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1 Introduction

Four-dimensional maximally supersymmetric Yang-Mills theory coupled to a codimension-
one defect is one of the most throughly studied systems in the realms of integrability,
AdS/CFT, and brane physics. This system arises in string theory as the field theory on
D3-branes intersected by D5-branes, which form a defect. This brane intersection, and
a generalization including NS5-branes, was used in studies of N3d = 4 supersymmetric
theories, where it provides an explanation for the connection between Coulomb branch
vacua of such theories and monopole moduli spaces [1, 2]. It was also the focus of some of
the first works to introduce fundamental flavors in AdS/CFT models and the first example
of defect AdS/CFT [3, 4], where [5] showed furthermore that the theory with a single defect
is conformal.

In the twenty-some years since these first works, a vast literature has explored this
system as the starting point of many applications, from using integrability techniques [6,
7] and localization [8] to extract CFT data, to the study of supersymmetric boundary
conditions in N4d = 4 supersymmetric Yang-Mills (sYM) [9], to models that break all
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supersymmetry and use the defect theory to approximate 2d condensed matter systems
(see [10] for seminal work).

Despite the extensive literature on this 4d-ambient plus 3d-defect theory, the complete
supersymmetry variations under which it is invariant have not — to our knowledge —
appeared in the literature. These results could be useful for studying topologically twisted
versions of an ambient plus defect theory along the lines of [11], where R-symmetry plays
a key role. The explicit form of the variations also plays an essential role in describing
Bogomolny-Prasad-Sommerfield (BPS) solitons in this system.

We emphasize the difference between vacua, which have zero energy and preserve all su-
persymmetries, and solitons, which are local (but not global) minimizers of the energy and
break some supersymmetry. Indeed, the theory in question features interesting vacua real-
ized as solutions to the Nahm equations and Nahm-type equations [9, 12]. This structure
can be exhibited without recourse to the explicit form of the supersymmetry variations, for
instance using the D- and F-term equations in a superfield-based formalism [12]. For soliton
states, however, the complete supersymmetry transformations of the ambient plus defect
theory provide the most direct way to characterize the spectrum of possible BPS solitons.1

In this note, we write down the full R-symmetry-covariant supersymmetry variations
of N4d = 4 sYM with a codimension-one defect of D5-brane type, preserving N3d = 4
supersymmetry. We also give the supercurrents and the algebra of the supercharges fol-
lowing [13], deriving central charges which measure both ambient and defect topological
charges of field configurations. While a complete analysis of BPS solitons is left for future
work, we show here that magnetically charged solitons are described by solutions to a new
form of the extended Bogomolny equations [14] in which the defect fields play the role of
jumping data. This system of equations, reviewed in section 5, is a set of generalized self-
duality equations which has previously seen applications in physics-based constructions of
Langlands duality [14] and knot invariants [15, 16]. This work shows they also play a key
role in describing finite-energy solitons in the D3/D5 defect theory, and several lines for
future development are suggested in the Conclusions.

We also expect the soliton states of the D3/D5 defect theory discussed here to generate
new insights, via holography, into the vacua and solitons of the dual gravitating theory
explored in [17]. The present work is a necessary first step in that direction, which is
currently under investigation.

In the interest of clarity and brevity, we suppress the details of all calculations, pro-
viding only explanations of key steps.2 Despite being conceptually straightforward, con-
structing the variations in covariant form and demonstrating the invariance of the action
were technically nontrivial. One reason for this is that much of the original literature works

1The quantum field-theoretic version of these statements is as follows. The theory exhibits a parameter
space of quantum vacua, with points in this space corresponding to solutions to the Nahm-type equations
as discussed in [9]. This space is analogous to the Coulomb branch of vacua in N4d = 2 supersymmetric
theories. Above each vacuum there is a Hilbert space of states, which includes as a subspace the Hilbert
space of BPS states. The classical finite-energy soliton configurations we discuss here would give rise to
BPS states above these vacua upon semiclassical quantization.

2We are, however, happy to provide step-by-step notes upon request.
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in superspace formalisms that obscure part of the full SU(2)V × SU(2)H R-symmetry. In
the process of arriving at our results, we derived maps between the N3d = 2 superfields of
Erdmenger et al. [5], the formulation in terms of standard superspace coordinates [18, 19],
and the R-symmetry-covariant component-field formulation. We include these in the ap-
pendices. We also note that references [1, 9, 20] identified the field content for this system
with respect to N3d = 4 supersymmetry representations. While the general form that the
supersymmetry transformations must take is clear from their work, getting the precise form
was nontrivial due to the complicated nature of the system.

An outline of this paper is as follows. Conventions are specified in section 2. We
give the action and variations in section 3. In section 4 we analyze the boundary terms
from the variation and provide the supercurrents, which we use to compute the algebra
of supercharges. We give an application of these results in section 5, where we show that
magnetically charged finite-energy BPS field configurations are solutions to the extended
Bogomolny equations augmented with jumping data. In appendices A and B we write
down explicit maps from the fields we use to the common formulations of N4d = 4 sYM,
and to previous constructions of the ambient plus defect theory based on superspace.

2 Conventions

We work in a mostly plus metric convention, ηµν = diag(−1, 1, 1, 1). The (3+1)-dimensional
space housing the ambient sYM theory is parametrized by xµ for µ = 0, . . . 3. The defect
is localized in the x2 = y direction, and extended along xµ̂ = (x0, x1, x3) =: (x0̂, x1̂, x2̂).

Our u(Nc) Lie algebra conventions for the field strength and covariant derivative are
Fµν = 2∂[µAν] + [Aµ, Aν ] and DµX = ∂µX + [Aµ, X]. “ Tr ” denotes a positive-definite
Killing form on the Lie algebra normalized so that the generators satsify Tr (T aT b) = 1

2δ
ab.

Defect fields q transform in the ρ ⊕ ρ representation, with ρ denoting the fundemantal
representation. We take the Lie algebra generators to be represented by anti-Hermitian
matrices, so that Dµq = ∂µq + Aρµq. This also implies, for example, that (Dµq)† =
∂µq
† + q†(Aρµ)† = ∂µq

† − q†Aρµ.
We denote 4d gamma matrices by γµ with γ = −iγ0γ1γ2γ3, and we denote 3d gamma

matrices by ρµ̂. In both 3d and 4d, we define Dirac and charge conjugation of Dirac spinors
ψ in terms of intertwiners A and C, with A = A† and C = −CT as in [21].

Dirac conjugation: ψ := ψ†A

Charge conjugation: ψc := Cψ
T = CATψ∗ . (2.1)

A Majorana spinor λ satisfies λc = λ. The intertwiners furnish similarity transformations
between unitarily equivalent representations of the Clifford algebra γµ, (γµ)T , (γµ)† such
that

AγµA−1 = (γµ)†, C−1(γµ)C = −(γµ)T . (2.2)

Note that all of these relations hold for the 3d and 4d versions, respectively, of the inter-
twiners and gamma matrices A(3), C(3), ρ

µ̂ and A, C, γµ.
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As we work almost entirely in terms of 3d and 4d Majorana spinors, a convenient basis
for the γ matrices –similar that of [4]– is

ρ0̂ = −σ2 , ρ1̂ = iσ3 , ρ2̂ = −iσ1 ,

γµ̂ = ρµ̂ ⊗ σ1 , γ2 = i1⊗ σ3 , γ = 1⊗ σ2 . (2.3)

Since (γµ)† = −(γµ)T , we can take

C = −A = σ2 ⊗ σ1 . (2.4)

We will interpret the first tensor factor of C as the 3d charge conjugation matrix, so that

C = C(3) ⊗ σ1 = −A(3) ⊗ σ1 , C(3) = −A(3) = σ2 . (2.5)

The advantage of this basis is that the 4d Majorana condition reduces block-diagonally
to two 3d Majorana conditions and in each case CAT = 1, so each 4d Majorana spinor
decomposes into a doublet 3d Majorana spinors:

Majorana spinor: λ =

 λ
λ̃

 , with λ∗ = λ , λ̃
∗ = λ̃ . (2.6)

3 Supersymmetry variations

The field content of the D3/D5 defect field theory consists of

Ambient: XV
r̃
, XH

r , λm̃m, Aµ

Defect: qm, ζm̃ .

The fields of N4d = 4 sYM are grouped to transform under the 3d SU(2)V × SU(2)H
R-symmetry preserved in the presence of the defect, rather than the larger 4d SU(4) R-
symmetry preserved by N4d = 4 sYM without the defect. XV

r̃
, XH

r are triplets of real
scalars, and λm̃m are 4d Majorana spinors transforming in the (2,2) of SU(2)V × SU(2)H.
Aµ is the 4d gauge field, which decomposes into components Aµ̂ parallel to the defect and A2
orthogonal to the defect. The defect fields consist of complex scalars qm transforming in the
fundamental of SU(2)H and trivially under SU(2)V, and 3d Dirac fermions ζm̃ transforming
in the fundamental of SU(2)V and trivially under SU(2)H. The various index sets we utilize
are summarized in table 1.

The SU(2) indices are contracted using a Euclidean metric δrs or δr̃s̃, while the m-type
and m̃-type indices are raised and lowered using the Levi-Cività symbols εmn, εm̃ñ with
ε12 = −1 and ε12 = 1. The fundamental of SU(2) is pseudo-real so complex conjugation
raises/lowers the index. Thus, in particular, (qm)† = q†m.

The spinors λm̃m satisfy a Majorana condition that takes into account their R-
symmetry transformation properties:

λm̃m = εm̃ñεmnC(λnñ)T . (3.1)
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index type description range
µ, ν, ρ, σ 4d ambient spacetime 0, 1, 2, 3
i, j, k, ` 3d ambient space 1, 2, 3
µ̂, ν̂, ρ̂, σ̂ 3d defect spacetime 0̂, 1̂, 2̂
ı̂, ̂, k̂, ˆ̀ 2d defect space 1̂, 2̂
α, β, γ, δ 4d positive chirality Weyl spinors 1, 2
α̇, β̇, γ̇, δ̇ 4d negative chirality Weyl spinors 1, 2
α̃, β̃ γ̃, δ̃ 3d Dirac or Majorana spinors 1, 2
a, b Lie algebra 1, . . . , N2

c

r, s, t, u SU(2)H triplet 1, 2, 3
m,n, p, q SU(2)H doublet 1, 2
r̃, s̃, t̃, ũ SU(2)V triplet 1, 2, 3
m̃, ñ, p̃, q̃ SU(2)V doublet 1, 2
I, J,K,L SO(4) quartet 1, 2, 3, 4
A,B,C,D N4d = 2 SU(2)R doublet 1, 2

Table 1. Summary of index conventions and ranges. Note that indices on 4d Dirac and Majorana
spinors are always suppressed.

Here the transpose refers to the spinor space only. This definition holds for their 3d
components, λm̃m, λ̃m̃m as well, with the appropriate charge conjugation operator C(3). In
what follows, when we say that a spinor with two R-symmetry indices is Majorana, we
mean that it is Majorana with respect to this condition.

The transformation properties of the fields with respect to the gauge group are most
easily understood from the intersecting D-brane picture. Since D3-branes can end on D5-
branes, there may be a different number of D3-branes to the left of the defect (x2 < 0),
than to the right (x2 > 0). See figure 1. If these numbers are NL and NR, then the gauge
group of the ambient theory for x2 < 0 is U(NL), and is U(NR) for x2 > 0. For definiteness
suppose NR ≥ NL. In what follows, we take the gauge group of the ambient theory to
be U(Nc) with Nc = max(NL, NR), with the understanding that any adjoint-valued field
Φ = ΦaT a has Φa = 0 for x2 < 0 when a > N2

L. This amounts to choosing an embedding
U(NL) ⊂ U(NR), in which the left gauge group can be thought of as the upper-left block
of the right gauge group in the defining representation.

The set of possible boundary conditions on the ambient fields as x2 → 0, that preserve
N3d = 4 supersymmetry, was specified in [9]. In brief, for theories corresponding to the
D3/D5 intersection, the triplet XH

r and the gauge field A2 should have behavior consistent
with a solution to Nahm’s equation as x2 → 0, which might include a Nahm pole when
NR > NL+1. A Nahm pole is specified by an embedding ρ : su(2)→ su(NR−NL), and the
possible embeddings are in turn determined by the number of coincident D5-branes present,
as explained in [9]. If only a single D5-brane is present, then ρ is the principal embedding.
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Figure 1. Cartoon of the intersecting brane system. The D5-brane stack sits at x2 = 0. The
asymptotic position of the D3-branes in the directions labeled ~xH are determined by the values of
the diagonal components of the triplet XH

r as x2 → ±∞.

The defect fields transform in the (anti-) fundamental of U(Nc,def), where Nc,def =
min(NL, NR), and qm, q†m provide the jumping data for the upper left block of XH

r at
x2 = 0. If there are Nf coincident D5-branes, then qm, ζm̃ transform in the bifundamental
(Nc,def ,N f) of U(Nc,def) × U(Nf ). Bilinears in the defect fields are always contracted to
form U(Nf ) singlets, and this structure is suppressed in what follows. Thus, a quantity of
the form q†q is a U(Nc,def)×U(Nf ) singlet, while a quantity of the form q†T aρ q transforms
in the adjoint of U(Nc,def). We will see below how the Nahm boundary conditions emerge
from the perspectives of both supersymmetry and vanishing energy conditions.

Here again we emphasize that the Nahm-type configurations just discussed, including
Nahm poles and nontrivial jumping data, are all vacuum configurations of the theory. They
preserve all of the N3d = 4 supersymmetries and have zero energy with respect to the field
theory Hamiltonian. In particular the fields in such a configuration are independent of xµ̂,
such that these vacua preserve three-dimensional Poincaré symmetry.

The generalization of the above to multiple separated stacks of D5-branes and/or NS5-
branes, leading to multiple parallel defects (of D5 and/or NS5 type) was described in [12].
We will restrict ourselves here to the case of a single D3/D5-type defect.

With these preliminaries out of the way we can now write down the action in terms of
these fields [4]:

S=Samb +Sdef , with

Samb = 1
g2

ym

∫
d4xTr

{
− 1

2FµνF
µν− i

2λ
mm̃

γµDµλm̃m−D
µXV

r̃
DµXV

r̃
−DµXH

r DµXH
r

+ i

2λ
mm̃[λm̃n,X

H
r ](σr)nm−

1
2λ

mm̃(σr̃) ñ
m̃
γ[λñm,X

V
r̃

]+

− [XV
r̃
,XH

s ][XV
r̃
,XH

s ]− 1
2[XV

r̃
,XV

s̃
][XV

r̃
,XV

s̃
]− 1

2[XH
r ,X

H
s ][XH

r ,X
H
s ]
}
, (3.2)
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and

Sdef = 1
g2

ym

∫
d3x

{
−Dµ̂q†mDµ̂qm−

i

2(ζm̃ρµ̂Dµ̂ζm̃−(Dµ̂ζm̃)ρµ̂ζm̃)+

+ iζm̃(σr̃) ñ
m̃

(XV
ρ )r̃ζñ+ iq†m(λρ)mm̃ζm̃+ iζm̃(λρ)m̃mq

m+

+q†m(XV
ρ )r̃(X

V
ρ )r̃qm+ iq†m(σr)mn

(
D2X

H
r + 1

2ε
st
r [XH

s ,X
H
t ]
)
ρ
qn

+ 1
2δ(0)(q†m(σr)mnT aρ qn)(q†p(σr)pqT aρ qq)

}
, (3.3)

where the 3d spinor λm̃m is the piece of the 4d ambient field λm̃m that interacts with the
defect fields (defined in detail below). T aρ are the generators of u(Nc,def) in representation
ρ. The ambient action is the usual N4d = 4 sYM action, but manifesting the SU(2)H ×
SU(2)V ⊂ SU(4) R-symmetry preserved by the defect. In appendix A we describe the map
between this form and a more standard form [21].

While we have grouped the final term in (3.3) with the defect action, this term propor-
tional to δ(0) is in a separate category. Terms of this type were first discussed in [22, 23].
The interpretation of the δ(0) factor as a UV regulator in the specific term in (3.3) was
described in [4]. It is an artifact of the low energy limit and would not be present in the
full string field theory where branes have a finite thickness. If one considers classical finite-
energy field configurations, this term should be grouped with others to form a complete
square; on the minimum energy configuration, the entire squared term vanishes.

The total action Samb + Sdef is invariant under variations

Ambient fields

δAµ = i

2ε
mm̃γµλm̃m , δXV

r̃
= 1

2ε
mm̃(σr̃)

ñ
m̃
γλñm , δXH

r = i

2ε
mm̃λm̃n(σr)nm ,

δλm̃m = 1
2γ

µνFµνεm̃m + iγγµDµXV
r̃

(σr̃) ñ
m̃
εñm + γµDµXH

r εm̃n(σr)nm+

− i

2[XV
r̃
, XV

s̃
]εr̃s̃t̃(σ

t̃
) ñ
m̃
εñm − i[X

V
r̃
, XH

s ](σr̃) ñ
m̃
γεñn(σs)nm+

+ i

2[XH
r , X

H
s ]εrstεm̃n(σt)nm − iδ(x2)Qrεm̃n(σr)nm

=: Fnñm̃mεñn ,

δλ
mm̃ = −1

2ε
mm̃γµνFµν + iεñmγµγDµXV

r̃
(σr̃) m̃

ñ
+ εnm̃γµDµXH

r (σr)mn+

+ i

2ε
mñεr̃s̃t̃[XV

r̃
, XV

s̃
](σ

t̃
) m̃
ñ
− iεnñγ[XV

r̃
, XH

s ](σr̃) m̃
ñ

(σs)mn+

− i

2ε
nm̃εrst[XH

r , X
H
s ](σt)mn + iεnm̃δ(x2)Qr(σr)mn

=: εnñFmm̃
ñn

,
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and

Defect fields

δqm = iεmm̃ζm̃ , δq†m = −iζm̃εm̃m ,

δζm̃ = ρµ̂εm̃mDµ̂q
m +XV

r̃
(σr̃) ñ

m̃
εñmq

m =: fmñ
m̃
εñm ,

δζm̃ = (Dµ̂q†m)εmm̃ρµ̂ − q†mεmñ(σr̃) m̃
ñ
XV
r̃

=: εmñf m̃
ñm

, (3.4)

with supersymmetry parameters εm̃m and εm̃m, where εm̃m is a 4d Majorana spinor, and
εm̃m a 3d Majorana spinor embedded in εm̃m the same way that λm̃m is embedded in λm̃m.
The quantity Qr in the ambient fermion variations is the combination

Qr := i(q†m(σr)mnT aρ qn)T a . (3.5)

As we are using an antihermitian representation for our generators T aρ , Qr is an SU(2)H

triplet valued in the real Lie algebra u(Nc,def). Note that we have defined fmñ
m̃

and Fmm̃
ñn

to represent the groups of terms appearing in the defect and ambient fermion variations,
respectively.

Let us now fill in some details about these results and make a few comments.

• In the absence of the defect, the action would be 4d N4d = 4 sYM, invariant for any
choice of εm̃m. The defect breaks the supersymmetry by half. There is a map P

sending the 4d εm̃m to a 3d Majorana spinor εm̃m:

εm̃m := Pεm̃m . (3.6)

The same map picks out the piece of the 4d ambient fermions λm̃m that interacts
with the defect:

λm̃m := Pλm̃m . (3.7)

For convenience, we also define P ′, the map that acts on Dirac conjugates of these
Majorana spinors using the 4d and 3d intertwiners A and A(3):

εmm̃ = εmm̃P ′ ⇒ P ′ := A−1P †A(3) . (3.8)

• There are in principle many possible ways to embed the space of 3d Majorana spinors
in the space of 4d Majorana spinors, equivalent to different choices of P . However,
requiring that the action (3.2), (3.3) be invariant under the variations (3.4) severely
restricts the possibilities. The necessary and sufficient conditions on P are:

P (1 + iγ2)εm̃m = 0 , Pγµ̂εm̃m = 0 ,
Pγγ2εm̃m = 0 , Pγµ̂2εm̃m = 0

(iρµ̂P + Pγγµ̂)εm̃m = 0 , (ρµ̂ν̂P − Pγµ̂ν̂)εm̃m = 0 . (3.9)

The first two lines of (3.9) impose conditions on P , while the final line imposes
conditions on how the 3d Clifford algebra is embedded in the 4d Clifford algebra.

– 8 –
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The first two lines are satisfied if half of the original N4d = 4 supersymmetries are
eliminated via the projection

1
2(1 + iγ2)εm̃m = 0 , (3.10)

and we take P such that P †P gives the orthogonal projection:

P †P = 1
2(1− iγ2) , (3.11)

Note then that εm̃m = P †Pεm̃m = P †εm̃m, so P † embeds εm̃m into εm̃m. The
corresponding projection on the Dirac conjugate spinor is εmm̃ 1

2(1 − iγ2) = 0. It
follows from the definition of P ′ that P ′P ′† = 1

2(1+ iγ2) and so we similarly find that
εmm̃ = εmm̃P ′†. We then also have P ′†εm̃m = 0. In contrast, λm̃m does not satisfy any
projection. Rather λ̃m̃m := P ′†λm̃m is an independent 3d Majorana spinor contained
in λm̃m. All of these statements take an extremely simple form in the basis (2.3) where

P †P = 1
2(1− iγ2) = 1

2(14 + 12 ⊗ σ3) =

1 0
0 0

 , (3.12)

and we can take

P =
(
1 0

)
, P ′ =

 0
1

 . (3.13)

• The ambient field variations are those of N4d = 4 — which can be obtained by
translating the Majorana form given in [21] to an SU(2)V × SU(2)H covariant form
as described in appendix A — augmented by terms involving the combination of
defect fields Qr. This modification is due to a contribution from the defect to the
ambient auxiliary D-term equation of motion. As the auxiliary D-field appears only
in the ambient fermion variation, it is only this variation that is modified from its
defect-free counterpart.

• Due to the defect-induced modification of the ambient fermion variation, the ambient
action (3.2) now varies as

g2
ymδSamb =

∫
d4xTr

{
− εmm̃δ(x2)Qr(σr)pm (3.14)

×
(
− γµDµλm̃p + [λm̃n, X

H
s ](σs)np − i(σs̃) ñ

m̃
γ[λñp, X

V
s̃

]
)}

,

up to total derivatives which will be discussed in the next section. These inflow
terms (3.14) cancel against those terms in the variation of the defect action that
do not involve ζm̃. Variations of terms in (3.3) that contain the defect fermions ζm̃
cancel amongst themselves.

• The variation of the δ(0) term in the action cancels against terms that result from
evaluating the defect-induced modification of the λm̃m variation on the defect.
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• We can see from the perspective of supersymmetry how the vacua described by
solutions to Nahm’s equations arise. Noting that γ2εm̃m = iεm̃m, one sees that three
of terms in the ambient fermion variation can be combined as

δλm̃m ⊃ i
(
D2X

H
r + 1

2ε
st
r [XH

s , X
H
t ]− δ(x2)Qr

)
(σr)nmεm̃n . (3.15)

Thus, by setting the quantity in parentheses to zero and choosing appropriate
vacuum conditions on Aµ̂, XV

r̃
, the fermion variation vanishes without imposing any

restrictions on the supersymmetry parameter εm̃m. The quantity in parentheses is
precisely the Nahm equation, with jumping data specified by Qr.

4 Boundary terms, supercurrents, and supercharges

In this section we describe the boundary terms that arise while applying the supersymmetry
variations in the action above. We also write down the supercurrents, as well as the
supercharges and the resulting algebra.

4.1 Boundary terms and supercurrent

Under the supersymmetry transformations (3.4), with spacetime-varying supersymmetry
parameters, the total ambient plus defect action transforms as

g2
ymδ(Samb + Sdef) =

∫
d4x

{
(∂µεmm̃)J µ

m̃m
+ ∂µBµ

}
. (4.1)

The Bµ’s encapsulate the boundary terms, while the J µ
m̃m

are supercurrents. We discuss
each in turn.

The boundary terms in (4.1) arise from various integrations by parts carried out to
check invariance of the action under supersymmetry. We find that they can be expressed
entirely in terms of the supersymmetry variations of the fields:∫

d4x∂µBµ =
∫
d4x∂µBµamb +

∫
d3x∂µ̂Bµ̂def + 2

g2
ym

∫
d4x∂2 Tr

{
δ(x2)QrδXH

r

}
, (4.2)

with

Bµamb := 1
g2

ym
Tr
{
− 2FµνδAν − 2(DµXVr̃)δXV

r̃
− 2(DµXHr)δXH

r −
i

2δλ
mm̃

γµλm̃m

}
,

Bµ̂def := 1
g2

ym

{
−(Dµ̂q†m)δqm − i

2(δζm̃)ρµ̂ζm̃ − (δq†m)Dµ̂qm + i

2ζ
m̃ρµ̂δζm̃

}
. (4.3)

Here we separated out the ∂2{δ(x2)Tr (QrδXH
r )} term because it is special and requires

some comment. This term is canceled by a piece from δλ
mm̃

γ2λm̃m in ∂2B2
amb. We have

chosen to write (4.2) in the form shown, however, to emphasize that it can be expressed
directly in terms of the field variations. Interestingly, (4.2) is of the same form as the
boundary terms one obtains from a general variation of the action when deriving equa-
tions of motion. Based on this observation, our approach to the discussion of boundary
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conditions will be to first consider what boundary conditions are consistent with the varia-
tional principle such that (4.2) vanishes for general variations. Having identified such a set,
we can then check that these conditions are consistent with supersymmetry. Consistency
means that a Dirichlet-type condition δΦ = 0 should not be imposed independently if δ
is a supersymmetry variation, but rather should arise from conditions on other fields that
appear in this variation.

Requiring (4.2) to vanish determines the boundary conditions we must impose on
the fields at spatial infinity3 and at the defect (x2 = 0). The boundary terms at spatial
infinity vanish with appropriate fall-off condition on the fields. These conditions play an
important role in determining the types of soliton states present in the system, and are
better discussed in conjunction with the central charges (in subsection 4.2).

The boundary at x2 = 0, meanwhile, is trivial if the ambient fields are continuous
across the defect. If, however, there are D3-branes ending on the D5-branes as in [1, 9], the
ambient fields can be discontinuous. In this case, a special choice of boundary conditions is
needed to maintain supersymmetry in the presence of differing gauge groups on either side
of the defect and/or when some D3-branes are broken across the D5-branes. Recall from
our discussion under figure 1, that in the generic situation there are a number Nc,def =
min(NL, NR) of broken D3-branes together with |NL − NR| additional D3-branes on one
side. The general boundary conditions for supersymmetric vacua discussed in [9] are of
Nahm type. They include discontinuities in the Nc,def×Nc,def components of the Higgs field
determined by jumping data constructed from the defect, together with a possible Nahm
pole for the remaining components corresponding to the extra D3-branes on one side. We
now show how these boundary conditions are consistent with the vanishing of (4.2).

The case of the Nahm pole can be viewed as a Dirichlet condition on the N3d = 4
hypermultiplet fields, where the leading behavior of the fields is held fixed. The vector
multiplet fields meanwhile satisfy Neumann conditions such that, overall, we have the
boundary conditions

δXH
r

∣∣∣∣
x2=0

= 0 , δA2

∣∣∣∣
x2=0

= 0 , λ̃m̃m

∣∣∣∣
x2=0

= 0

F 2ν̂
∣∣∣∣
x2=0

= 0 , D2X
V
r̃

∣∣∣∣
x2=0

= 0 . (4.4)

These conditions guarantee that all boundary terms from a generic variation of the ambient
action vanish. Furthermore, because the supersymmetry variations δXH

r and δA2 only in-
volve λ̃, this set of conditions is consistent with supersymmetry in the way described above.

The case of the Nahm pole should be contrasted with the Nc,def ×Nc,def components
of the fields, where one expects the triplet XH

r to have a discontinuity at the defect. This
discontinuity should be related to the jumping data, but the left or right limiting value of
XH
r should be free to vary. This expectation is nontrivially consistent with the form of the

boundary terms we have found. In this case we combine the final term of (4.2) with the

3Assuming appropriate Neumann or Dirichlet conditions are set up at initial and final times.
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δXH
r D2X

H
r term contained in B2

amb to form the combination∫
d4∂µBµ ⊃ −

2
g2

ym

∫
d4x∂2 Tr

{
δXH

r (D2X
H
r − δ(x2)Qr)

}
. (4.5)

This quantity will vanish provided that D2X
H
r − δ(x2)Qr = 0 in an infinitesimal neigh-

borhood of the defect. In other words, the discontinuity in the Higgs field triplet must be
captured precisely by the jumping data. The remaining boundary terms in (4.2) at x2 = 0
can then be made to vanish by demanding continuity for the other fields. This ensures
both consistency of the variational principle and preservation of supersymmetry.

Let us now return to (4.1) and discuss the supercurrent. We find that it takes the form

J µ
m̃m

= P ′†(Jamb)m̃m + δ(x2)δµµ̂
(
(Jdef)µ̂m̃m + C(3)(J Tdef)

µ̂

m̃m

)
(4.6)

with

(Jamb)µ
m̃m

:= i

g2
ym

Tr
{
Fnñ
m̃m

γµλñn

}
,

(Jdef)µ̂m̃m := i

g2
ym
f ñ
m̃m

ρµ̂ζñ , (J def)mm̃µ̂ := − i

g2
ym
ζñρµ̂f

mm̃
ñ

, (4.7)

where Fmm̃
nm̃

and fmm̃
ñ

are the combinations of fields appearing in the ambient and defect
fermion variations (3.4). Note the appearance of the projector P ′† in the first line, which
expresses εmm̃ in terms of εmm̃. In the absence of the defect, transformations parameterized
by any εm̃m are symmetries; with the defect, only the components of εm̃m restricted by
the projection (3.8) are. The current J µ

m̃m
satisfies the Majorana condition (3.1), because

(Jamb)µ
m̃m

itself satisfies it, and the remaining contribution is a sum of (Jdef)µ̂m̃m and its
charge conjugate.

It’s a nontrivial result that the supercurrent can be written entirely in terms of the field
combinations appearing in the fermion variations alone. In particular, the defect-induced
modification of the ambient fermion variation that appears in Fnñ

m̃m
falls out of the variation

of the defect action. As a consequence, the split of J µ
m̃m

into (Jamb)µ
m̃m

and (Jdef)µ̂m̃m is a
bit deceptive, since (Jamb)µ

m̃m
contains a term that localizes to the defect.

4.2 Supercharges and the supersymmetry algebra

With the supercurrent in hand, we have the field representation of the supercharges and
we can compute their algebra. Of particular interest is the form of the central charges that
appear there.

The Noether (super)charges are spatial integrals of the time component of the current
(at a fixed time):

Qα̃m̃m =
∫
d3x(J 0

m̃m
)α̃

= i

g2
ym

∫
d3xTr

{
(P ′†Fnñ

m̃m
γ0λñn)α̃

}
+

+ i

g2
ym

∫
d2x

(
f ñ
m̃m

ρ0ζñ − εñp̃εmnC(3)(ζñρ0fnp̃
ñ

)T
)
α̃
, (4.8)

where we have restored the 3d spinor index α̃ for clarity.
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In order to determine the algebra, we compute the canonical momenta from the La-
grangian and impose canonical brackets between coordinates and momenta.4 We find that
the bracket of two supercharges takes the form

{Qα̃m̃m,Qβ̃ñn} = −i
{
εm̃ñεmn(ρµ̂C(3))α̃β̃Pµ̂ +

(
(σrε)m̃ñεmnZ

V
r + εm̃ñ(εσr)mnZH

r

)
(C(3))α̃β̃

+ (σrε)m̃ñ(εσs)mn(ZVH)ı̂rs(ρı̂C(3))α̃β̃
}
. (4.9)

The Hamiltonian H = P 0 = −P0 and momenta are the N4d = 4 Hamiltonian and
momenta, supplemented by contributions from the defect. The bosonic terms are

H = HN4d=4 + 1
g2

ym

∫
d2x

{
D0q

†
pD0q

p +Dı̂q†pDı̂qp − q†p(XV
ρr)2qp+

− iq†p(σr)pq
(
D2X

H
r + 1

2ε
st
r [XH

s , X
H
t ]
)
ρ
qq+

− 1
2δ(0)(q†m(σr)mnT aρ qn)(q†p(σr)pqT aρ qq)

}
,

P ı̂ = P ı̂N4d=4 −
1
g2

ym

∫
d2x

{
D0q

†
pDı̂q

p +Dı̂q†pD0q
p
}

(4.10)

where the N4d = 4 versions are given by

HN4d=4 = 1
g2

ym

∫
d3xTr

{
Fi0F

i
0 + 1

2F
ijFij + (D0X

V
r̃

)2 + (DiXV
r̃

)2 + (D0X
H
r )2 + (DiXH

r )2

+ 1
2[XV

r̃
, XV

s̃
]2 + [XV

r̃
, XH

s ]2 + 1
2[XH

r , X
H
s ]2
}
,

P iN4d=4 = − 1
g2

ym

∫
d3xTr

{
2Fj0F ji + 2(D0X

V
r̃

)(DiXV
r̃

) + 2(D0X
H
r )(DiXH

r )
}
. (4.11)

Note that the Hamiltonian contains the square

H ⊃ 1
g2

ym

∫
d3xTr

(
D2X

H
r + 1

2ε
st
r [XH

s , X
H
t ]− δ(x2)Qr

)2
, (4.12)

where one must use (3.5) and Tr (T aT b) = 1
2δ
ab. This demonstrates the existence of the

Nahm-type vacua mentioned earlier from the perspective of energy. We emphasize that
the Hamiltonian already contains this square without the need to complete the square by
adding and subtracting a topological term. The δ(0) term is essential for this property.

The central charges appearing in (4.9) are

ZV
r̃

= ZV
el,r̃ + 1

g2
ym
ε s̃t̃
r̃
εı̂̂
∫
d3x∂ı̂Tr

{
XV
s̃
D̂XV

t̃

}
,

ZH
r = ZH

mag,r + 1
g2

ym
ε str εı̂̂

∫
d3x∂ı̂Tr

{
XH
s D̂XH

t

}
+ i

g2
ym
εı̂̂
∫
d2x∂ı̂

(
q†p(σr)pqD̂qq

)
,

(ZVH)ı̂
r̃s

= − 2
g2

ym
εı̂̂
∫
d3x∂̂Tr

{
XV
r̃

(
D2X

H
s − δ(x2)Qs

)}
, (4.13)

4These are Dirac brackets for the fermions, since they satisfy second-class constraints.
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where ZV
el,r̃ and ZH

mag,r comprise the half of the N4d = 4 central charges that survive the
projection to N3d = 4:

ZV
el,r̃ = − 2

g2
ym

∫
d3x∂iTr {Fi0XV

r̃
} , ZH

mag,r = 1
g2

ym

∫
d3xεijk∂iTr {FjkXH

r } . (4.14)

These measure 3d electric and magnetic flux, respectively, along the XV and XH Higgs
directions.

Let us make some comments about the central charges:

• The ZVH term in (4.9) explicitly breaks the Poincaré covariance of the algebra, and
is not expected to contribute for finite-energy field configurations. It may, however,
contribute if one considers BPS strings with finite energy per unit length.

• Standard fall-off conditions on the asymptotic S2 of the 3d ambient space allow for
finite-energy configurations with electric and magnetic charge. In addition, vortex-
type boundary conditions on the asymptotic S1 of the 2d defect space will yield finite
contributions to ZH

r from the q†Dq term.

• The XDX-type terms that appear in both ZV
r̃

and ZH
r are integrated over the 3d

ambient space, but restrict not to an S2 at infinity, but an Rx2×S1. One can imagine
a field configuration which has vortex-like asymptotics on the S1, but which falls off
along the Rx2 as one moves away from the defect, thus resulting in finite energy.

• It is fascinating that the hypermultiplet central charge receives contributions from
both 3d monopole charge, and 2d vortex charge. This strongly suggests that there
exist BPS field configurations in which a non-abelian vortex string is stretched be-
tween a magnetic monopole in the ambient space and the defect. In the next section
we determine the system of equations such field configurations should solve so that
they saturate the Bogomolny bound H ≥ |ZH|.

5 The extended Bogomolny equations with jumping data

As noted in the Introduction, one of the motivations for constructing the supersymmetry
variations in this system is to characterize finite energy BPS solitons. We take a first look
at the case of magnetically charged half-BPS configurations here, deferring a complete
analysis of the BPS spectrum to future work.

5.1 Supersymmetry projection

We are interested field configurations preserving a half of the N3d = 4 supersymmetry.
Focusing on magnetically charged configurations, we make the following ansatz for the
generators of the preserved supersymmetry:

− iγ2εm̃m = εm̃m and n̂r(σr)mnγ123εm̃m = εm̃m , (5.1)

where γ123 := γ1γ2γ3 and n̂r a unit vector picking out a direction in SU(2)H. The first
of these conditions is (3.10), the projection that eliminates half of the supersymmetry of
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N4d = 4 to yield the N3d = 4 of the ambient-plus-defect theory. The second projection
reduces the N3d = 4 supersymmetry by half, leaving a total of four independent generators.
The motivation for the form of this latter projection is that it must commute with the first
one, it should preserve the Wigner little group of the Spin(1, 2) Lorentz group for a massive
particle, and it must break the SU(2)H symmetry if the corresponding solution is to carry
a nontrivial central charge, ZH

r .
We look for time-independent bosonic field configurations in static gauge (A0 = 0),

with ~XV = 0, that are left invariant under the variations (3.4) generated by those εm̃m
satisfying (5.1). This amounts to the requirement that the fermion variations vanish. Under
these restrictions on the fields, the fermion variations from (3.4) simplify to

δλm̃m = 1
2γ

ijFijεm̃m+γiDiXH
r εm̃n(σr)nm+ i

2[XH
r ,X

H
s ]εrstεm̃n(σt)nm− iδ(x2)Qrεm̃n(σr)nm

δζm̃ = ρ̂εm̃mD̂q
m . (5.2)

It follows from (5.1), (3.6), and (3.9) that

γ1̂2̂εm̃m = in̂rεm̃n(σr)nm,
γ ı̂2εm̃m = −n̂rεı̂̂γ̂εm̃n(σr)nm ,

γ1̂εm̃m = in̂sγ
2̂εm̃n(σs)n

m̃
,

ρ1̂εm̃m = in̂sρ
2̂εm̃n(σs)n

m̃
(5.3)

Recall that 2d spatial coordinates are related to 3d spatial coordinates as (x1̂, x2̂) := (x1, x3)
along the defect and x2 := y orthogonal to the defect. To minimize confusion, we will
use ı̂ = 1̂, 2̂ and y exclusively for spatial indices in the following. Applying (5.3), the
variations (5.2) can be written in terms of a linearly independent set of spinors as follows:

δλm̃m = i

[
F1̂2̂n̂r +DyXH

r + 1
2ε

st
r [XH

s , X
H
t ]− δ(y)Qr

]
(σr)nmεm̃n

+
[
Fy1̂n̂r +D2̂X

H
r − ε str n̂sD1̂X

H
t

]
(σr)nmγ2̂εm̃n+

+ i
[
F2̂y +D1̂(n̂rXH

r )
]
γ2̂εm̃m

δζm̃ = i
[
D1̂q

n − in̂s(σs)nmD2̂q
m] ρ1̂εm̃n . (5.4)

Demanding these variations vanish yields the BPS equations

0 = n̂rF1̂2̂ +DyXH
r + 1

2ε
st
r [XH

s , X
H
t ]− δ(y)Qr ,

0 = n̂rFy1̂ +D2̂X
H
r − ε str n̂sD1̂X

H
t ,

0 = F2̂y + n̂rD1̂X
H
r ,

0 = D1̂q
n − in̂r(σr)nmD2̂q

m , (5.5)
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where we recall that Qr = (iq†p(σr)pqT aρ qq)T a. If we choose5 n̂r = (0, 0, 1), these equations
are brought to a more familiar form:

F1̂2̂ +DyXH
3 + [XH

1 , X
H
2 ] = δ(y)Q3

DyXH
1 + [XH

2 , X
H
3 ] = δ(y)Q1

DyXH
2 + [XH

3 , X
H
1 ] = δ(y)Q2

Fy1̂ +D2̂X
H
3 = 0

F2̂y +D1̂X
H
3 = 0

D2̂X
H
1 +D1̂X

H
2 = 0

D2̂X
H
2 −D1̂X

H
1 = 0

D1̂q
m − i(σ3)mnD2̂q

n = 0 . (5.6)

If we set qm = 0 so that the last equation is trivial and the right-hand sides of the first three
equations are zero, then these become the extended Bogomolny equations as given in [14].

The extended Bogomolny equations originally appeared in the approach of [14] to
Langlands duality, and they have been used more recently in a gauge theory construction
of Khovonov homology for knot invariants [15, 16]. Given that the D3/D5 system plays a
central role in the work of [15, 16], it is not surprising that we find the closely related set
of equations, (5.6), from our analysis.

The difference of (5.6) compared to previous formulations is in the defect fields qm.
They appear on the right-hand sides of the first three equations exactly as jumping data
would appear in Nahm’s equations, and they satisfy a differential constraint on the defect
given by the last equation: they must be covariantly constant with respect to the connection
δmnD1̂ − i(σ3)mnD2̂.

The reason the defect fields did not appear in previous formulations is that these
references were interested in a different boundary value problem. They were focused on
studying the equations on a two-manifold times an interval or half-space in the y-direction.
In terms of the D-brane picture of figure 1 and the discussion underneath, all D3-branes
end on the D5-brane from one side and there are no defect fields. One considers boundary
conditions of Nahm-pole type as y → 0, possibly generalized to include ’t Hooft defects at
fixed points in the boundary, rather than discontinuity conditions through y = 0 determined
by jumping data.

Thus, while there has been significant activity on the generalized Nahm-pole bound-
ary value problem for the extended Bogomolny equations on a half space [24–27], these
equations appear not to have been studied on R3. One reason for this is that, without
the jumping data on co-dimension one defects, one does not expect to be able to find in-
teresting three-dimensionally localized solutions beyond ordinary monopole configurations
for (Aı̂, Ay, XH

3 ).6 Ordinary monopole configurations will solve the extended Bogomolny
equations with XH

1,2 = 0 since in that case the extended Bogomolny equations reduce to
5The physical meaning of this choice will be discussed in the next subsection.
6By three-dimensionally localized, we mean solutions with moduli that represent the position of mobile

solitons in three-dimensional space.
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the ordinary Bogomolny equations. The work of [16] and intuition from the brane picture
indicate that generic solutions to the extended Bogomolny equations look like nonlinear
superpositions of a solution to Nahm’s equations and a monopole configuration, at least in
regions of moduli space corresponding to large separation of the monopoles from the defect
plane. Without jumping data, however, there are no non-constant solutions to Nahm’s
equations on all of R. With the inclusion of the jumping data provided by the defect
fields, we expect there do exist solutions representing, for example, smooth monopoles in
the presence of the defect with different asymptotic Higgs field values for ~XH

r as y → ±∞.
Let us return to (5.6). In writing the right-hand sides of the first three equations,

we are assuming an embedding u(Nc,def) ⊂ u(Nc), with Nc = max(NL, NR), where the
Qr populate the upper left block of the larger matrix in a matrix representation.7 To
fully specify the boundary value problem of interest, we must also specify the boundary
conditions on the remaining blocks of the Nc ×Nc matrix for all the ambient fields. Here
we take our cue from the vacuum conditions in [9] and previous work on the extended
Bogomolny equations with Nahm pole boundary conditions [15, 16, 24]. The off-diagonal
blocks of all ambient fields should vanish as y → 0. The lower right block of the Higgs
triplet should have leading behavior as y → 0 consistent with a supersymmetric vacuum
of D3/D5 type, which may include a Nahm pole when |NL − NR| ≥ 2. The subleading
behavior for the fields around the Nahm pole asymptotics was discussed in [24].

There are many exciting directions to pursue in studying the equations (5.6), some of
which we mention in the conclusions. For now we will content ourselves with a computation
of the energy of such solutions, assuming they exist. We will show that this energy saturates
the expected Bogomolny bound.

5.2 Bogomolny bound

We start with the bosonic Hamiltonian (4.10) with (4.11), restricted to static field config-
urations with A0 = 0 = ~XV:

H = 1
g2

ym

∫
d23xTr

{1
2F

ijFij + (DiXH
r )2 + 1

2[XH
r , X

H
s ]2
}

+

+ 1
g2

ym

∫
d2x

{
Dı̂q†mDı̂qm − iq†m(σr)mn

(
DyXH

r + 1
2ε

st
r [XH

s , X
H
t ]
)
ρ
qn+

− 1
2δ(0)(q†m(σr)mnT aρ qn)(q†p(σr)pqT aρ qq)

}
. (5.7)

By completing squares and using Tr (T aT b) = 1
2δ
ab and

∫
d2x =

∫
d3xδ(y), we can write

this as

H = 1
g2

ym

∫
d3x

{1
2

(
n̂rF

a
1̂2̂ + (DyXH

r )a + 1
2ε

st
r [XH

s , X
H
t ]a − δ(y)Qar

)2
+

+ 1
2
(
n̂rF

a
y1̂ + (D2̂X

H
r )a − ε str n̂s(D1̂X

H
t )a

)2
+ 1

2
(
F a2̂y + n̂r(D1̂X

H
r )a

)2
}

7Recall that the defect fields transform in the (Nc,def , Nf ), where Nc,def = min(NL, NR), when there are
unequal numbers NL,R of D3-branes on the left and right of the stack of Nf D5-branes.
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+ 1
g2

ym

∫
d2x

(
D1̂q

†
m + i(D2̂q

†
n)(σr)nmn̂r

) (
D1̂q

m − in̂s(σr)mpD2̂q
p
)

+

+ n̂r
∫
d3xTr

{
εijkFijDkXH

r − ε str
(1

2F1̂2̂[XH
s , X

H
t ] +D2̂X

H
s D1̂X

H
t

)}
+

+ in̂r
∫
d2x

[
q†m(σr)mn(F1̂2̂)ρqn + (D1̂q

†
m)(σr)mnD2̂q

n − (D2̂q
†
m)(σr)mnD1̂q

n
]
, (5.8)

for any unit vector n̂r. The first three lines of this expression are a sum of squares of the
left-hand sides of the equations (5.5). They are positive definite. The last two lines are
total derivatives. In fact, they are exactly n̂rZH

r , with the hypermultiplet central charges
given in (4.13). Hence

H ≥ n̂rZH
r , (5.9)

with equality if and only if all of (5.5) hold.
Let us investigate the form of n̂rZH

r on a solution to (5.5). From (4.13) and (4.14) we
have

ZH
r = 1

g2
ym

∫
d3x

[
εijk∂iTr (FjkXH

r ) + ε str εı̂̂∂ı̂Tr (XH
s D̂XH

t )
]

+

+ i

g2
ym

∫
d2xεı̂̂∂ı̂

(
q†m(σr)mnD̂qn

)
. (5.10)

From the second and third equation of (5.5) it follows that

D1̂X
H
r = −ε str n̂sD2̂X

H
t − n̂rF2̂y , D2̂X

H
r = ε str n̂sD1̂X

H
t − n̂rFy1̂ . (5.11)

One then finds

n̂rε
rstεı̂̂∂ı̂Tr

(
XH
s D̂XH

t

)
= ∂ı̂Tr

(
XH
r Dı̂XH

r

)
−∂ı̂Tr

(
(n̂rXH

r )Dı̂(n̂sXH
s )
)

(5.12)

= ∂ı̂Tr
(
XH
r Dı̂XH

r

)
−∂1̂Tr

(
(n̂rXH

r )Fy2̂

)
−∂2̂Tr

(
(n̂rXH

r )F1̂y

)
.

Using the first equation of (5.5) and the Jacobi identity to eliminate εrstTr (XH
r [XH

s , X
H
t ]),

we can write

n̂rεijk∂iTr
(
FjkX

H
r

)
= 2∂1̂Tr

(
(n̂rXH

r )Fy2̂

)
+2∂2̂Tr

(
(n̂rXH

r )F1̂y

)
+∂yTr

(
(n̂rXH

r )F2̂1̂

)
+∂yTr

{
XH
r

(
DyXH

r −δ(y)Qr
)}
. (5.13)

Consider the last two terms in this expression, which are the same using the first equation
of (5.5). We claim they do not contribute boundary terms at y = 0. This was demonstrated
in [24] for the Nahm pole boundary condition, where it was shown that the extended
Bogomolny equations imply that F1̂2̂ goes to zero as y → 0 quickly enough to kill this
term.8 This term does not contribution boundary terms at y = 0 in the case of jumping

8Reference [24] considered the Kapustin-Witten equations on R3 ×R+ with Nahm pole boundary con-
dition. The extended Bogomolny equations are a dimensional reduction of this, assuming translation
invariance in one of the R3 factors.
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data boundary conditions either. This follows from our discussion around (4.5), which we
required to vanish for consistency of the variational principle. Hence the only contributions
to the integral of (5.12) plus (5.13) come from spatial infinity, and summing the two results
we can write this as∫

d3x
{
n̂rεijk∂iTr

(
FjkX

H
r

)
+ n̂rε

rstεı̂̂∂ı̂Tr
(
XH
s D̂XH

t

)}
=

=
∫
S2

∞

dΩ lim
R→∞

R2R̂iTr
{1

2εijkF
jk(n̂rXH

r ) +XH
r DiXH

r

}
. (5.14)

This result shows that, on a solution to (5.5), the central charge (5.10) can be expressed
in terms of asymptotic data only. For the ambient fields this data consists of the vacuum
expectation values of the triplet XH

r at infinity in R3 and the charges that determine the
leading 1/R behavior for the gauge field and subleading 1/R behavior for the Higgs fields.
Finiteness of the energy requires these vevs and charges to be mutually commuting and
time independent. They might, however, take on different (gauge inequivalent) values on
the two hemispheres at infinity corresponding to y > 0 and y < 0. For the defect fields, qm,
this data consists of their asymptotic values on S1

∞, the intersection of the y = 0 plane and
S2
∞. This asymptotic data should be determined, up to gauge equivalence, by the complete

set of data specifying the Nahm-type vacuum together with some topological charges. We
expect at least a pair of magnetic charges specifying the monopole content to the left and
right of the defect, with the difference in these charges related to the subleading asymptotic
behavior of the defect fields in the x1̂-x2̂ plane, but we leave the details for future work.

Having determined n̂rZH
r in terms of this data, one must then vary n̂r to achieve the

strongest possible bound. This will be when n̂ is in the direction of ~ZH, leading to the bound

H ≥ | ~ZH| . (5.15)

One can then rotate9 the fields by an SU(2)H rotation that sends the direction n̂ = ~ZH/| ~ZH|
to the k̂-direction. The BPS equations (5.5) will then take the form of the extended
Bogomolny equations (5.6) in terms of these rotated fields.

6 Conclusion

We have written down the full R-symmetry-covariant supersymmetry variations of N4d = 4
sYM with a non-abelian, codimension-one defect preserving N3d = 4 supersymmetry. We
also computed the supercurrents, supercharges, and the algebra. This fills a gap in the
literature, and opens the door to studies of BPS states in a defect field theory with a
holographic dual.

To illustrate the use of the supersymmetry variations in the study of BPS states, in
section 5 we took a first look at magnetically charged half-BPS field configurations in
the defect theory. With a natural ansatz for the projection on supersymmetry parame-
ters εm̃m that determine the preserved supersymmetry for such configurations, we arrived

9An analogous SO(2) rotation is necessary in N4d = 2 sYM theories when determining BPS dyon field
configurations for a given point on the Coulomb branch of vacua.
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at an interesting set of BPS equations, (5.5). We showed how these equations are an
SU(2)H-rotated form of the extended Bogomolny equations, augmented with jumping data
constructed from the defect fields. In principle, one could have arrived at this same system
by a suitably clever manipulation of the Hamiltonian, as we showed in (5.8). Without our
supersymmetry analysis, however, determining the whole family of equations parameter-
ized by n̂r in this fashion would have been challenging, and determining how solutions to
these equations saturate a Bogomolny bound in terms of the central charges ~ZH would
have been impossible.

We stress that our work in section 5 is only a preview, meant to illustrate the possible
uses of the explicit supersymmetry variations and supersymmetry algebra obtained in this
paper. There is much further work to do in the study of BPS field configurations and BPS
states in this system. Some immediate questions and observations continuing from the
analysis of section 5 are as follows:

• One anticipates dyonic — electrically charged — versions of the half-BPS field config-
urations discussed above. In semiclassical quantization these will have the interpreta-
tion of quarter-BPS states, and their energy will saturate a bound H ≥ | ~ZH|+ | ~ZV|.
They can be thought of as the incarnation of N4d = 4 quarter-BPS dyons in the
nontrivial Nahm-type vacua of the defect theory. Their field configurations will have
a nontrivial electric field and ~XV triplet, in addition to the magnetic field and ~XH

triplet, and will satisfy an enhanced set of BPS equations.

• Can one find an explicit solution for the simplest nontrivial finite-energy configuration
involving monopole charge? One could look for a cylindrically symmetric solution
representing a single su(2) monopole in the presence of the defect with nontrivial
jumping data such that the asymptotic Higgs vevs are different as y → ±∞. Exact
solutions typically provide invaluable insight so, while obtaining such solutions can
be challenging, it is certainly worth pursuing.

• What are the precise asymptotic data needed to determine the central charge, ~ZH,
and what is the physical interpretation of this data? We indicated how this data
should appear in the asymptotic expansion of the fields under (5.14). What conditions
on the data must hold to ensure existence of solutions to (5.6)?

• Given such data, what is the moduli space of solutions to (5.6)? The answers to these
questions in the case of the Nahm pole boundary condition, generalized to include ’t
Hooft defects in the boundary, were conjectured in [15, 16] and proven in [26, 27].

• The moduli space of solutions is especially interesting with respect to the analysis
of section 5 since it represents a moduli space for finite-energy solitons. One could
use it, for example, to consider collective coordinate dynamics and quantization for
these solitons. This would be an essential step in the semiclassical quantization
of the corresponding BPS states. These moduli spaces should be fibered over the
space of vacua, which are themselves moduli spaces of solutions to Nahm’s equations.
One anticipates interesting wall-crossing phenomena for BPS states as the vacuum
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parameters are varied, and we expect that semiclassical quantization will provide a
fascinating perspective on this phenomena, as it did in N4d = 2 theories [28–31].10
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A SO(4) to SU(2)V × SU(2)H for N4d = 4 sYM

Here we describe the map between N4d = 4 sYM manifesting SO(4) R-symmetry to the
SU(2)V × SU(2)H version we use in this work. We begin with the N4d = 4 sYM action
written in manifestly SO(4)-invariant form:

g2
ymL = Tr

{
− 1

2FµνF
µν − iλIγµDµλI −

1
4DµAIJD

µAIJ − 1
4DµBIJD

µBIJ+

− λI [λJ , AIJ ]− iλIγ[λJ , BIJ ]− 1
16[AIJ , BKL][AIJ , BKL]+

− 1
32[AIJ , AKL][AIJ , AKL]− 1

32[BIJ , BKL][BIJ , BKL]
}
, (A.1)

Here λI are a quartet of Majorana spinors, and AIJ and BIJ are real, self-dual and anti
self-dual matrices of scalars, respectively. This is simply equation (13.4) of Sohnius’s classic
review [21] rewritten in terms of our spacetime and Lie algebra conventions. We also use
γ = −iγ0γ1γ2γ3 while [21] chooses γ5 = γ0γ1γ2γ3 = iγ. We use I, J = 1, . . . , 4 for the
SO(4) R-symmetry index, instead of [21]’s i, j. I, J are raised and lowered with δIJ .

Applying the following field redefinitions yields the ambient action (3.2):

λI = i

2(τI)mm̃λm̃m

λI = − i

2λ
mm̃(τ I)m̃m

AIJ =



0 XH
3 −XH

2 XH
1

−XH
3 0 XH

1 XH
2

XH
2 −XH

1 0 XH
3

−XH
1 −XH

2 −XH
3 0


= ~ηIJ · ~XH ,

BIJ =



0 −XV
3 XV

2 XV
1

XV
3 0 −XV

1 XV
2

−XV
2 XV

1 0 XV
3

−XV
1 −XV

2 −XV
3 0


= −~ηIJ · ~XV , (A.2)

10A connection between the Kapustin-Witten equations and wall crossing for BPS states in a class of
4d-theories with co-dimension one defects was recently described in the talk [32].
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where τI = (~σ,−i1) and τ I = (~σ, i1) are Euclidean signature sigma matrices, and (ηrIJ ,
ηr̃IJ) are the ’t Hooft symbols. In order to rewrite (A.1) as (3.2) one must make use of the
identities

(ηs)IJ(ηr)IJ = 4δsr
τ I
m̃m

ηrIJ(τJ)nñ = −2i(σr)nmδ ñ
m̃
,

τ I
m̃m

ηr̃IJ(τJ)nñ = 2i(σr̃) ñ
m̃
δ n
m ,

τ I
m̃m

η
[r
IJ(ηs])JKτnñK = 2iεrst(σt)nmδ ñ

m̃
,

τ I
m̃m

η
[r̃
IJ(ηs̃])JKτnñK = −2iεr̃s̃t̃(σ

t̃
) ñ
m̃
δ n
m ,

τ I
m̃m

(ηrIJ(ηs̃)JK + ηs̃IJ(ηr)JK)τnñK = 4(σs̃) ñ
m̃

(σr)nm . (A.3)

B Superspace formulations and maps to our conventions

Both of the early works detailing the holography of the D3/D5 system [4, 5] start with an
action in superspace which manifests a subset of supersymmetries but obscures the rest.
These formulations do make it easier to write down the action and to show conformal
invariance at the quantum level. However, it is nontrivial to rearrange the superfields’
components to reflect the defect-plus-ambient theory’s full SU(2)× SU(2) R-symmetry.

De Wolfe et al. [4] work initially in N = 1 superspace, where the fields are grouped
into a N4d = 1 vector multiplet, a triplet of adjoint-valued chiral multiplets, and two
N3d = 1 complex multiplets transforming in the (anti)fundamental. They quickly move
to component form, however, with which they are able to infer an R-symmetry-covariant
formulation of the action.

Erdmenger et al. [5] work in N = 2 superspace, where the ambient fields are initially
grouped into an N4d = 2 vector multiplet and a N4d = 2 adjoint-valued hypermultiplet,
which they then decompose into a N3d = 2 vector and triplet of hypermultiplets (or
actually a family of these, parameterized by the transverse coordinate x2). The defect fields,
meanwhile, consist of a pair of N3d = 2 hypermultiplets transforming in the fundamental
and anti-fundamental. The decomposition of the N4d = 2 vector multiplet into N3d = 2
multiplets has a nice superfield presentation for an abelian gauge group.

For non-abelian gauge groups, however, the situation is more subtle: there does not
appear to be an analogous gauge-covariant decomposition,11 a point which is not (to our
knowledge) directly addressed in the literature.

For readers who might need to navigate between different formulations, we provide the
map between the N3d = 2 superfields of Erdmenger et al. [5], and the formulation in terms
of standard superspace coordinates à la [18, 19]. This was done, in the abelian setting,
by [5]. We found the extension to the non-abelian case to be nontrivial. We also provide
the map from the extended superspace formulation of [18, 19] to our SU(2) × SU(2) R-
symmetry-covariant treatment (similar to [4]’s). Our focus here will be entirely on ambient
fields: the defect is manifestly 3d, so there is no map to be performed.

11At least as far we lilliputians can tell.
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Extended N4d = 2 superspace is parametrized by Grassmann-valued coordinates θA
for A = 1, 2, where each θA is a Weyl spinor in 4d. We use the following conventions for
complex conjugation and the raising and lowering of superspace indices:

(θAα)∗ = θ
A
α̇ , (θαA)∗ = θ

Aα̇
, (θAα )∗ = θAα̇ , (θAα)∗ = θ

α̇
A , (B.1)

and

θA = εABθB , θA = εABθ
B , θ

A = −εABθB , θA = −εABθ
B
. (B.2)

We denote these coordinates Wess-Bagger (WB) coordinates. We will follow their conven-
tions below.

Erdmenger et al. [5] change basis to one in terms of 3d Grassmann spinors, in which it
is possible to identify the N3d = 2 content of N4d = 2 superfields. Following [5], we term
these coordinates θ, /θ, each of which is a 3d spinor with spinor index α̃ = 1, 2. They are
obtained from the WB coordinates by first defining

θ̃α̃A = 1
2(δα̃αθαA + δα̃α̇ε

α̇β̇θ
A
β̇ ) ,

/̃θ
α̃

A = 1
2i(δ

α̃
αθ

α
A − δα̃α̇εα̇β̇θ

A
β̇ ) . (B.3)

and then setting
θ = θ̃1 − iθ̃2 , /θ = /̃θ1 − i/̃θ2 . (B.4)

We denote these the EGK coordinates. Clearly (B.3), (B.4) are not SU(2)R-covariant. They
also utilize isomorphisms from the 4d Weyl representations to the 3d Dirac representation.
These isomorphisms respect a so(1, 2) subalgebra of the 4d Lorentz algebra.

Setting /θ = 0 and x2 = 0 isolates N3d = 2 superspace with coordinates (xµ̂, θ, θ) as a
subsuperspace of N4d = 2 superspace.

It will be convenient below to write the change of coordinates and transformations
among spinor fields as a matrix multiplication. We define

θTWB =
(
θα1 θ

1
α̇ θ

α
2 θ

2
α̇

)
, θTEGK =

(
θα̃ θα̃ /θ

α̃ /θα̃

)
, (B.5)

and

θWB =



θ1
α

θ
α̇
1

θ2
α

θ
α̇
2


, θEGK =



θα̃

θ
α̃

/θα̃

/θ
α̃


. (B.6)

Then (B.3), (B.4) take the form

θTEGK = θTWBS and θEGK = S′θWB (B.7)
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with

S := 1
2



δ α̃
α −εαα̃ δ α̃

α εαα̃

−εα̇α̃ δα̇
α̃

εα̇α̃ δα̇
α̃

−iδ α̃
α −iεαα̃ −iδ α̃

α iεαα̃

iεα̇α̃ iδα̇
α̃
−iεα̇α̃ iδα̇

α̃


and S′ := 1

2



−iδ α
α̃
−iεα̃α̇ −δ α

α̃
−εα̃α̇

iεα̃α iδα̃α̇ −εα̃α −δα̃α̇

−iδ α
α̃

iεα̃α̇ −δ α
α̃

εα̃α̇

−iεα̃α iδα̃α̇ εα̃α −δα̃α̇


.

(B.8)
Since θ, θ transform in the same representation of so(1, 2) they can be contracted. The
standard convention for this contraction is θθ = θα̃θα̃. As usual, θθ = θα̃θα̃ and θθ = θα̃θ

α̃.

B.1 Mapping between superspace-based formulations

The field content in the WB basis consists of an N4d = 2 vector multiplet packaged into
a (gC-valued) chiral object, Ψ, which can be expanded in terms of (gC-valued) N4d = 1
superfields as

Ψ(ỹ, θA) = Φ(ỹ, θ1) + i
√

2 θα2Wα(ỹ, θ1) + θα2 θ2αG(ỹ, θ1) . (B.9)

where ỹ is the N = 2 version of the chiral coordinate,

ỹµ := xµ + iθαAσ
µ

αβ̇
θ
Aβ̇
. (B.10)

In Wess-Zumino gauge, the N4d = 1 superfields are given by

Φ(ỹ, θ1) = φ(ỹ) +
√

2θ1ψ(ỹ) + θ1θ1F (ỹ) ,

Wα(ỹ, θ1) = −iξα(ỹ) +
[
δ β
α D(ỹ)− i(σµν) β

α Fµν(ỹ)
]
θ1β + θ1θ1σ

µ
αα̇Dµξ

α̇(ỹ)

G(ỹ, θ1) = F (ỹ) + 2θ1[ξ(ỹ), φ(ỹ)] + i
√

2θ1σ
µDµψ(ỹ)+

+ θ1θ1
(
i[D(ỹ), φ(ỹ)] +

√
2[ξ(ỹ), ψ(ỹ)] +DµDµφ(ỹ)

)
, (B.11)

where Fµν = 2∂[µAν] + [Aµ, Aν ]. Here Wα(y, θ) is obtained from the vector superfield

V (y, θ) = −θσµθAµ(y) + i(θθ)θξ(y)− i(θθ)θξ(y) + 1
2θθθθ(D(y)− i∂µAµ(y)) , (B.12)

as in [18].
The N4d = 2 hypermultiplet, transforming in the adjoint representation of the gauge

group, consists of an SU(2)R doublet of complex scalars, an SU(2)R doublet of auxiliary
scalars, and a single, SU(2)R-singlet Dirac fermion. (See e.g. [21].) Breaking the Dirac
fermion into its chiral and anti-chiral components, one can group these fields into two
N4d = 1 chiral multiplets, which is how the N4d = 2 hypermultiplet is conventionally
presented in the literature. We define this set of chiral superfields as

Q1,2 = Q1,2(y) +
√

2θψ1,2(y) + F1,2(y) , (B.13)

where now y is the conventional N4d = 1 chiral coordinate. Note that the indices on this
pair are not SU(2)R indices.
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The N4d = 4 action in terms of these superfields is

Samb = 1
g2

ym
Im
[
i

∫
d4x

(∫
d2θTrWαWα + 2

∫
d2θd2θTr

{
e2iV Φe−2iV Φ

})]
+

+ 2
g2

ym

∫
d4x

{∫
d4θTr

(
e2iVQ1e

−2iVQ1 + e2iVQ2e
−2iVQ2

)
+

+
∫
d2θTr

(√
2Q2[Φ,Q1] + c.c.

)}
. (B.14)

Because the fermions mix in a nontrivial way, it will be convenient to define 4-vectors
of the fermions as

ξWB :=



ψα

ψ
α̇

ξα

ξ
α̇


and ψWB :=



ψ1α

ψ
α̇
1

ψ2α

ψ
α̇
2


. (B.15)

In the EGK basis, meanwhile, the N4d = 2 vector field content can be regrouped into
the component fields of an N3d = 2 vector multiplet V and chiral multiplets φ and φ

parameterized as

V(ŷ, θ) = −iθθρ(ŷ)− θσµ̂θvµ̂(ŷ) + i(θθ)θξ(ŷ)− i(θθ)θξ(ŷ) + 1
2θθθθ

(
d(ŷ)− i∂µ̂vµ̂(ŷ)

)
φ(ŷ, θ) = ϕ(ŷ; s) +

√
2θψ(ŷ; s) + θθf(ŷ; s) (B.16)

written according to the 3d version of the chiral coordinates

ŷµ̂ := x̂µ̂ + iθσµ̂θ , ŷ
µ̂ = x̂µ̂ − iθσµ̂θ . (B.17)

The N4d = 2 hypermultiplet, on the other hand, decomposes into a doublet of N3d = 2
chiral superfields. Here U1,2 is a pair of N3d = 2 chiral superfields with expansions

U1,2(ŷ) = w1,2(ŷ) +
√

2θχ1,2(ŷ) + θ2f1,2(ŷ) . (B.18)

The conjugate anti-chiral superfields are denoted U1,2. In order to construct the N4d = 4
ambient action in terms these superfields one needs the linear multiplet

Σ := εα̃β̃Dα̃(e2iVD
β̃
e−2iV)

= 4ρ(ŷ) + 4θξ(ŷ)− 4θξ(ŷ) + 4iθθD(ŷ)− 4iθσµ̂θDµ̂ρ(ŷ)− 2εµ̂ν̂κ̂θσκ̂θFµ̂ν̂(ŷ)+
+ 4θθ[ρ(ŷ), θξ(ŷ)] + 4i(θθ)θσµ̂Dµ̂ξ(ŷ) (B.19)

where the supercovariant derivatives with respect to the 3d chiral coordinates are

Dα̃ = ∂

∂θα̃
+ 2iσµ̂

α̃β̃
θ
β̃ ∂

∂ŷµ̂
, Dα̃ = − ∂

∂θ
α̃
. (B.20)
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The ambient N4d = 4 action in terms of these superfields takes the form [12]

Samb := 1
2g2

ym

∫
d4xTr

{∫
d2θd2θ

[ (
φ + e2iVφe−2iV − ie2iV∂2e

−2iV
)2
− 1

4Σ2+

+ 2
(
e2iVU1e

−2iVU1 + e2iVU2e
−2iVU2

) ]
+

+
∫
d2θ

(
U1[i∂2 + φ,U2]− U2[i∂2 + φ,U1]

)
+ c.c.

}
. (B.21)

As above, we group the fermions into 4-vectors as

ξEGK :=



1√
2ψα̃

1√
2ψ

α̃

iξα̃

−iξα̃


and χEGK :=



iχ2α̃

−iχ2α̃

χ1
α̃

χα̃1


. (B.22)

The factors of i and
√

2 in the various components of these 4-vectors are present so that the
map can be expressed simply in terms of the S and S′ matrices (B.8). One could remove
them by modifying the form of the superfield expansions, but we have instead chosen to
follow standard conventions regarding these.

By requiring that the ambient actions, (B.14) and (B.21), are the same, one obtains
the map relating the EGK and WB formulations:

φ = 1√
2

( Reϕ− iρ) , Aµ = (vµ̂, Imϕ) ,

F = 1√
2

(d+D2( Reϕ)) + 1
2
√

2
(f − f) , D − i[φ, φ] = −1

2(f + f) ,

ReQ1

ImQ1

ReQ2

ImQ2


= 1√

2



0 0 0 −1

0 1 0 0

0 0 −1 0

−1 0 0 0





Rew1

Imw1

Rew2

Imw2


ψWB = 1√

2
SχEGK , ξWB = SξEGK (B.23)

with the matrix S as given in (B.8). This is the nonabelian version of the map given in [5]’s
equations (2.18)-(2.21).

B.2 Map to SU(2)× SU(2)-invariant form

We now provide the map from the WB formulation to the formulation manifesting SU(2)V×
SU(2)H R-symmetry used in this work.

The gauge fields and the D auxiliary are unchanged, and the complex scalars from the
WB language group into triplets indexed by r = 1, 2, 3:

Xr := XH
r + iXV

r̃
:= (Q1, Q2, φ) Fr := (F1, F2, F ) . (B.24)
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Note that the definition of XH
r and XV

r̃
as the real and imaginary parts of Xr, respectively,

is exactly swapped compared to the definition of [4]. For the fermions, we first define
Majorana spinors in the usual Weyl basis as

ξM =

 ξα

ξ
α̇

 , ψM =

 ψα

ψ
α̇

 , etc. (B.25)

We can then group the four fermion fields from the N4d = 2 vector and hyper into an
SO(4)R quartet as λI := (ψM

1 , ψ
M
2 , ψ

M, ξM) with I = 1, . . . 4.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles, and three-dimensional
gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

[2] S.A. Cherkis and A. Kapustin, Singular monopoles and supersymmetric gauge theories in
three-dimensions, Nucl. Phys. B 525 (1998) 215 [hep-th/9711145] [INSPIRE].

[3] A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes
with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

[4] O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories,
Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].

[5] J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with
interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020]
[INSPIRE].

[6] M. de Leeuw, C. Kristjansen and K. Zarembo, One-point functions in defect CFT and
integrability, JHEP 08 (2015) 098 [arXiv:1506.06958] [INSPIRE].

[7] M. De Leeuw, C. Kristjansen and G. Linardopoulos, Scalar one-point functions and matrix
product states of AdS/dCFT, Phys. Lett. B 781 (2018) 238 [arXiv:1802.01598] [INSPIRE].

[8] S. Komatsu and Y. Wang, Non-perturbative defect one-point functions in planar N = 4
super-Yang-Mills, Nucl. Phys. B 958 (2020) 115120 [arXiv:2004.09514] [INSPIRE].

[9] D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills
theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].

[10] K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic
Berezinskii-Kosterlitz-Thouless transitions, Phys. Rev. Lett. 105 (2010) 041601
[arXiv:1002.3159] [INSPIRE].

[11] E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353
[INSPIRE].

[12] S.A. Cherkis, C. O’Hara and C. Sämann, Super Yang-Mills theory with impurity walls and
instanton moduli spaces, Phys. Rev. D 83 (2011) 126009 [arXiv:1103.0042] [INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0550-3213(97)00157-0
https://arxiv.org/abs/hep-th/9611230
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9611230
https://doi.org/10.1016/S0550-3213(98)00341-1
https://arxiv.org/abs/hep-th/9711145
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711145
https://doi.org/10.1088/1126-6708/2001/06/063
https://arxiv.org/abs/hep-th/0105132
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0105132
https://doi.org/10.1103/PhysRevD.66.025009
https://arxiv.org/abs/hep-th/0111135
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0111135
https://doi.org/10.1103/PhysRevD.66.025020
https://arxiv.org/abs/hep-th/0203020
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0203020
https://doi.org/10.1007/JHEP08(2015)098
https://arxiv.org/abs/1506.06958
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.06958
https://doi.org/10.1016/j.physletb.2018.03.083
https://arxiv.org/abs/1802.01598
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.01598
https://doi.org/10.1016/j.nuclphysb.2020.115120
https://arxiv.org/abs/2004.09514
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.09514
https://doi.org/10.1007/s10955-009-9687-3
https://arxiv.org/abs/0804.2902
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.2902
https://doi.org/10.1103/PhysRevLett.105.041601
https://arxiv.org/abs/1002.3159
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1002.3159
https://doi.org/10.1007/BF01223371
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C117%2C353%22
https://doi.org/10.1103/PhysRevD.83.126009
https://arxiv.org/abs/1103.0042
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.0042


J
H
E
P
1
2
(
2
0
2
2
)
0
4
0

[13] E. Witten and D.I. Olive, Supersymmetry algebras that include topological charges, Phys.
Lett. B 78 (1978) 97 [INSPIRE].

[14] A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program,
Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [INSPIRE].

[15] E. Witten, Fivebranes and knots, Quantum Topol. 3 (2012) 1 [arXiv:1101.3216] [INSPIRE].

[16] D. Gaiotto and E. Witten, Knot invariants from four-dimensional gauge theory, Adv. Theor.
Math. Phys. 16 (2012) 935 [arXiv:1106.4789] [INSPIRE].

[17] S.K. Domokos and A.B. Royston, Holography for field theory solitons, JHEP 07 (2017) 065
[arXiv:1706.00425] [INSPIRE].

[18] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press,
Princeton, NJ, U.S.A. (1992).

[19] S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one
lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].

[20] D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the theta-angle
in N = 4 super Yang-Mills theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].

[21] M.F. Sohnius, Introducing supersymmetry, Phys. Rept. 128 (1985) 39 [INSPIRE].

[22] S. Sethi, The matrix formulation of type IIB five-branes, Nucl. Phys. B 523 (1998) 158
[hep-th/9710005] [INSPIRE].

[23] A. Kapustin and S. Sethi, The Higgs branch of impurity theories, Adv. Theor. Math. Phys. 2
(1998) 571 [hep-th/9804027] [INSPIRE].

[24] R. Mazzeo and E. Witten, The Nahm pole boundary condition, in The influence of Solomon
Lefschetz in geometry and topology, Contemp. Math. 621 (2014) 171 [arXiv:1311.3167]
[INSPIRE].

[25] R. Mazzeo and E. Witten, The KW equations and the Nahm pole boundary condition with
knots, Commun. Anal. Geom. 28 (2020) 871 [arXiv:1712.00835] [INSPIRE].

[26] S. He and R. Mazzeo, The extended Bogomolny equations and generalized Nahm pole
boundary condition, Geom. Topol. 23 (2019) 2475 [arXiv:1710.10645] [INSPIRE].

[27] S. He and R. Mazzeo, The extended Bogomolny equations with generalized Nahm pole
boundary conditions, II, Duke Math. J. 169 (2020) 2281 [arXiv:1806.06314] [INSPIRE].

[28] G.W. Moore, A.B. Royston and D. Van den Bleeken, Semiclassical framed BPS states, JHEP
07 (2016) 071 [arXiv:1512.08924] [INSPIRE].

[29] G.W. Moore, A.B. Royston and D. Van den Bleeken, L2-kernels of Dirac-type operators on
monopole moduli spaces, Proc. Symp. Pure Math. (2015) 169 [arXiv:1512.08923] [INSPIRE].

[30] T.D. Brennan and G.W. Moore, A note on the semiclassical formulation of BPS states in
four-dimensional N = 2 theories, PTEP 2016 (2016) 12C110 [arXiv:1610.00697] [INSPIRE].

[31] T.D. Brennan, G.W. Moore and A.B. Royston, Wall crossing from Dirac zeromodes, JHEP
09 (2018) 038 [arXiv:1805.08783] [INSPIRE].

[32] D. Gaiotto, A. Kahn, G. Moore and F. Yan, 2d categorical wall-crossing with twisted masses,
and an application to knot invariants, presented by Gregory Moore at Number theory,
strings, and quantum physics at IPMU, University of Tokyo, Tokyo, Japan, 2 June 2021.

– 28 –

https://doi.org/10.1016/0370-2693(78)90357-X
https://doi.org/10.1016/0370-2693(78)90357-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB78%2C97%22
https://doi.org/10.4310/CNTP.2007.v1.n1.a1
https://arxiv.org/abs/hep-th/0604151
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0604151
https://arxiv.org/abs/1101.3216
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.3216
https://doi.org/10.4310/ATMP.2012.v16.n3.a5
https://doi.org/10.4310/ATMP.2012.v16.n3.a5
https://arxiv.org/abs/1106.4789
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.4789
https://doi.org/10.1007/JHEP07(2017)065
https://arxiv.org/abs/1706.00425
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.00425
https://arxiv.org/abs/hep-th/0108200
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0108200
https://doi.org/10.1007/JHEP06(2010)097
https://arxiv.org/abs/0804.2907
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.2907
https://doi.org/10.1016/0370-1573(85)90023-7
https://inspirehep.net/search?p=find+J%20%22Phys.Rept.%2C128%2C39%22
https://doi.org/10.1016/S0550-3213(98)00302-2
https://arxiv.org/abs/hep-th/9710005
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9710005
https://doi.org/10.4310/ATMP.1998.v2.n3.a6
https://doi.org/10.4310/ATMP.1998.v2.n3.a6
https://arxiv.org/abs/hep-th/9804027
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9804027
https://arxiv.org/abs/1311.3167
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.3167
https://doi.org/10.4310/CAG.2020.v28.n4.a4
https://arxiv.org/abs/1712.00835
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.00835
https://doi.org/10.2140/gt.2019.23.2475
https://arxiv.org/abs/1710.10645
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.10645
https://doi.org/10.1215/00127094-2020-0009
https://arxiv.org/abs/1806.06314
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.06314
https://doi.org/10.1007/JHEP07(2016)071
https://doi.org/10.1007/JHEP07(2016)071
https://arxiv.org/abs/1512.08924
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.08924
https://arxiv.org/abs/1512.08923
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.08923
https://doi.org/10.1093/ptep/ptw159
https://arxiv.org/abs/1610.00697
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.00697
https://doi.org/10.1007/JHEP09(2018)038
https://doi.org/10.1007/JHEP09(2018)038
https://arxiv.org/abs/1805.08783
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.08783

	Introduction
	Conventions
	Supersymmetry variations
	Boundary terms, supercurrents, and supercharges
	Boundary terms and supercurrent
	Supercharges and the supersymmetry algebra

	The extended Bogomolny equations with jumping data
	Supersymmetry projection
	Bogomolny bound

	Conclusion
	SO(4) to SU(2)(V) x SU(2)(H) for N(4d)=4 sYM
	Superspace formulations and maps to our conventions
	Mapping between superspace-based formulations
	Map to SU(2) x SU(2)-invariant form


