explicitly before moving on to a more general discussion
for k > 9.

4.1.1 Casek =7

The maximal stack of D8’s is realized when 7 D8’s sit together. The associated Kac label
and electric quiver are
su(7) su(7) su(7)
4,3 < f=su(7) dsu(2)®u(l): [SU2)]1 [N2 . 2 ... 2 [SU(T)]. (4.2)
=
Rearranging these 7 D8’s generates quivers whose gauge algebra ranks can then be partial-
ordered to generate a Hasse diagram, which terminates at

su(l) su(2) su(3) su(7) su(7)
2 2 2 ... 2

(1" < f=Fg: [Eg)1 2 [SU(T)]. (4.3)

[Ne=1]
The differences of the ranks of the gauge algebras {r;;1 — r;}, for each theory are one-to-one
with partitions of the integer 7, thus generating the Hasse diagram of su(7) nilpotent orbits.
For example, Kac label in equation (4.2) corresponds to the partition [7], and equation (4.3)
corresponds to [17]. This forms a part of the full hierarchy of RG flows of the k = 7 case,
colored in red (nodes and dashed edges). See figure 13.
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4.1.2 Case k=8
For k = 8, a stack of 8 D8’s can be realized in the electric quiver of the following Kac label:

su(8) su(8) su(8)

[47%] < f=su(8) @ su(2): [SU2)] 1 [SU(8)]. (4.4)

[N=8]
The differences in ranks is again in one-to-one correspondence with the partitions of 8 and
can be partial-ordered to obtain the full Hasse diagram of nilpotent orbits of su(8). As
before, this forms a part of the full RG flow and is highlighted in red in figure 13.

4.1.3 Casek =09

Kac label [3/3] realizes a stack of 9 D8’s; Kac label and the electric quiver are:

su(9) su(9) su(9)
2 2 ... 2 [8

[3%] ¢ f=su(9): 1 U(9)]. (4.5)

[Ne=9]

Similarly to k = 7,8, the differences in ranks correspond to the partitions of 9 and generate
the Hasse diagram of nilpotent orbits of su(9). This is highlighted in red in figure 14.

4.1.4 Generic k

Unlike for k <9, it is no longer possible to have a stack of k D8’s for k > 10. So one must
carefully identify the maximal stack of m D8’s to find the embedding of the Hasse diagram
of nilpotent orbits of su(m) in the full RG flows hierarchy. To this end, we propose the
following algorithm.

1. If k = 0 mod 3, the Kac label [3%/3] preserves su(9). This corresponds to three
different electric quivers depending on three discrete choices [ = 0, 1,2, where k/3 =1

mod 3:

su(9) su(18) su(k—9) su(k) su(k)

k/3=0 mod3: 1 2 2 - 2 2 ... 2 [SUk), (4.6a)

[Ve=9]

su(3) su(12) su(21) su(k—9) su(k) su(k)

k/3=1 mod3: 1 2 2 ... 2 2 ... 2 [SUk), (4.6b)
[N:=1] [Ne=9]
su(6)  su(15) su(24) su(k—9) su(k) su(k)

k/3=2 mod3: 1 2 2 ... 2 2 ... 2 [SUK). (4.60)
(N1 =1] [Ne=9)]

All of them contain a maximal stack of m = 9 D8’s (i.e. there is an O8" in the Type
ITA setup). By subsequently peeling off D8-branes from the stack of 9 we can generate
the su(9) Hasse diagram, akin to what was done for k£ = 6 in table 2.

2. If K # 0 mod 3, then su(8) is preserved by a stack of m = 8 D8’s on a —2 curve. The
electric quivers and the corresponding Kac labels can be further identified as follows:

a) if k = 0 mod 2, the Kac label that preserves su(8) is [4'%,2/%/2=2%]  where
x=2,3,...,|k/4]:

— 30 —



1) if £ =0 mod 2, the electric quiver reads

usp(k—4x) su(k—4z+8) su(k) su(k)
1 22 2 [SUGK). (4.7)
=

In this case, there is a second SCFT corresponding to [3'%, 2/%/2-32/2] which
has the same electric quiver, and differs only by the 6d theta angle as will
be discussed in section 4.3.

1) If £ # 0 mod 2, the electric quiver reads instead

su(k—4z+4) su(k—4x+12) su(k) su(k)
1 o o T [SUk)]. (4.8)
IN=1] [Ni=s]

b) If k #0 mod 2, the Kac label is [3/3, 2/(*=9)/2] and the electric quiver reads
su(k—8) su(k) su(k) su(k)
1 2 2 ... 2 [SU(K). (4.9)
[Ve=8]

3. Additionally, if kK = 3 or 6 mod 8, there is an alternate way to realize an su(8) flavor
algebra with a Kac label of the form [3'%,2V].

a) If k=3 mod 8,4z —k =1 mod 3 and the 6d quiver is

su(3) su(1l) su(19) su(k—8) su(k) su(k) su(k)
2 - 2 2 2 .

—_
[N}
[\

i)
a

—~
=y

=

—~
-
—_
=]

~

IN=1] B [Ni=3]
b) if k=6 mod 8, 4z — k =2 mod 3 and the 6d quiver is

su(6) su(14) su(22) su(k—8) su(k) su(k) su(k)
12 2 .2 2 2 ... 20 [SU®K). (4.11)

(N1 =1] [Vy=8]

ol

These are similar to the theories in equation (4.6), but have 8 D8’s instead of 9.

It is clear from the above that there can be multiple starting points for embedding the su(8)
nilpotent orbits Hasse diagram into the full RG flow hierarchy for large-enough k.

As an example, the su(8) Hasse diagram for k£ = 10 starts from two SCFTs that only
differ by the 6 angle on the tensor branch (as will be discussed at length in section 4.3).
The electric quiver for both is the one in (4.7):

[4’2,2’]920} usp(2) su(10) su(10)  su(10)
: 1 2 2 .-
[Ni=8]

2 [SU(10)]. 4.12
e SU(10)] (4.12)
The starting point [3'2,2"] is colored in blue in figure 15, whereas [4"2,2'] in red (as the
su(8) Hasse). For k = 14, there are four theories that act starting point for su(8):
o two theories differing by 6 angle, whose electric quiver is again the one in (4.7):

4/27213 — usp(6) su(14) su(14) su(14)
[2 4]9 L. T o e [SU(14)). (4.13)
(372,24 [Ni=8]

This su(8) Hasse diagram is colored in magenta in figure 19.
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o One theory with electric quiver given by (4.8):

(6) su(14) su(14) (14)
[473,2/] : I R [SU(k)] . (4.14)
[N=1] [N;=8]

This su(8) Hasse diagram is colored in red in figure 19.
o One with quiver given by (4.11):

su(6) su(14) su(14) su(14)
(3,2'] : 1 2 2 ... 2 [SUk). (4.15)
[Vy,=1] [Ne=4]

This su(8) Hasse diagram is colored in blue in figure 19.

The various su(8) or su(9) nilpotent orbits Hasse diagrams are highlighted in multiple colors
(with dashed edges) in all figures of appendix A. For each figure we explain which Hasse
appears (potentially more than once) and in which color, as done for figure 19.

As a final observation, it is worth noting that for every k& > 10 there always is another
theory whose Type ITA engineering features an O8* and a stack of 8 D&’s plus a single
D8-brane away from it. This corresponds to Kac label [3'*,1Y], and is similar to (4.6) except
that the tail is modified from a plateau of su(k)’s to a ramp of length y and step size 1
from su(3z) to su(k = 3z +y), with 8 D8’s at the end of the beginning of the ramp and a
single D8 at the beginning of the plateau. More explicitly:

su(9) su(k—9) su(3z) su(3z+1) su(k) su(k) su(k)
2=0 mod3: 12 . 2 2 2 .. 22 ... 27 [SUK),
[Ni=8] [Ne=1]
(4.16a)
su(3) su(12) su(k—9) su(3z) su(3z+1) su(k) su(k) su(k)
z=1 mod3: 1 2 ... 2 2 2 . 22 ... 2 [SUK),
[N.=1] [Ne=8] [Ne=1]
(4.16D)
su(6) su(15) su(k—9) su(3z) su(3z+1) su(k) su(k) su(k)
r=2 mod3: 1 2 .. 2 2 2 .. 22 ... 27 [SUK).
[N%=:1] [Ne=8] [Ne=1]
(4.16¢)

There are indeed several theories for a given k that proceed via splitting of this stack of
8 D8&’s. However, this stack eventually combines with the single D8 and thus does not
generate the Hasse diagram of su(8).

4.2 The role of the O8*

The Type ITA setups engineering the electric quivers in (4.6) are drawn in figure 10, and they
all involve the O8*.32 Notice that these are just the starting points of the su(9) nilpotent

32The three cases in (4.6) have already appeared in [95, figure 1], and before that in [38, figure 22] and [40,
section 6], in the context of lifting 5d SCFTs to 6d SCFTs, though none of these references stressed the role
of the O8* to obtain a consistent Type ITA configuration as we do here.
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Figure 10. Type ITA configurations with O8* engineering the electric quivers in (4.6).

orbits Hasse diagram, so that all Kac labels along this diagram will also involve an O8*.
Indeed, generically any Kac label (2.1) satisfying

Q’L3/ Z TL4/ y 7’L3/ — 7’L4/ Z 27’),2/ (417)
involves an O8*, as first noted by [56, section 3.6].

4.3 Theories that differ by 0 angle

As noticed in [37], there exist orbi-instantons that share the same 6d electric quiver, despite
their M-theory origin suggests they are different SCFTs (their Kac labels are different).? It
is proposed that the subtle difference between the electric quivers is captured by the so-called
6d 0 angle of the gauge theory, where two possible choices of this parameter correspond to
the two different SCF'Ts, which are thus distinguished even on their tensor branches.

For 6d (1,0) gauge theories, the 6 angles are the coefficients of the terms

Leg D 0; Tr F? (4.18)
in the effective Lagrangian on the tensor branch (for those Tr F? which are nonvanish-
ing), with

10 _ .10
0; = xlﬂligxl , (4.19)
S

and z° the position along the M-theory circle in table 1 of the i-th NS5-brane. The latter
“bounds” from one side the ¢-th finite segment of D6-branes giving rise to the ¢-th non-
Abelian vector multiplet with field strength F;. We also have a triplet of Fayet-Iliopoulos
(FI) terms and a gauge coupling 1/¢? [5], given respectively by
7,8,9 7,8,9 6 6
X — X 1 2 — xt
wi =T = =g — 4, (4.20)

l B AT

with ¢; the scalar in the i-th tensor multiplet contributed by the i-th NS5/M5. Both 6
angles and FI terms are dynamical quantities in 6d, and play a crucial role in canceling the

33To conclusively prove this statement one could study the spectra of BPS strings of the two SCFTs or
construct their Higgs branch operator spectra, and show that they are different. The latter approach has
been followed in a different yet related context in [96] (for (D, D) conformal matter theories).
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anomalies of u(1) subalgebras of u(r;) gauge algebras (thus becoming the familiar su(r;)
appearing throughout this paper).?* Notice also that the @ term in (4.18) is nonzero only
for u or su, since the cubic Casimir of the adjoint of usp vanishes.?”

[37] identified a whole family of A-type k = 2]+ 8 orbi-instantons whose tensor branches
only differ by the 6d @ angle, where the two SCFTs are given by Kac labels [42,2"]g_q and
[3"2,2"1*]o_. In both cases the 6d electric quiver reads

[4/2, 2/l]9:0 usp(2l) su(20+8) su(21+8) su(204-8)
+ f=s5u(8 1H): 1 2 2 - 2 SU(2] + 8)].
[3/2’ 2/1+l]9:7T f 511( ) ® u( ) [Nf:8] [ ( + )]
(4.21)
In field theory terms, this 6 angle can be identified with a “choice” of gauge theory when the

zeroth gauge algebra on the tensor branch is nonempty, since m5(USp(21)) = Z» [100, 101].36

The choice is given in practice by two different embeddings of su(2{ + 8) into the s0(2(2] + 8))
global symmetry of a usp gauge algebra with 2[ + 8 fundamentals. When [ = 0, i.e. when
the zeroth usp gauge algebra is empty, we cannot use this argument to distinguish between
the two choices, but we nonetheless have two different embeddings of su(8) inside the Eg
of [Eg]1 at our disposal [37, section 3.3]. Indeed notice that when [ = 0 the 6d SCFTs
are distinguished by the commutant of the subalgebra of Fg that gauges the E-string:
f = su(8) @ su(2) for [4”%]g—¢ and § = su(8) @ u(1) for [3"%,2')p—. This is not the case for
[ # 0 since we have su(8) @ u(1) for both SCFTs. At the level of 6d dynamics, the SCFTs
should be distinguished by the nonperturbative spectrum of instanton strings (D2-branes
wrapping 216 with vanishing tension), which is affected by the Zs choice of # [102, 103].
The constraint imposing that two different SCFTs specified by different Kac labels have
the same electric quiver has been solved in full generality in [56, eq. (3.161)]. There it was
also shown that two such 6d SCFTs, in spite of sharing the same electric quiver, differ by their
3d magnetic quivers at infinite coupling, which are thus capable of capturing the discrete
choice of §. However the difference is very subtle in that it manifests itself as a Zs graph
automorphism exchanging the two tails at the right of the magnetic quivers [56, eq. (3.164)],

34 An anomalous transformation of the @ angle is presumed to give mass to the u(1)’s via a Stiickelberg
term [12, eq. 2.6], thereby rendering them massive and removing from the low-energy spectrum of the gauge
theory the gauge anomaly they suffer from [97, 98].

35In fact, for all simple Lie algebras but A,,, see e.g. [99, table 1].

36This can be quickly seen as follows. We can realize a sphere as a homogeneous space given by the fibration

SO(n)

SO(n —1) = SO(n) — Om_T ~ gt
SU(n — 1) < SU(n) — SS(UT@U ~ gon-t
USp(n — 1) < USp(n) — %@1) ~ gin-1

Passing to long exact sequences
<o = m(SO(n — 1)) = m(SO(n)) = m(S™ ) = mi_1(SO(n —1)) — -

and knowing that 7m,,(S™) = 0 for m < n and m(SO(2)) = m2(SU(2)) = 0, we get the wanted result
(remembering the exceptional isomorphisms between Lie groups for small n).
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which we reproduce here below (before performing N small instanton transitions):

3N+gs
\
1-2—— (k—1)—k—(N-+g1)— (2N +g2)— (3N +g3) —(4N+ga) — (5N +gs)— (6N +g6)—(AN+g7)—2N  (4.22)

where [56, eq. (3.125)]

6—j )

6 —
9 = Zini-i-j + 2ng +ny + Tj(n3' +ny), j=1,...,6;
i=1 (4.23)
1
gr =nz;  gs=ny + 5(”4’ —ny).
Performing N small instanton transitions yields
N
T i
1=2—--—(k=1)—k —g1—9g2— 93— 94— g5 — g6 — g7, (4.24)

where JK\} indicates a U(V) gauge node with an adjoint. In this presentation, going from
0 = 0 to 7 simply means swapping g7 with gs.

Here we identify an infinite class of solutions to that constraint and exhibit explicitly
the 6d electric quivers distinguished solely by the choice of § angle, according to the two
above mechanisms (i.e. depending on whether the zeroth usp algebra is empty or not).
Thus, we can go beyond the example (4.21) constructed in [37].

Given a choice of three non-negative integers {m,n,[} such that m +n =0 mod 2
(and without loss of generality we may assume m > n), the infinite class corresponds to
Kac labels of the form

[4/m’ 3/717 2/l> {piH@:O ; [4/717 3/m7 2/l+(m—n)/2’ {pi}]@zw . (425)

These two 6d SCFTs do not preserve the same §if n =1 =0 or [ = 0. The electric quiver
associated with both labels is:

usp(2l) su(2048) su(21416) su(2l+4(m—n)) su(ko—7) su(ko) su(ko+p1) su(ko+pi+p2) su(k)
1 2 2 .. 2 2 2 2 2 [SU(K)],
[Ng=1] [Ng=7—p1] [Ng=p1—p2] [Ng=p2—p3] [N¢=pq]
(4.26)
where kg = 21+ 4m +3n, all values of [ = 0, 1,2, ..., | (k—8)/2] are allowed, and the {p;}¢_,
are the parts of a partition [p;] of k — ko in terms of the unprimed integers 1,...,6 only.

There are three types of ramps (in the ranks of the gauge algebras) in the above electric
quiver: ¢) from 2/ to 20 +4(m — n) in steps of length 8, i) from 2] + 4(m — n) to ko in steps
of length 7, and i) a composite ramp depending on the partition [p;]. Different partitions
have different numbers d of parts so that the length of the last ramp varies from partition
to partition. The flavors sit at the transition between the ramps, and can easily be fixed by
requiring gauge anomaly cancellation of each of the su(r;) algebras (usp(2!) is automatically
anomaly-free), yielding the above electric quiver. Clearly, this family can only exist for
k > 8; for m = 2,n = 0, this collapses onto (4.21).

As an example, take once again k = 14, i.e. | = 0,...,3. Let us classify all pairs of
orbi-instantons that have the same electric quiver based on [. We have:
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o [ =0: 11 quivers (i.e. 11 pairs of orbi-instantons sharing the same electric quiver)
associated with Kac labels [3'2,2', {p;}]o=r and [4"%, {p;}]o=0, Where [p;] are the eleven
integer partitions of 14 — (2- 0+ 8) = 6, i.e.

[pi] = (6], [5.1], [4, 2], [4, 1], [3%), 3,2, 1], [3, 1), [2°], [2%,1%), [2, 1), [1°] . (4.27)

e | =1: 5 quivers associated with Kac labels [32,2"2, {p;}]o=r and [4"%,2', {p;}]9=0, Where
[pi] are the four integer partitions of 14 — (2- 1+ 8) =4, i.e.

[pi] = [4]’ [37 1]> [22]7 [27 12]7 [14} . (4-28)

e | = 2: 2 quivers associated with Kac labels [32,2", {p;}]9—r and [4"2,2"% {p;}]o=0,
where [p;] are the two integer partitions of 14 — (2 -2 + 8) = 2, i.e. [p;] = [2],[1?].

Explicitly:
4/2’2/2’2 _ usp(4) su(12) su(14) su(14)
[,2 B oo 1 2 9 ... 2 [SU(14)], (4.292)
(3,2, 2]g=r [Ne=6] [Nr=2]
42 22 12],_ usp(4) su(12) su(13) su(14) su(14)
| , 2]9 oL, 1 20 27 T2 797 [SU(14)). (4.29b)
32,2, 1%)9—r [Ng=7] [Ny=1]

« [ =3: 1 quiver associated with Kac labels [32,24]g_, and [4"2,2"3]y—.

We have found that the orbi-instantons for generic k& and fixed | form a partial Hasse
diagram of nilpotent orbits of su(k — 8 — 21), excluding the partitions which use integers
larger than 8. Additionally, for a given [, the class of orbi-instantons for fixed (m,n) which
have k — ko < 6 form themselves a Hasse diagram of su(k — ko) nilpotent orbits, where the
partitions associated with the orbits are nothing but the [p;].3” We highlight in different
colors (one for every choice of 1) these Hasse diagrams embedded in the RG flow hierarchies
of appendix A.

To illustrate how this works, consider the example of £k = 19. Using (4.25), we see
that for [ = 0 the integers (m,n) can either be (2,0),(3,1) or (4,0). For (m,n) = (2,0)
the [p;] must be all partitions of 19 — 2 - 2 = 15 into integers 1, ..., 6, which are 44 in total.
Next, (m,n) = (3,1) implies [p;] are all integer partitions of 19 —3-4 —1-3 = 4 using
integers 1, ..., 6, which are 5 in total. Finally for (m,n) = (4,0), the [p;] are all partitions of
19 — 4 -4 = 3, which are 3 in total. These 44 + 5 4+ 3 = 52 orbi-instantons all correspond to
electric quivers starting with an empty usp gauge algebra on the —1 curve as can be inferred
from (4.26), since [ = 0. Examining the difference of ranks of adjacent gauge algebras, we see
that it falls into one of the following three patterns (corresponding to the three possibilities
for (m,n)): {8,7,pi}, {8,pi} or {8,8,pi}, where {p;} are the parts of [p;]. On disregarding
the first integer 8 which is always present, the differences of adjacent ranks of these 52
orbi-instantons precisely make up the integer partitions of 19 —4-2 = 11 (where the 2 arises

37This is because, for k — ko < 6, partitions in terms of the integers 1,...,6 only are the same as the total
number of integer partitions.
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because the smallest possibility for (m,n) is (2,0)), except the partitions which use integers
larger than 8. Interestingly enough, the partial ordering of the electric quivers obtained via
magnetic quiver subtraction corresponds precisely to the partial ordering of these integer
partitions given by the difference in ranks of these orbi-instantons. (This is similar to the
observation at the end of section 2.2.1.) These partitions are in turn one-to-one with the
nilpotent orbits of su(11), i.e. we have a partial Hasse diagram of su(11) which does not
include the four top nodes corresponding to partitions [11], [10, 1],[9, 2], [9, 12], since these
use integers larger than 8.

Looking at the quiver in (4.26), it is easy to see why integers larger than 8 cannot
appear in the difference of adjacent ranks. As another example for k = 19, consider [ = 3.
This gives only one possibility, (m,n) = (2,0), which implies that [p;] are the 7 integer
partitions of 19 —2-4 —3-2 = 5. Again, from (4.26) we see that the difference in adjacent
ranks is of the form {8, p;} which, on disregarding the first 8, corresponds to the partitions
of the integer 5. As expected, partial-ordering these orbi-instantons via magnetic quiver
subtraction indeed gives the Hasse diagram of nilpotent orbits of su(5).

Let us conclude this section with a field theory observation. It would be interesting to
understand what is the remnant of the discrete 6 angle in the SCFT (i.e. at the origin of the
tensor branch) —especially in relation to (—1)-form “symmetries”— since the two possible
choices of 6 correspond to two distinct SCFTs. A possible starting point is an adaptation
of the general analysis of [103] to the (1,0) orbi-instanton case.?® We leave this question as
an interesting avenue for future work.

5 Conclusions

In this paper we have determined the hierarchy of Higgs branch RG flows between orbi-
instantons of type A at fixed k, N. The flows are between orbi-instantons (i.e. SCFTs)
defined by different boundary conditions in M-theory, i.e. allowed Kac labels for the given k.
The partial ordering on the hierarchy is given by the quiver subtraction operation, i.e. a flow
between two Kac labels is allowed if the associated 3d magnetic quivers can be subtracted
in a consistent way. For each proposed flow we have checked that the a-theorem is verified,
i.e. Aa = ayy — arr > 0. We have explicitly produced hierarchies for k = 2,...,20, and
highlighted a few key facts such as the possibility to fully embed an su(8) or su(9) nilpotent
orbits Hasse diagram into the hierarchy, to partially embed the s0(16) Hasse, and to further
embed other su Hasse diagrams of flows between orbi-instantons which have different 6
angle on the tensor branch, in spite of sharing the same electric quiver (i.e. perturbative
spectrum of operators).

As a mathematical statement, these hierarchies should be understood as Hasse diagrams
of Hom(Zy, E3), for which there are no known results in the literature. Similarly to what
happens for nilpotent orbits of classical or exceptional Lie algebras, we have found that
the edges in these Hasse diagrams are given by Kraft-Procesi transitions of type A; or
a;, 0;, although we are not always transitioning from nilpotent orbit to nilpotent orbit of a
fixed Lie algebra (as is the case for [52-54]). Therefore we are unsure as to the meaning

38We would like to thank N. Mekareeya, Y. Tachikawa, and L. Tizzano for discussion on this point.
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of these transitions (produced via quiver subtraction) in the homomorphisms Hasse. A
possible hint is the following. It is known [104, Thm. A] that the minimal degeneration
singularities of the FEg[[z]]-orbits in the affine Grassmannian of Eg are all either Kleinian
of type A or minimal of type given by a subdiagram of the Eg Dynkin diagram.?® (By
Eg[[z]] we mean the group of matrices in Eg with coefficients in the ring of formal power
series in z, usually denoted C[[z]]. For an introduction to affine Grassmannians accessible
to physicists see e.g. [78, section 2.3].) This is precisely what we found in our Hom(Zy, E3)
Hasse. The connection between affine Grassmannians of Lie groups and moduli spaces of 3d
N = 4 quivers has already been put forward in [78], so we expect the (slices of the) affine
Grassmannian of Eg to play a role in Higgs branches of 6d electric quivers obtained from
08-D8-D6-NS5 brane systems with 8 supercharges. It would be extremely interesting to
explore this further.

An obvious generalization of our work is the construction of hierarchies of RG flows for D-
type orbi-instantons, which involve M5-branes probing an Fg wall and the C2/Tp = C?/Dy,
orbifold, with Dy, the binary dihedral group of order 4k associated with the Dy o singularity.
(The corresponding Type ITA configurations will contain an O6-plane crossing the O8~ [12],
as well as the more exotic ON? [105].40) This poses two immediate difficulties however. First,
the work of Kac [58] cannot be directly generalized to homomorphisms in Hom(IDy, Es),
since it is impossible to grade a Lie algebra by a non-Abelian group.*! Hence we do not
have at our disposal a set of “natural” Kac labels to define the SCFTs. One may proceed as

39We are grateful to P. Levy for discussions on this and related points, and for suggesting a potential
relation with the work of [104]. When the group is non-simply-laced there exist other singularities called
quasi-minimal [104].

40The (Type ITA) ON° wraps the same directions as an NS5 (see table 1), being (T-dual to) the S-dual of
an O5~ (the ON7) with a single NS5 on top. Placed at the left end of an electric quiver without O6-planes
or the O8 as follows

k
ON' O—e—9 &—o—
k

it engineers an electric quiver with D-type Dynkin diagram shape,

su(k)
2 su(2k) su(2k) su(2k)
suék) 2 2 . [SU(2k)],

which is allowed by the general rules in [13, appendix D]. Adding O6 and O8, there are four gauge anomaly
free combinations [105, section 6], of which the two relevant ones for our present purposes are 08 -O6T with
an ONY stuck at their intersection in the zeroth segment. (Notice that any two of these orientifold projections
always imply the third, as can be seen by taking three T-dualities on the system of [86, section 7.4]. We
are grateful to A. Hanany and M. Sperling for pointing this out to us.) The electric quiver engineered by
the former (with all 8 D8’s on top of the O8) can be found in [106, eq. (5.1)], whereas the latter in [106,
eq. (5.16)]. Whenever O6 and O8 have the same charge the quiver is linear (i.e. has A-type Dynkin shape),
whereas when they have opposite charge it has D-type shape [105]. The corresponding 3d magnetic quivers
have been worked out in [107, section 4.2]. (There also exists an 06 which is equivalent to an O6~ with a
half-D6 stuck on it; it is allowed only for odd Romans mass [108, 109]. If the Romans mass is instead even
—including the case where it is vanishing— only the O6~ is allowed, whence the above list of possibilities.)
41Gee footnote 17.
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follows. To find the embeddings of Dy into the Eg group we first embed its cyclic subgroup
Zoy. C Dy, which is done via Kac labels. For each label we have an element a of a maximal
torus of Ejg, generating a subgroup of order k. We must then find elements w of the Weyl
group W (FEg) which satisfy w(a) = a~!: these are the elements of the form —w’ where w’
belongs to the centralizer of a in W (Eg). We can pick one representative b of each conjugacy
class w, and ask how many of those have representatives in Fg which are of order 2, namely
find which of the homomorphisms in Hom(Dy, Eg) from [36] (called Hom(Dicg, Eg) there)
have kernels consisting of b? = a™ (see [13, section 7.3.3] for their F-theory realization).*?
Second, the full set of rules to obtain the 3d ortho-symplectic magnetic quivers of D-type
orbi-instantons coming from O8-D8-06-D6-NS5 brane systems has not been worked out yet
(to the best of our knowledge), even though this difficulty may more easily be overcome by
extending the rules proposed in [75, 110, 111] to also include the O8 (see e.g. [107, section 4]
for progress in this direction). Once this is done, we can again apply the quiver subtraction
algorithm to construct all possible RG flows, and check compatibility with the a-theorem.
For E-type orbi-instantons, the 3d magnetic quiver technology is currently unavailable. (We
expect there to be a finite number of hierarchies of RG flows since the binary tetrahedral,
octahedral, and icosahedral groups I'g, , ; have a finite, non-parametric order. See e.g. [13,
section 7.4.1] for the F-theory realization of orbi-instantons in Hom(I'g,, Eg).)

Finally, we wish to comment on two less obvious generalizations of the present work.
One direction involves studying [112] the hierarchy of Higgs branch RG flows between
so-called “massive E-string theories” [113, section 5.2],*% which are generalizations of (2.6)
with nonzero Romans mass, the total number of D8’s being less than 8. These systems do
not allow for an M-theory construction, but do so both in massive Type ITA (hence the
name) and F-theory, where the left flavor symmetry factor is [E) 1 (g_py)] for no =1,...,8
(8 — np being the total number of D8’s, which are close to the O87):

su(ng) su(2ng) su((N—1)ng)
[ElJr(ano)} 1 2 2 .- 2 [SU(Nno)]. (5.1)

As is clear, the difference with (2.6) stems from the absence of a plateau of su algebras.
Therefore we take Nng to mean k. Indeed notice that (5.1) comes from truncating the more
general massless quiver in [37, eq. (5.71)] with 8 — ng + ng = 8 D&’s, namely

su(ng) su(2ng) su(3np) su((m—1)ng) su(mng) su(mno) su(mng)

Brysongll 2 2 2 - 2 2 2 ... 2 [SU(mno)], (5.2)
[Nt=no]

where obviously k = mng.** Putting m = N and truncating at the leftmost Su(gm}) in
position m, we obtain (5.1) with k = Nny. However notice that this k is not the order of
the C2?/Zj, orbifold but rather the number of semi-infinite D6’s in the rightmost segment,
since as we said there is no M-theory engineering of that theory. Here

Ei4(8—ny) = {Es, E7, Eg,50(10), 5u(5), 5u(3) © su(2),su(2) © u(1),su(2) 8 (5.3)

no=1

42We are grateful to P. Levy for suggesting this argument to us.
43These theories have appeared even earlier in [27, 38-40], though they were not given a name there.
44(5.2) is the electric quiver of [ng'] for ng = 1,...,6, [4™,3"™] for no = 7, and [4*™] for ng = 8.
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is the list of [70] (excluding the By = u(1) and Fy = () cases of [68]). In analogy with (2.2),
one can define F, gy, Kac labels for all ng (now associated with Zyp,-gradings of
E14(3—ny)) by once again exploiting the results of [58]. Although Fg has a unique affine

form, Eél) in (2.3), this is not true for some of the algebras in the above list, and one has

to consider both untwisted and twisted affine versions,*> namely
1 1 2 1 2 1 2 1 2 1 1
e, BV B B, DY DY AP AP AP Al Al

and direct sums (also with u(1)) as per (5.3): the superscript &' = 1 (k' = 2) selects the
untwisted (twisted) version [59, section 7.9]. (See table 4 for definitions.) Accordingly, (2.2)
gets modified to
rk(EH(S*no))
NTLO = k/ Z AiNjit1, (5.5)
j=0

with A" = 2 being allowed only for even Nng, and a; the Coxeter labels appearing in table 4
(combining unprimed and primed ones by abuse of notation). We expect different massive
E-string theories (for a given E1 (s_p,)) to be classified by Kac labels, and there to be a
hierarchy of RG flows between them.

Second, the original motivation for this work was the study of the stability of the
non-supersymmetric version of the Type ITA AdSy vacua dual to A-type orbi-instantons,
constructed in full generality in [28, 31, 92]. (The Type ITA massless vacua come from a
reduction to 10d of an orientifolded version of the 11d Freund-Rubin solution, i.e. AdS7 x
S%/(Za x Tapg) [27, section 7]. For M5’s probing just the Eg wall, i.e. for k = 1 in type
A, an AdS7 x S*/Zy vacuum was argued to exist already in [114].) Indeed the O8 is the
last missing ingredient in the analysis of [115], which has found that AdS; vacua dual to
D8-D6-NS5 or D8-O6-D6-NS5 brane systems are unstable (in their non-supersymmetric
version) and non-scale-separated (in their supersymmetric version). We plan to come back
to an extension of that analysis in presence of the O8~ and O8* in [116].
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Table 4. The untwisted (k' = 1) and twisted (k' = 2) affine Dynkin diagrams of (summands of) the
E1 4 (3—n,) algebras listed in (5.3).

A RG flow Hasse diagrams for k = 2,...,20

In this appendix we collect the Hasse diagram of homomorphisms in Hom(Zg, Eg) for
k = 2,...,20. The legend for the various colors and decorations in the RG flows is as
follows. (The figures for k£ > 7 have been scaled down to fit in a single page; the interested
reader can zoom in to inspect the details.)

o For k=2,3,4,5 (figure 11) the list of colors and decorations is the same as that in
section 3.7. The red nodes and red dashed edges correspond to nilpotent orbits and
KP transitions between them for su(2), su(3), su(4), su(5) respectively.
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In particular in figure 12 we have plotted the proposed hierarchy for k = 4 from [36,
figure 1]. Notice the difference with respect to our hierarchy: we have fixed N whereas
the latter reference describes a “mixed” flow between orbi-instantons with different
Kac labels while also changing N (i.e. performing small instanton transitions):*6 over
each SCF'T in their hierarchy we have superposed the number of tensor multiplets
of the SCFT. The flows are implemented by KP transitions of the minimal type
written besides the edges in figure 12; these transitions are found by quiver subtraction
between the magnetic quivers (associated with the Kac labels) appearing in table 5.
Notice in particular the presence of ¢; KP transitions: these can only appear in the

game whenever we perform a small Fg instanton transition reducing V.

o For k = 7 (figure 13), the colors and decorations correspond once again to those
in section 3.7. The red nodes and red dashed edges correspond to nilpotent orbits
and KP transitions between them for su(7), which starts from [4’,3'] as noted in
equation (4.2)

o For k =8 and k = 9 (figure 13 and 14 respectively), the nodes, edges, edge labels
and the green nodes have the usual meaning as in section 3.7. The red nodes and
red dashed edges correspond to nilpotent orbits and KP transitions between them
for su(8) and su(9) respectively. These flows start from [4"2] and [3%] respectively as
noted in equations (4.4) and (4.5). The yellow nodes indicate a pair of theories which
have the same electric quiver but differ by the 6d 8 angle.

o For k=10 and k = 11 (figure 15 and figure 16 respectively), the nodes, edges, edge
labels and the green nodes have the usual meaning as in section 3.7. Moreover:

— The blue nodes correspond to a pair of theories that also differ by their 6d 6
angles, but have usp(2) as gauge algebra on the —1 curve.

— the red nodes and red dashed edges correspond to nilpotent orbits and KP
transitions between them for su(8). For k = 10, the starting point is [4'2,2/], or
equivalently [3"2,22], as noted in equation (4.7). For k = 11, the flow starts from
[3/3,2'] as noted in equation (4.9).

— The orange nodes and edges correspond to “parallel flows” between theories
differing by the 6d 6 angle, and have an empty gauge algebra on the —1 curve of
their electric quivers.

o For k =12 (figure 17), the nodes, edges, edge labels and the green nodes have the
usual meaning as in section 3.7. Moreover:

— the red nodes and red dashed edges correspond to nilpotent orbits and KP tran-
sitions between them for su(9). This starts from [3"4] as noted in equation (4.6).

46We would like to thank T. Rudelius for email correspondence, and A. Tomasiello for discussion on
this point.
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— The orange nodes and edges correspond to parallel flows between theories differing
by the 6d € angle, and have an empty algebra group on the —1 curve of their

electric quivers.

— The blue nodes correspond to parallel flows between theories that differ by their
6d 0 angles, and have usp(2) as gauge algebra on the —1 curve.

— The purple nodes correspond to a pair of theories that also differ by their 6d 8
angles, and have a usp(4) gauge algebra on the —1 curve.

o For k = 13 (figure 18), the decorations are very similar to those to k = 12, except
that the red nodes and red dashed edges correspond to nilpotent orbits and KP
transitions between them for su(8). The starting point of the flow is [3%,2"?] as noted
in equation (4.9).

o For k = 14 (figure 19), the nodes, edges, edge labels and the green nodes have the
usual meaning as in section 3.7. Moreover:

— there are now four different ways of embedding the nilpotent orbits Hasse diagram
of su(8) in this homomorphisms Hasse as discussed in equations (4.13)—(4.15):

* the red nodes and red dashed edges correspond to su(8) Hasse diagrams
starting from the electric quiver in (4.14);

* the blue nodes and blue dashed edges correspond to su(8) Hasse diagrams
starting from the electric quiver in (4.15);

% the magenta nodes and magenta dashed edges correspond to su(8) Hasse
diagrams starting from the electric quiver in (4.13). The two starting points
for these flows differ by the 6d 6 angle and are highlighted by black nodes.
The node [4"2,2"3] is black, magenta as well as green. For simplicity of
presentation, we represent it simply as a green dot in figure 19.

— There are four families of theories differing by the 6d 6 angle:

* the orange and light blue nodes with the corresponding edges are parallel
flows between theories differing by their 6d 6 angles. These flows have an
empty gauge algebra on the —1 curve and are discussed in (4.27);

* the olive green nodes and edges correspond to parallel flows between theories
that have a usp(2) gauge algebra on the —1 curve, and are discussed in (4.28);

* the brown nodes and edges correspond to parallel flows between theories that
have a usp(4) gauge algebra on the —1 curve, and are discussed in (4.29);

* the black nodes correspond to the pair of theories that have a usp(6) gauge
group on the —1 curve. As remarked above, The node [42,2"3] is black,
magenta as well as green. For simplicity of presentation, we represent it
simply as a green dot.

o For k = 15 (figure 20), the nodes, edges, edge labels and the green nodes have the

usual meaning as in section 3.7.
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— In addition, the red nodes and dashed edges correspond to the su(9) Hasse
diagram, which starts from [3°] as noted in equation (4.6).

— The four families of theories differing by the 6d 6 angle are highlighted using the
same colors as in the k£ = 14 diagram.

o For k = 16 (figure 21), the nodes, edges, edge labels and the green nodes have the
usual meaning as in section 3.7. Moreover:

— there are three different starting points for the nilpotent orbits Hasse of su(8) as is
evident from equations (4.7) and (4.8). The ones that follow from equation (4.7)
are [4"2,2"] and [4'*,2'], which additionally have an equivalent node that differ
by the 6d @ angle namely [3'2,2%] and [3", 2?] respectively. Equation (4.8) gives
[43,22]. The nilpotent orbits Hasse diagram of su(8) originating from each
of these nodes is highlighted with magenta (for [4'2,2"%] and [32,2]), red (for
[4"3,2"2]), blue (for [4'4]) and orange (for [3",2"2]) dashed edges respectively.

— The olive green, brown, black and yellow nodes correspond to theories and flows
that differ by their 6d 6 angles. The electric quivers corresponding to these
theories have usp(2),usp(4),usp(6) and usp(8) gauge groups on the —1 curve
respectively.

o For k = 17 (figure 22), the nodes, edges, edge labels and the green nodes have the
usual meaning as in section 3.7. The rest of the decorations are the same as those for
k = 15. The nilpotent orbits Hasse diagram of su(8) starts from [3"3,2"] as expected
from equation (4.9).

o For k = 18 (figure 23), the nodes, edges, edge labels and the green nodes have the
usual meaning as in section 3.7. In addition:

— the red nodes and dashed edges correspond to the su(9) Hasse diagram, which
starts from [3°] as noted in equation (4.6).

— The flows highlighted with cyan and orange correspond to parallel flows among
theories that differ by the 6d 6 angle, and have an empty —1 curve in their
electric quiver.

— Nodes and flows highlighted in olive green, brown, black, yellow and blue
correspond to theories that differ by their 6d 6 angle and have the gauge group
usp(2), usp(4), usp(6), usp(8) and usp(10) on the —1 curve of their electric quiver.

o For k =19 (figure 24), the nodes, edges, edge labels and the green nodes have the

usual meaning as in section 3.7. In addition:

— there are two different ways of embedding the nilpotent orbits Hasse diagram of
su(8) in this homomorphisms Hasse. This follows from equation (4.9) — which
gives [3/3,2/%], and equation (4.10) — which gives [3",2"?]. These are highlighted
with blue and red nodes and dashed edges respectively.
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— The flows highlighted with cyan and orange correspond to parallel flows among
theories that differ by the 6d 6 angle, and have an empty —1 curve in their
electric quiver.

— Nodes and flows highlighted in olive green, brown, black, yellow and blue
correspond to theories that differ by their 6d 6 angle and have the gauge group
usp(2), usp(4), usp(6), usp(8) and usp(10) on the —1 curve of their electric quiver.

o For k = 20 (figure 25), the nodes, edges, edge labels and the green nodes have the
usual meaning as in section 3.7. In addition:

— there are four different ways of embedding the nilpotent orbits Hasse diagram of
su(8) in this homomorphisms Hasse as discussed in section 4.1.4. These flows
start from [4"2,2%] (and the equivalent [3'?,2/7] that differs by the 6d § angle),
[473, 2], [4",2"] (and the equivalent [3'4,2"%] that differs by the 6d 6 angle) and
[4/5]. These follow from equations (4.7) and (4.8). The flows are highlighted with
dashed edges and nodes colored in red, blue, magenta and grey.

— The flows highlighted with cyan and orange correspond to parallel flows among
theories that differ by the 6d 6 angle, and have an empty —1 curve in their
electric quiver.

— Nodes and flows highlighted in olive green, brown, black, yellow, blue and
gray correspond to theories that differ by their 6d 6 angle and have the gauge
group usp(2), usp(4), usp(6), usp(8), usp(10) and usp(12) on the —1 curve of their
electric quiver.
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Figure 11. Hierarchy of RG flows between A-type orbi-instantons for k = 2,3,4,5 at fixed N.
Green nodes indicate theories that can flow into the top nodes at N — 1, and therefore generate
the full RG flow hierarchy at N — 1. Red nodes and red dashed lines between them highlight the
Hasse diagram of nilpotent orbits of the su(2),su(3), su(4), su(5) flavor algebras that are realized on
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Rac Number of 3d magnetic quiver
label  tensor multiplets & d
3N
[14] N |-2-3—4- N—2N—3N—4N—5N—6N—AN—2N
3(N—1)
[2,12] N-—-1 1-2—-3-4—N—2(N—1)—3(N—1)—4(N—1)=5(N—1)—6(N—1)—4(N—1)—2(N—1)
3N|—5
[2/,12] N -1 1-2-3-4—N—(2N—2)—(3N—4)— (4N —6)— (5N —8)— (6N —10)— (AN —7)— (2N —4)
SN‘—G
[3,1] N -2 1-2—3—4—N—(2N—3)—(3N—6)—(4N—8)—(5N—10)— (6 N—12)— (4N —8)— (2N —4)
3(N-2)
[22] N -2 1-2—3-4—N—2(N—2)—3(N—2)—4(N—2)—5(N—2)—6(N —2)—4(N—2)—2(N—2)
3le8
[3,1] N -3 1-2-3-4—N—(2N—-3)—(3N—6)—(4N—9)— (5N —12)— (6N —15)— (4N —10)— (2N —5)
3Nrs
[2,2/] N-3 1-2—3—4—N—(2N—4)—(3N—=7)—(4N—10)— (5N —13)— (6 N—16)— (4N —11)— (2N —6)
3(N-3)
[4] N-3 1—2—3—4—N—2(N—2)—(3N—8)—4(N—3)—5(N—3)—6(N|—2)—4(N—2)—2(N—2)
3N‘—1o
[4'] N —4 1-2-3-4—N—(2N—4)—(3N—8)— (4N —12)— (5N —16)— (6 N—20)— (AN —14)— (2N —7)
3N—-10
[2’2] N —4 1-2-3-4—N—(2N—4)—(3N—8)—(4N—12)—(5N—16)— (6 N—20)— (4N —14)— (2N —8)

Table 5. Magnetic quivers corresponding to the k = 4 Kac labels of figure 12.
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[2,2'] +» f = 50(12) ® su(2
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U] 6 = 50(10) & su(4)
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W] 6 = ou(8) @ su(2)

ay

(N—4)
[2%] ¢ f = 50(16)

Figure 12. The hierarchy of RG flows for A-type k = 4 orbi-instantons from [36, figure 1] recast in

the formalism of the present paper. The two staggered nodes are intended to convey that the higher
IR SCFT (i.e. Kac label) has larger 6d a anomaly.
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Figure 23. Hierarchy of RG flows between A-type orbi-instantons for k£ = 18 and fixed N.
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