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extension of the Standard Model that can account for the tiny active neutrino masses
determined from neutrino oscillation data. In this article, we calculate the complete set
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give the results both using exact diagonalisation of the neutrino mass matrix, and at leading
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1 Introduction

Since neutrinos are massless within the Standard Model (SM), any explanation of the
non-vanishing neutrino masses determined from neutrino oscillation data must involve new
particles. The most studied scenario in this context is the extension of the SM by right-
handed neutrinos, which reproduces a situation similar to that in the quark and charged
lepton sector, where each left-handed field has a right-handed counterpart. This allows
for Yukawa interactions, which, after electroweak symmetry breaking, give rise to Dirac
mass terms for neutrinos. This minimal extension of the SM, referred to as the ¥SM [1],
appeals due to its simplicity, however, it is often considered unnatural since extremely
small Yukawa couplings would be necessary to reproduce the observed neutrino masses,
which are at most at the eV scale. Furthermore, the small ¥SM Yukawa couplings do not
lead to any observable new physics effects in precision observables. Indeed, within the
vSM e.g. charged lepton flavour violating processes suffer from a GIM-like suppression by
the active neutrino masses, leading to branching ratios, which are unobservable [2-8] (e.g.
Br(s — ) S 1054 [2]).

A more natural explanation of the smallness of the neutrino masses can be provided
in the presence of heavy neutral leptons [9], in particular by seesaw mechanisms, such at
the type I seesaw [10-14], which assigns large Majorana masses, Mp,to the right-handed
neutrinos. In this case, the light neutrinos masses turn out to be proportional to M DMglMg,
where Mp denotes the Dirac mass term. Depending on the scale of Mg, the type-I seesaw
model can be probed at colliders [15-25], it can be used as a framework for leptogenesis [26—
30] or the right-handed neutrinos can be viewed as dark matter candidates [28, 31-34]. The
discovery potential of the generic type-I seesaw is, however, limited, since the smallness
of the active neutrino masses, as inferred from neutrino oscillation data, excludes sizeable
Yukawa couplings to TeV-scale right-handed neutrinos.

Sizeable Yukawa couplings are admissible if an (approximate) lepton number sym-
metry [16, 35-45] is imposed, which suppresses the Wilson coefficient of the Weinberg
operator [46], and therefore the observed neutrino masses. This strategy is adopted in the
inverse seesaw model [36, 37, 39, 47, 48], therefore we refer to the limit with vanishing active
neutrino masses as the inverse-seesaw limit. In this symmetry-protected type-I seesaw,
admissibly sizeable Yukawa couplings can significantly modify the neutrino couplings to
SM gauge bosons. At tree-level, this leads to effects in processes such as ©m — fv, 7 — uvv
Z — vv and beta decays [6, 14, 19, 49-76], and at the loop level to effects in £ — ¢/,
¢ — 30, and Z — (0~ [6, 14, 19, 49-84], which have also been studied in the SM Effective
Field Theory (SMEFT) [43, 46, 78, 81, 85-94].

In this article we perform a comprehensive analysis of charged lepton flavour violation
in the symmetry protected type-1 seesaw: we calculate these effects both using exact
diagonalisation of the neutrino mass matrix and by expanding the amplitudes in v2 /M3,
which corresponds to the seesaw limit. Furthermore, we match the type-I seesaw model
onto the SU(2);, gauge invariant SMEFT, which allows for the use of renormalisation group
improved perturbation theory that resums the large logarithms between the right-handed
neutrino scale and the scale of the physical processes. We state our conventions for the type-I



seesaw model in section 2. In section 3, we give the 1-loop SMEFT matching conditions
that are relevant for flavour observables, in section 4 we list the fixed-order results for the
flavour observables of interest, before performing our phenomenological analysis in section 5
and concluding section 6. In the appendix we provide results using exact diagonalisation of
the neutrino mass matrix and/or in a general R gauge.

2 Setup

In the most general type-I seesaw setup, the SM is supplemented by n generations of
right-handed neutrinos Ng, i.e. by fermions that are singlets under the SM gauge group.
These new fields can have Majorana mass terms, as well as Yukawa-like interactions with
the lepton doublet L = (vp,£¢r) and the Higgs doublet ®. In the interaction basis, the
Lagrangian is given by

_ L 1 -
Ly = Npid N — (LYV(I)NR + §NIC%MRNR + h.C.) , (2.1)

where ¢ stands for charge conjugation and we have suppressed flavour indices for better
readability, i.e. Mg is an n X n matrix, that, without loss of generality, can be chosen to be
diagonal and real, Y” is a 3 X n matrix. After electroweak symmetry breaking, the Higgs
doublet acquires a vacuum expectation value of v/v/2 ~ 175GeV and takes the form

(p+ _ v+h—ip?
o= <U+h+wo> , P =i d* = ( V2 ) , (2.2)
V2 ¥

where o3 is the second Pauli matrix. Electroweak symmetry breaking generates the 3 x n

Dirac mass matrix

Mp = %Y”. (2.3)

We can now write the mass terms resulting from eq. (2.1) as

1/ = vy
Ly = —3 (VL NR) M, <NR> + h.c., (2.4)

with the mass matrix

O3 Mp
M, = . 2.

Next we move to the mass eigenbasis in which M,, is diagonal,

1

Ly = —iﬁ%MSiagnR +h.c., (2.6)
with
1
. 0
Mdee — yipL v = (WS mh> . (2.7)

Here V is a unitary (3 +n) x (3 + n) matrix, m! is a 3 x 3 matrix containing the light
h

neutrino masses, while m" is an n x n matrix with masses of O(Mpg). Since the light



neutrinos are mostly composed of the ones within the lepton doublet L;, they are commonly
referred to as active neutrinos, whereas the heavy neutrinos, which are mostly aligned with
the gauge singlets Ng, are known as sterile neutrinos. The neutrino mass eigenstates (3+n
vectors) are defined as

(V] an vy g ﬁy’f g
e V = s ns = — V = . 28
o (NR> (nﬁ%) " (N?a> (n‘é) =9

In the following, we will consider the seesaw limit v < Mp and expand our results in v/Mg.
The full results, obtained by exact diagonalisation of the neutrino mass matrix, are given in
appendix C.

1

In a first step, we block-diagonalise M,,, such that M, = diag (rhl, rhh>, where M’ is a

3 x 3 matrix and /m" is an n x n matrix in flavour space. At leading order in v/Mg, we find

13 — AMpMz2M},  MpMg* 3
V= 2) +(’)<> : (2.9)

—1
~Mp'ML, 1,40 (;4122 M}
' = ~MpMz*Mp, (2.10)
' =Mp+0O|— ). 2.11
M

Note that the off-diagonal blocks induce active-sterile mixing, while the correction to
the upper-left block induces (apparent) PMNS unitarity violation. Since our focus will be
on charged lepton flavour violation, to which the active neutrino masses do not contribute
in any observable way, we assume

'~ —MpMp* M} =0, (2.12)

which we will refer to as the inverse seesaw limit [16, 36-39, 42, 78] of the type-I seesaw. In
this scenario, which is also known as the symmetry protected seesaw, the Wilson coefficient
of the Weinberg operator is zero, implying that the neutrino mass matrix is automatically
diagonal after block diagonalisation, and given by

2
M;iiag ~ diag (O, 0,0, MR,L MRQ, MR73) + O <U> , (2.13)

M
while O(1) Yukawa couplings remain possible.
In presence of a single sterile neutrino, eq. (2.12) only has a trivial solution (i.e. Y = 0),
while for two sterile neutrinos, the solutions to eq. (2.12) are given by [78]

e Fidey 7722
VY = | A Fid /522 | - (2.14)
Ar Fidey [ G2



If three sterile neutrinos are added to the SM,

M . M
Ae ZAe Mﬁ:? +iv1 + 22\, Mﬁ:j
Y7 = | dy 2hy |32 VT + 20 522 | (2.15)

MR, . 2 MR73
Ar Z)‘”/MR,1 +iv1+ 22 A, Mt

Here z is an arbitrary complex number, and A., A, and A; can be chosen to be real and
positive.

In the seesaw-expanded results, we will encounter the combination

Sij = (MpMz2M}),; (2.16)
or equivalently,
~ 2
Ty = (YYMZ2Y" ), = =555 (2.17)

For two sterile neutrinos with degenerate masses Mg 1 = Mp o = Mg, T;; is given by

T, = 2N

= . 2.1

We will also encounter the matrix products

(yryt Y”Y”T)U (Y”Y”T)ij (Y”Y”T)kl . (2.19)

If we apply the parametrisation in eq. (2.14) and set Mr 1 = M2 = Mg, Tj;, we find

(Y”Y”TY”Y”T)U S YD DY (2.20)
ke{e,u, 7}
(Y"Y”T>ij (Y”Y”T)kl = AN NN (2.21)

If we take three sterile neutrinos with degenerate masses Mp1 = Mpro = Mg, and the
Yukawa matrix of eq. (2.15), these matrix products take the form

Ty = (14|22 + 1+ 22 ?W’\QI; (2.22)
(v ity yrt) = (1 (e 4 1+ z2])2 AN (2.23)
Y ke{e,u,7}
(Y”Y”T)Zj (Y”Y”T)kl = (1427 + 1+ 22|)2 AN AR - (2.24)

The presence of active-sterile mixing leads to tree-level modifications of the gauge boson
couplings to the SM neutrinos. Defining the covariant derivative as

Dy =0y +igaWir' +igiB,Y (2.25)



Interaction Expanded Feynman rule

G, o (557 F) P

l; W;;nlfli,ca B \/;Sw (MDM}EI)M VL
”lzéc,izﬂnll%fj _25\;cw (035 — Sij) ¥ Pr
RO gy (MM P
”}zl%’fazu”};ifb _2sv$0w (M;MIT)MDM;)QIJ 7P
lip~np; 0

bk, \fMD’“‘PR

Table 1. Feynman rules at leading order in the seesaw expansion, neglecting charged lepton masses.
The active (light) states are denoted as n!, the sterile (heavy) states as n®. Mp is the 3 x n Dirac
mass matrix defined in eq. (2.3), Mg is the n x n real and diagonal Majorana mass matrix introduced
in eq. (2.1) and S;; the mass insertion defined in eq. (2.16).

T —

where 7 o!/2 and ¢! denote the Pauli matrices, and introducing the Lagrangian of the

neutral and charged current interactions after electroweak symmetry breaking,

‘Cf/’[}:Z = (E_igf]’-"y“PLuj WM + hC) + {Ez’y'u ( fJLPL + ngRPR) ﬁj + ﬂigéjj’yuPLllj} Z'u, (226)

where 7 and j are flavour indices, we identify the couplings

ESwW
Wew ew .
€ ‘ € 1 .
%=  2swew (9 = 5ig) 9ij = V2sw (517 a 2Sij> .

In the following, we will use the notation

(S I
2swew cw (2.28)
gu - _ € géu - _ € ’
SM 2swew SM V2sw

Note that the Z¢¢ couplings, gij and gf]R, are not modified at tree-level, while the
interactions of the EW gauge bosons with neutrinos receive contributions proportional to S;;
and can therefore be flavour off-diagonal. The interactions of the charged Goldstone bosons
with neutrinos are modified in a similar way. All relevant Feynman rules are given in table 1.

These (expanded) Feynman rules can be visualised in the Mass Insertion Approximation
(MIA): instead of working in the mass eigenbasis, one can remain in the interaction eigenbasis

of eq. (2.4), and treat off-diagonal mass terms as perturbative interactions. This approach
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Figure 1. (a) Diagrammatic representation of the mass insertion S;; in the broken theory (see
eq. (2.16)). v; and v; are SM-like left-handed neutrino gauge eigenstates, which can also interact
with the SM gauge bosons, whereas IV is the right-handed neutrino, which is a singlet under the SM
gauge group. The dashed lines indicate the insertions of the Higgs vev v. (b) The related object,
T, defined in eq. (2.17), which is relevant in the unbroken theory and enters the SMEFT matching
relations. Here L; and L; are SM lepton doublets. IV is the right-handed neutrino.

Interaction Feynman rule in the EFT
; W;nlj%fj _\[QLSW ((5@' + U2CS(0:2’U) ~H Py,
nll’%fiZHnlj;f] —ﬁ (5ij + 'U2Xi;) el
ot V2upy; Cs(o?u VL
e~ (P )t ()Yl (pj - p;) X" P
e~ (P )T (P — (bt =) X9 Po
“n (p_)WJrﬁlfac,inléc,j _ivcélg?ij’Y”PL
o~ (p )WL —ivc‘&?iﬁm"

Table 2. Feynman rules for the relevant operators of the SMEFT for vanishing charged lepton

masses. The tree-level results for C’g(p?Zij and X;; are given in egs. (3.9) and (3.11).

leads to the same amplitudes as those derived in the mass eigenbasis and afterwards
expanded in the seesaw limit. Figures 1(a) and 1(b) show how egs. (2.16) and (2.17) are
represented or obtained diagrammatically.

3 Matching onto the SMEFT

In this section we calculate the matching onto the SMEFT. These results could be used
as initial conditions of a renormalisation group improved computation of charged lepton

flavour violating observables.! The Feynman rules for the SMEFT operators that are

LOur results agree with ref. [92] (v3). We thank the authors for useful discussions.



relevant for our phenomenological analysis are given in table 2. For the derivation of our
results, we made extensive use of the Mathematica packages FeynRules [95], FeynArts [96]
and Package-X [97, 98] in combination with CollierLink, a Package-X interface to the
Collier library [99].

3.1 Conventions
The SMEFT extends the SM Lagrangian /Jg\)/[ by higher dimensional operators, which are
invariant under the full SM gauge group. Up to the dimension 6 level we write

Lsvmrr = Ly + CP0O) + 390, (3.1)
k

where @) is the dimension Weinberg operator
5 5 _ 5 TCF* X
£ =P +he =) (Led*) (315) + he.. (3.2)

We will only consider the subset of dimension-six operators that can, at O (1)2 /]\412{)7 lead
to direct contributions to lepton flavour violating observables. Since sterile neutrinos can
only enter flavour and EW precision observables via mixing with light SM neutrinos, only
SMEFT operators involving SM lepton doublets are relevant for our phenomenological
analysis. We neglect the operators Ocy, Opedy, Oéi()iq and Og’glq, whose Wilson coefficients
would be proportional to at least one power of a SM lepton mass. The same holds for the
operators O, and O.p, for which reason their contributions to the anomalous magnetic
moments are negligible, however, we keep these because they induce radiative lepton decays
(decays of the form ¢ — ¢'). In summary, we consider the operators

Z c clol) + c¥)ol) + (CowOur + CepOecp + hc.)
+ CuO + CeeOpe + CYOW + CDOP + CruOpu + CeaOra,  (3.3)

with [100]
0= (@T£M@> (Liv'Ly) |
&= (@Tiﬁi@) (Lio"y"L;)
Oewyij = (_Zaw,ej) olow i
Ocpij = (Liowe;) @B
(Oc)ijp = (_i'YuLj> (Eksz) , (3.4)
(Oée)ij,kl = (_Z'YuLj) (ék'Yuel) )
(Oé;))zj,kl = (7’7“Lj) (Qk’y#QO ’
(Og))zj,kl = (7’7“011—/]‘) (Qk’y#(j[@l)
(O = (717MLJ') (ureyur)
(Ord)ijm = (_WHLJ') (Jk%dl)
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Table 3. Hypercharges for the SM fermions and Higgs field.

Note that in all operators involving SU(2);, doublets, the SU(2), indices are contracted
within the fermion bilinears. We follow the hypercharge conventions of ref. [100], given in
table 3. The covariant derivative is defined in eq. (2.25). Using the short-hand notation

<
D, o = (D#CD)T ®, we define the Hermitian derivative terms
1D, ® = i® (DM —D“) o, oMD!d =i <a D, —D,o ) D, (3.5)

which enter the operators Oc(plf) and (’)S’Z) . The field strength tensors W;{u =0,W! - 8VW/5 -
ngIJKW/l]Wl{( and By, = 0,B, — 0,B,, are associated to the SU(2);, and U(1)y gauge
fields W' and B, respectively. We follow the convention of summation over all flavour
indices in the Lagrangian. For the operators involving four leptons, this means that we

write the corresponding terms as follows

CO=>" CijuOiju, i,j kL € {e, pu, T}. (3.6)
ikl

For operators whose fields are distinguishable, i.e. Oy, (’)21), (’)2), O, Opg, and that thus
cannot be fierzed into themselves, this summation convention has no impact. However,
for Oy, which is invariant under the exchange of the two fermion bilinears, this leads to a

factor 2 at the amplitude level (the contraction of SU(2)y, indices is taken into account):

Clf s (LivuL}) (L Lh) + Oty (EfvuLit) (L#L5)
+ Ottt (L) (LI} + Clfy (LeuLt) (LhA"LY)
= 2 (Cffy (LiLy) (L L) + Clf s (LevL}) (LRr"Lt) ) - (3.7)
Note that L on the left-handed side corresponds to a field, while on the right-handed side it
denotes a spinor. a and b denote SU(2), indices.

In the subsections 3.2 and 3.3 we will perform the on-shell matching, i.e. we equate the
S-matrix elements in the full theory (the type-I seesaw model in the inverse seesaw limit)
and in the EFT (the SM extended by the dimension-5 and dimension-6 SMEFT operators
defined in eq. (3.1)).

3.2 Tree level matching

The Feynman diagram in figure 2 leads to the following Wilson coefficient of the Weinberg
operator

1 |23 — v
C(5):§Y Mgyt (3.8)
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Figure 2. Feynman diagram in the type-I seesaw contributing to the Wilson coefficient of the
Weinberg operator. In the inverse seesaw limit, the neutrino Yukawa matrices are chosen in such a
way that this diagram vanishes and lepton number is conserved.

After electroweak symmetry breaking, this can be expressed as C®) = U%MBMIQIML,
which features, by definition, the same combination of Dirac- and Majorana matrices as
the active neutrino block of the neutrino mass matrix. In the inverse seesaw limit, this
combination of matrices is set to zero.

At the dimension-6 level, the Wilson coefficients of the operators (9(12 and (’)(32 receive

® ®
tree-level contributions induced by the diagrams in figure 3(a):
c® —_cW — 1 3.9
otij = ~Colig = Tt (3.9)
T;; is defined in eq. (2.17). The relation Cg? = — S}, which follows from the fact that

only neutrino couplings, no charged lepton couplings, are modified, motivates a change of
basis from {OSZ), Ofg)} to {OT,07},

O = % (0505 + 055 - O = % (0505 — 0%0;)
Xj5 = Clig + Cly X5 = Cobij = ot (3.10)
with
N 1
X5 =0, Xj=-3Ty. (3.11)

The corresponding diagrams in the full and effective theory are shown in figure 3(a) and
figure 3(b), respectively.

3.3 One-loop matching
3.3.1 Modified gauge-boson couplings (OSZ) and ng))

Note that since Xi} = 0 at tree-level, we will not calculate loop corrections to the corre-
sponding operator, but rather focus on X{;,
such as modified Z¢T¢~ couplings (after EW symmetry breaking). Indeed, at the one-loop
(3B _

= C;le)ij or, equivalently, X = 0, is broken by the contributions

where finite corrections generate novel effects

level, the relation C(p[,ij



Figure 3. (a) Diagram giving rise to modifications of the lepton couplings to the U(1)y and SU(2),
gauge bosons in the type-I seesaw. (b) Corresponding diagram in the effective theory.

of the diagrams shown in figure 4. Performing an on-shell matching, we find

1 112
+ v vk 2 2
3 2
1 MRa
YI/*YI/ I/* —1
"~ £ (Z )Y °g<Méb>

a,b=1 )
o Mo+ Mpy (M
}: vaMgh (S vy e TR 2, (312
1287r2ab ) ( ca C”) ra¥ih az, oz, 5\ oz, ) B

where the 1/e pole is cancelled by the renormalisation of the EFT operator, leading to the
corresponding renormalisation group evolution (RGE) [101].

The third line of (3.12) originates from diagram given in figure 4(f), i.e. from penguins
involving a combination of two AL = 2 interactions. This term is only relevant in presence
of large mass splitting between the sterile neutrinos, since it involves the same Yukawa
structure as the Wilson coefficient of the Weinberg operator and vanishes in the limit
of degenerate heavy neutrino masses. See appendices A and C.2 for a discussion of the
identities we used for the derivation of this result.

3.3.2 Four-lepton operators (Oy and Oy)

The four-lepton operators Oy and Oy, receive contributions from off-shell B and W penguins
and Higgs-neutrino boxes (see figure 5). The latter contribute only to Q. We find the
following (§-independent) Wilson coefficients:

(Cur); 91+QQZ( RAY IS + Y My Yf*a) 11+6 —l—log o
ig,kl — 460872 — Ra Jja a""R,a M]{Z{ﬂ

n

YiaYia Yo Yy log< )
* Toger 2 Vi M}%a_MIQ%b M3,

a,b=1
1 KNt Mg, + Mg, M3,
- 1287T2;(Y;GMR’QY,W) (v )]\Mlo <M}2%,b (3.13)

2
* 1%
(Cre);; . ATy (11 +6 ( + log ( ))) . (3.14)
gkl = 1152 11592 Z R J M}gﬂ

~10 -
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(8) (h)
Figure 4. Diagrams contributing to the 1-loop matching onto OSE) and OS’Z) (see figure 3(b)) or,
equivalently, onto O and O~.
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(c)

Figure 5. The double-Higgs boxes and the double-Higgs penguin are the only contributions to the
loop-level matching onto Oy and Ope.

The third line of eq. (3.13) corresponds to the contribution of the diagram in figure 5(b),
which can only arise if Majorana particles are in the loop, since it features two lepton
number violating interactions. Given that we are imposing the inverse seesaw condition of
eq. (2.12), these diagrams only contribute in presence of sterile neutrino mass splitting.

3.3.3 Two-lepton-two-quark operators ((’)é;), (’)és) Oy and Oyq)

Next we consider contributions to the two-lepton-two-quark operators (92), (92), Oy, and

Oyq, defined in eq. (3.4), which receive contributions from W/ and B penguins similar to
the ones shown in figure 5(0). Here we find the Wilson coefficients

2
(1) _ y 2 Uk 1 'LL
quvij 691271’2 Z aMp, aYJa (11 +6 (6 + log <%>>> (3.15)
2
(3 _ y Uk 1 M
qu ij 2304%2 Z MR aY;a (11 +6 <E + log (M]%w))) (3.16)
VLR 2 s 1 2
Couij = 1728772 Z Mg Yja | 11+6 = + log MZ. (3.17)
CYLR vy (1146 (L 41 s 3.18
ld,ij 34567‘(’2 Z R,a” ja + g + log M]%L . ( . )

Note that the box contributions vanish in the limit of zero quark Yukawa couplings. Only
the box involving the top quark could be sizeable, which, however, is not relevant for
charged lepton flavour violating processes, such as p — e conversion in nuclei.

- 12 —
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Figure 6. (a-c) Diagrams contributing to the matching onto the magnetic operators Oy and O.p.
(d) Diagram in the effective theory resulting from the magnetic operators.

3.3.4 Magnetic operators (Oew and O.p)

The diagrams contributing to the matching onto the magnetic operators are shown in
figure 6. These result in

592 Y
CeWﬂ;j = _38477'2 T:l]}/j ’ (319)
CeB,ij = _389417r2 T, Y/, (3.20)

where Yf is the Yukawa coupling of the charged lepton /;. These matching conditions agree
with the results in ref. [81]. Note the absence of logarithms, which can be explained by
the fact that, in the lepton number conserving limit, the type-I seesaw introduces purely
left-handed, i.e. chirality conserving, new physics, resulting in the absence of operator
mixing in the EFT at the one-loop level.

4 Observables

In the last section we calculated the matching of the type-I seesaw onto the SMEFT at
the scale Mgr. However, these results are not sufficient for a phenomenological analysis of
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charged lepton flavour violating observables. For this, the running from Mpg to the EW
scale, the matching at this scale onto the Low-Energy Effective Field Theory (LEFT) [102],
as well as the RGE from the weak scale to the charged lepton scale [103, 104] and the
evaluation of the matrix elements at the tau or muon scale would be required. As these
results are not fully available, in particular, because even the calculation of 2-loop effects
would be necessary for a consistent treatment, we naively calculate in this section the
relevant diagrams without scale separation (i.e. without resumming the logarithms). Note
that these formulae nonetheless include the (potential) leading logarithm as well as the
finite scheme independent terms, which correspond to the sum of any hard and soft
contributions to the amplitudes. We will then use these results in our phenomenological
analysis in section 5.

4.1 Lepton flavour universality tests

The Wy couplings, which are modified at tree-level by the neutrino mixing, lead to effects
in processes such as ¢ — ¢'vv (see figure 7), 7 — 7w, ® — (v, 7 — Kv or K — (. For these
decays, LFU ratios can be formed, which we compare to the HFLAV fit results [105, 106]
for the coupling fractions (g;/g;)., which are obtained using pure leptonic processes, and
(9i/9) p» P € {m, K}, which are defined as [105, 106]

2 Br(t — Pv,) EQumi

B 1 —m2/mp 1 (41)
~ Br(P - vy, omd 1—m%/m2) 1+06R./p’ '

T

9z
Iu

P

where 0 R,/ p accounts for the radiative corrections to I'(7 — Pv;)/T'(P — uiy,), P € {7, K},
which have been estimated as [107-111]

0R,/r = (016 £0.14)%,  6R,/x = (0.90 £0.22)%. (4.2)

We identify the new physics amplitude fractions directly with the current HFLAV fit
results [105, 106] for the coupling fractions g;/g;, 1,7 € {e, u, 7}.

ﬁg; : ZZZ; ~1- % (Srr = Spu) = g; ) = 1.0009(14)
S - s=[2] <mon
/\/;ll((: : ZZZ)) ~1_ % (S — See) = fLZ _=1.0019014) (4.3)
ﬁ&iﬁ;; 15 (Ser — S = f}; = 0.9855(75)
/A\:llé; - Z:; 1 % (Srr — Sup) = z; - 0.9959(38)
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Figure 7. Tree-level diagrams generating ¢ — 'vv, in the type-I seesaw. g4t is the SM Wiy
coupling defined in eq. (2.28) and S;; the new physics modification of eq. (2.16).

The HFLAV fit results come with the correlation matrix [105, 106]

gr| || |ou| |or| |or
Gu|, 19elr 19elr |Gu|. |9n|k

1 051 —0.492 0.16 0.12 |97/ 9ul
051 1 049 0.18 0.11 |97/ el

—-0.49 0.49 1 0.01 —0.01 |9/ gel .-

0.16 0.18 001 1 007 | |g /g

0.12 0.11 -0.01 0.07 1

|97/9u|K

Belle II, which will produce approximately ten times more tauons than Belle or BaBar, is
expected to improve the measurements of 7 — pvv and 7 — evv [112].

Further LFU ratios that are relevant in this context are [111]

Iu
9e

2
> ————5 | (1+0Rp_e/), 4.4
Poe/u  Br(P™ — eve(y)) m2 ) ( Pse/u) (4.4)

1 —m2/m}

2 _ Br(P™ = uu(v)) m? (1 —m2/m3

where 0 Rp_,./,, denotes the radiative corrections, including a summation of the leading
QED logarithms o™ log(m,,/m.) [110, 113], and a two-loop calculation of O(e?p*) effects
within chiral perturbation theory [114]. Comparing the SM predictions [114] with the
experimental results [115, 116] for K — e/v, for m — e/v), one obtains [111]

M(K — pv) ~1

MK =) g1 9n
M(K — ev) 2

; = 0.9978(20) . (4.5)

K—e/p

(S = See) =

2The HFLAV collaboration reports -0.50 due to numerical limitations, however, we use —0.49 in order to
have a positive semi-definite correlation matrix.
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This measurement will also be performed by J-PARC E36 [117]. Comparing the SM

predictions [114] with the experimental results for m — e/v [118], one finds [111]
M(m — pv) 1 g
Nl—f(S,W—See)Eg—“

M(m —ev) 2
The PEN experiment expects to improve the sensitivity to 7 — pv/m — ev by more than a
factor three [119].
Decays of the form K — w/lv, [120] are not helicity suppressed and are used for the

= 1.0010(09) . (4.6)

T—e/p

determination of the Cabibbo angle. Comparing the values for the CKM element V,s from

K — muw,, with the V.5 from K — mev, allows for a further test of LFU: [111, 120, 121],
M(K — muv) 1 g
PO VTV o 2 (S — See) = |22
M(K — mev) 2 (S = See) Je

LFU can also be tested directly in leptonic W boson decays, however, these channels

= 1.0010(25) . (4.7)
K—m(u/e)

are statistically limited [111, 122-124] and the resulting bounds are not competitive with
the ones from tau, kaon and pion decays. However, future eTe™ colliders such as the
International Linear Collider (ILC) [125], the Compact Linear Collider (CLIC) [126] or the
Future Circular Collider (FCC-ee) [127, 128] could improve these bounds.

4.2 7 — vv

Also Z — v;v; receives corrections at tree-level in presence of neutrino mixing. The

corresponding amplitude
e

M(Z — I/jlji) = —72 (513 — Sz]) lji’y#PLI/qu (48)
SWCW
affects the effective number of light neutrino species [129, 130]
Nef = 29840 + 0.0082 . (4.9)

Considering eq. (4.8), we can approximate N, ~ 3 — 2%, S;; in the type-I seesaw model if
we neglect effects that do not interfere with the SM contribution.

4.3 Z — e

Z decays into charged leptons Z — Ziﬂj only receive corrections at loop-level in the type-I
seesaw model. Expanding the diagrams shown in figure 8 in v? /M]%, we find

e3 VL

_ , -
M(Z — Lity) = T Tom%ewsy Z;; (az) L) ZPLti(p;) » (4.10)
with
ZVL 2 S -2 * 2 2 MI%V
Zi; (Mz) = Z MpiaMp o Mp jo | flew) + g(ciy) log e
a=1 R,a
1 n 3
+ W Z MD,ia <Z MB,caMD,cb> MDJ‘b h (Ml%u,a? MIQ%,b)
W a7b:1 c=1
1 n 3
+ 5z > MpiaMpg, <Z MD,kaM}B,kb> Mgy M} 5 k (M%La,M]%yb) ,
w a,b=1 k=1
(4.11)
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Figure 8. Diagrams contributing to the Z¢¢' coupling at the one-loop level. Here n, and n,
correspond to neutrino mass eigenstates. The formulae in the main text are obtained by expanding
the amplitudes corresponding to these diagrams in v?/M3, i.e. they are given in the seesaw limit.
The unexpanded results are given in appendix C.

where
13 ) 11 1
f(z) = " m(l—Qx)+ﬁx—x2—§7r2(l+x)2
1 2
+§log(as) (3+2x+(1+$) log(az))
3
+ (1 +2)?Lip (14 2) 4 ir <2—I—x+(1+:13)210g(:n))
— 422 (2 4 z) arctan? ((41; - 1)_1/2)
1 3.7 2 ~1/2
—|—\/4$—1<—12x—2+3x+2x)arctan<(4x—1) ), (4.12)
2 1
9(z) = —3 (1 + m) (4.13)
1 M3
h(ME,,M3,) = 1og< ’“> , (4.14)
(Mo M) = 5777, % (32,
1 Mg, + Mz, M}
k (M3, M3,) = -—= > lo < (4.15)
( ’ ’ ) 2M12%,a - Mz%,b Mz%z,b

Note that while the first two terms of eq. (4.11) agree with ref. [77], the third term, which
is only present for Majorana neutrinos, was not included there.
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Br[Z — eTuF] < 7.5x1077 (95%CL) ATLAS: [131]
Br[Z — efrT] <5.0x 1079 (95% CL) ATLAS: [132]
Br[Z — pt7F] <6.5x107% (95% CL) ATLAS: [132]

Table 4. Bounds on Br(Z — ¢¢').

r[Z —etuT] 1077 —107% FCC-ee: [128, 133]
Br[Z — efuT] 3.0x107?  CEPC: [134]

r[Z = etrF] 107° FCC-ee: [128, 133]
Br[Z — efrT] 2.0x107%  CEPC: [134]
Br[Z — p*rF] 107° FCC-ee: [128, 133]
Br[Z — p*rF] 2.0x107%  CEPC: [134]

Table 5. Future sensitivities to Br(Z — £¢').

The branching ratio of Z — ¢;¢;, for i # j is given by

+)Fy +)- — ¥
Br(Z — 6(7) =Br(Z = £4;) + Br(Z — £ L))

1 My e NG
=———| —=———= Zii(M3) Zii(M 4.16
247 Ty (167r 2eyy 3, > (’ i Z’ +‘ gl Z>’> (4.16)
We compare this result with the ATLAS and LEP measurements given in table 4 and to
the future sensitivities in table 5
4.4 £ — Lt~y

Defining the effective Lagrangian in broken SU(2)p,
Leg = .A Ly, 0w Pr€; F* 4 h.c. (4.17)

where F'* = gt AY — Q¥ A* is the electromagnetic field strength tensor, we find

3
e3 my, e’my,
M J
AM =

77 1287252, M2, ZU Uia ™ Tagm252 313, % (4.18)
W W

in the seesaw limit, v < Mg, with S;; as defined in eq. (2.16). The absence of a logarithm

involving a sterile neutrino mass can be understood as a consequence of the purely left-

handed new physics effect in this model. This avoids chiral enhancement, and implies that

the anomalous magnetic moments do not yield relevant bounds, and that electric dipole

moments are absent [135].

4.5 £ — 3¢ and £ — £'¢"¢"

Processes of the type ¢ — 3¢’ receive contributions from photon and Z penguins, as well
as from box diagrams. In the seesaw limit, the sum of the off-shell photon penguins, the
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Briu—ey] <4.2x1071 MEG: [136]
Brir eyl <33x107% BaBar: [137]
Br{r — uy] <4.2x10"% Belle: [138]

Table 6. Current experimental upper bounds on Br(¢ — ¢'¥).

Brip—ey] 6x107  MEG II: [139]
Br[r — uy] 2.7x1078 Belle IT: [112]

Table 7. Future sensitivities to Br(¢ — ¢'y).

off-shell Z penguins and boxes, leads to

- e*m m?
F oy oT T my
Br[rF — eTptuT] = 487r3F (‘A ><3+log<mz>>
m; VLL VLL VLR |? VLR |?
* m ‘]:” T Furen + ‘]:ewm‘ + "Fuﬂeu
4
€My M« (FVLL VLL VLR | rVLR
* m (Re [A ('7:67' HE ‘7:#7' ep + Fer Mu + 7 W, 6#)} ) ’

62m m2

m? VLL VLR
+ 1536 13 FT ( “FMTML‘ + ‘}—HTM# )
em; M VLL VLR
+ 155 W;FT o[ (27yEE + FYERN] ),
Br [r¥ = uFe*u] = it < Ry 4 |Fyie ) , (4.19)

with

4 n M?2
VLL _ e -2 2 2 Fa
Tl = 3847T28Wy{ Z MDmMRﬂMB’ja&u (9 — 37siy + (—9 + 163W> log < M2 ))

a=1
+ M?’Q f: ((—1 + 2s%v) <MD7m <§3: MB}CGMD@) M;;,jb> Si
W a,b=1 c=1
% (MD iaMp ]a) (MD,kbME,zb> )h(MIQ%,aa MIQ%,b)

3 n 3
oz > < (—1 + 2s%v) (MD,Z-Q (Z MZ‘ICGMD,CZ)) Majb) O

c=1

+2 (MD,iaMl*),ja) <MD,kbM1*),lb> )k(Mfzz,aa M}%,b) } ; (4.20)
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, 90% C.L. <1.0x 1072 SINDRUM: [140]
, 90% C.L. <27x107%  Belle: [141]
, 90% C.L. <27x107% Belle: [141

Bru= —eete]

Br|r~ —eefe]

Brr — e ptu]

Br{r— = petp ], 90% C.L. <1.7x107% Belle:
e”]
7]
]

[141]
[141]
Br[r~ — p ete ], 90% C.L. <1.8x107% Belle: [141]
Br[r~ — e pute ], 90% C.L. <1.5x107% Belle: [141]
Br[r~ — pu putp~], 90% C.L. <21x107% Belle: [141]

Table 8. Current upper bounds on lepton flavour violating decays of the type £ — 3¢'.

Briu— 3¢ 1071 Mu3e, phase I: [142, 143]

Br[u — 3e] 10716 Mu3e, phase II: [142, 143]

Br[r — 3e¢] 107 Belle-1I: [112]

Br[r —3u] O (1079 CMS, ATLAS, LHCb at HL-LHC [144]
Br[r —3u] 3.3x1071 Belle-II: [112]

Table 9. Future sensitivities to Br(¢ — 3¢).

4

n M2
VLR _ € —2 Ra
Fiil = 33 I { ; Mp iaMpg 2 Mp 40k (—37 + 16log ( 7, ))

6 n 3
+ i > (Mpﬂ-a (Z MBaLMD,cb) Mf),jb) Okt h(MJQz,mMJ%,b) } ;
1

a,b= c=1

(4.21)

with the functions h and k given in eq. (4.15) and eq.eq. (4.14), respectively. The cor-
responding formula for Br[r — 3e] and Br[u — 3e] can be obtained by the appropriate

replacement of flavour indices.

4.6 p — e conversion in nuclei

Next we consider p — e conversion in nuclei and define

Lo =Y (Fhly Ok + FLE OLE ) + (L & R) + hee.,

ep,qq ~eft,qq ew,qq ~ep,qq
q=u,d

with

O = (GwPrt) (@Pra) .
Ot = (EvuPrts) (@v.Pra) -

—90 —

(4.22)
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This process receives contributions from photon and Z penguins, as well as from box
diagrams, resulting in

4

M2
VLL _ € R,
FYLL — 38477242{; 1: Mp iaMpaMp jag <27+745W+ (273253 ) log ( 5:))

3—4s3 3 . N
+ MVQVW Z MD,ia (Z; MD,CQMD,cb> MD,jbh(Ml%,avMI%,b)}
a,b=1 c=

2 M3
VLR R,a
E],UU_M{ZMDlQ MD]a3 (37 1610g<M5V>>

4 n 3 . .
Yo Z MD,ia (Z MD,caMD,Cb> MD,jbh(MIQ%,a’MIQ%,b)}
W ab=1 c=1

4

M?
VLL _ € 2 Ra
T = S {; 1: Mp.iaMy i M jus (27 37s% + (—27+ 1653 ) log < i3 ))

3 252
MQW Z MDp iq (ZMD caMD, cb) MDjbh(MRmMRb)}
a,b=1 c=1

‘FZJ,dd W aleDmMRaMD]a 3 —37+16log M2

2s2
M\QN Z MD ia (Z MD caMD cb) MD ]bh(MR aaMR b)}
W ab=1 c=1

VRL VRR
Fijag =00 Fijag =0, (4.24)

with ¢ = u,d and h as given in eq. (4.14). Here we neglected the quark masses and
CKM-suppressed effects in the box diagrams by using (VCKMVCKMT> o Okl

Together with A%-[ from the magnetic photon penguin (see eq. (4.18)), the transition
rate 'Y, =T'(uN — eN) follows as

p—e
m5 AM LL LR () i AM :
p—e _ My ep N : =
Iy _4{|muDN+4 Zd<]:euqq+]:wq‘I) (fVPV v ) * ”TMDN }
q=u,

(4.25)

For the overlap integrals between the muon and electron wave functions and the nucleon
densities Day, V4, and Vay, we use the numerical values [145]

Day, = 0.189, VP =0.0974, Vi, =0.146, (4.26)
Dy = 0.0362, VE =0.0161, Vi =0.0173. (4.27)

The nucleon form factors are given by

Ry =2 Ra=1 fy=1 Rl=2 (4.28)
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Crip—e Au <7.0x107 SINDRUM II:[147]

Table 10. Current experimental upper bound on pu — e conversion in Gold.

Crlu—e, Al 2.6x 10717  COMET: [149)
Crlp—e, Al 2.87x 10717 MuZ2e: [150]

Table 11. Future sensitivities to 4 — e conversion in Aluminium.

The p — e conversion rate is defined as the u — e transition rate divided by the u capture
rate, which depends on the nature of the target N

F,u,ﬁe

Crlp—e, N|= iVTpt . (4.29)
FN

For the capture rates for gold and aluminium, we use the values [146]
TP =87x 10718 GeV, I =4.6 x 10712 GeV. (4.30)

The current best experimental limit on p — e conversion comes from SINDRUM II [147]
(see table 10). The COMET and Mu2e collaborations will be probing Cr [ — e, Al] and
expect to improve the upper limit on p — e conversion by three orders of magnitude in the
coming years [148] (see table 11).

5 Phenomenology

In this section we study the phenomenology of charged lepton flavour violating processes in
the symmetry protected type-I seesaw, taking into account the constraints from Z — vv
and tests of lepton flavour universality from pion, kaon and tau decays.? For this we use
the expressions for the processes obtained in section 4, and the structure of the neutrino
Yukawa couplings given in eq. (2.15). In addition, we assume the case of three right-handed
neutrinos with degenerate masses.*

Let us start by showing the dependence of the u — e processes u — 3e, u — e7,
(1 — e conversion in nuclei, and Z — ey on the right-handed neutrino mass. For this we
fix the ratio \; = Mz/(10° GeV), which involves the (approximately) degenerate sterile
neutrino mass Mg, such that Tj; (see eq. (2.17)) becomes independent of Mp. Here and

in the following, the complex number z in eq. (2.15) is fixed to 1, however, as can be

3Even though also beta decays can be used as a probe of lepton flavour universality [151], we do not
include them here, since the Cabibbo angle anomaly points towards an enhanced W — p— v coupling [76, 152],
which cannot be achieved in our model and increases the tensions in the EW fit [151]. Furthermore, such a
modification would further increase the tension within the EW fit via its effect in the determination of the
Fermi constant [153].

“Note that the phenomenological analysis would be the same if we were to supplement the SM with
two mass-degenerate sterile neutrinos, given that egs. (2.22), (2.23) and (2.21) are obtained by a simple
rescaling of egs. (2.22), (2.23) and (2.21).
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Figure 9. Branching ratios and conversion rates of processes involving ;1 — e transitions for
degenerate sterile neutrinos of mass Mg, and with the Yukawa coupling structure given in eq. (2.15),
corresponding to the symmetry protected type-I seesaw. For this plot we set \; = Mpg/(10° GeV),
i € {e, p, T}, such that Tj; is constant. Therefore, also Br(yu — ev), which is proportional to T;;, is
independent of Mg, whereas the amplitudes entering Br(u — 3e), Cr(u — e) and Br(Z — eu) involve
terms with four Yukawa couplings in addition. Furthermore, Cr(y — e, Au) and Cr(u — e, Al)
feature target dependent blind spots.

seen from egs. (2.22), (2.23) and (2.24), varying |z| and Arg(z) would not add anything to
our discussion.

As we can see from figure 9, the u — e conversion rates show sharp dips for specific
values of the sterile neutrino masses, whose positions depend on the target nucleus. This
behaviour was already observed in ref. [63] and is due to a cancellation between u-quark
and d-quark contributions which enter the y — e conversion rate with opposite sign. For
masses around these blind spots, u — e conversion leads to less stringent bounds on the
neutrino Yukawa couplings, such that e.g. the bounds from p — 3e can be competitive.
Note that Br(Z — e*xT) not only displays a blind spot, but that this branching ratio is
generally inaccessible to current experiments, and even at future Z factories (taking into
account the current limits from the other y — e processes).

Next we study the constraints that Z — vv, tests of lepton flavour universality of the
charged current and upper bounds on charged lepton flavour violating observables set on
the couplings \;, i € {e,u, 7}, as a function of the mass Mg (see eq. (2.15)). Figure 10
shows allowed couplings \;, i € {e, u, 7} (see egs. (2.15)), obtained by logarithmic sampling,
for the cases of three degenerate sterile neutrinos with Mp = 103 GeV, Mg = 10* GeV or
Mp = 10° GeV. All points that are disfavoured by the combined x? function of Z — vv
and tests of lepton flavour universality of the charged current (at the 95% CL), or that are
excluded by any charged lepton flavour violating observables, were eliminated.
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Figure 10. Allowed regions in the different \; — \; planes for 4,5 € {e,u, 7} and Mg = 103 GeV,
Mp =10 GeV, Mp = 10° GeV (see text for details).

In figure 11 the Mpg-dependence of the products A\;Aj, 4,5 € {e,u, 7} is illustrated.
Whereas the bounds on )\%, are similar for all three flavours, the bounds on the product
AeAy are more stringent than the bounds on A.A; and A ;.

Next we consider correlations between the different charged lepton flavour violating
processes. For this we again assume three mass-degenerate right-handed neutrinos with
masses of either Mp = 103 GeV, Mg = 10* GeV or My = 10° GeV, whereas the couplings
Aiy i € {e,u, 7} are logarithmically sampled within the range [1076,1]. As for figures 10
and 11, the resulting rates are compared to the current experimental bounds and future
sensitivities given in tables 4, 6, 8 10 and in tables 5, 7, 9, 11 and all points in parameter
space were disregarded that are disfavoured by the combined y? function of Z — vv and
tests of lepton flavour universality of the charged current (at the 95% CL), or that are
excluded by any of the current upper bounds on charged lepton flavour violating observables
that are not plotted on the axes.
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Figure 11. Allowed points for the possible products A\;\j, 4,7 € {e,ur} (see eq. (2.15)) as a
function of Mg.

In figure 12 we show the three possible combinations of the p — e observables
Br(u — 3e), Br(u — ey) and Cr(p — e, Al). Here we do not consider Br(Z — pe),
since it does not give relevant bounds, even once future prospects are taken into account (see
figure 9). We see that, apart from in the regions of parameter space around the blind spots
shown in figure 9, ;4 — e conversion in nuclei is currently more constraining than u — 3e,
which is phase space suppressed. Furthermore, as figure 9 shows, the branching ratio of
i — ey is larger than that of 4 — 3e in the range of sterile neutrino masses considered
here. Consequently, u — 3e can only lead to more stringent bounds than p — ey if the
corresponding experimental limit is more precise. This is currently not the case, however,
the future Mu3e limits on the branching ratio will be lower than that of MEG II.
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Figure 12. Correlations between the processes 1 — 3e, ;1 — ey and p — e conversion in aluminium
nuclei. The current experimental upper limits are indicated by the black lines while the future
sensitivities are shown in red and orange.
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The spread of the points in figure 12(a) can be explained by the terms proportional to
four powers of the neutrino Yukawa couplings. Indeed, if one disregarded these Y* terms,
the predicted points in parameter space would converge to the upper left boundary of
the current region, and we would obtain direct correlations between the two observables
Br(u — 3e) and Br(p — ev). In particular, the smaller the sterile neutrino mass, the
stronger the bounds on the couplings and the smaller the Y4 terms w.r.t. the quadratic ones.
Consequently, larger values of Br(y — 3e) and Br(y — e) can be attained by O(10%) GeV
and O(10%) GeV sterile neutrinos than by ©(10°) GeV sterile neutrinos. For O(10%) GeV
and O(10*) GeV sterile neutrinos, even the current bound on Br(y — ey) is constraining.

Figure 13 (figure 14) shows the 7 — e(u) observables Br (7 — e(u)y), Br (7 — 3e(u))
and Br(Z — e(u)7). Figure 13(a) implies that Belle IT will probe a part of the parameter
space of sterile neutrinos with masses ~ O(10%) — O(10%) GeV, via Br(r — 3¢), however,
Br(Z — er), seems to be more sensitive to sterile neutrinos with masses ~ O(10%) GeV
(see also figures 13(b) and 13(c)), since it can exclude a part of the parameter space lying
below the current experimental bound on Br(7 — 3e). Furthermore, FCC-ee promises a
substantial improvement in sensitivity to the Z — er channel. The spread of the points
can be understood in the same way as for ; — e transitions.

Similar results are obtained for 7 — pu processes, as can be seen in figure 14. Among
them, Z — u7 is the observable most sensitive to sterile neutrinos with masses in the
range of ~ O(10°) GeV, however, future searches for 7 — 3u will also be able to probe the
parameter space for ~ O(10%) — O(10%) GeV sterile neutrinos. Note that the largest possible
values for the branching ratios Br(r7 — eue) and Br(7 — peu), which feature two flavour
changes, lie approximately eight orders of magnitude below their current bounds. For this
reason, we do not study these two observables in more detail. We expect a similar behaviour
for muonium-antimuonium oscillations, since also these feature two flavour transitions.

6 Conclusions

The type-I seesaw is a natural mechanism to generate the observed smallness of the active
neutrino masses. In general, this requires the corresponding neutrino Yukawa couplings
to be tiny for TeV scale right-handed neutrinos. However, the Wilson coefficient of the
Weinberg operator can be protected from a non-zero contribution by a symmetry, as in
the inverse seesaw model. We refer to this setup as the symmetry protected type-I seesaw,
and to the corresponding limit as the inverse seesaw limit. In the inverse seesaw limit,
the neutrino Yukawa couplings can be sizeable (for TeV scale sterile neutrions), such that
observable effects in tests of lepton flavour (universality) violation are possible.

Within this setup, we performed a complete and comprehensive analysis of charged
lepton flavour violation. In particular, we calculated the matching of the type-I seesaw on
the SMEFT at the dim-6 level, as well as the 1-loop contributions to the processes

o Z 0
o L= /ly
o { — 3¢

e [ — e conversion in nuclei

_97 —



MR = 105 GeV
Mp = 10* GeV
Mp = 10% GeV
—— Belle, 90%CL
— Belle II
---- BaBar, 90%CL

Mg = 10° GeV
Mp = 10* GeV
MR = 103 GeV
—— ATLAS, 95%CL
— FCC —ee
—— CEPC
---- Belle, 90%CL
===- Belle Il

1070 109 10° 107 10°° 105 10
Br(Z — e*77¥)

Mp = 10° GeV
Mp = 10* GeV
MR = 103 GeV
—— ATLAS, 95%CL
— FCC —ee
—— CEPC
---- BaBar, 90%CL

109 108
Br(Z — e*r¥)

()

Figure 13. Correlations between the processes 7 — 3e, 7 — ey and Z — er. The current
experimental upper limits are indicated by the black lines while the future sensitivities are shown in

010

red and orange.
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Mp =10° GeV

Mp = 10* GeV

Mp = 10° GeV
—— Belle, 90%CL
—— HL — LHC

—— Belle — II, 90%CL
---- Belle, 90%CL
---- Belle II

Mp = 10° GeV
Mp = 10* GeV
Mg = 10% GeV
—— ATLAS, 95%CL
— FCC —ee
—— CEPC
---- Belle, 90%CL
---- HL - LHC
-==- Belle — II, 90%CL

1070 10 10 107 1076 107 10~
Br(Z — p*rT)

Mp =10° GeV
MR = 104 GeV
Mp =103 GeV
—— ATLAS, 95%CL
—— FCC —ee
—— CEPC
-==- Belle, 90%CL
---- Belle II

Figure 14. Correlations between the lepton flavour violating processes 7 — 3u, 7 — -y and
Z — ut. The current experimental upper limits are indicated by the black lines while the future
sensitivities are shown in red and in orange.
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in the seesaw limit, i.e. at leading order in v? /MI% In the appendix we also provide the
corresponding expressions in a general R gauge using exact diagonalisation of the neutrino
mass matrix.

In our phenomenological analysis, we correlated 4 — ey to g — 3e and u — e
conversion, as well as 7 — e(p)y to 7 — 3e(p) and Z — Te(p). Taking into account the
bounds from lepton flavour universality violation in tau, kaon and pion decays, and the
limit on Br(Z — vv), we found that, while for sterile neutrino masses of the order of 1 TeV,
the correlation between any two £ — ¢’ processes is direct, i.e. showing a linear correlation,
the allowed parameter space significantly broadens for heavier right-handed neutrinos. The
reason for this behaviour is that for heavier right-handed neutrino masses, the neutrino
Yukawa couplings Y” can be larger, while still respecting experimental bounds, such that
the (Y*)?* effects in £ — ¢’ and Z — £¢' can be (relatively) more important. In particular,
we observed that

e Mu3e and future ;x — e conversion experiments have the capability of covering a large
portion of the so-far unexplored (i.e. unconstrained) parameter space.

e The lepton flavour violating Z decays, Z — er and Z — u7 can have sizeable branching
ratios and could be observed at future et e~ colliders such as FCC-ee or CEPC.

While we performed the phenomenological analysis without resummation of potentially
large logarithms between the right-handed neutrino scale and the EW scale, the formulae
for the matching on the SMEFT can in the future be used for an automated computation.
However, for this both a (at least partial) two-loop renormalisation group evolution, as
well as the inclusion of the (finite) loop contributions to the relevant observables within
LEFT, i.e. the contributions of the operators at the low scale to the matrix elements of the
processes, would be necessary.
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A Neutrino mixing matrix

For the derivation of the results for the amplitudes with exact diagonalisation of the neutrino
mass matrix (see appendix C), it is useful (as was already noticed in ref. [14]) to define the
3 X (3 4+ n) mixing matrix

U= VEL’T (13 @3) V,
3
Uis = > ViV, (A1)

=1

where ¢ and j are lepton flavour indices that run from 1 to 3, whereas s is a neutrino index
which runs from 1 to 34+ n. V is the (3 4+ n) x (3 + n) neutrino mixing matrix introduced
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Interaction Exact Feynman rule
LWinG, —WQLSWWUZ-SPL

Ng MRy - QS;CW (UT7”U> S
Lip™ NG — \/f (m?iagU) N P,
lig™ nRs i?(UAﬂ%%)wf@

Table 12. Feynman rules for Majorana neutrinos in the mass eigenbasis, without applying the

seesaw approximation. The lepton flavour index ¢ runs from 1 to 3, the neutrino indices s and ¢ run

from 1 to 3 + n. m;}iag is the diagonal mass matrix of the charged leptons.

in egs. (2.6)—(2.7) and V*" is one of the two 3 x 3 matrices V** and V*® that diagonalise
the charged lepton Yukawa as in

ytdiag _ y/LL Ty Ly LR (A.2)

Note that U is a semi-unitary matrix, since UUT = 13, but UTU # 13,,. At leading order
in v/Mpg, U is given by

U~ (15— $MpMg2M}, MpMg') (A.3)

which corresponds to the upper 3 x (3 4+ n) block of the seesaw-expanded neutrino mixing
matrix V, given in eq. (2.9).

The Feynman rules for the type-I seesaw can be expressed in terms of the neutrino
mixing matrix U. These are listed in table 12. Expanding them in powers of v/Mp, we
recover the Feynman rules given in table 1.

In the derivation of the results given in appendix C we use

UMy — L (13 @3) v Mding (VZL,T (13 @3) V)T

= (]l3 @3) (3% %}2) (éi) =03, (A.4)

relating the mixing matrix U, defined in eq. (A.1), with the active and sterile neutrino
masses. This identity is simply an extension of eq. (2.7).

B Contributions to charged lepton flavour violating processes within the
EFT

By definition, the Wilson coefficients, obtained from a matching at a high scale, contain
only the hard part of the corresponding amplitudes of the full theory (i.e. the SM with
right-handed neutrinos in our case). However, when calculating physical processes at fixed
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Figure 15. Diagrams with the insertions of the SMEFT operator which receives contributions at
tree-level, contributing to £ — ¢'~.

order, as is done in section 4, the full amplitudes, i.e. the sum of the hard and the soft part of
the amplitudes, enters. Therefore, the SMEFT matching of section 3.3 would be insufficient
to calculate physical processes because the soft part of the amplitudes, corresponding to
the loop-contributions to the respective processes within the EFT, would be missing. In
this section we obtain these soft parts of the amplitudes by calculating the loop diagrams
with the insertions of the modified tree-level couplings of neutrinos with Z and W bosons
resulting from eq. (3.9).

B.l1 £— 0~

Defining
Legr = a3 Lioulr F* + hec., (B.1)

where FH = gAY — @Y A* is the electromagnetic field strength tensor, we find the contri-

butions to £ — ¢'~, shown in figure 15, to be given by

5e3my.
M ’
W = TR, M2, (B-2)

Together with the contribution to the Wilson coeflicients from the one-loop matching of
the full theory onto SMEFT, reported in egs. (3.20) and (3.19), this combines to the full
¢ — 'y amplitude given in eq. (4.18).

B.2 Four lepton amplitudes

The amplitudes of £;¢; — ¢;£}, processes, can be decomposed as
VLL | :VLL , 3VLL\ (7 2
M = (%,kz + 250+ z‘j,kl) (fﬂuPij) (&WPL&)
+ (axﬁf + fz\géﬁ) (E"')/#PL@) (zk’Y#PRel) , (B.3)

where a}%‘f denotes the off-shell photon penguin contributions, 2\]/-,‘213 the Z penguin, and

1.
Z\;.’sz the box contributions.
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Figure 16. Off-shell photon penguins contributing to four-lepton processes.

There are three classes of diagrams with an off-shell photon exchange, as shown in
figure 16):

e Diagrams with two Goldstone bosons in the loop
e Diagrams with a Goldstone and W boson in the loop

o Diagrams with two W bosons and a light neutrino in the loop

Due to the vectorial nature of the photon coupling, a ;;Lle = aXka“ and we find

VLL _ VLR _ v v
il = Qg = —eQea;0p = €, a0k (B.4)

with a . given in R¢-gauge by

3

V_ € 2 §log{ >
aij = 5767’[‘2 M2 ZlMD Za,MR aMD ja (95 9§+54 § +610g (M‘%V)) . (B5)

Together with the result of the one-loop matching, the Z-penguin and box contributions,
this leads to the results in eqgs. (4.20) and (4.21).

Below the electroweak scale, the diagrams with an off-shell Z boson exchange are the
ones shown in figure 18, with a fermion line attached to the Z boson. They give

~VLL
Zijkl = 98M5kl2

sVLR

(B.6)
Rijkl = gSM(Sklzm ’
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Figure 17. Box diagram contributing to four lepton processes with a tree-level operator insertion.
with

3 2
sL e cw 6& log & 7
T T 1287253, M3, { aZlMD oMy aMb ju (8 St toleslam

in R¢ gauge, and

3 n 2
=L € Cw —2 % I
= Mp iaMp> M7 ., [ 1461 —
= iy | oy Mo (1 ot (7)) |
in Feynman gauge.

The box diagram with two W bosons in the loop (see figure 17) contributes as follows
in the R¢-gauge:

4 n
VLL _ e 9k 1 6 log &
diji = _m QZ::I MD,iGMR,aMD,ja(;klZ <—3 +& - 1—¢ ) (B.7)
In Feynman-gauge we have
VLL _ e!
diji = 6an?sh M2, Z MpiaMp %M} 06k - (B.8)
W oa=1
B.3 Two-lepton-two-quark interactions
Next we consider y — e conversion in nuclei, whose amplitude can be written as
Mo = (aVEL 4 LVLL o gVLLY (5.0 p g (@vuPrq)
eft = \%ijqq T %ijqq T Yijqq ) \YiTul LY ) @Vt LY
VLR , VLR —
T ( Gijaq T Zijaq ) (EWALPLKJ') (@ Pra) (B.9)
with ¢ = u, d.
The photon penguin contributions are of the same form of those given in (B.4).
2
VLL VLR \Y% \Y%
O, = Ciju = —€Quai; = —3%%;,
1 (B.10)
VLL VLR _ \Y% \Y%
Ajdd = Gijdd = —€Qad; = g€ aj; .
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Similarly, the Z boson penguins lead to
sVLL _ oL qL
Zijag = ij ISM
VLR _ :L qR
Fijag = %ij ISM

(B.11)

where ggf/[, and ggﬁ, q = u,d, are the SM Z boson couplings to left- and right-handed up-
and down-type quarks,

ul € 4 2
S 1——
gsm 2swew < BSW) ’
uR 2esw
SM — 5
3c
" o 2, (B.12)
p— 1 -
gSM 28 ( SW) )
dR o _eSW
gsm — Yo

and 25 is as defined in eq. (B.6).
In R¢-gauge we obtain the following box contributions:

4 n 3
VLL € A =2 A CKMy,CKMsx
dijﬂtkuz T 956725t M2 Z ZMD’WMR7GMDJGV]€9 Vlg

™ SW w a=1 g:l

<— (—9+ 8¢ + &2+ 66log &) M, + & (—1 + & + 6log &) mg,
(~1+¢) (M3, —m3 )

m? Mg\ ml, (A -md)
+ glog( ’a>+ g g log(m;/v))}

2 2 2
My My ) M3, (Mg, —m3) dy
4 n 3
VLL __ e A =2 n s CKMsx1,CKM
Bt = 55520 37 2o 2o MDiaMpaMp o Vo™ Vo

<(3—45+§2 +66log §) M, — & (=14 &+ 6log&) m
(~14¢) (M —m2,)

m2, M3, my (4MW2 — 8my, My, + mig) M,
— = log 5 | — 3 log .
My, M, vz (a2 2
w ( w ’mug>

(B.13)

The terms with two Dirac mass matrices are generated by double W boson boxes, whereas
the terms with four Dirac mass matrices are generated by double-Goldstone boxes. In the
following, we neglect the possibility of having a flavour transition in the quark line, since this
effect is CKM-suppressed (when summing the contributions we set (VCKMVCKMT> = Ok1)-

C Exact diagonalisation and/or R, dependence

In the following, we give the full results, i.e. the sum of the soft and hard parts of the
amplitudes, for the processes of interest in our work, with exact diagonalization of the
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neutrino mixing matrix (as described in appendix A) and in the R¢ gauge. We sum over
the flavour indices a,b and ¢, which denote, respectively, internal neutrinos and charged
leptons, while the indices i, j, k,[ denote external leptons, which are fixed. For the sake of
simplicity, we express the result in terms of master integrals, reported in appendix D.

C.1 Anomalous magnetic moments and radiative leptonic decays

Defining
Leg = AM KUWPRE F* 4 h.c., (C.1)

where FH* = gAY — Q¥ A* is the electromagnetic field strength tensor, we find

A = 2566”? z Ugo ™ (M, Myy) | (C2)
where
M (M, 0, Myy) = My 1 (602 My (Ao(M,) — M)
M3, (M2, - M)
= 3M), (240(Miw) — My, ) +2MS, + Mfy) . (C.3)
C2 Z— e

The Z — {;¢; amplitude can be cast into the form

e3

M(Z — &ZJ) = — 3 ZZ\;L ZjZPL&,

2
167 cw sy

with

Z _U UafA( >+Uia<iUl:aUkb> jbe( ua?M2)

+UiaUkaUkb be( uaaM2 )7 (C4)

Y (m2,) = { ]\;; ((Lﬂf__ ]\Zj; 7 (40 (M3, +2M3) — 30, (205, +3M3 ) M2,

+AME M +2MS, ) Ag(My)

2 (2Mj, — M)
Mg (Mg,a_MI%V)

7 (40 (M, +2M3 ) — 60, (M, +M3) M2,

+M%szl,a+2M§,a) AO(MV,G)

2

3 ( (4MWMZ+4MW M%) M2,

+2 (QMV?V—Mg) M;{a)BO (Mg; MW,MW)
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Figure 18. Insertions of Xi"j’-, X;; and Ci(j’z)yijin loop diagrams contributing to the process Z — £¢'.
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_ % (40, (MFy+2M3 )+ M3, (4ME—5M, ME—6M, ) M2,
Z

+ M3 (4MFy — M) M+ (205, — M3 ) M, )
x Co (0,0, M3; My, My 0, My )

1
16M2,

2ME, — M2
M3 (M2, —M3)

(203 +5M2 My~ M) } (C.5)

18 (020 02) = { M (20039003432, 3s) B (0 Mo M.

+(—2M3, (M +M3) “rang, (M +M3) (M2, +M2,)
— (2MF, + MZ) M2, M2,

1

— .6
o (@Y

x Co (0,0, M3; My, My, M) }
and
1 (M0 M) = { (= 2Mf + M + M, + M) Bo (M3; Mya, My )

= 2(M2 M2y — M, (M2, + MZy) + My (M, +2M3) )

_Mu,aMu,b

s - 0

x Cy <O,O,M%;MV,Q,MW,M,,7,,> }
Note that all three structures are both £-independent and UV-finite after taking into account
the unitarity of the neutrino mixing matrix and eq. (A.4).

Performing the seesaw expansion (see egs. (2.9)—(2.11)), eq. (C.4) simplifies to eq. (C.9).
The structure U;oUc UG U ;‘b vanishes by virtue of the inverse seesaw condition, eq. (2.12).
Terms with this structure survive only in presence of sterile neutrino mass splitting and can
be simplified as follows. Using the notation Y| L= fo b=1 YZZMIQ}I ( g:l YCZYC’{)*) M Ig’inlg*,
we find

M?2 2 M3 2
Y4’L X {_M2 R7L2 log <]\52 > + M2 RJ]’WQ log (A;Q )} =
Ra ~ MRp R.a Ra ~ MRp Rpb
M?2 M?2
Y4, x {+R’“ log (M%,) — ——22_log (M3, }:
X\, —amg, 8 (VMRe) ~ 3z gz, e (MR)

yil, x {1MR—M log (M3,) 4~ R0 tog (113,,)

2 M}, — M, Mp , — Mg,
1 ME, — M3, ) M3, )
—— P log (Mpy) — —5——5log (M =
2 M3, — ME, © (M) M, — MZ, * (M)
1 M, + M M}
4 R,a R R,a 4 2 2
Y ’l’x{2M%a—M12%blog<M]2%b =Y |LXk(MR,a’MR,b)7 (CS)
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with the function k, as defined in eq. (4.15).

n
VL o
Zy (a3) = 3 MpiaMgaMp jafz (M)
a=1
n 3
+ > Mpia (Z MB,kaMD,kb> Mbpjbv fia (MJQ%,avMJ%z,b)
a,b=1 k=1

n 3
+ Z MD,iaME,}; (Z MD,kaMB,kb> M}E})Ml*),jb faB (M}ZZ,Q’M}%E,I)> . (C9)
a,b=1 k=1

The loop functions f; and fi4 and fip, reduced to master integrals, are given by

b ( M%) _ ( - 2c%v) QM+ Mpql —6MEMG, (M, +q%) +4My, (M +243)
8M3, q% (M3 —M3,)?

Ao(MR)

MZ (2Mp—4AME (Mg, +q%) +TME,q% +2My,)
8M3,q% (M3 —M3,)?

+(1—2c%v) Ao(Mw)

1
+ 5,7 (M—2Miy =34 ) Bo(d:0, M)
Z
M,
SM‘%VQ%

+ (2(1-2ck) ME—2 (1+26% ) M+ (1-2ck ) a} ) Bola; Mw, M)

+q1% (MF+43) (ME— M, ) Co(0,0,q%, Mg, My, 0)

m( (1—2c%v) MS— M (2MV2V— (1—2c%v) qg)

+MEME, (1466 ) M, —4 (1-cy ) i3 )

_4C%NM{/1V (MI%/+2Q%> )00(0707Q%7MW7MR5MW)

+

(1=2¢cty) Mp (Mp—7Myy)

C.10
1602, (ME—MZ) (C.10)
and

1
fra(Mpa, Mpyp) = ———5Co(0,0, 9%, Mg q, My, Mp) (C.11)

103,

1
M 4, Mpy) = —
f4B( Ra R’b> 8MZ, g3 Mp,oMp

X { (Mfm + Mp, — 2M, + q%) By (q%; MR, MR,b)
—2(M} M, — M, (MR, + M3,) + My (M, +2%) )
X C() (0,0,q%;MR,a>MWaMR,b> } (0'12)

q% corresponds to the momentum squared of the Z boson. For on-shell Z, q% is to be
substituted with MZ.
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C3 £—ee”

The amplitudes of ¢ — 3¢’ processes can be cast into the form

M (Ej — &'@k@l) (A);Lk]f + Z\ﬁﬁ) (Ei'yHPLﬁ-) (Zk'yuPREl)
KAXLML + \ﬁclL + D?ﬁﬂ (EﬂuPLﬁj) (ZWMPL&)
+ (i, kl) — (KL, 7))
+ ((ig, k1) — (kj,il))
+ (i, kl) — (il, kj))]
+ D (f PL&c) ( PREZ) ) (C.13)

with Aka(lL/ R), ZZ%;L/ R), DZ\;LML and DlSJLkIf as defined in the following subsections.

C.3.1 Photon penguin contributions

From the photon penguins, we obtain

sty (-6 (mz,—emz)  \EMiw
(2536 M5, — (43 196) M3, M, + (HE+9) M M2, — 660,
(M2, -Mz)" (M2, ~M3)

2(8641) MY ,— (414+138) M, M, ,+6(11—28) My, M2 ,—3(7—&) My, <M2>

v,a

4 g M2
(1_6) (Mlg,a_Mi%V) w
(C.14)
C.3.2 Z penguin contributions
The Z penguin contributions give
VLR LL VL
Zii = 9smZij Okl s
Zyr = QSMZVL5kl 7 (C.15)
with the couplings géﬁ/[ and géﬁ, as defined in eq. (2.28), and
_ ZVL VL
Z’L] lcl‘RE - Zz],kl‘FG + Zzg,k:l’é ) (016)
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where Zi\;’[];l‘Rg denotes the result in R¢ gauge, Z;J/"I%CZ‘FG is the result in Feynman gauge

and Zi\ﬁl‘g collects the £-dependent terms:

3 U M2
VL e Cw a” ja 4 2 agd
Zy ‘FG 1287283, M2, <M2 MZ)Q{MM (9 1010g<M2 )) 8ME, M2, MW}
w

6 CW " *
— =V WU UnU7,
647253, M2, J

2 2 M?2
i) - My (M2, - M) o )

Mgy (M3, = M) (M3, — My, ) (M7, — M)

M (M2, M) log (3
X

3
CN  UiaUnaUs,

- 128n2s3, M2,
M3 M, (M2 —4M2)] 3“ M, M3, (M2, — a2 ) log [ Mo
v,a V,b( v,a )Og v,atty b v,b w ) 108 M2,
X - )
M, (M2, —M2,) (M2, Mﬁv) Mg, (M2, —MZ,) (M7, — M)
(C.17)
and
ZVL 63CW *
"¢ = Tag sy, Vel
7 1%
N2 M2 M2 €M
va W I/,a_g w
eM2, 262(1+2¢) M3,
+ ; 5 — 5 5 log £M2
(Mg’affMW) (1_5) (Mu,a_gMW) w
3(5-9¢) 1M M) g (M,
5 2 + 7t M2 log M2
2(1_5) (MV,CL_MW) 2 (Mlg,a_MI%V) w w
elc N
+5 47T2W3 UiaUuUin U,

2 Ml%a 2 Ml%b
M2 élog (£M2 ) log (]\4%/) M2b glog (fMQ ) log (M2 )

+ _
M{%V Mg,a_gMIgV Mg,a_M‘%V M‘%V Mib—gM‘%V Mg,b_MI%V

(C.18)

C.3.3 Box contributions

For general neutrino mixing matrices, we find two different classes of box contributions:

vectorial, lepton number conserving boxes that we will denote DZV%; , as well as scalar,
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lepton number violating boxes, which we denote DlSJL,fl% and vanish in the inverse seesaw

limit in presence of degenerate sterile neutrinos. The full box contributions in the R¢ gauge
can be split into the result in Feynman gauge and the £-dependent terms:

DY, - DU, + DL,
SLR SLR SLR
Djj ki Re = Dkl |pe T Pijki e (C.19)
We find
1
DVLL UiaU; U Upi
okl ’FG 2567723{1,VM4 Z TG (M2, — M2,) (M2, — M3,)2 (M2, — ME,)?

M2 M2

_ M2 MG M4 7 21 v,a o 8]. l/,b

W v ub ( + og MI%V 0g MI%V
M? M,

M2 ML M, (7 +210g | =22 ) — 81 d

+ W v.a v ( + og MI%V og MgV

M2
+ 20Myy, M, .M, log | —2°
5 5 My’b

4 2 2 4 M2 4 M2b
v,a v,
+ MWMV’aMmb (Mv,a (7 + log <M2 >> — MMb (7 + log <M2 ))
w w
M? M?
— MY M2, M2, | M2, [3+16log [ =22 | | — M2, (3 + 161og | —2°
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_ Z MuaMu,b
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and
DSERI = My Ui UMy,
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(C.23)

In the sums (AVEE + ZVER) and (AYEF + ZVEF + DYEE), which are the relevant contri-
butions to ¢ — 3¢’ processes in the case of lepton number conservation, the ¢ dependence
drops out by unitarity of the neutrino mixing matrix (UU' = 1). In DSIE | the ¢ depen-
dence drops out by virtue of eq. (A.4), which is a consequence of the SU(2), invariance of
the Lagrangian (see eq. (2.1)). Note that the structure UjoUmoU,,,, U}, in the Z penguin
contribution, eq. (C.17), and the structure U}, Uy UipUyp in the scalar boxes, eq. (C.22),

arise from lepton number violating contributions. These structures vanish in the inverse
seesaw limit (see eqgs. (2.14) and (2.15)) if the sterile neutrino mass splitting is small.

C.4 p — e conversion in nuclei
Next we consider 4 — e conversion in nuclei. We define
_ VLR VLR (7 -
Mefr = Z (‘Aij,qq + Zijaa ) (gi’Y#Png) (47 Prq)
q=u,d
5,49 13,99 5,99

+ (AVEE + ZYEL + DYEL) (G, Pty ) (7 Pra) | (C.24)

with AVLL/ER  ZVLLILE 4 DYLL

15,99 » *ig,qq 05,99
Taking the sum in eq. (C.24) and the quark flavour-diagonal limit of the box contri-

as defined in the following subsections.

butions, D%ﬁf = D}%fql Ok1, where ¢ = u, d, we obtain the leading contribution to u — e

conversion, which is given in eq. (4.24).

C.4.1 Photon penguin contributions

The photon penguin contributions to p — e conversion in nuclei are of the same form as
those contributing four lepton processes.

2
AVLL _ AV.LR _ QuA;;L _ g./42\;12

1J,un 1J,un

. (C.25)
VLL _ 4VLR _ VL _ VL
ij,dd — YYijdd — Qd'Aij - _g'Aij

with the form factor A};L given in eq. (C.14).
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C.4.2 Z penguin contributions
Similarly, the Z boson penguins lead to the contributions

VLL L
Zijaq = Zij 95M

VLR L qR
ZZ] qaq ZZ] 9gsm

(C.26)

where ggf/[, and ggﬁ, q = u,d, are the SM Z boson couplings to left- and right-handed up-
and down-type quarks, which are given in eq. (B.12), and Zl% is the form factor given in
eq. (C.15).

C.4.3 Box contributions

Since to order v? /MIQ% there are no box diagrams contributing to the matching onto Og)

and O the only contributions are those given in eq. (B.13). Neglecting the possible

Lq
flavour effects on the quark line, we define
VAB _ WVAB VA
Dijaq = Dijgra Okt = dw ara Okl 5 q=u,d. (C.27)

D Integrals

Assuming the hierarchy M3,, M%,q% ~ v? < M3, |Mpao — Mpy| < |[Mpo + Mpgyp|, we can
use the following expansions of the master integrals:

(3%)

1 2 qz° (4M7, —qz°) M3
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2 2
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