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1 Introduction

So far, higher-dimensional black holes have played important roles in understanding basic
properties of fundamental theories, such as string theory. A number of interesting solutions
of such higher-dimensional black holes have been found and shown us that they have
much richer structure of their solution space than that of four-dimensional black holes [1].
However, since our observable world is macroscopically four-dimensional, extra dimensions
have to be compactified in realistic spacetime models [2, 3]. Therefore, from this point of
view, it is of great importance to consider higher-dimensional Kaluza-Klein black holes,
which look like a four-dimensional spacetime at least at large distances. One hopes that
the studies on such Kaluza-Klein black holes may also give us some insights into the major
open problem of how to compactify and stabilize extra dimensions in string theory. The
simplest example of a five-dimensional Kaluza-Klein black hole is a black-string, which is
a direct product of a four-dimensional black hole and a circle.

A more non-trivial class of Kaluza-Klein black holes is given by squashed Kaluza-Klein
(SqKK) black holes which are obtained by applying the deformation of squashing to five-
dimensional black holes. For instance, the basic idea is to view the S3 section, dΩ2

3, of a
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five-dimensional Schwarzschild black hole spacetime as a fiber bundle of S1 over the S2

base space dΩ2
2, as follows,

dΩ2
3 = 1

4[(dψ + cos θdφ)2 + dΩ2
2],

and then perform such a deformation that changes the ratio of the radii of the fiber S1 and
the S2 base, as

ds2 = −
(

1− m

r2

)
dt2 +

(
1− m

r2

)−1
k2(r)dr2 + r2

4 [(dψ + cos θdφ)2 + k(r)dΩ2
2],

where k(r) is called squashing function, which is determined by the Einstein equation. After
this squashing deformation, the resultant spacetime asymptotically looks like an S1 fiber
bundle over a base space of a four-dimensional flat spacetime at large distances, whereas
it looks like a five-dimensional black hole near the horizon. The basic structure of SqKK
black holes can in fact be seen in the much earlier works of refs. [4, 5], whose solutions
asymptote to an S1-bundle over a four-dimensional flat spacetime, as studied in [6]. Some
further generalizations of SqKK black holes has been made subsequently [7–9].

Moreover, the accumulation of this type of SqKK black hole solutions also motivates
us to generalize to higher dimensions. For example, in ref. [10], odd-dimensional extremal
charged black hole solutions with a compactified dimension were obtained by squashing
S2n+1, which can be viewed as an S1 fiber bundle over CPn base space,

dΩ2
2n+1 = (dφ+An)2 + dΣ2

n,

in terms of a metric dΣ2
n and a Kähler potential on CPn, then the ratio of the radii of the

fiber S1 and the base CPn is changed so that the ratio is to same extent on the horizon but
diverges at infinity. The resultant spacetime looks like a black hole with S2n+1 topology
near the horizon but has a compact spatial direction of ∂/∂φ at infinity.

To explore a vast variety of higher dimensional black holes, the large dimension limit,
or large D limit, of gravitational theories provides a versatile analytic approach [11, 12].
The basic feature of the large D limit, the localization of the gravity, confines the black
hole dynamics within the thin layer of O (1/D)-thickness along the horizon, to form an
effective theory living on the horizon surface [13–15]. This largeD effective theory approach
facilitates the search for more general, less symmetric solutions. So far, this approach has
been applied to study various types of black holes such as the black brane instability and
related non-uniform branches [13, 16–20], rotating compact black holes [21–24] and other
solutions in more complicated setups [25, 26]. The instability, deformation and interaction
of compact black holes can be systematically studied by the blob approximation, in which
a compact black hole is identified as a Gaussian lump, or black blob, on the black brane
effective theory [27–33]. The large D effective theory is also applicable to Gauss-Bonnet
black holes [34, 35].

In this paper, we use the technique of the largeD effective theory to find black hole solu-
tions in the odd-dimensional SqKK background in Einstein and Einstein-Maxwell theories.
Specifically, we focus on static and non-extremal black holes with S2n+1 topology, which
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can be regarded as an S1 fiber bundle over CPn base space. Therefore, this is straightfor-
ward extensions of the five-dimensional black holes [5] to a higher-dimensional case as well
as of the (2n+ 3)-dimensional black holes [10] to a non-extremal case. As a novel feature,
instead of imposing simple backgrounds such as asymptotically flat or (A)dS, we solve
the non-trivial squashed background, more specifically generalized (2n + 2)-dimensional
Taub-NUT space background, by using the 1/D expansion besides the near-horizon anal-
ysis.1 This demonstrates that the large D limit can also be useful in finding a class of
Kaluza-Klein spacetimes having non-trivial bundles with/without a horizon. The charged
solutions are also studied in the same analysis. We can find that the extremal limit is
consistent with the large D limit of the known extremal solution [10].

This paper is organized as follows. In section 2, we start by revisiting the squashed
background at large D. In section 3, the near horizon geometry of neutral squashed black
holes are solved in 1/D-expansion. The resulting physical quantities are shown in section 4.
The section 5 repeats the similar analysis for charged black holes. The extremal limit is
also discussed. We summarize our result in section 6. We attached an auxiliary Mathe-
matica notebook file in the supplementary material to present lengthy metric solutions in
1/D-expansion.

2 Squashed background

First, using the large D limit, we reconstruct the squashed background with a compact
S1 direction, i.e., the (2n + 2)-dimensional Eulidean Taub-NUT space which was studied
in ref. [10],

ds2
2n+2 = dr2

F (r) + L2F (r)(dφ+An)2 + r(r + 2L)dΣ2
n, (2.1)

where dΣ2
n = γijdσ

idσj is the CPn-metric with the curvature R̂ij = 2(n+ 1)γij and An is
the Kähler potential on CPn. The S1 direction is identified with φ ∼ φ + 2π.2 Since the
large dimension now owes to CPn, we consider the large n limit in the following.

The Ricci-flat condition of this geometry is given by

(2L2n+ L(4n− 2)r + (2n− 1)r2)F (r) + r(2L+ r)((L+ r)F ′(r)− 2(1 + n)) = 0. (2.2)

The solution regular at r = 0 is obtained as

F (r) = 2r
L

(
1 + r

L

)(
1 + r

2L

)−n
F1

(
n+ 1, 2,−n, n+ 2;− r

L
,− r

2L

)
, (2.3)

where F1 is the Appell’s double hypergeometric function which reduces to polynomial for
an integer n. Now, instead of direct integration, we observe the large n limit of eq. (2.2)

2n(L+ r)2F (r)− 2nr(2L+ r) +O
(
n0
)

= 0. (2.4)

1Using the large D terminology, we solve the decoupled sector in both near horizon and asymptotic
region.

2Note that our convention of the CPn metric is different from ref. [10], in which the S1 direction is
identified with φ ∼ φ+ 4(n+ 1)π. We follow the construction in ref. [36].
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Interestingly, the derivative term goes to the sub-leading order, and then the leading-order
solution for F (r) is determined by merely solving an algebraic equation. Solving eq. (2.2)
order by order in the 1/n expansion, we obtain

F (r) = r(r + 2L)
(r + L)2 + 3r2(r + 2L)2

2n(r + L)4 + 3r2(2L+ r)2 (−4L2 + 2Lr + r2)
4n2(L+ r)6 + · · · , (2.5)

which correctly approximates eq. (2.3) at large n. Therefore, we can obtain the squashed
background at the large D limit as

ds2
2n+2 '

(r + L)2

r(r + 2L)dr
2 + L2r(r + 2L)

(r + L)2 (dφ+An)2 + r(r + 2L)dΣ2
n. (2.6)

2.1 Squashed background at large D

In the above analysis, we have seen that the largeD limit correctly reproduces the squashing
behavior of the known result [10] in the 1/n-expansion (2.5). Here, we show that the
spacetime with an S1 fiber bundle over CPn admits the squashing deformation at large n
even if we use a more general metric ansatz rather than eq. (2.1). Let us start from the
following general ansatz with an S1 fiber bundle over CPn,

ds2 = Fdr2 +Gabdx
adxb + 2Gaφdxa(dφ+An) +Gφφ(dφ+An)2 + r2dΣ2

n, (2.7)

where dΣn = γijdσ
idσj andAn are the same CPn metric and Kähler potential, respectively,

and the coordinates xa may include another spatial coordinates as well as a time coordinate
t. Here, we suppose that the metric components are function of r and xa. It is shown that
by taking the limit n→∞, the Einstein equation in appendix A reduces to

F = 1 +O
(
n−1

)
, (2.8)

∂rGAB = 2GAφGBφ
r3 +O

(
n−1

)
, (2.9)

where A,B = a, φ. For Gφφ, this is immediately solved as

Gφφ = L2r2

L2 + r2 , (2.10)

where L is an integration constant, which causes to squash the background and compactify
the fiber direction ∂/∂φ. The other remaining components are solved as

Gaφ = caL
2r2

r2 + L2 , (2.11)

Gab = Hab −
cacbL

4

r2 + L2 , (2.12)

where ca and Hab are independent of r, and ca gives the boost dφ→ dφ+ cadx
a at r →∞.

One can easily confirm that this recovers eq. (2.6) by switching the radial coordinate.
In the resultant spacetime, the size of S1 is finite and much smaller than the size of 2πL at
infinity, so that the S1 direction is compactified. Moreover, we note that the limit L→∞
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recovers SO(2n+1) symmetry. It is also worth noting that, in the leading order, L is rather
an integration function which can depend on other directions xa, as eq. (2.9) only solves the
radial dependence. The sub-leading analysis will impose constraints on the form of L(x).

One should note that in the conventional large D analysis, the background is usually
put by hand, and the main focus has been always on the horizon. Here, we have demon-
strated that the large D limit also provides an easy way to construct a squashed horizonless
background spacetime with a compact dimension, which is determined by solving the geo-
metric flow-like equation (2.9).

2.2 Asymptotic behavior in SqKK background

Next, we elaborate the SqKK background at large D, but use the following Bondi ansatz,
which is convenient for the later near horizon analysis

ds2 = −dt2 + hrr(r)dr2 + hφφ(r)(dφ+An)2 + r2dΣ2
n. (2.13)

Here we repeat the analysis in the previous section up to higher order in 1/n,3

hµν = h[0]
µν + 1

n
h[1]
µν + · · · , (2.16)

which gives

hrr(r) = 1− 3r2

2n(L2 + r2) + 3r2 (L2 + 2r2)
4n2 (L2 + r2)2 +O

(
n−3

)
, (2.17a)

hφφ(r) = L2r2

L2 + r2 + 0× n−1 − 3r4L4

2n2(L2 + r2)3 +O
(
n−3

)
. (2.17b)

Under this ansatz, the Einstein equation can be also solved by expanding the metric from
r =∞ in small L/r, and we have

hrr(r) = 2n− 1
2n+ 2 + 3(2n− 1)2

4(n+ 1)2(2n− 3)
L2

r2 +O
(
L4

r4

)
, (2.18a)

hφφ(r) = L2
(

1− n(2n− 1)
(n+ 1)(2n− 3)

L2

r2 +O
(
L4

r4

))
. (2.18b)

These two expansions are consistently matched by the double expansion with 1/n and L/r.
One can easily see from eq. (2.18) that the metric (2.13) asymptotes to the Kaluza-Klein
spacetime compactified in the S1 direction with the radius 2πL for r →∞

ds2 ' −dt2 + 2n− 1
2n+ 2dr

2 + L2(dφ+An)2 + r2dΣ2
n. (2.19)

3Although the current interest is the 1/n expanded behavior, we also have the strict solution by

hrr = 1
F (r) , hφφ = L̃2r2F (r)

r2 + L̃2
(2.14)

where

F (r) = 2(n+ 1)
2n− 1 2F 1

[
1, 3

2 ,
3
2 − n,

L̃2

L̃2 + r2

]
+ C(r2 + L̃2)3/2

r2n+2 , L̃ =
√

2n− 1
2n+ 2L. (2.15)

The constant C must vanish for the regularity.
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Squashed perturbation. Given the squashed background (2.13), it is natural to expect
the perturbative behavior is affected by the squashing effect. Let us assume the linear
perturbation to the background (2.13) as,

gtt = −1 + a(r)
r2n−1 , grr ' hrr(r)

(
1 + b(r)

r2n−1

)
, gφφ ' hφφ(r)

(
1 + c(r)

r2n−1

)
, (2.20)

where the typical falling factor r−2n+1 is separated in advance, so that a(r), b(r) and c(r)
remains finite functions of r at n → ∞. Then, the linearized equation is solved by 1/n-
expansion,

a(r) = α

√
1 + L2

r2 +O
(
n−1

)
, b(r) = α

√
1 + L2

r2 − β
(

1 + L2

r2

)3/2

+O
(
n−1

)
,

c(r) = β

(
1 + L2

r2

)3/2

− L2 (2α (L2 + 2r2)+ 3β
(
L2 + r2))

4r3
√
L2 + r2 n

+O
(
n−2

)
, (2.21)

where α and β are the integration constants and c(r) is shown up to O
(
n−1) for the later

use. The O
(
(L/r)0) terms at each order of 1/n can be absorbed into α and β by fixing

the integration constants, and hence one can identify them to the leading order terms in
the asymptotic behavior at r →∞4

gtt ' −1 + α

r2n−1 ,
grr
hrr
' 1 + α− β

r2n−1 ,
gφφ
hφφ
' 1 + β

r2n−1 . (2.22)

The parameters in eq. (2.21) are later matched with the near horizon solution. Once the
asymptotic behavior is determined, the ADMmass and tension are evaluated as follows [37],

Mass = Ω2n+1
16πG

√
2n+ 2
2n− 1L(2nα− β) = nΩ2n+1

8πG M, (2.23)

Tension = Ω2n+1
32π2G

√
2n+ 2
2n− 1(α− 2nβ) = nΩ2n+1

16π2G
T , (2.24)

where Ω2n+1 = 2π vol(CPn) is the volume of S2n+1 and the normalized mass and tension
is given by

M =
√

2n+ 2
2n− 1L

(
α− β

2n

)
, T =

√
2n+ 2
2n− 1

(
α

2n − β
)
. (2.25)

Similarly, the Komar mass is obtained as

Komar Mass = − 2n+ 1
32πGn

∫
∇µξνdSµν = nΩ2n+1

8πG MK , (2.26)

and
MK = (2n+ 1)

√
2(n+ 1)(2n− 1)

4n2 Lα. (2.27)
4One should not confuse with the linear perturbation (2.20) in which r is assumed finite but just

r−2n � 1.
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3 Near-horizon analysis

In this section, we apply the standard near-horizon analysis at large D to the squashed
background. Bearing in mind the metric form of the background (2.13), we assume the
following ansatz:

ds2 = −A(r)dt2 + hrr(r)
B(r)
A(r)dr

2 + hφφ(r)H(r)(dφ+An)2 + r2dΣ2
n, (3.1)

where hrr(r) and hφφ(r) are the metric components for the squashed background, which
are already solved in the 1/n-expansion (2.17). Since the metric has only r-dependence,
we do not need to solve the large D effective equation. Once we get the metric solution
in the 1/n expansion, they trivially satisfies an effective equation, which must be solved in
analysis for non-uniform black strings as in refs. [13, 16]. As is done in a usual analysis of
the large D effective theory, we introduce a new radial coordinate to resolve the thin near
horizon region located around r = r0 by

R := (r/r0)2n, (3.2)

or inversely,
r = r0R

1
2n ' r0

(
1 + 1

2n log R
)
. (3.3)

The horizon scale is set to r0 = 1 by rescaling L. The background solution hrr(r) and
hφφ(r) should be expanded in 1/n again with the new coordinate. The metric solution is
obtained by expanding in 1/n as functions of R,

A =
∞∑
i=0

Ai(R)
ni

, B = 1 + 1
n

∞∑
i=0

Bi(R)
ni

, H = 1 + 1
n

∞∑
i=0

Hi(R)
ni

. (3.4)

We also impose the asymptotic boundary conditions at R→∞ on these functions so that
the geometry at infinity behaves as the squashed background by

A = 1 +O
(
R−1

)
, B = 1 +O

(
R−1

)
, H = 1 +O

(
R−1

)
. (3.5)

If we require the existence of a horizon at R = m (a certain positive constant), the
leading function A0 is determined as

A0 = 1− m

R . (3.6)

Moreover, from the requirement of regularity on the horizon and asymptotic boundary
condition (3.5), the other leading functions are obtained as

B0 = 0, H0 = 0. (3.7)

Furthermore, we require that the metric functions should be regular on the horizon even
at each higher order in 1/n. Choosing the integration constants included in Ai (i = 1, . . .)
appropriately, we can fix the horizon at the same position R = m in all orders of 1/n.
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Matching with the asymptotic perturbation (2.21) for 1 � R � e2n, we can extract
the asymptotic behavior at the leading order,

α = m√
1 + L2

+O
(
n−1

)
, β = O

(
n−1

)
. (3.8)

One can see that the asymptotic behavior in the near-horizon region gets a dressing factor
in the asymptotic region due to the squashing effect.5 Since H is solved up to O

(
n−1), the

match with c(r) in eq. (2.21) determines

β = L2(L2 + 2)m
2(1 + L2)5/2n

+O
(
n−2

)
. (3.9)

B and b match accordingly.
Continuing the analysis order by order, we obtained the metric solution up to NNNLO,

part of which is shown in appendix B.1 (See the attached auxiliary file in the supplementary
material for the full data).

4 Physical properties

Matching the near horizon solution with the asymptotic behavior at infinity, we can com-
pute the ADM mass M, Komar mass MK and tension T in 1/n-expansion up to the
next-to-next-to-leading order (NNLO) in 1/n, which are written as, respectively,

M= Lm√
L2+1

[
1+2L2−2logm+3

4(L2+1)n +
(
12−24L2)log2m+8

(
π2−9

)
L2−36logm+9

96(L2+1)2n2

]
, (4.1)

T = m

2(L2+1)5/2n

[
1+
(
8L2−2

)
logm−2L2+3

8(L2+1)n

+12
(
16L4−18L2+1

)
log2m−12

(
8L4−24L2+3

)
logm+312L4+8

(
π2−54

)
L2+9

192(L2+1)2n2

]
, (4.2)

and

MK = Lm√
L2 +1

[
1+ 2L2−2logm+3

4(L2 +1)n +
(
12−24L2) log2m+8

(
π2−9

)
L2−36logm−15

96(L2 +1)2n2

]
.

(4.3)
The surface gravity and horizon area are derived from the near horizon geometry

Surface gravity = nκ, Area = Ω2n+1AH , (4.4)

where the normalized quantities are given by

κ = 1 +
1

4(L2+1) −
logm

2

n
+ 4(L2 + 1)2 log2m+ 4(L2 − 1) logm− 4L2 − 9

32 (L2 + 1)2 n2
, (4.5)

5To take the limit L→∞, α and β must be rescaled by α→ α/L and β → β/L3 so that the asymptotic
behavior (2.21) remains finite, in which the match reproduces non-squashed result α = m.
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and

AH = Lm√
L2 + 1

1 + L2 logm
2 (L2 + 1)n +

L2
(
3
(
L2 − 2

)
log2m+ 2

(
π2 − 9

))
24 (L2 + 1)2 n2

 . (4.6)

Assuming L and m as independent parameters, we can check the following relations

dM = κ dAH + T dL, (4.7)
2nM = (2n+ 1)κAH + T L, (4.8)

MK = 2n+ 1
2n κAH , (4.9)

up to the given order of 1/n. Especially, the tension is proportional to the difference
betweenM andMK

M−MK = T L2n , (4.10)

which was shown in ref. [40] for a five-dimensional static and charged case.

Scaling invariant expression. As we fixed the horizon scale r0 = 1, we have the
freedom to change the length scale of entire system. One can check that, under the change
of parameter

L→ C
1

2nL, m→ Cm, (4.11)

the above physical quantities must be subject to the following scaling laws up to the given
order of 1/n,

M→ CM, T → C
2n−1

2n T , AH → C
2n+1

2n AH , κ→ C−
1

2nκ. (4.12)

Thus, we can separate the scaling dependence from the scale invariance as

M = r2n
H M̃(rH/L), T = r2n−1

H T̃ (rH/L), AH = r2n+1
H ÃH(rH/L), κ = r−1

H κ̃(rH/L),
(4.13)

where rH := m
1

2n is the radius of the CPn base on the horizon and the scale-invariant
functions, M̃, T̃ , κ̃ and ÃH , are given by

M̃(x)= 1√
x2+1

[
1+ 2+3x2

4(x2+1)n+8
(
π2−9

)
x2+9x4

96(x2+1)2n2 (4.14a)

+2x4(20π2−96ζ(3)−189
)
+48x2(9−8ζ(3))+45x6

384n3(x2+1)3

]
,

T̃ (x)= x5

2n(1+x2)5/2

[
1+ 3x2−2

4(x2+1)n+312+8
(
π2−54

)
x2+9x4

96(x2+1)2n2 (4.14b)

+2x4(20π2−96ζ(3)−1215
)
+8x2(4π2−240ζ(3)+945

)
+45x6+48(32ζ(3)−49)

384n3(x2+1)3

]
,

κ̃(x)=1+ x2

4(x2+1)n−
4x2+9

32(x2+1)2n2 +x2(3(9x4+36x2+56
)
−16π2(x2+1

))
384n3(x2+1)3 , (4.14c)

ÃH(x)= 1√
x2+1

[
1+

(
π2−9

)
x2

12(x2+1)2n2 +x2(x2(2π2−12ζ(3)−9
)
−24ζ(3)+27

)
24n3(x2+1)3

]
, (4.14d)

where we have used the solution up to NNNLO to obtain the formula up to O
(
n−3).
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Squashing function. To measure the squashing effect on the horizon, it is convenient
to calculate the squashing function by

ksq := r2/gφφ
∣∣
R=m, (4.15)

which is the ratio of the CPn radius to the S1 radius. By definition, ksq is scale invariant,
and hence fully expressed by the scale invariant function ksq = k̃sq(rH/L), which is given by

k̃sq(x) = 1 + x2 − (π2 − 9)x2

6 (x2 + 1)n2 + x4 (12ζ(3) + 9− 2π2)+ 3x2(8ζ(3)− 9)
12n3 (x2 + 1)2 , (4.16)

up to NNNLO. One can check the squashing is dissolved for rH/L → 0. It turns out the
leading order terms alone approximate quite well for any n ≥ 1,

k̃sq(x) ≈ 1 + x2 − 0.145
n2

x2

1 + x2 ≈ 1 + x2. (4.17)

This means that the horizon must be oblate, namely, the size of CPn base is larger than
the size of the S1 fiber, as observed in D = 5 [5], due to compactified spatial infinity.

5 Charged SqKK black holes

Next, let us consider to find static, non-extremal and charged squashed black holes at large
D limit in D-dimensional Einstein-Maxwell theory, whose equation of motions are given by
the Einstein equation

Rµν −
1
2Rgµν = 2

(
FµαFν

α − 1
4F

2gµν

)
, (5.1)

and the Maxwell equation
∇µFµν = 0, (5.2)

where Fµν := ∂µAµ − ∂νAµ. To this end, we assume the same ansatz as eq. (3.1) for the
metric and the following form for the gauge field

Aµdx
µ = Φdt, (5.3)

where Φ = Φ(r) corresponds to an electric potential. The squashed perturbation and
asymptotic behavior of the gauge field can be similarly solved to give

Φ = γ

√
r2 + L2

r2n +O
(
n−1, r−4n

)
(5.4)

= γ

r2n−1 +O
(
r−2n−1

)
, (5.5)

where γ is the constant which is related to the normalized electric charge as

Q = 2
√

(2n+ 2)(2n− 1)
n

Lγ, (5.6)

and the physical electric charge is written in terms of Q as

Charge = − 1
8πG

∫
FµνdSµν = nΩ2n+1

8πG Q. (5.7)
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Near horizon analysis. The near horizon analysis for the charged case is almost parallel
to the neutral case performed in the previous sections, and we use the same near horizon
coordinate R := r2n and the same metric expansion (3.4). Moreover, we assume that the
electric potential is expanded in 1/n as

Φ =
∞∑
i=0

n−iΦi. (5.8)

If we impose the suitable boundary conditions on the potential Φ such that (1) Φ → 0 at
infinity R→∞ and (2) Φ is regular on the horizon, then we can obtain the leading order
solution as

Φ0 =
√
ρ+ρ−√

2R
, A0 = 1− ρ+ + ρ−

R + ρ+ρ−
R2 ,

H0 = 1
1 + L2 log

(
1− ρ−

R

)
, B0 = − ρ−

(1 + L2)(R− ρ−) . (5.9)

We use the ambiguity in the integral constants ρ+, ρ− in higher order, to fix the horizon
position and the potential value on the horizon

A
∣∣
R=ρ+

= 0, Φ
∣∣
R=ρ+

=
√
ρ−
2ρ+

. (5.10)

Matching the asymptotic behavior (2.21) and (5.4) (up to leading order) leads to

α = ρ+ρ−√
1 + L2

, γ =
√

ρ+ρ−
2(1 + L2) , β = ρ+L

2(L2 + 2) + ρ−(L4 + 2L2 + 2)
2n(1 + L2)5/2 . (5.11)

Thus, we have solved the equations of motion for the metric functions at large D up to
NNLO and part of NNNLO to study the thermodynamics. In the appendix B.2, the metric
solutions are given up to NLO.

5.1 Physical quantities

From the above results, we find that the thermodynamic variables are written as, up to
O
(
n−2),
M= L√

1+L2

[
ρ++ρ−+ρ+

(
2L2+3

)
+ρ−−2(ρ++ρ−)log(ρ+−ρ−)

4(L2+1)n (5.12a)

+ 1
n2

(
−

ρ2
−

2(ρ+−ρ−)(1+L2)+
(
4
(
2π2−27

)
L2−75

)
ρ−+

(
8
(
π2−9

)
L2+9

)
ρ+

96(1+L2)2

− 1
8(1+L2)2

((
2L2−1

)
(ρ−+ρ+)log2(ρ+−ρ−)+

(
−2L2ρ−+ρ−+3ρ+

)
log(ρ+−ρ−)

))]
,

Q= 2L
√

2ρ+ρ−√
1+L2

[
1+1−2log(ρ+−ρ−)

4(L2+1)n + 1
96n2(L2+1)2

(
−24ρ−(1+L2)

ρ+−ρ−
(5.12b)

−12
(
2L2−1

)
(log2(ρ+−ρ−)−log(ρ+−ρ−))+

(
8π2−84

)
L2−27

)]
,
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T = ρ+−ρ−
2(1+L2)5/2n

[
1+ 1

n

((
4L2−1

)
ρ−+

(
3−2L2)ρ+

4(ρ+−ρ−)(L2+1) −
(
4L2−1

)
log(ρ+−ρ−)

2(L2+1)

)]
, (5.12c)

AH= Lρ+√
1+L2

[
1+ 1

2n

(
logρ+−

log(ρ+−ρ−)
L2+1

)
+ (5.12d)

+ 1
n2

((3−6L2)log2(ρ+−ρ−)+2
(
π2−9

)
L2−6

(
L2+1

)
(ρ−/ρ+)

24(L2+1)2

− log(ρ+−ρ−)logρ+
4(1+L2) +1

8log2ρ+−
ρ2
−

4ρ+(L2+1)(ρ+−ρ−)

)]
,

κ= ρ+−ρ−
ρ+

+2L2ρ−−2
(
L2+1

)
(ρ+−ρ−)logρ++ρ−+ρ+

4(L2+1)nρ+
(5.12e)

+ 1
n2

((8L4+8L2−5
)
ρ−+

(
4L2+9

)
ρ+

32(L2+1)2ρ+
+L2(ρ−−ρ+)log(ρ+−ρ−)

4(L2+1)2ρ+

+
(
2L2ρ−+ρ−+ρ+

)
logρ+

8L2ρ++8ρ+
+1

8

(
ρ−
ρ+
−1
)

log2ρ+

)
.

And we must recall the potential on the horizon was fixed by the parametrization (5.10)

ΦH =
√
ρ−
2ρ+

. (5.13)

It is can be shown from direct computations that these quantities satisfy the first law and
Smarr’s relation

dM = κAH + ΦHdQ+ T dL, (5.14)
2nM = (2n+ 1)κAH + T L+ 2nΦHQ. (5.15)

We omitted the expression forMK as it follows Smarr’s relation

MK = 2n+ 1
2n κAH + ΦHQ =M− T L2n (5.16)

The squashing function is written as

ksq = L2

1 + L2

[
1− log(ρ+ − ρ−)

(L2 + 1)n + 1
6 (L2 + 1)2 n2

(
− 3ρ−(L2 + 1)

ρ+ − ρ−

− 3L2 log2(ρ+ − ρ−) + 3 log(ρ+ − ρ−) + (π2 − 9)L2
)]
. (5.17)

For the charged case, each physical quantity obeys the same scaling laws as for the neutral
case under

ρ± → Cρ±, L→ C
1

2nL. (5.18)

5.2 Extremal limit

Until now, the extremal limit of charged black holes has been paid no attention to in the
large D effective theory. Since the extremal limit leads to the divergent behavior in the 1/D
correction, it has been simply considered as the breakdown of the 1/D-expansion [18]. Our
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charged solution exhibits the same symptom as well. From eq. (5.12e), the zero temperature
limit κ→ 0 yields

ρ+ = ρ̃− :=
(

1− 1
2n + 1

4n2 +O
(
n−3

))
ρ− '

2n
2n+ 1ρ−. (5.19)

In this limit, the leading order solution (5.9) admits a degenerate horizon. However, the
sub-leading solution (B.8) diverges for ρ+ → ρ̃−, from which one might conclude the break-
down of the 1/n expansion. However, we can show that the divergent behavior can actually
be tamed to obtain the regular extremal limit by introducing the extremal parameter

χ := (1− ρ̃−/ρ+)
1

2n . (5.20)

All the divergent terms in the thermodynamical variables (5.12) can be absorbed into the
extremal parameter as follows

M = r2n
H

[
M̃
(
rHχ

L

)
+ (1− χ2n)M̃−

(
rHχ

L

)]
,

Q = 2r2n
H

√
2(1− χ2n) Q̃

(
rHχ

L

)
, T = χ2n−1T̃

(
rHχ

L

)
,

ΦH =
√

2n+ 1
4n (1− χ2n), AH = r2n+1

H ÃH
(
rHχ

L

)
, κ = r−1

H χ2nκ̃

(
rHχ

L

)
, (5.21)

where rH := ρ
1

2n
+ is the CPn radius on the horizon and scale-invariant functions are the

same as those of the neutral solution (4.14) except the following two

M̃−(x) = 1√
1 + x2

(
1 + 3x2 + 2

n (4x2 + 4) −
(
39x2 − 8π2 + 72

)
x2

96n2 (x2 + 1)2 (5.22)

−x
2 (x2 (192ζ(3) + 282− 40π2)+ 99x4 + 48(8ζ(3)− 9)

)
384n3 (x2 + 1)3

)
,

Q̃(x) = 1√
1 + x2

(
1 + 2x2 + 1

n (4x2 + 4) + −24x4 +
(
8π2 − 84

)
x2 − 3

96n2 (x2 + 1)2 (5.23)

+ 8x4 (4π2 − 3(8ζ(3) + 9)
)

+ x2 (−384ζ(3) + 522− 8π2)+ 3
384n3 (x2 + 1)3

)
,

where NNNLO solutions are used to obtain O
(
n−3)-correction. The squashing function

has exactly the same expression as in the neutral case (4.16)

ksq = k̃sq

(
rHχ

L

)
. (5.24)

And hence, we obtain the regular extremal limit by χ→ 0, in which the solution approaches
that of the extremal Reissner-Nordström black hole.6 Particularly, the mass to charge ratio
correctly saturates the known BPS bound [10] up to O

(
n−3)

M
Q

= 1√
2

(
1 + 1

4n −
1

32n2 + 1
128n3

)
≈
√

2n+ 1
4n . (5.25)

6Here we do not show explicitly, but the metric solutions also have the smooth extremal limit, once the
divergent terms are absorbed into χ.
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Breakdown of 1/n-expansion on the inner horizon. In contrast to the extremal
limit, the inner horizon seems to admit a true breakdown of the 1/n-expansion. In the
leading order solution (5.9), assuming R− ρ− = O(1/n), we have B0 ∼ O (n) which breaks
the expansion B = 1 + B0/n. This means the near inner horizon region should be solved
in a different setup at large D.

6 Summary

In this paper, using the technique of the large D effective theory, we have studied the static
solution of the extremal, neutral/charged SqKK black holes with the horizon topology of
S2n+1, which we have viewed as an S1 fiber bundle over CPn base. First, we have solved
the squashed horizonless background geometry by 1/D expansion which describes the gen-
eralized Euclidean Taub-NUT spacetime with a flat timelike direction. Once the squashed
background was solved in 1/D-expansion, the near horizon metric which asymptotes to
the given background was obtained by the conventional large D analysis. The neutral and
charged solution were obtained almost in parallel. We evaluated the physical quantities
for both cases. The extremal limit of the charged solution reproduced the consistent result
with the known extremal analysis.

In the analysis of the standard large D effective theory, the main focus has been on
the near-horizon geometry in the trivial background. We found that the large D limit of
the twisted background follows a non-trivial flow equation, which solves squashing in the
twisted direction. This would open up a search for non-trivial backgrounds at large D.
Interestingly, the conifold ansatz gives another first order flow equation, the Ricci flow,
describing the topology-changing transition [38]. Although both solves first order flow
equations, the squashing flow just solves the decoupled sector which does not involve the
horizon, while the Ricci flow in the conifold ansatz can see the horizon which implies it
involves the non-decoupled sector.

The extremal limit and large D limit have long been thought to be incompatible, since
the large D effective theory with a gauge field admits sub-leading corrections divergent
at the extremal limit. Our result suggests that such divergent behavior merely reflects
the existence of the extremal parameter in power of 1/D, which simply requires a careful
treatment at the large D limit. On the other hand, we found the divergent behavior on the
inner horizon cannot be remedied by mere redefinition of parameters, but requires another
coordinate patch at large D. This could be related to the recent observation that the near
extremal black hole at large D exhibits two layers of the near horizon geometry which
consists of AdS2-throat and mid region. [39].

We expect to be able to construct the rotating black hole solutions in the squashed
background at large D, since in fact, for five dimensions, the squashed rotating black holes
were obtained from asymptotically flat rotating black holes with equal angular momenta
via the squashing deformation [4, 7]. We also expect that there may be squashed black
holes breaking the U(1) symmetry along the fiber direction ∂/∂φ. To obtain such less sym-
metric solutions requires solving the large D effective equation in the symmetry breaking
direction. Finally, we wish to comment on numerous generalizations of the Hopf fibration.
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In particular, the Hopf fibration admits a family of fiber bundles in which the total space,
base space, and fiber space are all spheres, such as S7 can be viewed as a fiber bundle of S3

over S4 base space. It may be interesting to construct such squashed black hole solutions
with nontrivial fiber. The construction of these solutions deserves our future works.
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A Reduction of spacetimes with an S1 fiber over CP n

Here we show the reduction formula for a bundled spacetime used in the paper. We consider
the following spacetime ansatz with an S1 fiber bundle over CPn

ds2 = GAB(X)ξAξB + r2(X)γij(σ)dσidσj , (A.1)

ξA = dXA + δAφAn and An = An,idσi is the Kählar potential on the CPn metric γij .
We assume the spacetime is symmetric in the bundled direction φ. To evaluate the Ricci
tensor, we use the property of the Kähler form Jij = ∂[iAn,j]

∇̂iJ jk = 0, J i
jJ jk = −γij , (A.2)

where ∇̂ is the covariant derivative of γij . We obtain the decomposition of the Ricci tensor
as

RAB = R̄AB − 2n(r−1∇̄A∇̄Br − r−4GAφGBφ), (A.3a)
RAi = An,iRAφ, (A.3b)

Rij =
[
2(n+ 1)− 2r−2Gφφ − (2n− 1)(∇̄r)2 − r∇̄2r

]
γij +RφφAn,iAn,j , (A.3c)

where we used the curvature of CPn given by R̂ij = 2(n+ 1)γij . ∇̄ and R̄AB represent the
covariant derivative and Ricci tensor with respect to GAB. In the mixed indices, we have

RAB = R̄AB − 2n(r−1∇̄A∇̄Br − r−4δAφGBφ), (A.4a)
RAi = RAφAn,i − δAΦAn,jRj i, RiA = 0, (A.4b)

Rij =
[

2(n+ 1)
r2 − 2Gφφ

r4 − (2n− 1)(∇̄r)2

r2 − ∇̄
2r

r

]
δij . (A.4c)
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B Metric solutions in 1/D expansion

Here, we present the metric solutions in 1/D expansion. Not to exhaust readers for the
lengthly expression, some higher order solutions are provided in the auxiliary Mathematica
notebook file in the supplementary material. The metric ansatz are given by

ds2 = −Adt2 + hrr
B

A
dr2 + hφφH(dφ+An)2 + r2dΣ2

n, (B.1)

where hrr and hφφ are the background Kaluza-Klein monopole solution (2.17). With the
near horizon coordinate R := r2n, the metric functions are expanded by 1/n as

A =
∞∑
i=0

Ai(R)
ni

, B = 1 + 1
n

∞∑
i=0

Bi(R)
ni

, H = 1 + 1
n

∞∑
i=0

Hi(R)
ni

. (B.2)

In the charged solution, the gauge field At = Φ is also expanded by

Φ =
∞∑
i=0

Φi(R)
ni

. (B.3)

B.1 Neutral SqKK black holes

First, we list the leading order (A0, B0, H0), the next leading order (A1, B1, H1) and the
next-to-next-to-leading order (A2, B2, H2) for the neutral squashed black holes.

Leading order.
A0 = 1− m

R , B0 = 0, H0 = 0. (B.4)

Next-leading order.

A1 =−
m log

(
R
m

)
2(L2 +1)R , B1 =−

L2m log( R
m)

(1+L2)2(R−m) , H1 =
L2
(
6Li2

(
1− R

m

)
+3log2

(
R
m

)
+π2

)
6(L2 +1)2 .

(B.5)

Next-to-next-to-leading order.

A2= 4mL2Li2(1−R/m)−mlog(R/m)
(
4L2logm−2L2+log(R/m)

)
8(L2+1)2R

, (B.6)

B2=L2(3(L2−1
)
m2+

(
2−6L2)mR+

(
3L2−1

)
R2)log2(R/m)

4(L2+1)3(m−R)2

+
(
3L2−1

)
L2

2(L2+1)3 Li2
(

1− R
m

)
+
m
(
2L2(L2−1

)
log(m)−L4)log

(
R
m

)
2(L2+1)3(m−R)

+π2(3L2−1
)
L2

12(L2+1)3 ,

H2=
(
2L2+1

)
L2

(L2+1)3

(
Li3
(

1−mR

)
+Li3

(
1− R

m

))
−

(
L2+2

)
L2log3

(
R
m

)
6(L2+1)3

+Li2
(

1− R
m

)L2((L2−1
)
log(m)+1

)
(L2+1)3 −

L2log
(

R
m

)
(L2+1)2

+
π2L4log

(
R
m

)
6(L2+1)3

−
L2log2

(
R
m

)(
R−
(
L2−1

)
(m−R)logm

)
2(L2+1)3(m−R)

+L2(π2(L2−1
)
log(m)−6

(
2L2+1

)
ζ(3)+π2)

6(L2+1)3 .

NNNLO solutions are presented in the auxiliary file in the supplementary material.
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B.2 Charged SqKK black holes

Next, we list the leading order (A0, B0, H0,Φ0) and the next leading order (A1, B1, H1,Φ1)
for the charged squashed black holes.

Leading order.

Φ0 =
√
ρ+ρ−√

2R
, A0 = 1− ρ+ + ρ−

R + ρ+ρ−
R2 ,

H0 = 1
1 + L2 log

(
1− ρ−

R

)
, B0 = − ρ−

(1 + L2)(R− ρ−) . (B.7)

Next-to-leading order.

Φ1 =
√
ρ+ρ−

2
√

2(1+L2)R
log
( R−ρ−
ρ+−ρ−

)
,

A1 =−ρ−(R−ρ+)
2R2 − (ρ+ +ρ−)R−2ρ+ρ−

2(1+L2)R2 log
( R−ρ−
ρ+−ρ−

)
,

H1 = L2

(L2 +1)2Li2
(
ρ+−R
ρ+−ρ−

)
+ log2 (R−ρ−)

2(L2 +1)2 + log2 R
2(L2 +1)−

logR log(R−ρ−)
(L2 +1)2

+
((

3+π2)L2 +3
)
ρ−+3L2 log2 (ρ+−ρ−)(ρ−−R)−π2L2R+3ρ− log(ρ+−ρ−)

6(L2 +1)2 (ρ−−R)

− log(R−ρ−)
(
2L2 log(ρ+−ρ−)(ρ−−R)+ρ−

)
2(L2 +1)2 (ρ−−R)

,

B1 =−
(
ρ+
(
2L2ρ2

−+2L2R2−ρ−
(
4L2R+R

))
+ρ−R2

2(L2 +1)2 (ρ−−R)2 (R−ρ+)
+ 3L2

2(L2 +1)2

)
log(R−ρ−)

− L
2ρ+ log(ρ+−ρ−)

(L2 +1)2 (ρ+−R)
− ρ−

((
1−2L2) log(ρ+−ρ−)+2L2 +1

)
2(L2 +1)2 (ρ−−R)

+
ρ2
−
(
2L2 +2log(ρ+−ρ−)+5

)
4(L2 +1)2 (ρ−−R)2

+ 3L2 logR
2(L2 +1)2 . (B.8)

NNLO and part of NNNLO (Φ3, A3) are presented in the auxiliary file in the supplementary
material.
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