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1 Introduction

Closed string genus-0 four-point amplitudes are commonly referred to as Virasoro-Shapiro
amplitudes. The worldsheet theory to compute the corresponding amplitude on AdS5×
S5 space-time is still unknown, which motivates us to explore alternative methods. In our
favour we have that, by the AdS/CFT duality, this amplitude is also a correlator in N = 4
SYM theory. The AdS/CFT dictionary maps the genus expansion in gs to the expansion
in inverse powers of the central charge 1/c while α′ corresponds to inverse powers of the
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t’Hooft coupling 1/
√
λ . We study the correlator of four stress-tensor multiplets in Mellin

space, to leading order in 1/c, which in a 1/λ expansion can be written as (see [1] for
further details)

M(s1,s2) = 8
(s1− 2

3)(s2− 2
3)(s3− 2

3)
+
∞∑

a,b=0

Γ(2a+3b+6)
8a+bλ

3
2 +a+ 3

2 b
σa2σ

b
3

α(0)
a,b+

α
(1)
a,b√
λ

+
α

(2)
a,b

λ
+ · · ·


(1.1)

where s1 + s2 + s3 = 0, σ2 = s2
1 + s2

2 + s2
3 and σ3 = s1s2s3, and we have suppressed an

overall 1/c.1 The leading coefficients α(0)
a,b are known from the flat space Virasoro-Shapiro

amplitude via the flat space limit formula [2, 3].
In [1] we used the bound on chaos [4, 5] to derive dispersive sum rules that relate the

Wilson coefficients α(k)
a,b to the OPE data of the exchanged heavy single-trace operators with

dimensions that grow as ∆ ∼ λ
1
4 . In this paper, we present a solution to these dispersive

sum rules, determining the coefficients α(1)
a,b and the corresponding 1/

√
λ corrections to the

dimensions and structure constants of said operators.
In [1] it was assumed that α(1)

a,b is in the ring of multiple zeta values, has uniform
transcendentality and that the sums over OPE data related to α(1)

a,b are given in terms of
Euler-Zagier sums. As discussed in [1], these assumptions are not enough to fully fix the
α

(1)
a,b. In the present paper we make the additional assumption that α(1)

a,b is in the ring of
single-valued multiple zeta values (i.e. α(1)

a,b are single-valued periods). This property is
known to hold for tree-level closed string amplitudes in flat space [6–9], and is expected
from a world-sheet perspective. This additional assumption turns out to be surprisingly
powerful and leads to a unique solution for α(1)

a,b. This also determines the corresponding
OPE data and we give the 1/

√
λ corrections to conformal dimensions and OPE coefficients

as analytic formulae for many Regge trajectories. Our solution passes several checks. First,
we reproduce the dimensions of operators on the leading Regge trajectory (including the
Konishi operator) known from integrability and the two available Wilson coefficients known
from localisation. Second, we fix the solution for α(1)

a,b by imposing single-valuedness for
a few values of a. The resulting solutions turn out to be single-valued for all values of
a that we are able to check, in a non-trivial way. Third, our solution for α(1)

a,b implies
an overconstrained linear system of equations for the OPE data. That this system has a
solution serves as a consistency check for α(1)

a,b.
Having found α

(1)
a,b, the next step is to resum the low energy expression in (1.1) to

obtain a simpler expression that makes the analytic structure of the amplitude manifest.
As the sum over a and b in (1.1) is divergent, we introduce the flat space transform, an
integral transform equivalent to the one in the flat space limit of [2, 3] but without sending
the AdS radius to infinity. This is equivalent to performing a Borel resummation. For the
leading term this reproduces the familiar Virasoro-Shapiro amplitude

− Γ (−S) Γ (−T ) Γ (−U)
Γ (S + 1) Γ (T + 1) Γ (U + 1) = 1

STU
+ 2

∞∑
a,b=0

σ̂a2 σ̂
b
3α

(0)
a,b , (1.2)

1These Mellin variables are related to the ones in [1] by s1 = s− 4
3 , s2 = t− 4

3 , s3 = u− 4
3 . This implies

α
(0)
a,b = αa,b and α(1)

a,b = βa,b − 2
3 (b+ 1)(6 + 2a+ 3b)α(0)

a−1,b+1.
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with σ̂2 = 1
2(S2 + T 2 + U2), σ̂3 = STU , for which [10] found the representation

2
∞∑

a,b=0
σ̂a2 σ̂

b
3α

(0)
a,b =

∞∑
δ=1

1
δ3

y + 2
1− x− y

(
z + δ − 1
δ − 1

)2

, (1.3)

with x = σ̂2/δ
2, y = σ̂3/δ

3, and z = δ (
√

1− 4y − 1) /2. For the 1/
√
λ correction we find

2
∞∑

a,b=0
σ̂a2 σ̂

b
3α

(1)
a,b =

∞∑
δ=1

δ−1∑
n=0

1
δ4Dn(δ) y + 2

1− x− y

(
z + δ − n

2 − 1
δ − n− 1

)2

, (1.4)

where Dn(δ) is a third order differential operator in x, y and z which produces a crossing-
symmetric expression with poles up to 4th order in S, T and U .

This paper is organised as follows. In section 2 we review the dispersive sum rule
for α(0)

a,b, its solution and other known data. Section 3 states the dispersive sum rule
for α(1)

a,b, our precise assumptions and, after a short primer on single-valued multiple zeta
values, constructs α(1)

a,b for 0 ≤ b ≤ 6. In section 4 we generalise the solutions to any
value of b by finding general expressions for the sums over OPE data that appear in the
dispersive sum rules. We use this to determine OPE data for many Regge trajectories.
In section 5 we apply the flat space transform and resum the low energy expansion. We
conclude in section 6. Appendix A contains a derivation of general expressions and recursion
relations for the dispersive sum rules based on crossing-symmetric dispersion relations.
In appendix B we present an alternative representation for the spin sums of section 4.
Appendix C contains an analysis of extra bootstrap constraints on the OPE data of heavy
operators, other than the ones in [1]. In appendix D we compute the residues of the
highest order poles of the amplitude at each order in 1/λ and resum them. In appendix E
we summarise the state of the art of the weak and strong coupling expansions of the
dimension of the Konishi operator.

2 Review of known data

The ‘stringy’ operators that enter the dispersive sum rules for α(k)
a,b are the single trace

operators with twists τ(r;λ) and OPE coefficients C2(r;λ), which can be parameterised by

τ(r;λ) = τ0(r)λ
1
4 + τ1(r) + τ2(r)λ−

1
4 + . . . , (2.1)

C2(r;λ) = π3

212
2−2τ(r;λ)τ(r;λ)6

sin2(πτ(r;λ)
2 )

1
22`(`+ 1)f(r;λ) , (2.2)

f(r;λ) = f0(r) + f1(r)λ−
1
4 + f2(r)λ−

1
2 + . . . , (2.3)

where r labels collectively all quantum numbers characterising the operators. The leading
contribution to the twists is

τ0(r) = 2
√
δ , δ ∈ N , (2.4)
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Figure 1. Chew-Frautschi plot of the stringy operators.

and we will use δ along with the spin ` to label operators from now on, i.e. r = (δ, `, r̂). As
long as we are studying only a single correlator we cannot access further quantum numbers
r̂ and will denote the sum over them by

〈. . .〉 =
∑
r̂

. . . . (2.5)

The operators are organised into Regge trajectories by their dependence on δ and ` as
illustrated in figure 1.

The dispersion relations imply the following expression for the first layer of Wilson
coefficients2

α
(0)
a,b =

∞∑
δ=1

b∑
m=0

c
(0)
a,b,m

δ3+2a+3bF
(0)
m (δ) , (2.6)

where

c
(0)
a,b,m = (−1)m(2a+ 3b− 3m)Γ(a+ b−m)

2Γ(a+ 1)Γ(b−m+ 1) (2.7)

× 4F3

(
m+ 1

2 ,
m

2 ,m− b,m+ 1− 2
3a− b;m+ 1,m+ 1− a− b,m− 2

3a− b; 4
)
,

and the leading contributions to the OPE coefficients appear in the sums

F (0)
m (δ) = 4m

Γ(2m+ 2)

2(δ−1)∑
`=0,2,...

(`−m+ 1)m(`+ 2)m〈f0(δ, `)〉 . (2.8)

2The derivation of the dispersive sum rules for α(k)
a,b for general b is described in appendix A.1.
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The first few cases read explicitly

α
(0)
a,0 =

∞∑
δ=1

1
δ3+2aF

(0)
0 (δ) ,

α
(0)
a,1 =

∞∑
δ=1

1
δ6+2a

((
a+ 3

2

)
F

(0)
0 (δ)− F (0)

1 (δ)
)
,

α
(0)
a,2 =

∞∑
δ=1

1
δ9+2a

(1
2(a+ 1)(a+ 3)F (0)

0 (δ)−
(
a+ 5

2

)
F

(0)
1 (δ) + F

(0)
2 (δ)

)
,

...

(2.9)

All the coefficients α(0)
a,b are known from the flat space limit, for example

α
(0)
a,0 = ζ(3 + 2a) ,

α
(0)
a,1 =

a∑
i1,i2=0
i1+i2=a

ζ(3 + 2i1)ζ(3 + 2i2) =
(
a+ 3

2

)
ζ(2a+ 6)− 2ζ(2a+ 5, 1) ,

α
(0)
a,2 = 2

3

a∑
i1,i2,i3=0
i1+i2+i3=a

ζ(3 + 2i1)ζ(3 + 2i2)ζ(3 + 2i3) + 1
6(a+ 1)(a+ 2)ζ(9 + 2a) (2.10)

= 1
2(a+ 1)(a+ 3)ζ(2a+ 9)− 2

(
a+ 5

2

)
ζ(2a+ 8, 1) + ζ(2a+ 7, 2) + 4ζ(2a+ 7, 1, 1) ,

...

written in terms of multiple zeta values of depth k and weight s1 + . . .+ sk

ζ(s1, . . . , sk) =
∑

n1>...>nk>0

1
ns1

1 · · ·n
sk
k

. (2.11)

By comparing (2.9) with (2.10) it is apparent that F (0)
m (δ) are most naturally expressed in

terms of Euler-Zagier sums, defined by

Zs1,...,sk(N) =
∑

n1,...,nk
N≥n1>...>nk>0

1
ns1

1 · · ·n
sk
k

, Z(N) = 1 , Zs1,...,sk(0) = 0 , (2.12)

and which naturally lead to multiple zeta values when summed over δ

ζ(s, s1, s2, . . .) =
∞∑
δ=1

Zs1,s2,...(δ − 1)
δs

. (2.13)

We see that
F (0)
m (δ) =

m∑
d=bm+1

2 c

∑
s1,...,sd∈{1,2}
s1+...+sd=m

2
∑

i
δsi,1δmZs1,...,sd(δ − 1) . (2.14)

Equating (2.14) and (2.8) fixes all the individual OPE coefficients 〈f0(δ, `)〉. To see this,
note that F (0)

m (δ) is a sum over δ different spins, so F (0)
m (δ) for 0 ≤ m < n fixes all the OPE

coefficients with δ ≤ n.
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At the next order the requirement that (1.1) is an expansion in 1/
√
λ leads to a sum

rule for vanishing Wilson coefficients

0 =
∞∑
δ=1

b∑
m=0

c
(0)
a,b,m

δ
7
2 +2a+3b

(
F (1)
m (δ)− (3 + 2a+ 3b)T (1)

m (δ)
)
, (2.15)

with

T (1)
m (δ) = 4m

Γ(2m+ 2)

2(δ−1)∑
`=0,2,...

(`−m+ 1)m(`+ 2)m〈f0(δ, `)(τ1(δ, `) + `+ 2)〉 ,

F (1)
m (δ) = 4m

Γ(2m+ 2)

2(δ−1)∑
`=0,2,...

(`−m+ 1)m(`+ 2)m〈
√
δf1(δ, `)− f0(δ, `)

(
3`+ 23

4

)
〉 .

(2.16)
This sum rule has the solution

τ1(δ, `) = −`− 2 , 〈f1(δ, `)〉 = 〈f0(δ, `)〉
3`+ 23

4√
δ

. (2.17)

From a string theory perspective, we expect the corrections to energies of string configu-
rations to be spaced by half-integer powers of λ

∆̂(r;λ) =
∞∑
i=0

∆̂2i(r)λ
1
4−

i
2 . (2.18)

Our result for τ1(δ, `) suggests that the states we are considering are dual to the energies
from string theory by a shift of 2 from a supersymmetry transformation

∆̂(r;λ) = ∆(r;λ) + 2 = τ(r;λ) + `+ 2 . (2.19)

For example, the dimension of the Konishi operator Tr ZD2Z is of the form (2.18) at
strong coupling and ∆̂classical = 4 in the free theory (see appendix E). The supercon-
formal primary of the Konishi supermultiplet ∑6

i=1 Tr Φ2
i , which is exchanged in the

correlator (1.1), has classical dimension ∆classical = 2, in agreement with (2.19).3 For
this reason we expect τ1(δ, `) to be degenerate, i.e. the same for all species, so that
〈f0(δ, `)τ1(δ, `)2〉 = 〈f0(δ, `)〉(`+ 2)2 and so on.

Starting with the next layer of Wilson coefficients α(1)
a,b and the corresponding OPE

data 〈f0(δ, `)τ2(δ, `)〉 and 〈f2(δ, `)〉 we are truly starting to explore the Virasoro-Shapiro
amplitude in AdS. Of this data, the only pieces that were previously known are, from
integrability, the twists on the leading Regge trajectory [11–13]

τ2(δ, 2(δ − 1)) = 3δ2 − δ + 2
2
√
δ

, (2.20)

and, from supersymmetric localisation, the Wilson coefficients4 [14, 15]

α
(1)
0,0 = 0 , α

(1)
1,0 = −22

3 ζ(3)2 . (2.21)

In the remainder of the paper we will determine the rest of this data.
3Φi are the six real scalar fields of N = 4 SYM and Z = Φ1 + iΦ2.
4Localisation also fixes α(2)

0,0 and α(3)
0,0 as in (6.1) below.
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3 Solving the sum rules

The dispersive sum rule for the next layer of Wilson coefficients is

α
(1)
a,b =

∞∑
δ=1

b∑
m=0

1
δ4+2a+3b

(
c

(0)
a,b,m

(
F (2)
m (δ)− (3 + 2a+ 3b)T (2)

m (δ)
)

+ c
(2,0)
a,b,mF

(0)
m (δ) + c

(2,1)
a,b,mF

(0)
m+1(δ)

)
,

(3.1)

with new OPE data encoded in the sums

T (2)
m (δ) = 4m

Γ(2m+ 2)

2(δ−1)∑
`=0,2,...

√
δ(`−m+ 1)m(`+ 2)m〈f0(δ, `)τ2(δ, `)〉 , (3.2)

F (2)
m (δ) = 4m

Γ(2m+ 2)

2(δ−1)∑
`=0,2,...

(`−m+ 1)m(`+ 2)m
(
δ〈f2(δ, `)〉 − 39

4 `〈f0(δ, `)〉
)
. (3.3)

The coefficients c(0)
a,b,m are the ones given in (2.7) and the new ones are given by

c
(2,0)
a,b,m =

(
−
(1

2a+ 3
4b+ 27

4

)
m2 +

(
2a2 +6ab+ 26

3 a+ 9
2b

2 +13b− 21
8

)
m

− 4
3a

3−6a2b− 16
3 a

2−9ab2−16ab− 1
3a−

9
2b

3−12b2− 1
2b−

277
32

)
c

(0)
a,b,m ,

c
(2,1)
a,b,m = (m+1)

(
−
(1

2a+ 3
4b+ 27

4

)
m+a2 +3ab+ 49

12a+ 9
4b

2 + 49
8 b−

75
16

)
c

(0)
a,b,m .

(3.4)

In contrast to α(0)
a,b, we now have unknown data on both sides of the equations. There are

some constraints arising from the fact that the sum rule (3.1) is valid for b = 0, 1, . . . and
a = −b,−b + 1, . . . and that (1.1) needs to be an expansion in positive powers of σ2 and
σ3, which implies

α
(1)
a,b = 0 , for a = −b,−b+ 1, . . . ,−1 . (3.5)

As discussed in [1], this is not enough to fully fix α(1)
a,b. However, we claim that all the data

is uniquely fixed by the following set of assumptions:

• α
(1)
a,b is in the ring of single-valued multiple zeta values and has uniform weight 4 +

2a+ 3b.

• T
(2)
m (δ) is a linear combination of Euler-Zagier sums (and multiple zeta values) of

maximal weight m+ 2 and maximal depth m+ 1.

• F
(2)
m (δ) is a linear combination of Euler-Zagier sums (and multiple zeta values) of

maximal weight m+ 3 and maximal depth m+ 1.

– 7 –
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Note that the last two assumptions imply that α(1)
a,b will have multiple zeta values of maximal

depth b+2, which is the simplest possibility compatible with the depth 2 localisation result
for α(1)

1,0 (2.21).
It is known that the sphere integrals of tree-level closed string amplitudes in flat space

lead to Wilson coefficients in the ring of single-valued multiple zeta values. In particular,
all the α(0)

a,b’s can be written in terms of single zeta values of odd arguments (which are
single-valued), due to the following representation for the flat space result

f(S, T )
STU

= − Γ (−S) Γ (−T ) Γ (−U)
Γ (S + 1) Γ (T + 1) Γ (U + 1)

= 1
STU

exp
(

2
∞∑
n=1

ζ(2n+ 1)
2n+ 1

(
S2n+1 + T 2n+1 + U2n+1

))

= 1
STU

+ 2
∞∑

a,b=0
σ̂a2 σ̂

b
3α

(0)
a,b ,

(3.6)

where S, T, U are the dimensionless Mandelstam variables related to particle momenta pi

S = −α
′

4 (p1 + p2)2 , T = −α
′

4 (p1 + p3)2 , U = −α
′

4 (p1 + p4)2 ,

σ̂2 = 1
2(S2 + T 2 + U2) , σ̂3 = STU ,

(3.7)

satisfying S + T + U = 0. f(S, T ) is the four-graviton amplitude of type IIb superstring
theory in flat space divided by the corresponding supergravity amplitude. We are making
the assumption that the (currently still unknown) worldsheet description of closed strings
in AdS also leads to single-valued multiple zeta values.

We will concretise the assumptions on T (2)
m (δ) and F (2)

m (δ) and construct the solutions
after a short excursion on single-valued multiple zeta values.

3.1 (Single-valued) multiple zeta values

In this section we give a practical introduction to working with (single-valued) multiple
zeta values (MZVs). There are many relations between MZVs of the same weight, so in
order to compare MZVs, we expand them in a basis for the algebra HN of MZVs of weight
N . We denote by L the space H modulo products of MZVs, i.e. H is the polynomial algebra
generated by the elements of L. We list some examples of possible basis elements and the
dimensions of both spaces and in tables 1 and 2. The task of rewriting MZVs in terms of
a basis has been performed for weights up to 30 in [16]. In practice we use the program
HyperlogProcedures [17] by Oliver Schnetz for this. An example is

ζ(3, 2, 1) = 3ζ(3)2 − 29
30ζ(2)3 . (3.8)

Single-valued multiple zeta values were first studied by Brown [18] and are defined as
single-valued multiple polylogarithms evaluated at unit argument. There is a map on the
ring of multiple zeta values Z, sv : Z → Z that sends multiple zeta values ζ(s1, s2, . . .) to

– 8 –
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N 2 3 4 5 6 7 8 9
LN basis ζ(2) ζ(3) ζ(5) ζ(7) ζ(5, 3) ζ(9)
HN basis ζ(2) ζ(3) ζ(2)2 ζ(5) ζ(3)2 ζ(7) ζ(5, 3) ζ(9)

ζ(3)ζ(2) ζ(2)3 ζ(5)ζ(2) ζ(5)ζ(3) ζ(7)ζ(2)
ζ(3)ζ(2)2 ζ(3)2ζ(2) ζ(5)ζ(2)2

ζ(2)4 ζ(3)3

ζ(3)ζ(2)3

Table 1. Possible basis for H and L.

N 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
dim LN 1 1 0 1 0 1 1 1 1 2 2 3 3 4 5 7 8 11
dim HN 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37 49 65 86

Table 2. Dimensions of the space H (L) of multiple zeta values of weight N (modulo products).

N 3 5 7 9 11 13 15
Lsv
N basis ζsv(3) ζsv(5) ζsv(7) ζsv(9) ζsv(11) ζsv(13) ζsv(15)

ζsv(5, 3, 3) ζsv(7, 3, 3) ζsv(9, 3, 3)
ζsv(5, 5, 3) ζsv(7, 3, 5)

ζsv(6, 4, 3, 1, 1)

Table 3. Possible basis for Lsv.

N 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
dim Lsv

N 0 1 0 1 0 1 0 1 0 2 0 3 0 4 0 7 0 11
dim Hsv

N 0 1 0 1 1 1 1 2 2 3 3 5 5 8 8 13 14 21

Table 4. Dimensions of the spaceHsv (Lsv) of single-valued multiple zeta values (modulo products).

single-valued multiple zeta values ζsv(s1, s2, . . .) which generate a smaller ring Zsv ⊂ Z. In
particular we have

ζsv(2k) = 0 , ζsv(2k + 1) = 2ζ(2k + 1) , k ∈ N . (3.9)

The space Hsv of single-valued MZVs is the polynomial algebra generated by Lsv, which
is obtained by taking the elements of odd weight of L and applying the sv map [18]. We
show some basis generators and the dimensions of these spaces in tables 3 and 4. As the
sv map is implemented in HyperlogProcedures, it is easy to obtain explicit expressions for
single-valued MZVs, for example

ζsv(5, 3) = −10ζ(5)ζ(3) ,

ζsv(5, 3, 3) = 2ζ(5, 3, 3)− 8
7ζ(5)ζ(2)3 + 12

5 ζ(7)ζ(2)2 + 90ζ(9)ζ(2)− 5ζ(3)2ζ(5) .
(3.10)
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3.2 Construction of the solutions

In order to solve the equation (3.1) subject to our assumptions, we will construct an
ansatz for T (2)

m (δ) and F (2)
m (δ) and fix the coefficients by imposing the vanishing of Wilson

coefficients for negative values of a (3.5) as well as single-valuedness for a finite number of
non-negative values of a

α
(1)
a,b ∈ Z

sv , for a = 0, 1, . . . . (3.11)

Let us begin with α(1)
a,0. We make the ansatz

T
(2)
0 (δ) = d0Z(δ − 1) + d1δZ1(δ − 1) + d2δ

2Z2(δ − 1) , (3.12)

F
(2)
0 (δ) = c0Z(δ − 1) + c1δZ1(δ − 1) + c2δ

2Z2(δ − 1) + c3δ
3Z3(δ − 1) + c̃0δ

3ζ(3)Z(δ − 1) ,

which we insert together with the solution for F (0)
m (δ) (2.14) into (3.1). As a first step we

have to ensure that the sum over δ is convergent. This is the case for a > 0, but for a = 0
we have the divergent term

α
(1)
0,0 =

∞∑
δ=1

(
c̃0ζ(3) + c3Z3(δ − 1)

δ
+O(δ−2)

)
. (3.13)

The asymptotic expansion for the Euler-Zagier sum is given by its relation to the generalised
harmonic numbers

Zs(δ − 1) = H
(s)
δ−1 = ζ(s)− 1

(s− 1)δs−1 +O(δ−s) , s = 2, 3, . . . , (3.14)

so we impose convergence by setting

c̃0 = −c3 . (3.15)

Now the sums can be done using (2.13)

α
(1)
a,0 = −c3ζreg(2a+ 1)ζ(3) + c3ζreg(2a+ 1, 3) + (c2 − (2a+ 3)d2) ζ(2a+ 2, 2)

+
(

2a2 − (2a+ 3)d1 + 49
6 a+ c1 −

75
8

)
ζ(2a+ 3, 1)

−
(4

3a
3 + 16

3 a
2 + (2a+ 3)d0 + 1

3a− c0 + 277
32

)
ζ(2a+ 4) .

(3.16)

Here ζreg are shuffle-regularised multiple zeta values, as described in section 2.1 of [19].
They are finite when the first argument is 1 (for instance ζreg(1) = 0) and agree with the
usual multiple zeta values when the first argument is 2, 3, . . .. For each value of a this
expression can be rewritten in a basis of MZVs of weight 4 + 2a, for instance

α
(1)
0,0 = 1

10 (4c0 + c1 + 3c2 − 5c3 − 12d0 − 3d1 − 9d2 − 44) ζ(2)2 ,

α
(1)
1,0 = (. . .)ζ(2)3 + (. . .)ζ(3)2 ,

α
(1)
2,0 = (. . .)ζ(2)4 + (. . .)ζ(3)ζ(5) + (. . .)ζ(5, 3) ,

α
(1)
3,0 = (. . .)ζ(2)5 + (. . .)ζ(3)ζ(7) + (. . .)ζ(5)2 + (. . .)ζ(7, 3) .

(3.17)
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We now demand that each expression can be written in terms of a basis of single-valued
MZVs of the same weight

α
(1)
0,0 = 0 ,

α
(1)
1,0 = κ1ζ(3)2 ,

α
(1)
2,0 = κ2ζ(3)ζ(5) ,

α
(1)
3,0 = κ3ζ(3)ζ(7) + κ4ζ(5)2 .

(3.18)

Equating (3.17) and (3.18) fixes all the coefficients of the ansatz except for one parameter.
The remaining parameter (along with all new parameters in the ansatz for b = 1, 2) is
fixed by the constraints (3.5) and (3.11) once we impose them up to b = 2 as described
below. The solution is consistent with the localisation result (2.21), which we use here to
immediately write the fully fixed solution at b = 0

d0 = 2 , d1 = 1
4 , d2 = 1 ,

c0 = 405
32 , c1 = 89

8 , c2 = 2 , c3 = −2 .
(3.19)

The result for α(1)
a,0 is given by

α
(1)
a,0 = 2ζreg(2a+ 1)ζ(3)− 2ζreg(2a+ 1, 3)− (2a+ 1)ζ(2a+ 2, 2)

+ 1
3
(
6a2 + 23a+ 3

)
ζ(2a+ 3, 1)− 1

3
(
4a3 + 16a2 + 13a+ 6

)
ζ(2a+ 4) ,

(3.20)

and is in Zsv for any value of a, which can be shown by rewriting it in the form

α
(1)
a,0 = −

(
a2 + 35

6 a+ 1
2

) a−1∑
i1,i2=0

i1+i2=a−1

ζ(3 + 2i1)ζ(3 + 2i2)− 2
a−1∑

i1,i2=0
i1+i2=a−1

i1i2ζ(3 + 2i1)ζ(3 + 2i2) .

(3.21)
The reason this rewriting in terms of single zeta values is possible is that the expression has
maximal depth two and the first non-trivial generators of single-valued MZVs have depth
three.

We can continue in the same way for α(1)
a,1 by inserting the result for T (2)

0 (δ) and F (2)
0 (δ)

and making an ansatz for T (2)
1 (δ) and F (2)

1 (δ), and so on. For general m ≥ 1 we will use
the following notation for an ansatz in terms of Euler-Zagier sums with weights up to wmax
and depths up to dmax

Aiwmax,dmax =
wmax∑
w=1

dmax∑
d=1

∑
s1,...,sd∈N
s1+...+sd=w

cis1,...,sdδ
wZs1,...,sd(δ − 1) . (3.22)

Our ansatz for T (2)
m (δ) and F (2)

m (δ) has the form

T
(2)
m≥1(δ) = A1

m+2,m+1 + δ3ζ(3)A3
m−1,m−1 + δ5ζ(5)A5

m−3,m−3 + δ6ζ(3)2A7
m−4,m−4 + . . . ,

F
(2)
m≥1(δ) = A2

m+3,m+1 + δ3ζ(3)A4
m,m + δ5ζ(5)A6

m−2,m−2 + δ6ζ(3)2A8
m−3,m−3 + . . . , (3.23)
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m 0 1 2 3 4 5
T

(2)
m (δ) 3 6 15 33 70 145
F

(2)
m (δ) 5 11 28 64 138 288

Table 5. Number of coefficients in the ansatz for T (2)
m (δ) and F (2)

m (δ).

taking the explicit zeta values into account when determining the maximal weights and
depths of the terms. For the zeta values we include all basis elements of Hsv that can be
multiplied with Aiwmax,dmax

with positive wmax and dmax. Once we fix the coefficients, only
the terms with A1, A2 and A4 will survive. At higher orders in the expansion, similar terms
should produce the zeta values in the dimension of the Konishi operator (E.2). Interestingly,
non-trivial single-valued multiple zeta values were observed to appear in the dimension of
the Konishi operator at weak coupling at 8 loops [20], see (E.1). The sums in (3.22) start at
w = 1 to ensure Fm≥1(1) = Tm≥1(1) = 0, which follows from the definitions (3.2) and (3.3).
The number of coefficients in each ansatz is listed in table 5.

As it turns out, imposing (3.5) together with (3.11) for a = 0, 1, 2, 3 fixes all the
coefficients in each case, which we were able to show explicitly for b = 1, . . . , 5 and for
b = 6, where we used a smaller ansatz taking into account some of the patterns we observed
from the previous results. In each case the resulting expression for α(1)

a,b is in Zsv also for
larger values of a, which we checked for all cases with b ≤ 6 and weights 4 + 2a+ 3b ≤ 28.

As in the case b = 0, the expressions for α(1)
−b,b always contain 1/δ terms that require

cancellations in order for the sum over δ to be convergent. For b > 0 it turns out that
one can fix all coefficients by imposing (3.5) for shuffle-regularised MZVs. The solutions
always lead to convergent sums in δ due to cancellations similar to (3.13). We checked this
by computing the asymptotic expansions of the Euler-Zagier sums using the Mathematica
package HarmonicSums [21–23]. For illustration we show the first few results for the sums
over OPE data (all Euler-Zagier sums are evaluated at δ − 1)

T
(2)
0 (δ) = δ2Z2 + 1

4δZ1 + 2 ,

T
(2)
1 (δ) = δ3 (Z3 + 2Z1,2 + 3Z2,1) + δ2

(7
4Z2 + Z1,1

)
+ 9

2δZ1 ,

T
(2)
2 (δ) = δ4(2Z1,3 + 3Z3,1 + 3Z2,2 + 4Z1,1,2 + 6Z1,2,1 + 8Z2,1,1

)
+ δ3

(
2Z3 + 15

4 Z1,2 + 23
4 Z2,1 + 3Z1,1,1

)
+ δ2 (2Z2 + 9Z1,1) ,

T
(2)
3 (δ) = δ5(Z2,3 + 2Z3,2 + 4Z1,1,3 + 6Z1,3,1 + 8Z3,1,1 + 6Z1,2,2 + 7Z2,1,2 + 8Z2,2,1

+ 8Z1,1,1,2 + 12Z1,1,2,1 + 16Z1,2,1,1 + 20Z2,1,1,1
)

+ δ4(4Z1,3 + 6Z3,1 + 11
2 Z2,2 + 8Z1,1,2 + 12Z1,2,1 + 16Z2,1,1 + 8Z1,1,1,1

)
+ δ3

(7
2Z1,2 + 7

2Z2,1 + 16Z1,1,1

)
, (3.24)
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and

F
(2)
0 (δ) = −2δ3Z3 + 2δ2Z2 + 89

8 δZ1 + 405
32 + 2δ3ζ(3)F (0)

0 (δ) ,

F
(2)
1 (δ) = −2δ4 (2Z1,3 + Z2,2 + 3Z3,1 + Z4) + δ3 (6Z1,2 + 11Z2,1 + Z3)

+ 3
8δ

2 (204Z1,1 + 59Z2) + 761
16 δZ1 + 2δ3ζ(3)F (0)

1 (δ) ,

F
(2)
2 (δ) = −2δ5(2Z1,4 + 2Z2,3 + 3Z3,2 + 3Z4,1 + 4Z1,1,3 + 2Z1,2,2 + 6Z1,3,1

+ 2Z2,1,2 + 3Z2,2,1 + 8Z3,1,1
)

+ 4δ4(Z1,3 + 3Z2,2 + 2Z3,1 + 4Z1,1,2

+ 7Z1,2,1 + 11Z2,1,1 − Z4
)

+ 1
8δ

3 (707Z1,2 + 763Z2,1 + 2540Z1,1,1 + 56Z3)

+ 1
32δ

2 (5428Z1,1 + 1341Z2) + 2δ3ζ(3)F (0)
2 (δ) . (3.25)

For the values of α(1)
a,1 and α(1)

a,2 we find

α
(1)
a,1 = ζ(3)(−4ζreg(2a+ 3, 1) + (2a+ 3)ζ(2a+ 4))

+ 2ζreg(2a+ 3, 4) + 4ζreg(2a+ 3, 1, 3) + 6ζreg(2a+ 3, 3, 1) + 2ζreg(2a+ 3, 2, 2)
+ 2ζ(2a+ 4, 3) + 2(2a+ 3)ζ(2a+ 4, 1, 2) + (6a+ 7)ζ(2a+ 4, 2, 1)

− 2
3
(
6a2 + 25a+ 15

)
ζ(2a+ 5, 2)− 8

3
(
3a2 + 19a+ 15

)
ζ(2a+ 5, 1, 1)

+ 1
6
(
28a3 + 212a2 + 413a+ 249

)
ζ(2a+ 6, 1)

− 1
6(2a+ 3)

(
4a3 + 34a2 + 88a+ 75

)
ζ(2a+ 7) , (3.26)

and

α
(1)
a,2 =ζ(3)(2ζreg(2a+5,2)+8ζreg(2a+5,1,1)−2(2a+5)ζ(2a+6,1)+(a+1)(a+3)ζ(2a+7))

−4ζreg(2a+5,1,4)−6ζreg(2a+5,4,1)−4ζreg(2a+5,2,3)−6ζreg(2a+5,3,2)
−8ζreg(2a+5,1,1,3)−12ζreg(2a+5,1,3,1)−16ζreg(2a+5,3,1,1)
−4ζreg(2a+5,1,2,2)−4ζreg(2a+5,2,1,2)−6ζreg(2a+5,2,2,1)
+(2a+1)ζ(2a+6,4)−4ζ(2a+6,1,3)−4ζ(2a+6,3,1)−2(2a+5)ζ(2a+6,2,2)
−4(2a+5)ζ(2a+6,1,1,2)−2(6a+13)ζ(2a+6,1,2,1)−4(4a+7)ζ(2a+6,2,1,1)

+(a+2)(a+3)ζ(2a+7,3)+
(
10a2+69a+85

)
ζ(2a+7,1,2)

+2(2a+3)(3a+14)ζ(2a+7,2,1)+4
(
6a2+53a+73

)
ζ(2a+7,1,1,1)

+ 1
6
(
−26a3−249a2−673a−528

)
ζ(2a+8,2)

− 2
3
(
20a3+222a2+682a+633

)
ζ(2a+8,1,1)

+ 1
6
(
22a4+307a3+1472a2+2945a+2088

)
ζ(2a+9,1)

− 1
6(a+1)(a+3)

(
4a3+52a2+217a+297

)
ζ(2a+10). (3.27)
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One can check that these expressions cannot generally be expressed in terms of single zeta
values (as the α(0)

a,b or α
(1)
a,0 (3.21)), for instance

α
(1)
3,1 = −209279

300 ζ(13)− 166ζ(3)2ζ(7)− 174ζ(3)ζ(5)2 + 2
25ζ

sv(5, 5, 3) , (3.28)

where

ζsv(5, 5, 3) = 2ζ(5, 5, 3)+10ζ(5)ζ(5, 3)+20ζ(9)ζ(2)2 +275ζ(11)ζ(2)+50ζ(3)ζ(5)2 , (3.29)

is one of the basis elements that were chosen for Lsv
13, see table 3. In the next section we

will lift the results for α(1)
a,b, b = 0, . . . , 6 to any value of b by finding general expressions for

T
(2)
m (δ) and F (2)

m (δ).

4 CFT data

4.1 General structure

Our solution for α(1)
a,b results in some corresponding CFT-data to order 1/

√
λ. At leading

order a natural way to repackage the CFT data is by considering the sums over spin
F

(0)
m (δ) (2.14). At this order it is natural to consider T (2)

m (δ) and F (2)
m (δ). From the results

for m = 0, . . . , 6 we see that T (2)
m (δ) takes the form

T (2)
m (δ) =

m+2∑
w=m

m+1∑
d=bm+1

2 c

∑
s1,...,sd∈{1,2,3}
s1+...+sd=w

tms δ
wZs(δ − 1) , (4.1)

i.e. there are Euler-Zagier sums with words s = s1, . . . , sd of letters from the alphabet
{1, 2, 3} with weights m to m + 2 and depths bm+1

2 c to m + 1. We define the following
function counting the number of occurrences of a given letter in a word

ns
k =

d∑
i=1

δsi,k . (4.2)

We then find the following formula for the coefficients in (4.1)

tms =

2ns
1 (Qmw (ns

1, n
s
2, n

s
3) + pmwPs) , ns

3 ∈ {0, 1} ,
0, ns

3 > 1 ,
(4.3)

with coefficients

Qmm+2(ns
1, n

s
2, 1) = 1 , Qmm+2(ns

1, n
s
2, 0) = ns

2(ns
2 + 1)
2 ,

Qmm+1(ns
1, n

s
2, 1) = 2 , Qmm+1(ns

1, n
s
2, 0) = ns

1 + ns
2(8ns

2 + 6)
8 ,

Qmm(ns
1, n

s
2, 1) = 0 , Qmm(ns

1, n
s
2, 0) = 2− ns

1(ns
1 + 4ns

2 − 3)
8 − ns

2(ns
2 − 1)
2 ,

(4.4)

and
pmm+2 = 1

2 , pmm+1 = 1 , pmm = 0 . (4.5)
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The object Ps vanishes when the word s is lexicographically ordered and is defined by

Ps =
d∑
i=1

δsi,max(s)

d∑
j=i+1

sj(1− δsj ,max(s)) . (4.6)

Next we do the same for F (2)
m (δ), which takes the form

F (2)
m (δ) = 2δ3ζ(3)F (0)

m (δ) +
m+3∑
w=m

m+1∑
d=bm+1

2 c

∑
s1,...,sd∈{1,2,3,4}
s1+...+sd=w

fms δ
wZs(δ − 1) . (4.7)

We find the following expression for the coefficients

fms =

2ns
1
(
Rmw (ns

1, n
s
2, n

s
3, n

s
4) + P

ns
3,n

s
4

s,w

)
, (ns

3, n
s
4) ∈ {(0, 1), (2, 0), (1, 0), (0, 0)} ,

0, otherwise .
(4.8)

The coefficients Rmw determine the coefficients fms for lexicographically ordered words and
are given by

Rmm+3(ns
1,n

s
2,0,1) =Rmm+3(ns

1,n
s
2,2,0) =−2 ,

Rmm+2(ns
1,n

s
2,0,1) =Rmm+2(ns

1,n
s
2,2,0) =−4 ,

Rmm+1(ns
1,n

s
2,0,1) =Rmm+1(ns

1,n
s
2,2,0) = 0 ,

Rmm+3(ns
1,n

s
2,1,0) =−2(ns

2 +1) ,
Rmm+2(ns

1,n
s
2,1,0) = 1+ns

1−2ns
2 , (4.9)

Rmm+1(ns
1,n

s
2,1,0) = 2m+3 ,

Rmm+3(ns
1,n

s
2,0,0) =−1

3(ns
2−1)ns

2(ns
2 +1) ,

Rmm+2(ns
1,n

s
2,0,0) = 1

2(m+2)ns
2(ns

2 +1) ,

Rmm+1(ns
1,n

s
2,0,0) =−1

6m
3 +4m2 +m

(
(ns

2)2 + 1
2n

s
2 + 467

48

)
+ 1

3(ns
2)3 +(ns

2)2 + 1
6n

s
2 + 89

16 ,

Rmm(ns
1,n

s
2,n

s
3,n

s
4) = 1

96δn
s
3,0δns

4,0
(
−20m3 +420m2−24mns

2 +668m+1215
)
.
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The correction terms for unordered words are

2P 0,1
s,m+3 = P 0,1

s,m+2 = −2Ps , P 0,1
s,m+1 = 0 , P

ns
3,n

s
4

s,m = 0 ,

2P 2,0
s,m+3 = P 2,0

s,m+2 = 2
d∑
i=1

δsi,3(n>i3 − 1)(n>i1 + 2n>i2 ) , P 2,0
s,m+1 = 0 ,

P 1,0
s,m+3 =

d∑
i=1

(
δsi,3(n>i2 (−2ns

2 + n>i2 − 1) + n>i1 (−ns
2 + n>i2 − 1)) + δsi,2n

>i
1 (n>i3 − 1)

)
,

P 1,0
s,m+2 = 1

2

d∑
i=1

(
δsi,3

(
n>i1 (ns

1 + n>i1 − 2ns
2 + 8n>i2 + 2) + 2n>i2 (ns

1 − 2ns
2 + 4n>i2 + 5)

)
+ 4δsi,2n>i1 (n>i3 − 1)

)
,

P 1,0
s,m+1 = 1

4

d∑
i=1

δsi,3
(
n>i1 (4ns

1 + n>i1 + 8ns
2 + 4n>i2 + 15) + 4n>i2 (2ns

1 + 4ns
2 + n>i2 + 8)

)
,

P 0,0
s,m+3 =

d∑
i=1

δsi,2n
>i
1 (−ns

2 + n>i2 + 1) ,

P 0,0
s,m+2 = 1

2

d∑
i=1

δsi,2n
>i
1 (ns

1 − 2ns
2 + n>i1 + 8n>i2 + 5) , (4.10)

P 0,0
s,m+1 = 1

4

d∑
i=1

δsi,2n
>i
1 (4ns

1 + 8ns
2 + n>i1 + 4n>i2 + 1) ,

where n>ik counts how many of the letters to the right of si match k

n>ik =
d∑

j=i+1
δsj ,k . (4.11)

It would be interesting to study whether T (2)
m (δ) and F (2)

m (δ) can be understood as coming
from a specific sum, similar to the expression for F (0)

m (δ) that was considered in appendix
A.3.2 of [24]. In appendix B we derive an alternative representation for T (2)

m (δ) and F (2)
m (δ)

purely in terms of the function F (0)
m (δ).

4.2 Twists and OPE coefficients

By computing OPE data for many values for δ and ` we can determine analytic formulae
for the twists and OPE coefficients on different Regge trajectories, which are illustrated in
figure 1. Recall the results for the leading OPE coefficients [1]

〈f0(δ, 2(δ − 1))〉 = r0(δ)
δ

,

〈f0(δ, 2(δ − 2))〉 = r1(δ)
3

(
2δ2 + 3δ − 8

)
, (4.12)

〈f0(δ, 2(δ − 3))〉 = r2(δ)
45

(
10δ4 + 43δ3 + 8δ2 − 352δ − 192

)
,
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where

rn(δ) = 42−2δδ2δ−2n−1(2δ − 2n− 1)
Γ(δ)Γ

(
δ −

⌊
n
2
⌋) . (4.13)

Similarly we can now find expressions for the corrections

〈f0τ2〉(δ,2(δ−1))= r0(δ)
2δ3/2

(
3δ2−δ+2

)
,

〈f0τ2〉(δ,2(δ−2))= r1(δ)
18
√
δ

(
18δ4+25δ3−57δ2+50δ−72

)
, (4.14)

〈f0τ2〉(δ,2(δ−3))= r2(δ)
1350
√
δ

(
450δ6+1985δ5+1043δ4−12782δ3−2552δ2−35712δ−11520

)
,

as well as

〈f2(δ,2(δ−1))〉=−r0(δ)
96δ2

(
112δ3−1872δ2 +344δ+201

)
+2δ2ζ(3)〈f0(δ,2(δ−1))〉 ,

〈f2(δ,2(δ−2))〉=−r1(δ)
864δ

(
672δ5−8272δ4 +3072δ3 +77038δ2−122559δ+44136

)
+2δ2ζ(3)〈f0(δ,2(δ−2))〉 , (4.15)

〈f2(δ,2(δ−3))〉=− r2(δ)
324000δ

(
84000δ7−554800δ6 +342368δ5 +14918998δ4 +28865953δ3

−197973672δ2 +72891360δ+108388800
)
+2δ2ζ(3)〈f0(δ,2(δ−3))〉 .

We include 〈f0(δ, `)〉, 〈f0τ2〉(δ, `) and 〈f2(δ, `)〉 for the first seven Regge trajectories in a
Mathematica notebook. For the leading Regge trajectory with ` = 2(δ − 1) the heavy
operators are supposed to be non-degenerate. Our result for τ2(δ, `) in this case agrees
exactly with the integrability results! Furthermore our procedure leads to a wealth of CFT
data, including structure constants of operators in the leading Regge trajectory, which can
hopefully be confronted with integrability results in the near future.

4.3 Checks

We have performed several checks that back up both the assumptions made in section 3
and the general expressions (4.1) and (4.7). By combining (3.1) with (4.1) and (4.7) we
can generate explicit expressions for α(1)

a,b for any b which satisfy (3.5) and (3.11), which we
checked for all cases with b ≤ 12 and weights 4 + 2a+ 3b ≤ 25.

Another check is that the equations (3.2) = (4.1) for T (2)
m (δ) or (3.3) = (4.7) for F (2)

m (δ)
for a fixed value of δ depend on δ unknown bits of CFT data (for ` = 0, 2, . . . , 2(δ − 1)),
but there are 2δ − 1 equations for these unknowns (for m = 0, 1, . . . , 2(δ − 1)). That
this overconstrained system of equation has a solution is a consistency check between the
solutions for T (2)

m (δ) or F (2)
m (δ) for different values of m.

Finally, our results for τ2(δ, `) on the leading Regge trajectory ` = 2(δ − 1) agree
precisely with the known result from integrability (2.20), which we checked explicitly for
δ = 1, . . . , 28, and we reproduce the twoWilson coefficients that were previously determined
using localisation (2.21).
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5 Summing the low energy expansion

Next we would like to do the sums over a, b andm to obtain an expression for the amplitude
with explicit poles. For the flat space amplitude this was done in [10] where they found
essentially the formula (2.6) by studying the Virasoro-Shapiro amplitude, without any
reference to CFT dispersion relations. In AdS we have the problem that the gamma
function in (1.1) makes the sums over a and b divergent. For this reason we will use the
flat space limit formula of [2, 3] to regulate the sums, not only for the flat space part of the
amplitude but also for the 1/

√
λ corrections. In this case we call it the flat space transform.

This essentially amounts to a Borel summation as it removes the gamma function from the
sums. The flat space transform is defined by

FS(M(s1, s2)) = 2λ
3
2 c

∫ κ+i∞

κ−i∞

dα

2πi e
αα−6M

(
2
√
λS

α
,

2
√
λT

α

)
, (5.1)

where S, T and U are the Mandelstams introduced in (3.7) and M(s1, s2) is obtained by
eliminating s3 using s1 + s2 + s3 = 0.

Applying the flat space transform to our Mellin amplitude (1.1) we get

FS(M(s1, s2)) = A(0)(S, T ) + 1√
λ
A(1)(S, T ) +O(1/λ) ,

A(0)(S, T ) = 1
STU

+ 2
∞∑

a,b=0
σ̂a2 σ̂

b
3α

(0)
a,b ,

A(1)(S, T ) = −1
3
σ̂2
σ̂2

3
+ 2

∞∑
a,b=0

σ̂a2 σ̂
b
3α

(1)
a,b .

(5.2)

We would like to do the sum in the expression for A(0)(S, T ). To this end we use the
following representation of the coefficients c(0)

a,b,m from (2.7)

c
(0)
a,b,0 = (2a+ 3b)(a+ 1)b−1

2Γ(b+ 1) , c
(0)
a,b,m = −

b b−1
2 c∑

k=0

Γ(3k + 1)
Γ(k + 1)Γ(2k + 2)c

(0)
a+1+3k,b−1−2k,m−1 ,

(5.3)
which we can use to write an expression for c(0)

a,b,m in terms of c(0)
a,b,0

c
(0)
a,b,m = (−1)m

∞∑
k1,...,km=0

c
(0)
a+m+3k,b−m−2k,0

m∏
i=1

Γ(3ki + 1)
Γ(ki + 1)Γ(2ki + 2) , k = k1 + . . .+ km .

(5.4)
Next we sum the terms above over a and b for several fixed values of k and m and guess
the general form

∞∑
a,b=0

c
(0)
a+m+3k,b−m−2k,0x

ayb = 1
2

y + 2
1− x− y

y2k+m

(1− y)3k+m . (5.5)

Inserting this into (5.4), the sums over ki factorise and we find
∞∑

a,b=0
c

(0)
a,b,mx

ayb = 1
2

y + 2
1− x− y

(√
1− 4y − 1

2

)m
, (5.6)

– 18 –



J
H
E
P
1
2
(
2
0
2
2
)
0
1
0

a formula that was already found in [10]. In order to perform the sum over m, we consider
the generating series found in [10, 24]

∞∑
m=0

F (0)
m (δ)

(
z

δ

)m
=
(
z + δ − 1
δ − 1

)2

. (5.7)

Combining everything, we can compute the sum

2
∞∑

a,b=0
σ̂a2 σ̂

b
3α

(0)
a,b =

∞∑
a,b,m=0

∞∑
δ=1

2
δ3x

aybc
(0)
a,b,mF

(0)
m (δ)

=
∞∑
m=0

∞∑
δ=1

1
δ3

y + 2
1− x− y

(√
1− 4y − 1

2

)m
F (0)
m (δ)

=
∞∑
δ=1

1
δ3

y + 2
1− x− y

(
z + δ − 1
δ − 1

)2

,

(5.8)

with

x = σ̂2
δ2 , y = σ̂3

δ3 , z = δ

2
(√

1− 4y − 1
)
. (5.9)

One can now use the formula(
a− 1
b− 1

)2

=
b−1∏
j=1

(
1− a(b− a)

j(b− j)

)
, (5.10)

and insert the definition of σ̂2 and σ̂3 to find

A(0)(S, T ) = 1
STU

+
∞∑
δ=1

1
δ3

(
S

δ − S
+ T

δ − T
+ U

δ − U
+ 2

) δ−1∏
j=1

(
1− STU

j(δ − j)δ

)
. (5.11)

A proof that this matches the familiar result (3.6)

A(0)(S, T ) = − Γ (−S) Γ (−T ) Γ (−U)
Γ (S + 1) Γ (T + 1) Γ (U + 1) , (5.12)

was given in [10].
In order to do the analogous sum for A(1)(S, T ) we need to determine the generating

series for T (2)
m (δ) and F (2)

m (δ) which appear in the expression for α(1)
a,b in (3.1). By studying

them for fixed values of m and δ we noticed that they can be written in the form

∞∑
m=0

T (2)
m (δ)

(
z

δ

)m
=

δ−1∑
n=0

gn(δ)
(
z + δ − n

2 − 1
δ − n− 1

)2

,

∞∑
m=0

F (2)
m (δ)

(
z

δ

)m
=

δ−1∑
n=0

hn(δ)
(
z + δ − n

2 − 1
δ − n− 1

)2

,

(5.13)
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with

gn(δ) = δ

(δ − n)n
g̃n(δ) , hn(δ) = δ

(δ − n)n
h̃n(δ) ,

g̃0(δ) = 1
2δ
(
3δ2 − δ + 2

)
, g̃1(δ) = 1

72
(
δ2 + 4δ + 6

)
,

g̃2(δ) = 1
7200

(
−14δ3 + 3δ2 + 222δ + 210

)
,

h̃0(δ) = 1
96δ

(
−112δ3 + 1872δ2 − 2216δ + 1671

)
+ 2δ2ζ(3) ,

h̃1(δ) = 1
432

(
−61δ3 − 703δ2 − 1221δ + 2934

)
,

h̃2(δ) = 1
216000

(
4598δ4 + 33699δ3 − 103219δ2 − 297105δ + 581850

)
,

(5.14)

and so on. We include further cases in a Mathematica notebook. Now the sums can be
done analogously to (5.8), with polynomials in a, b,m turning into differential operators
acting on xa, yb or zm. In this way we obtain

A(1)(S,T )+ 1
3
σ̂2
σ̂2

3
= 2

∞∑
a,b=0

σ̂a2 σ̂
b
3α

(1)
a,b

=
∞∑

a,b,m=0

∞∑
δ=1

2xayb
δ4

(
c

(0)
a,b,m

(
F (2)
m (δ)−(3+2a+3b)T (2)

m (δ)
)

+c
(2,0)
a,b,mF

(0)
m (δ)+c

(2,1)
a,b,mF

(0)
m+1(δ)

)

=
∞∑
δ=1

δ−1∑
n=0

1
δ4Dn(δ) y+2

1−x−y

(
z+δ− n

2 −1
δ−n−1

)2

, (5.15)

with the differential operator Dn(δ) given by (note that ∂z only acts on z but ∂y acts on y
and on z through its definition)

Dn(δ) = hn(δ)− gn(δ) (3 + 2x∂x + 3y∂y) + δn,0
(
−
(1

2x∂x + 3
4y∂y + 27

4

)
(z + δ)∂zz∂z

− 6(x∂x)2y∂y − 9x∂x(y∂y)2 − 16x∂xy∂y −
4
3(x∂x)3 − 16

3 (x∂x)2 − 1
3x∂x −

9
2(y∂y)3

− 12(y∂y)2 − 1
2y∂y −

277
32 +

(
6x∂xy∂y + 2(x∂x)2 + 26

3 x∂x + 9
2(y∂y)2 + 13y∂y −

21
8

)
z∂z

+
(

3x∂xy∂y + (x∂x)2 + 55
12x∂x + 9

4(y∂y)2 + 55
8 y∂y + 33

16

)
δ∂z

)
. (5.16)

Equation (5.15) has several nice properties. One can use (5.10) to check that(
z + δ − n

2 − 1
δ − n− 1

)2

=
δ−n−1∏
j=1

(
1− n2 − 2nδ + 4δ2y

4j(δ − n− j)

)
, (5.17)

is a polynomial in y. By expanding around the location of the poles we can also find general
expressions for the residues

A(1)(S, T ) + 1
3
σ̂2
σ̂2

3
=

4∑
k=1

Rk(T, δ)
(S − δ)k +O((S − δ)0) , δ = 1, 2, . . . . (5.18)
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In terms of the function
R(T, δ) = − Γ(T + δ)2

Γ(δ)2Γ(T + 1)2 , (5.19)

we find that the residues are the following polynomials in T

R4(T, δ) = R(T, δ) ,

R3(T, δ) = 1
6δ (3δ∂T − 4)R(T, δ) ,

R2(T, δ) = 1
δ2

δ−1∑
n=0

gn(δ)R(T + n

2 , δ − n)−
3T (δ + T )∂2

T + 1
2(31δ + 46T )∂T + 32
12δ2 R(T, δ) ,

R1(T, δ) = 1
δ3

δ−1∑
n=0

(
hn(δ)− gn(δ)δ2(2 + T∂T )

)
R(T + n

2 , δ − n) (5.20)

+ 1
96δ3

(
8T 3∂3

T − 4T (119δ + 90T )∂2
T − 2(311δ + 402T )∂T − 927

)
R(T, δ) ,

where
∂TR(T, δ) = 2G1(T, δ)R(T, δ) ,
∂2
TR(T, δ) = −2(G2(T, δ)− 2G1(T, δ)2)R(T, δ) ,
∂3
TR(T, δ) = 4(G3(T, δ)− 3G2(T, δ)G1(T, δ) + 2G1(T, δ)3)R(T, δ) ,

Gk(T, δ) = H(k)(T + δ − 1)−H(k)(T ) =
δ−1∑
j=1

1
(T + j)k ,

(5.21)

is given in terms of generalised harmonic numbers.
From (5.18) we see that F (2)

m (δ) contributes only to single poles and T (2)
m (δ) contributes

also to double poles. The remaining terms have poles up to fourth order and the whole
expression (5.15) has no simultaneous poles in different Mandelstams. The pole of fourth
order might be surprising if one expects the poles to arise from expanding a single pole in
1/λ. We show in appendix D that to any order in 1/λ, the pole of the highest order arises
purely from the dispersive sum rule and does not depend on corrections to the OPE data.
We also resum the in 1/λ expansion for these poles.

We could now apply the inverse of the flat space transform (5.1)

M(s1, s2) = FS−1(A(S, T )) = 1
2λ 3

2 c

∞∫
0

dβe−ββ5A

(
βs1

2
√
λ
,
βs2

2
√
λ

)
, (5.22)

to obtain the summed Mellin amplitude. As discussed in [2], the poles of A(S, T ) will lead
to exponential integrals and hence branch cuts. These originate from many poles of the
non-perturbative Mellin amplitude which have vanishing separation at large λ, but become
separated when applying the flat space transform.

6 Conclusions

In this paper we determined the full 1/
√
λ contribution to the Virasoro-Shapiro amplitude

on AdS5× S5, by solving the dispersive sum rules derived in [1], using the crucial assumption
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that the Wilson coefficients are single-valued periods. The resulting correction possesses
an analytic structure which naturally generalises that of the Virasoro-Shapiro amplitude
in flat space.

The natural next step is to determine the next layer of Wilson coefficients α(2)
a,b with sim-

ilar arguments. A preliminary study shows that single-valuedness is also powerful enough
to determine the coefficients α(2)

a,b uniquely, once quantities like 〈f0(δ, `)τ2(δ, `)2〉 are pro-
vided. This would require solving a mixing problem to order 1/

√
λ, considering more

general correlators. Single-valuedness is not powerful enough if we treat these quantities
as unknown, not surprisingly.

Certain universal parts of the answer, which do not depend on corrections to the CFT
data, can be studied to all orders in 1/λ, see appendix D. It would be interesting to explore
this further.

Over the last few years there has been great progress in understanding how super-
symmetry, via localisation results, gives integrated constraints for the correlator under
consideration [14, 15, 25–29]. In the present context, this will lead to two linear constraints
for the Wilson coefficients at each order in 1/λ. These linear constrains are written in
terms of single zeta values of odd arguments, and it would be interesting to understand
how this arises from our procedure.

Combining these two linear constraints and the flat space limit with our new solution
for α(1)

0,1, we can for the first time fully determine the D8R4 term at planar order, which
appears at O(1/λ 7

2 ) and depends on four Wilson coefficients

M(s1,s2)= 8
(s1− 2

3)(s2− 2
3)(s3− 2

3)
+ 120ζ(3)

λ3/2 + 210(3σ2+7)ζ(5)
λ5/2 (6.1)

+ 140(108σ3−99σ2−320)ζ(3)2

3λ3 + 35
(
2592σ2

2−77328σ3+73638σ2+178909
)
ζ(7)

16λ7/2 +O(λ−4).

Among the CFT data provided by our solution we reproduce the anomalous dimen-
sions of short Konishi-like operators, in full agreement with the results from integrability,
together with their structure constants. It would be interesting to reproduce these struc-
ture constants from integrability methods, along the lines of [30]. A related direction is the
interplay between integrability and the conformal bootstrap, explored first in [31, 32] and
in our context in [33]. Now that our analytic methods allow to explore 1/λ corrections, it
would be interesting to feed this into the program of [33].

Finally, we hope that our results can fuel progress towards determining the worldsheet
theory for strings on AdS5× S5. Recent progress on determining the vertex operators has
been made in [34]. It would be very interesting to see explicitly how the expression for the
AdS Virasoro-Shapiro amplitude, in a 1/λ expansion, arises from the worldsheet theory.
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A Crossing-symmetric dispersion relations

Based on earlier work in [35, 36], a crossing symmetric dispersion relation for Mellin am-
plitudes was derived in [37]. The idea is to use the variables

a = y

x
, ŝk(z, a) = a− a(z − zk)3

z3 − 1 , zk = e
2
3πi(k−1) , k = 1, 2, 3 , (A.1)

and in this appendix we used the rescaled variables

ŝk = sk
2 , x = σ2

8 , y = −σ3
8 . (A.2)

One can derive a fixed-a dispersion relation by deforming an integration contour in z. The
derivation of the dispersion relation is described in detail in [35] and in the supplementary
material of [36]. One starts with the expression

M(z, a) = 1
2πi

z3

1− z3

∮
z
dz′

z′3 − 1
z′3(z′ − z)M(z′, a) + const. , (A.3)

and deforms the integration contour, picking up the poles corresponding to OPE singu-
larities, which lie on the unit circle (at least if a lies in a certain range). A constant
contribution is not determined by this relation because of poles at z = 0 and z =∞. The
Regge limit |sk| → ∞ is mapped to the three roots of unity z = zk, and one assumes the
following bound in the Regge limit

M(s1, s2) = o(s2
1) for |s1| → ∞ , s2 fixed , (A.4)

which amounts to

M(z, a) = o

( 1
(z − zk)2

)
for |z| → zk , a fixed . (A.5)

The factor (z′3 − 1)/z′3 in (A.3) is a subtraction that ensures that these singularities do
not contribute. In this way one finds the following crossing symmetric expression for the
Mellin amplitude in terms of OPE data and Mack polynomials

M(s1, s2) =
∑
τ,`,m

c
(m)
τ,`

τm
Pτ,`(τm, ŝ′2(τm, a))H(τm, ŝ1, ŝ2, ŝ3) + const. , (A.6)

where τm = τ/2 +m− 2/3,

c
(m)
τ,` ==

23`−7τ6Γ
(
`+ τ

2 + 3
2

)
Γ
(
`+ τ

2 + 5
2

)
Γ
(
m+ τ

2 − 1
)2

(`+ 1)Γ(m+ 1)Γ
(
`+ τ

2 + 2
)2 Γ(`+m+ τ + 3)

f(τ, `) , (A.7)
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is related to the OPE coefficient f(τ, `) from (2.3) and

H(τm, ŝ1, ŝ2, ŝ3) = ŝ1
τm − ŝ1

+ ŝ2
τm − ŝ2

+ ŝ3
τm − ŝ3

,

ŝ′2 (τm, a) = −τm2

(
1−

(
τm + 3a
τm − a

)1/2
)
,

Pτ,`(τm, ŝ3) = 4−`Qτ+4,d
`,m

(
2(ŝ3 + 2

3)− 4
)
,

(A.8)

where the Mack polynomial Qτ,d`,m(t) is defined as in [1].

A.1 Wilson coefficients

An expression for the Wilson coefficients in the expansion of the Mellin amplitude

M(s1, s2) =
∞∑

a,b=0
=Ma,bx

ayb , (A.9)

in terms of OPE data was derived in [37] by expanding (A.6) in x and y

Ma−b,b =
∞∑

τ,`,m

c
(m)
τ,` B

(τ,`,m)
a,b , a ≥ 1 . (A.10)

Here B(τ,`,m)
a,b is given by

B(τ,`,m)
a,b =

b∑
q=0

U
(τm)
a,b,q (−1)b+qPτ,`;q (τm, 0) , (A.11)

where Pτ,`;q (τm, 0) = ∂qŝ2
Pτ,` (τm, ŝ2) |ŝ2=0 and

U
(τm)
a,b,q = (a− q − 1)!(b+ 2a− 3q)

q!(a− b)!(b− q)! (τm)b+2a−q+1 4F3

 q
2 + 1

2 ,
q
2 , q − b, q + 1− 2a+b

3

q + 1, q + 1− a, q − 2a+b
3

; 4

 . (A.12)

By equating M(s1, s2) to our reduced Mellin amplitude (1.1) (minus the supergravity
amplitude), the expansion

Ma,b =
∞∑
c=0

M(c)
a,b

λ
1
2 (3+2a+3b+c/2)

, (A.13)

is related to our conventions by

α
(k)
a,b =

(−1)bM(2k)
a,b

Γ(6 + 2a+ 3b) . (A.14)

Now we can insert the OPE data expansions (2.1) and (2.3), expand in large λ and sum
over m (as discussed in [1]) to obtain the expressions for α(0)

a,b and α(1)
a,b in (2.6) and (3.1),

generalising the expressions in [1].
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A.2 Recursion relations

For the reduced Mellin amplitude at hand, we can derive stronger crossing-symmetric
dispersion relations and indeed recursion relations for the Wilson coefficients, because the
reduced Mellin amplitude satisfies the stronger Regge bound (we assume that for string
theory the chaos bound is not saturated)

M(s1, s2) = o(s−2
1 ) for |s1| → ∞ , s2 fixed , (A.15)

or in terms of z and a

M(z, a) = o
(
(z − zk)2

)
for |z| → zk , a fixed . (A.16)

This means we do not need the subtraction used above, and can even make use of the fact
that the Mellin amplitude vanishes at z = zk. The trick to get a nice relation is to use the
combination

z3

(z3 − 1)2 = − x

27a2 . (A.17)

We first consider the expression

M(z, a) = 1
2πi

(z3 − 1)2

z3
z3

1− z3

∮
z
dz′

z′3

(z′3 − 1)2
z′3 − 1

z′3(z′ − z)M(z′, a) , (A.18)

which results in the following dispersion relation, that now also fixes the constant part of
the Mellin amplitude (that means (A.10) is also valid for a = 0)

M(s1, s2) =
∑
τ,`,m

c
(m)
τ,`

τm
Pτ,`(τm, ŝ′2(τm, a)) τ3

m

x(τm − a)H(τm, ŝ1, ŝ2, ŝ3) . (A.19)

The Regge bound is even strong enough to allow another ‘addition’ so we can start with

M(z, a) = 1
2πi

(z3 − 1)4

z6
z3

1− z3

∮
z
dz′

z′6

(z′3 − 1)4
z′3 − 1

z′3(z′ − z)M(z′, a) , (A.20)

and find the relation

M(s1, s2) =
∑
τ,`,m

c
(m)
τ,`

τm
Pτ,`(τm, ŝ′2(τm, a))

(
τ3
m

x(τm − a)

)2

H(τm, ŝ1, ŝ2, ŝ3) . (A.21)

We can use the fact that we have two dispersion relations to obtain recursion relations.
To this end we can combine the expansion in x and y with the one in OPE data and write

Ma,b =
∑
τ,`,m

Ma,b(τ, `,m) . (A.22)

Equating (A.19) and (A.21) we find

M(s1, s2) =
∑
a,b

∑
τ,`,m

Ma,b(τ, `,m)xayb =
∑
a,b

∑
τ,`,m

τmx− y
τ3
m

Ma,b(τ, `,m)xayb , (A.23)
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which implies the recursion relation∑
τ,`,m

Ma,b(τ, `,m) =
∑
τ,`,m

1
τ2
m

Ma−1,b(τ, `,m)− 1
τ3
m

Ma,b−1(τ, `,m) . (A.24)

The next step is to expand in 1/λ and do the sums over m. To leading order this implies
the recursion relation

α
(0)
a,b(δ) = 1

δ2α
(0)
a−1,b(δ) + 1

δ3α
(0)
a,b−1(δ) , (A.25)

where α(0)
a,b(δ) is the summand of α(0)

a,b

α
(0)
a,b =

∞∑
δ=1

α
(0)
a,b(δ) . (A.26)

One checks that (2.6) is a solution of this recursion for the boundary condition α(0)
−1,b(δ) = 0.

As the boundary data α(0)
−b,b(δ) is non-trivial (α(0)

−b,b vanishes only after summing over δ),
the recursion can be seen as a neat way to encode the a dependence of (2.6).

B Alternative representation for spin sums

The formulas (5.13) imply that there is an alternative representation for T (2)
m (δ) and F (2)

m (δ).
Adapting a computation from [24]
∞∑
m=0

T (2)
m (δ)

(
z

δ

)m
=
δ−1∑
n=0

gn(δ)
(
z+δ− n

2−1
δ−n−1

)2

=
δ−1∑
n=0

gn(δ)
δ−n−1∏
k=1

(
1+

z+ n
2

k

)2

=
δ−1∑
n=0

gn(δ)
δ−n−1∏
k=1

1+4
∑

s∈{1,2}

(
z+ n

2
2k

)s
=
δ−1∑
n=0

gn(δ)
∞∑
d=0

∑
δ−n>k1>...>kd>0
s1,...,sd∈{1,2}

22d−s1−...−sd(z+ n
2 )s1+...+sd

ks1
1 ...ksdd

(B.1)

=
δ−1∑
n=0

gn(δ)
∞∑
d=0

∑
s1,...,sd∈{1,2}

22d−s1−...−sd
(
z+n

2

)s1+...+sd
Zs1,...,sd(δ−n−1)

=
δ−1∑
n=0

gn(δ)
∞∑
w=0

(
z+n

2

)w F (0)
w (δ−n)
(δ−n)w

=
δ−1∑
n=0

gn(δ)
∞∑
w=0

w∑
m=0

(
w

m

)(
n

2

)w−m
zm

F
(0)
w (δ−n)
(δ−n)w ,

we can read off

T (2)
m (δ) = δm

δ−1∑
n=0

gn(δ)
2(δ−n−1)∑
w=m

(
w

m

)(
n

2

)w−m F
(0)
w (δ − n)
(δ − n)w , (B.2)

and similar for F (2)
m (δ). We used in the final formula that F (0)

w (δ − n) vanishes for w >

2(δ − n− 1).
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C More bootstrap constraints

We have explored two types of constraints that the bootstrap imposes on heavy operators
dual to short strings. One constraint is the fact that the coefficients in the low energy
expansion of the Mellin amplitude are related to dimensions and OPE coefficients of heavy
operators. Schematically,

ξa,b =
∞∑
δ=1

pξ,b(a, δ)
δr+2a , (C.1)

where ξa,b is some generic coefficient in the low energy expansion of the Mellin amplitude
and the function pξ,b(a, δ) depends on the OPE data through a sum over spins. It is
expected that ξa,b is a single valued period, and so this constrains the CFT data. Another
constraint that the bootstrap imposes on the heavy operators is the equation

ξa,b = 0, a = −b, . . . ,−1. (C.2)

In this section, we explore a third type of constraint. The essential idea is that, at
strong coupling, the Mellin amplitude should be similar to a tree level string amplitude.
Tree level string amplitudes obey stringent bootstrap constraints, see [38–42]. We take
advantage of this in the following way. We write down a two sided dispersion relation,
using the s1 and s2 channels. This dispersion relation stops converging for values of Re(s3)
sufficiently high, i.e. when we reach the first pole in s3. Furthermore, the two sided disper-
sion relation must diverge in a precise way, such that it reproduces the residue in s3. This
gives nontrivial constraints.

C.1 Flat space

This idea is easier to express in flat space. The Virasoro-Shapiro amplitude is given by

A(0)(S, T ) = − Γ (−S) Γ (−T ) Γ (S + T )
Γ (1 + S) Γ (1 + T ) Γ (1− S − T ) . (C.3)

We ask the following question. Without knowing the form of the amplitude (C.3), and as-
suming only the spectrum of particles exchanged (mass and spin) and Regge boundedness,
i.e.

lim
S→i∞

|A(0)(S, T )| ≤ 1
|S|2

, Re(T ) < 0, (C.4)

what can we say about particle couplings?
We write a two sided dispersion relation

A(0)(S, T ) = − 1
U2

( 1
S

+ 1
T

)
−
∞∑
δ=1

2δ−2∑
`=0,2

f0(δ, `)C(1)
` (1 + 2U

δ )
(1 + `)δ2

( 1
S − δ

+ 1
T − δ

)
, (C.5)

where U = −S − T . By parametrising in this manner, the particle couplings f0(δ, `) turn
out to be numerically equal to the OPE coefficients that enter in (2.3). This is due to the
flat space transform (5.1). Also, we simply wrote down the part of the amplitude

1
STU

= − 1
U2

( 1
S

+ 1
T

)
, (C.6)
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because it won’t play any role. The dispersion relation converges for Re(U) < 1. For
Re(U) = 1, it must diverge, in such a way as to give rise to the correct pole and residue in
U . One very natural way this can happen is if

lim
δ→∞

2δ−2∑
`=0,2

f0(δ, `)C(1)
` (1 + 2U

δ )
2(1 + `)δ3 = f0(δ = 1, ` = 0)× κ× δκ(U−1)−1 , (C.7)

where κ is some number that is not fixed by this reasoning. The reason for this asymptotic
is that

f0(δ = 1, ` = 0)× κ×
∫ ∞
δ0

dδδκ(U−1)−1 =︸︷︷︸
U→1

−f0(δ = 1, ` = 0) 1
U − 1 . (C.8)

This leads to the equation

lim
δ→∞

2δ−2∑
`=0,2

f0(δ, `)C(1)
` (1 + 2

δ )
(1 + `)δ2 = κ , (C.9)

where κ is some positive number, whose value is not fixed by this reasoning. When we
plug the numerical values of f0(δ, `), it turns out that (C.9) is precisely obeyed for every
δ ∈ N, for κ = 1.

C.2 Flat space from AdS

In this section we show how to derive (C.9) from: Mellin amplitudes in AdS, CFT Regge
boundedness and formulas (2.1) and (2.3) for the spectrum of exchanged operators. Our
discussion is similar to the one in [2] (though not exactly the same). The point of going
through this is to later use the same line of reasoning to derive a generalisation of (C.9)
for the case involving f2(δ, `) and τ2(δ, `), see formula (C.25). The starting point is the
dispersion relation

M(s1, s2) =
∑

stringy
C2
τ,`ωτ,`(s1, s2), (C.10)

where

ωτ,`(s1,s2)≡
∞∑
m=0
Qτ+4,d=4
`,m

(
s3−

8
3

)( 1
s1 + 4

3−τ−2m
+ 1
s2 + 4

3−τ−2m

)
, (C.11)

Qτ,d`,m(t)≡−
23`+2τ−2Γ

(
`+ τ

2 −
1
2

)
Γ
(
`+ τ

2 + 1
2

)
Γ
(
−d

2 +`+τ+1
)
Qτ,d`,m(t)

πΓ(m+1)Γ
(
`+ τ

2
)2 Γ(`+τ−1)Γ

(
−m− τ

2 +4
)2 Γ

(
−d

2 +`+m+τ+1
) .

Qτ,d`,m(t) is a Mack polynomial, see [1] for our conventions. This dispersion relation is
valid at finite λ and also when the Mellin variables are finite. We now take the limit
s1 → s1λ

1
2 , s2 → s2λ

1
2 and λ→∞. As explained in [2], this is what controls the flat space

limit of AdS. In this regime, the sums in m are dominated by terms of order τ2 ∼ λ
1
2 . We
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can thus do the substitution m = 4δλ 1
2x and ∑∞m=0 → 4δλ 1

2
∫∞

0 dx and we get

lim
λ→∞

M(λ
1
2 s1, λ

1
2 s2) = 1

λ
3
2
M (0)(s1, s2) +O

( 1
λ2

)
, (C.12)

M (0)(s1, s2) ≡
∞∑
δ=1

∞∑
`=0,2

f0(δ, `)
∫ ∞

0
dx
e−

1
4x

(
− 1

s1
4δ−2x −

1
s2
4δ−2x

)
C

(1)
`

( s3
4δx + 1

)
4096(`+ 1)δ3x6 .

Note that Mack polynomials turn into Gegenbauer polynomials in this limit [43].
At strong coupling, the Mellin amplitude develops cuts, as can be seen by explicitly

evaluating the above integrals for specific values of the spins. This is intuitive, because the
location of the poles is at s1, s2, s3 = τ + 2m + 4

3 , m ∈ N0, so if τ ∼ λ
1
2 is parametrically

large, there is no way of distinguishing between consecutive poles and the sequence of poles
basically condenses into a line. Because of this, it is useful to introduce the transform

A(0)(S, T ) = 2
∫ κ+i∞

κ−i∞

dα

2πiα
−6eαM (0)

(2S
α
,

2T
α

)
. (C.13)

This the flat space transform (5.1) after having performed the large λ expansion already
in (C.12). From (C.13) we conclude that A(0)(S, T ) is bounded in the Regge limit like (C.4).
It is crossing symmetric: A(0)(S, T ) = A(0)(T, S) = A(0)(S,U). Its poles are generated
through the following mechanism. Let us focus on the poles in S. Insert (C.12) into (C.13)
and commute the x and α integrals. We can deform the contour in α to the left due to the
eα in the integrand. The contour is bent in such a way that we avoid the α = 0 singularity,
but we pick up the pole at α = S

4δx . The x integral then becomes, up to a factor
∫ ∞

0
dx
e−

1
4x+ S

4δx

x2 = − 4δ
S − δ

. (C.14)

We conclude that the poles and residues of A(0)(S, T ) in S are according to

A(0)(S, T ) ≈ −
f0(δ, `)C(1)

` (1 + 2U
δ )

(1 + `)δ2
1

S − δ
. (C.15)

So, we have established from (C.13) the necessary ingredients to write a two sided dispersion
relation for T0(S, T ) and in this way obtain (C.9).

C.3 AdS constraints

We can compute corrections to formula (C.12)

lim
λ→∞

M(λ
1
2 s1, λ

1
2 s2) = 1

λ
3
2
M (0)(s1, s2) + 1

λ2M
(1)(s1, s2) + . . . (C.16)

The basic ingredient is to understand how to expand Mack polynomials. The formula we
need is

Qτ,d=4
`,m=xτ2

(
s3λ

1
2 − 8

3

)
= λ

`
2

(
C(x, δ, `; s3) + C1(x, δ, `; s3) 1

λ
1
4

+ C2(x, δ, `; s3) 1
λ

1
2

+ . . .

)
,

(C.17)
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where τ = 2
√
δλ

1
4 + τ1(δ, `) + τ2(δ, `)λ− 1

4 + . . . and

C(x,δ,`;s3) = 2`x`δ`C(1)
`

(
1+ s3

4xδ

)
, (C.18)

C1(x,δ,`;s3) = 1+4τ1(δ,`)x
4
√
δ

∂xC(x,δ,`;s3),

C2(x,δ,`;s3) = 3`+6x2 +20x
48δ+96δ` ∂2

xC(x,δ,`;s3)+−12x2−40x+3
24`+12 ∂x∂s3C(x,δ,`;s3)

− 1
6δ ∂xC(x,δ,`;s3)+ xτ2(δ,`)√

δ
∂xC(x,δ,`;s3)+ xτ2

1 (δ,`)
4δ ∂xC(x,δ,`;s3)

+ τ2
1 (δ,`)x2

2δ ∂2
xC(x,δ,`;s3)+ τ1(δ,`)

8δ ∂xC(x,δ,`;s3)+ xτ1(δ,`)
4δ ∂2

xC(x,δ,`;s3).

The flat space transform (5.1) applied to (C.16) implies

A(i)(S, T ) = 2
∫ κ+i∞

κ−i∞

dα

2πiα
−6eαM (i)

(2S
α
,

2T
α

)
. (C.19)

In formula (C.16), we assumed that there was no correction proportional to 1
λ

7
4
. This is

not automatic from (C.10) and actually leads to the familiar conditions

τ1(δ, `) = −`− 2 , 〈f1(δ, `)〉 = 〈f0(δ, `)〉
3`+ 23

4√
δ

. (C.20)

A(1)(S, T ) inherits a two sided dispersion relation from M (1)(S, T )

A(1)(S, T ) = −1
3
σ̂2
σ̂2

3
+
∞∑
δ=1

4∑
k=1

Rk(U, δ)
( 1

(S − δ)k + 1
(T − δ)k

)
, −S − T < 1 . (C.21)

Note the appearance of poles of order 4. The reason why we have higher poles is because
the expansion in 1√

λ
generates extra powers of 1

x which, upon doing an integral like (C.14),
give rise to higher order poles. The residues involve f0(δ, `), f2(δ, `), τ2(δ, `), Gegenbauer
polynomials and also derivatives of Gegenbauer polynomials.

R4(U,δ)=−
2δ−2∑
`=0,2

f0(δ,`)C(1)
`

(
1+2U

δ

)
(1+`) , (C.22)

R3(U,δ)=−
2δ−2∑
`=0,2

(
f0(δ,`)

12δ3(`+1)(2`+1)
(
4δ2
(
3`2+2`−2

)
C

(1)
`

(
1+2U

δ

)

+6δ(4δ(`−1)−12U)C
′(1)
`

(
1+2U

δ

)
−48U(δ+U)C

′′(1)
`

(
1+2U

δ

)))
,

R2(U,δ)=−
2δ−2∑
`=0,2

f0(δ,`)
24δ5(`+1)(2`+1)

(
2δ3(12

√
δ(2`+1)τ2(δ,`)+6`3−25`2−138`−32)

×C(1)
`

(
1+2U

δ

)
−4δ2

((
3`2+22`−31

)
4U+40δ(`−1)

)
C
′(1)
`

(
1+2U

δ

)
+4U(δ(8δ(16−3`)+(47−6`)4U))C

′′(1)
`

(
1+2U

δ

)
+192U2(δ+U)C

′′′(1)
`

(
1+2U

δ

))
,
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R1(U,δ)=−
2δ−2∑
`=0,2

f2(δ,`)
δ2(`+1)C

(1)
`

(
1+2U

δ

)

+
2δ−2∑
`=0,2

f0(δ,`)
96δ7(`+1)(2`+1)

(
(192
√
δ(2`+1)τ2(δ,`)+1248`3+4364`2+2782`+927)

×δ4C
(1)
`

(
1+2U

δ

)
+4δ3(48

√
δ(2`+1)Uτ2(δ,`)

+
(
6`3−37`2−383`+249

)
4U−314δ(`−1))C

′(1)
`

(
1+2U

δ

)
+4Uδ2

((
−12`2−216`+677

)
4U+4δ(365−104`)

)
C
′′(1)
`

(
1+2U

δ

)
+32U2δ(4δ(35−3`)+(45−4`)4U)C

′′′(1)
`

(
1+2U

δ

)
+768U3(δ+U)C

′′′′(1)
`

(
1+2U

δ

))
.

We checked that these residues agree with the expressions (5.20) when plugging in the OPE
data from section 4.2.

Analogously, we can write a two channel dispersion relation in the U and T channels.
When we equate it to the previous dispersion relation, and set U = 0, T = −S and expand
around S = 0 we get

0 =≈ α(0)
−1,1 + α

(1)
−1,1S + α

(1)
−2,2S

2 + . . . . (C.23)

So, we recover the crossing equations α(0)
−1,1 = 0, α(1)

−1,1 = 0, α(1)
−2,2 = 0, etc.

The next step is to set up the analogue of (C.9). At large δ the summand in (C.21)
must behave like log3 δ

δ when U ≈ 1 so as to give rise to a fourth order pole in U . The
reason for this is that

1
(U − 1)4 = κ4

6 lim
δ0→∞

∫ ∞
δ0

dδδκ(U−1)−1 log3(δ) (C.24)

This reasoning leads to the equation

lim
δ→∞

4∑
k=1

Rk(1, δ)
δk

= κ
log3 δ

δ
, (C.25)

where κ is some constant, which we cannot determine by this type of argument. Eq. (C.25)
is a generalisation of (C.9). Equation (C.25) follows purely from bootstrap, and so it can
potentially act as a check on the assumption that the α(1)

a,b’s are single-valued MZVs. In
order to check (C.25) we need to generate f2(δ, `) and τ2(δ, `) for large values of δ. The
amount of nested sums involved unfortunately grows very rapidly, and so we were unable
to generate a database of f2(δ, `) and τ2(δ, `) for sufficiently high values of δ so as to
check (C.25).

The explicitly known terms in the expression for the residues (5.20) fall off faster than
log3 δ/δ, so (C.25) constrains the functions hn(δ) and gn(δ)

lim
δ→∞

1
δ4

δ−1∑
n=0

(
hn(δ) + gn(δ)

(
1− δ2(2 + U∂U )

))
R(U + n

2 , δ − n)
∣∣∣∣
U=1

= κ
log3 δ

δ
. (C.26)
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D Leading poles

The poles of highest order in A(k)(S, T ) are universal in the sense that they do not depend
on corrections to the OPE data. For A(1)(S, T ) these are the fourth order poles which
originate from the terms in (3.4) that are polynomials of degree three in a and b.

To understand the structure of these terms better, we can compute the analogous
terms at higher orders in 1/

√
λ by expanding (A.10). We compute the terms that produce

the leading poles for k ≤ 5 and find that they have the following form, which we expect to
hold for all k

α
(k)
a,b =

∞∑
δ=1

b∑
m=0

1
δ3+2a+3b+k

(−1)k(2a+ 3b)3k

6kΓ(k + 1) c
(0)
a,b,mF

(0)
m (δ) + subleading poles in A(k)(S, T ) .

(D.1)
This can be summed over k to give an exponential exp

(
− (2a+3b)3

6δ
√
λ

)
. We can apply the flat

space transform and sum over a and b to get

2
∞∑

k,a,b=0

σ̂a2 σ̂
b
3α

(k)
a,b

λ
k
2

=
∞∑
δ=1

1
δ3 exp

(
−(2x∂x + 3y∂y)3

6δ
√
λ

)
y + 2

1− x− y

(
z + δ − 1
δ − 1

)2

+ subleading poles .

(D.2)

The leading poles arise when the derivatives act on the denominator

(2x∂x + 3y∂y)3k y + 2
1− x− y = (3k)!S3k+1

(δ − S)3k+1 +O

( 1
(S − δ)3k

)
, δ = 1, 2, . . . . (D.3)

This gives

2
∞∑

k,a,b=0

σ̂a2 σ̂
b
3α

(k)
a,b

λ
k
2

=
∞∑
k=0

1
λ
k
2

R(k)
3k+1(T, δ)

(S − δ)3k+1 +O

( 1
(S − δ)3k

) , (D.4)

with
R

(k)
3k+1(T, δ) = −(3k)!δ2k−2

6kk!
Γ(T + δ)2

Γ(δ)2Γ(T + 1)2 . (D.5)

The leading order poles can be Borel resummed. We obtain

∑
k=0
−(3k)!δ2k−2

6kk!
1

λk/2(S − δ)3k+1 = −
∫ ∞

0
dt
e

δ2t3
6
√
λ(S−δ)3−t

δ2(S − δ) . (D.6)

The integral can be written in terms of Airy and hypergeometric functions, if desired.

E Dimension of the Konishi operator

At weak coupling, the dimension of the Konishi operator (which is related to one of the
operators exchanged in our correlator as discussed below (2.19)) was calculated in [20]. It
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is given by

∆̂weak = 4+12g2−48g4 +336g6 +96g8(6ζ(3)−15ζ(5)−26)

−96g10
(
54ζ(3)2−72ζ(3)+90ζ(5)−315ζ(7)−158

)
−48g12

(
432ζ(3)2−3240ζ(5)ζ(3)+5472ζ(3)−2340ζ(5)−1575ζ(7)+10206ζ(9)+160

)
+48g14(2592ζ(3)3−8784ζ(3)2 +8568ζ(5)ζ(3)−40320ζ(7)ζ(3)+108960ζ(3)−20700ζ(5)2

−4776ζ(5)−26145ζ(7)−17406ζ(9)+152460ζ(11)−44480)
+96g16(20736ζ(3)3 +82656ζ(3)2−90(504ζ(5)+721ζ(7)−2688ζ(9)+9664)ζ(3)
+24840ζ(5)2 +227799ζ(7)+72ζ(5)(3220ζ(7)−2847)+97164ζ(9)−1104246ζ(13)

+566752− 9
5
(
22800ζ(3)2ζ(5)−194711ζ(11)+792ζsv(5,3,3)

))
, (E.1)

where g =
√
λ

4π . At order g16 we see that ζsv(5, 3, 3) appears! This suggests that ∆̂weak can
be written in terms of single valued MZVs only.

At strong coupling, the analytic prediction is [13]

∆̂strong = 2λ
1
4 + 2λ−

1
4 +

(1
2 − 3ζ(3)

)
λ−

3
4 +

(
6ζ(3) + 15ζ(5)

2 + 1
2

)
λ−

5
4 . (E.2)

Two more orders were computed numerically in [44]

∆̂strong ∼ −91.976023725λ−
7
4 + 758.514613λ−

9
4 . (E.3)

It would be interesting to find a function ∆̂(λ) such that

• at large λ it can be expanded in powers of λ− 1
4 , matches (E.2) and (E.3), and all

numerical coefficients are single valued periods,

• at small λ it can be expanded in even powers of g, it matches (E.1), and all numerical
coefficients are single valued periods.
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