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1 Introduction

One motivation for the introduction of covariant phase space methods, at least in some
of the foundational literature [1–3], is to associate a symplectic structure to a gauge field
theory — given by a Lagrangian L — over some region Σ of spacetime M , and so doing
while keeping spacetime symmetries manifest (with in mind a possible covariant canonical
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or geometric quantization). See [4] for a review with both historical context and discussions
of related approaches. Usually the field space Φ is considered the configuration space of
the theory, the space of solutions S is the phase space while its quotient by the gauge
group H of the theory, MS := S/H of the field equations, is the reduced phase space.
The symplectic structure is complete once a symplectic 2-form on MS is given. From the
functional variation of L, one derives the presympletic potential θΣ which is a 1-form on
field space, and its functional variation defines the associated presymplectic 2-form ΘΣ on
Φ. When, on-shell, the gauge directions are in its kernel, the latter descends to a symplectic
2-form on MS . This is the case when the region Σ has no boundary or when adequate
fall-off conditions for the fields φ are specified. But when ∂Σ 6= ∅ and there are no good
reasons to assume φ = 0|∂Σ, neither θΣ nor ΘΣ descend on the reduced phase space. We
may refer to this as the boundary problem. It naturally arises e.g. when one considers
the decomposition of a well-defined symplectic structure for a boundaryless region Σ into
symplectic sub-structures associated with an arbitrary partition of Σ into subregions ∪iΣi

sharing fictitious boundaries ∂Σi — a classical analogue of the problem of factorising the
Hilbert space of a quantum system into Hilbert subspaces, which in turn is closely related
to the topic of entanglement entropy.

In the wake of renewed interest in this issue, over the past few years two strategies
have been proposed to deal with this boundary problem in Yang-Mills theory and General
Relativity: the “edge modes” strategy as introduced by Donnelly & Freidel in [5], and the
use of variational connections on field space as advocated by Gomez & Riello first in [6] and
further developed in [7–9] (see also [10–13]). Both essentially aim at providing a modified
presymplectic structure that descends onto MS and that we will call basic for reasons to
be made clear in due time.

The former strategy, explored in various contexts [14–17], considers an extended phase
space comprising new degrees of freedom at ∂Σ — the edge modes — entering boundary
counterterms added to θΣ and ΘΣ enforcing their vanishing along gauge directions. Ac-
cording to its proponents, the main virtue of edge modes beyond addressing the boundary
issue is that they reveal new physical symmetries, sometimes called “surface symmetries”,
to which charges can be associated with and whose Poisson algebra encodes important
kinematical information.1 For this reason, it has been suggested that edge modes provide
a new angle for a quantum gravity program [23–25].

The use of connections received less systematic attention, but it has the advantage
of possibly relying only on the resources of the original field space, without the need for
introducing extra d.o.f. Its principal advocates also remarked that modified presymplectic
structure obtained via a connection seems to generalise the one obtained via edge modes.
No equivalent of the surface symmetries of edge mode seems to exist in this approach
though. However, it was noted that its own special merit was to connect with the literature
on dressings in gauge theory — à la Dirac, see e.g. [26, 27] — and in particular to reproduce
the DePaoli-Speziale (DPS) “dressing 2-form” [28–30] relating the presymplectic potentials
of the tetrad and metric formulations of GR.

1For other works on extended phase spaces by edge modes, or edge states, in another sense of the term —
i.e. true boundary d.o.f. — see e.g. [18–20], and in the context of asymptotic boundaries and gravitational
waves memory effects see [21, 22]
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It would seem that a careful comparative analysis of both approaches weighting their
respective strengths and their overlaps would be useful, clarifying the conceptual landscape
and establishing clear bridges within the existing literature. Doing so is one of the objectives
of this paper.

The difference in degree of formalisation would be a first hurdle to clear, the second
approach being a priori much more geometric than the first. Fortunately, philosophers
of physics interested in foundational issues in gauge field theories first remarked [31] —
see also [32] — that the edge mode strategy could be seen as a special application of
a geometric tool designed to reduce gauge symmetries called the “dressing field method”
(DFM). In [33], the case was made thoroughly that it is indeed so, and that many conceptual
clarifications ensue.

A second hurdle is that both approaches have been mainly detailed via applications to
specific examples. Even though one could compare the outputs of both methods in common
examples, e.g. in the YM case as was done in [9] or [13], we aim for a more ambitious
goal: we want to confront these two approaches in their most general versions. To do
so, we must first conduct the most general analysis possible of the relevant presymplectic
structure of gauge theories coupled to matter, restricting ourselves — for reasons to be
clarified later — to theories that are strictly gauge invariant. This is our second goal in
this note. To be specific, we will provide the generic form of the Noether charges associated
with both field-independent and field-dependent gauge parameters, as well as their off-shell
Poisson bracket. We also derive the general field-dependent gauge transformations of the
presymplectic potential and 2-form, from which the boundary problem will appear in its
most general form. Doing all this, we will have generalised some of the results of [33] valid
only for pure gauge theories.2

To achieve this, we must start one step higher in generality. Indeed, we find indis-
pensable for conceptual clarity and technical efficiency to clearly articulate how the bundle
geometry of field space interplays with covariant phase space methods. We are thus lead
to spell out the H-principal bundle structure of field space Φ, whose base is the moduli
spaceM := Φ/H where gauge-invariant quantities live. Variational forms on Φ projecting
to well-defined objects on the base are the so-called basic forms. Solving the boundary
problem thus means identifying strategies to construct basic versions of the initial presym-
plectic structure of a gauge theory. The broad issue is then to build the basic counterpart
of a given variational form on Φ. Variational principal connections and the DFM are two
methods to achieve this goal, as we propose to show.

So, let us recap what we intend to do in this note: in section 2, we describe in some
details the bundle geometry of field space to give the most conceptual clarity on the kine-
matics at play. We remind the definition of variational Ehresmann connections, which are
fit for the analysis of invariant theories — our main focus. As an hopefully informative
aside, we also define a generalisation known as twisted connections that are well adapted to
non-invariant theories. Then we review the DFM, introducing the notion of field-dependent

2Where was also conducted the analysis of pure gauge theories that are non-invariant, but whose classical
gauge anomaly is d-exact. See the conclusion for further comments.
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dressing fields. We show how basic forms are built via connections and dressings, and we
stress the relations between the two approaches.

In section 3 we show how the bundle geometry of Φ interlaces with covariant phase
space methods, thereby allowing to write down the above mentioned general results on
the presymplectic structure of invariant, matter coupled, gauge theories. We remark that,
once such general formulae are given, the only computation needed for applications to
specific examples is to derive the field equations and presymplectic potential from the
Lagrangian at hand. We illustrate the procedure in YM theory and in a Cartan geometric
formulation of GR, and recover standard results. We also say a word about the generic
physical interpretation of a Noether charge, relying on the affine structure of the space
of connections to split it as a background contribution plus a measurable contribution,
thereby connecting with the definition of charges of Abbott & Deser [34, 35]. We therefore
emphasize a geometric aspect of (generalised) Noether charges, as is typically done with
covariant phase space methods, which is complementary to the intrinsically cohomological
nature of charges [36].

Finally, in section 4 we give the most general versions of the basic presymplectic struc-
ture obtained respectively via connections and via the DFM. We highlight the geometric
origin of their structural similarities and stress the crucial differences, in particular regard-
ing how ambiguities arise in both schemes. This last point is relevant to better understand
the meaning of surface symmetries in the edge mode literature, as we show that these
and coordinate transformations in GR are on the same conceptual footing from the DFM
viewpoint. Applications to YM theory and GR allow to recover many results of the lit-
erature cited above. In particular we show how the DFM gives from first principles the
unambiguous link between the presymplectic structures of GR in the tetrad formulation
and in the metric formulation, thereby generalising the DPS dressing-2 form.

In our conclusion 5, beside giving a quick review of our results, we hint at general-
isations that we intend to pursue. Technical details are completed in appendices. For
comparison with the body of the text, we also give a reformulation in terms of differential
forms of the Abbott-Deser algorithm for defining charges in YM theory.

2 Geometry of field space

In this section we give a sense of the bundle geometry of field space. As it involves infinite
dimensional vector spaces and manifolds, we defer to the relevant literature [37, 38] to back
the soundness of extending any standard notion defined in the finite dimensional context
to its infinite dimensional counterpart. We aim for a correct conceptual picture rather than
a perfectly mathematically rigorous one.

2.1 Field space as a principal bundle

The configuration space of a gauge theory is the field space Φ = A× Γ(E), where A is the
space of (Ehresmann or Cartan) connections on a H-bundle P over spacetime M (H a Lie
group), i.e. gauge potentials, and Γ(E) ' Ω0

eq(P, V ) is the space of sections of bundles E
associated to P via representations (V, ρ) of H, i.e. matter fields.
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The space Φ is an infinite dimensional Banach manifold, so is the gauge group H as an
infinite dimensional Lie group. Under proper restrictions (on either Φ or H [39–44]), the
moduli spaceM = Φ/H is well-behaved as a manifold. Then, Φ is a principal bundle over
M with structure group H, whose right action we denote (φ, γ) 7→ Rγφ := φγ .3 Explicitly
of course, φγ = (Aγ , ϕγ) = (γ−1Aγ + γ−1dγ, ρ(γ)−1ϕ), as A and Γ(E) are separately H-
principal bundles. The gauge orbit OH[φ] of φ ∈ Φ is a fiber over the gauge class [φ] ∈M.
The projection π : Φ→M, φ 7→ π(φ) = [φ], is s.t. π ◦Rγ = π.

As a bundle, Φ is locally trivial: given U ⊂M, Φ|U ' U ×H. A trivialising (or local)
section σ : U → Φ, [φ] 7→ σ([φ]), is such that that π ◦ σ = idU . If ∃ a global section
σ : M → Φ, then the bundle is trivial, Φ ' M × H. Given σi and σj sections over
Ui,Uj ⊂ M s.t. Ui ∩ Uj 6= ∅, on the overlap σj = Rhijσi = σ

hij
i where hij : Ui ∩ Uj → H

is a transition function. The set {hij} of transition functions subordinated to a covering
{Ui}i∈I⊂N of M are local data from which it is possible to reconstruct the bundle Φ. A
trivialising section σ selects a single representative by gauge orbit σ([φ]) = φ ∈ OH[φ],
∀[φ] ∈ U , it is thus a gauge choice (a gauge fixing).4 A transition function h([φ]) ∈ H,
that allows to switch from one gauge choice to another, is a gauge transformation that
depends only on the gauge class [φ] of the gauge fields φ. This is close to the notion of
field-dependent gauge transformations often encountered in the literature, but not quite
the same thing yet. Another natural geometric concept, described next, better captures
this notion.

The natural transformation group of Φ is its automorphism group Aut(Φ) :=
{Ψ : Φ→ Φ |Ψ ◦Rγ = Rγ ◦Ψ }. Only Ψ ∈ Aut(Φ) project to well-defined ψ ∈ Diff(M),
which is the physical transformation group acting on physical states. As usual, the
subgroup of vertical automorphisms Autv(Φ) := {Ψ ∈ Aut(Φ) |π ◦Ψ = π } is isomor-
phic to the gauge group H :=

{
γ : Φ→ H|R?γγ(φ) = γ−1γ(φ)γ

}
by the correspondance

Ψ(φ) = Rγ(φ)φ = φγ(φ). Now, the gauge group H is indeed the geometric underpinning
of the notion of field-dependent gauge transformations. We have the characteristic short
exact sequence (SES) of groups associated with the bundle Φ,

0 Autv(Φ) 'H Aut(Φ) Diff(M) 0.ι π̃ (2.1)

Without a splitting of this SES, one cannot decompose uniquely an element of Aut(Φ)
into a vertical automorphism and a diffeomorphism of the physical configuration spaceM.

Tangent and vertical bundles. The connection space A is an affine space modelled
on Ω1

tens(P,LieH), while Γ(E) ' Ω0
tens(P, V ) is a vector space. Therefore, the tangent

space at φ ∈ Φ is TφΦ = TAA ⊕ TϕΓ(E) ' Ω1
tens(P,LieH) ⊕ Ω0

tens(P, V ). A generic vec-
tor Xφ ∈ TφΦ with flow fτ : Φ → Φ, φ 7→ fτ (φ) =

(
fAτ (φ), fϕτ (φ)

)
and fτ=0(φ) = φ,

is s.t. Xφ = d
dτ fτ (φ)

∣∣
τ=0. Formally, we can write a vector field X ∈ Γ(TΦ) as a vari-

ational differential operator on C∞(Φ): Xφ = X(φ) δ
δφ , with X(φ) = d

dτ fτ (φ)
∣∣
τ=0 =

3Since (φγ)γ
′

= (φγ
′
)γ
γ′

= (φγ
′
)γ
′−1γ γ′ = φγγ

′
, this is indeed a right action: Rγ′ ◦Rγ = Rγγ′ .

4If the factor A in Φ is the space of connections of a SU(N)-bundle P over a compact spacetime manifold
M , then no such global section exists (this is the Gribov ambiguity [45]). As Singer says in the abstract of
his paper [39], in this case “no gauge fixing is possible”.
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(
d
dτ f

A
τ (φ)

∣∣
τ=0,

d
dτ f

ϕ
τ (φ)

∣∣
τ=0

)
= XA(φ)+Xϕ(φ) ∈ Ω1

tens(P,LieH)⊕Ω0
tens(P, V ) the ‘compo-

nents’ ofX.5 Only right-invariant vector fields, ΓH(TΦ) := {X ∈ Γ(TΦ) |Rγ?Xφ = Xφγ},
project to well-defined vector fields on the base, and π? : ΓH(TΦ) → Γ(TM) is a mor-
phism of Lie algebras. The flow of a right-invariant vector field belongs to Aut(Φ), so that
ΓH(TΦ) ' LieAut(Φ).

An element χ ∈ LieH induces a vector

χvφ := d

dτ
φexp(τχ)∣∣

τ=0 =
(
d

dτ
Aexp(τχ)∣∣

τ=0,
d

dτ
ϕexp(τχ)∣∣

τ=0

)
=
(
DAχ,−ρ∗(χ)ϕ

)
tangent to the fiber OH[φ] at φ = (A,ϕ). All such vectors span the vertical subbundle
V Φ ⊂ TΦ, and a vertical vector field χv ∈ Γ(V Φ) is s.t. π?χv = 0 and Rγ?χvφ = (γ−1χγ)vφγ .
We have the injective morphism of Lie algebras LieH → Γ(V Φ). Similarly, elements of
the Lie algebra of the gauge group LieH :=

{
χ : Φ→ LieH |R?γχ = γ−1χγ

}
induce H-

right invariant vertical vector fields χvφ := d
dτ φ

exp(τχ(φ))∣∣
τ=0 =

(
DAχ(φ), −ρ∗ (χ(φ))ϕ

)
,

s.t. Rγ?χvφ = χvφγ , so that the map LieH → ΓH(V Φ) is a Lie algebra anti-isomorphism.
Corresponding to (2.1) we have,

0 ΓH(V Φ) ' LieH ΓH(TΦ) Γ(TM) 0.ι π? (2.2)

A splitting of this SES would allow to define (non-canonically) a notion of horizontality on
Φ complementary to the verticality canonically given by the action of H. This is what a
choice of variational Ehresmann connection ω ∈ AΦ on Φ achieves. But depending on the
problem at hand, one may instead need to endow Φ with a twisted variational connection
ω̃ ∈ ÃΦ. See section 2.2 below.

A local section doesn’t provide such a (global) splitting, yet it is useful to record
its action: we have σ? : T[φ]M → Tσ([φ])Φ, X [φ] 7→ σ?X [φ], and the pushforwards of
X [φ] ∈ T[φ]M by two sections σ and σ′ s.t. σ′ = Rhσ, are related by

σ′?X [φ] = Rh([φ])?
(
σ?X [φ]

)
+
{
h−1dh|[φ](Xφ)

}v
σ′([φ])

= Rh([φ])?

(
σ?X [φ] +

{
dhh−1

|[φ](X [φ])
}v
σ([φ])

)
, (2.3)

where in the second equality we used the equivariance property of fundamental vertical
vector fields. This result allows to define the gluing relations between local representatives
on M of variational forms on Φ, as we are about to see. To define the field-dependent
gauge transformations of such forms, below, we need to record the action of Autv(Φ) 'H
on Γ(TΦ): the action of Ψ ∈ Autv(Φ) on a generic X ∈ Γ(TΦ) is

Ψ?Xφ = Rγ(φ)?Xφ +
{
γ−1dγ|φ(Xφ)

}v
Rγ(φ)φ

= Rγ(φ)?

(
Xφ +

{
dγγ−1

|φ(Xφ)
}v
φ

)
. (2.4)

Equations (2.3) and (2.4) are the exact analogues of their finite dimensional counterparts,
and are proved in much the same way (the proof valid on A given in appendix B of [33] is
easily adapted to Φ).

5So that Xφ = X(φ) δ
δφ

= XA(φ) δ
δA

+Xϕ(φ) δ
δϕ

. Integration over domains is tacit, and we also avoid
generalised indices à la DeWitt [46].
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Variational differential forms. The de Rham complex on Φ is (Ω•(Φ),d) with d the
variational exterior derivative of degree 1, defined via a Koszul formula. The interior
product ι : Γ(TΦ) × Ω•(Φ) → Ω•−1(Φ), (X,α) → ιXα = α(X, . . .), is a degree −1
derivation ∀X. The Lie derivative LX := [ιX ,d], is thus a degree 0 derivation.6 It satisfies
[LX , ιY ] = ι[X,Y ], and it is a Lie algebra morphism [LX ,LY ] = L[X,Y ].

An exterior product ∧ is defined as usual on the space Ω•(Φ,A) of variational differen-
tial forms with values in an algebra (A, ·) — and kept tacit throughout for convenience —
so that

(
Ω•(Φ,A),∧, d

)
is a differential graded algebra. The exterior product is not defined

on Ω•(Φ,V ) where V is merely a vector space. But if (V , ρ) is a representation for H,
one defines the vector space of equivariant forms as Ω•eq(Φ,V ) =

{
α ∈ Ω•(Φ,V ) |R?γα =

ρ(γ)−1α
}
. The infinitesimal version of the equivariance property is Lχvα = −ρ∗(χ)α. The

subspace of invariant forms is Ω•inv(Φ,V ) =
{
α ∈ Ω•(Φ,V ) |R?γα = α

}
, infinitesimally

Lχvα = 0.
The space of horizontal forms is

Ω•hor(Φ) = {α ∈ Ω•(Φ) | ιχvα = 0} .

A form which is both horizontal and equivariant is said tensorial:

Ω•tens(Φ,V ) =
{
α ∈ Ω•(Φ,V ) |R?γα = ρ(γ)−1α, & ιχvα = 0

}
.

Clearly, Ω0
tens(Φ,V ) = Ω0

eq(Φ,V ). Finally, basic forms are both horizontal and invariant:

Ω•basic(Φ) =
{
α ∈ Ω•(Φ) |R?γα = α, & ιχvα = 0

}
.

Alternatively, basic forms are defined as Im(π?), that is:

Ω•basic(Φ) = {α ∈ Ω•(Φ) | ∃β ∈ Ω•(M) s.t. α = π?β } .

Remark that the form analogue of ΓH(TΦ) — that projects to well defined vector fields
in Γ(M) — is not Ω•inv(Φ) but Ω•basic(Φ), only the latter projects to well-defined forms
in Ω•(M). From [d, π?] = 0 follows that

(
Ω•basic(Φ),d

)
is a subcomplex of the de Rham

complex: the basic subcomplex. The associated cohomology, isomorphic to the cohomology
of
(
Ω•(M),d

)
, is by definition the equivariant cohomology of Φ. As we advertised, the

main preoccupation of this paper, in relation to the boundary problem in gauge theory,
will be to consider ways to construct basic forms.

Notice that, as in the finite dimensional case, Ω0
eq(Φ,V ) ' Γ(E) where E → M is

an associated bundle to Φ built via the representation (V , ρ) in the usual way: defining a
right action of H on Φ×V by (φ, γ) 7→ (φγ , ρ(γ)−1v), and considering it is an equivalence
relation ∼ between pairs, the associated bundle E is defined as the space of equivalence
classes; E = Φ ×H V := Φ × V / ∼. The 1:1 correspondance between s ∈ Γ(E) and
ϕ ∈ Ω0

eq(Φ,V ) is, s([φ]) = [φ,ϕ(φ)].
6The vector space of derivation Der(A) of an algebra A is a Lie algebra under the graded bracket

[d1, d2] := d1 ◦ d2 − (−)|d1|·|d2|d2 ◦ d1.
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It is perhaps interesting to remark that, in view of this standard construction, the
base space M of Φ is itself a bundle associated with the H-principal bundle A → A/H.
Indeed Γ(E) is a H-space, and considering the classes under the right action of H on
Φ = A×Γ(E) one obtains the quotient spaceM = A×HΓ(E) := A×Γ(E)/∼. Therefore,
the field space is a doubly fibered space, Φ → M → A/H. The space of sections of M,
Γ(M) :=

{
s : A/H → M, [A] 7→ s([A]) = [A,ϕ]

}
, is then isomorphic to Ω0

eq (A,Γ(E)) :={
ŝ : A → Γ(E) |R?γ ŝ = ρ(γ)−1ŝ

}
. One would remark that the covariant derivative map of

a section ϕ ∈ Γ(E), A 7→ {ιXDϕ} (A) = ιXD
Aϕ — for any vector field X ∈ Γ(TP)7 —

is an element of this space since R?γDAϕ = ρ(γ)−1DAϕ. This shows the centrality of the
role payed by the connection space A, which is reminiscent of the fact that a H-principal
bundle P ‘controls’ all associated bundles built via representations of H (or H-spaces
more generally).

In the construction above, one can replace representations (ρ,V ) by 1-cocycles for the
action of H, i.e. a smooth map C : Φ ×H → G , (φ, γ) 7→ C(φ, γ), satisfying the relation
C(φ, γγ′) = C(φ, γ)C(φγ , γ′), and V a G-space. Then, we have a well-defined right action
of H on Φ×V twisted by a cocycle (φ,v) 7→ (φγ , C(φ, γ)−1v). One thus defines twisted as-
sociated bundles as the spaces of equivalence classes under this action, Ẽ := Φ×CV , whose
spaces of sections are isomorphic to the space of C-equivariant V -valued maps on Φ, Γ(Ẽ) '
Ω0

eq(Φ, C) :=
{
ϕ : Φ→ V |ϕ(φγ) = C(φ, γ)−1ϕ(φ)

}
. More generally, one has the well-

defined spaces of C-equivariant forms Ω•eq(Φ, C) :=
{
α ∈ Ω•(Φ,V ) |R?γα = C( , γ)−1α

}
,

and of C-tensorial forms Ω•tens(Φ, C) :=
{
α ∈ Ω•eq(Φ, C) | ιχvα = 0

}
.

If the covariant differentiation of standard equivariant forms necessitates to endow
Φ with variational Ehresmann (principal) connections, the covariant differentiation of C-
equivariant forms requires the introduction of twisted connections which are a generalisation
of the latter. See section 2.2 below. We refer to [47] for an in depth exposition of the basics
of the twisted geometry on bundles, and to section 2.3 of [33] for a nutshell presentation.

Gauge transformations. The local representative of a form α ∈ Ω•(Φ) as seen through
a section σ : U → Φ is a := σ?α, so that a|[φ]

(
X [φ]

)
= α|σ([φ])

(
σ?X [φ]

)
. In view of (2.3),

two local representatives a = σ?α and a′ = σ′?α satisfy gluing relations on U ∩ U ′ 6=
∅ — also called passive gauge transformations — controlled by the H-equivariance and
verticality properties of α. In particular, it is clear that if α is tensorial, the gluing
relations of its local representatives are simply a′ = ρ(h)−1a. Similarly, if α is C-tensorial,
the gluing relations of its local representatives are simply a′ = C(σ,h)−1a . The local
representatives of a basic form have trivial gluing relations: a′ = a. Hence again the
interest of such forms. We will not make use of this notion of passive, or [φ]-dependent,
gauge transformation, as we aim to work primarily on Φ rather than on M. But we
articulate it if only to clearly distinguish it from the notion of gauge transformation on Φ
that will be of interest from now on.

The active, φ-dependent, gauge transformation of a form α ∈ Ω•(Φ) is defined by the
action of Autv(A) ' H via αγ := Ψ?α. So that, αγ|φ

(
Xφ

)
= α|Ψ(φ)(Ψ?Xφ

)
. By (2.4),

7The covariant derivative map would be D : A× Γ(E)→ Ω1
tens(P, V ), (A,ϕ) 7→ DAϕ. So that, for any

vector field X ∈ Γ(TP), we have the map ιXD : A× Γ(E)→ Γ(E), (A,ϕ) 7→ ιXD
Aϕ.
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the H-gauge transformation of a variational form is thus controlled by its H-equivariance
and verticality properties. It follows immediately that the H-gauge transformation of a
tensorial form is αγ = ρ(γ)−1α, or infinitesimally Lχvα = −ρ∗(χ)α, with χ ∈ LieH.
In the same way, C-tensorial forms H-transform as αγ = C( ,γ)−1α, or infinitesimally
Lχvα = − d

dτC( , exp τχ)
∣∣
τ=0α. Basic forms are H-invariant, αγ = α or Lχvα = 0.

Basis 1-forms. As a relevant illustration, consider dφ = {dA,dϕ} ∈ Ω1(φ) the basis for
variational forms on Φ. Its verticality property reproduces, by definition, the infinitesimal
gauge transformations of the fields,

dφ|φ(χvφ) =
(
dA|A(χvA) , dϕ|ϕ(χvφ)

)
=
(
DAχ , −ρ∗(χ)ϕ

)
=: δχφ. (2.5)

The last equality introduces a convenient notation. We thus find that on
Γ(V Φ), its H-equivariance property is, R?γdφ|φγ (χv) = dφ|Aγ (Rγ?χvφ) =
dφ|φγ (γ−1χγ)vφγ =

(
DAγ (γ−1χγ) , −ρ∗(γ−1χγ)ϕγ

)
=
(
γ−1(DAχ)γ , −ρ(γ)−1ρ∗(χ)ϕ

)
=(

γ−1dA|A(χvA)γ , ρ(γ)−1dϕ|φ(χvϕ)
)
, by (2.5). Introducing the notation ρ := (Ad , ρ), we

write the equivariance compactly as

R?γdφ = ρ(γ)−1dφ :=
(
γ−1dAγ , ρ(γ)−1dϕ

)
. (2.6)

We require this to hold on Γ(TΦ), so that dφ ∈ Ω1
eq(Φ, TΦ). By (2.4), it is now easy to

find the H-gauge transformation of dφ to be,

dφγ|φ(Xφ) := (Ψ?dφ)|φ(Xφ)

= dφ|φγ (Ψ?Xφ) ,

= dφ|φγ

(
Rγ(φ)?

[
Xφ +

{
dγγ−1

|φ (Xφ)
}v
φ

])
= (R?γ(φ)dφ|φγ )

(
Xφ +

{
dγγ−1

|φ (Xφ)
}v
φ

)
,

= ρ
(
γ(φ)

)−1
dφ|φ

(
Xφ +

{
dγγ−1

|φ (Xφ)
}v
φ

)
= ρ

(
γ(φ)

)−1
(
dφ|φ(Xφ) + δdγγ−1

|φ (Xφ)φ

)
.

That is, for γ ∈H,

dφγ = ρ(γ)−1
(
dφ+ δdγγ−1φ

)
=


dAγ = γ−1

(
dA+DA

{
dγγ−1})γ

dϕγ = ρ(γ)−1
(
dϕ− ρ∗(dγγ−1)ϕ

) (2.7)

The infinitesimal version is easily read from the above, by γ → χ ∈ LieH and keeping only
the linear terms, and of course seen to match the result obtained by,

Lχvdφ = (ιχvd+ dιχv)dφ = dδχφ = d
(
DAχ , −ρ∗(χ)ϕ

)
,

=
(
[dA,χ] +DA(dχ) , −ρ∗(χ)dϕ− ρ∗(dχ)ϕ

)
.

(2.8)
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In term of the basis dφ, a generic variational form α ∈ Ω•(Φ) will be written α|φ =
α
(
∧•dφ|φ ; φ

)
, or simply α = α

(
∧•dφ ; φ

)
, where α( ; ) is alternating multilinear in the first

arguments and its second argument denotes the functional dependence of α on φ. So, in
concrete situations, given such an expression for α and eq. (2.7), it is possible to compute
algebraically its H-gauge transformation by αγ = α

(
∧•dφγ ; φγ

)
, thereby cross-checking

the geometric result obtained via αγ = Ψ?α.

Curvature and covariant derivative maps. We provide further illustrations by iter-
ating the process on two quantities relevant for what follows, that we consider in turn.

• Curvature map: consider the H-equivariant curvature map F : Φ→ Ω2
tens(P,LieH),

(A,ϕ) 7→ F (A) = dA+ 1
2 [A,A], s.t. R?γF = γ−1Fγ. Given X ∈ Γ(TA) with flow fτ ,

we have:

dF|φ(Xφ) = X
(
F
)
(φ) = d

dτ
F
(
fτ (φ)

)∣∣
τ=0

= d

dτ
dfτ (A) + 1

2[fτ (A), fτ (A)]
∣∣
τ=0

= DA
(
d

dτ
fτ (A)

∣∣
τ=0

)
,

= DA(dA|φ(Xφ)
)
,

which is simply dF = D
(
dA
)
. (2.9)

Then, the verticality property of dF reproduces the infinitesimal H-
transformation of F :

dF|φ(χvφ) = DA(dA|φ(χvφ)
)

= DA(DAχ
)

= [F (A), χ], or ιχvdF = [F, χ]. (2.10)

Its H-equivariance is

R?γdF|φγ (Xφ) = dF|φγ (Rγ?Xφ) = DAγ (dφ|φγ (Rγ?Xφ)
)

= DAγ (R?γdA|φγ (Xφ)
)
,

= DAγ (γ−1dA|φ(Xφ)γ
)

= γ−1DA(dA|φ(Xφ)
)
γ = γ−1dF|φ(Xφ)γ,

or R?γdF = γ−1dFγ. (2.11)

This result is also found simply from the fact that pullbacks and d commute, so that
R?γdF = dR?γF = γ−1dFγ. From (2.10)–(2.11) and (2.4), the H-gauge transforma-
tion of dF is found to be

dF γ|φ(Xφ) := (Ψ?dF )|φ(Xφ) = dF|φγ (Ψ?Xφ) ,

= dF|φγ

(
Rγ(φ)?

[
Xφ +

{
dγγ−1

|φ(Xφ)
}v
φ

])
= (R?γ(φ)dF|φγ )

(
Xφ +

{
dγγ−1

|φ(Xφ)
}v
φ

)
,

= γ(φ)−1dF|φ

(
Xφ +

{
dγγ−1

|φ(Xφ)
}v
φ

)
γ(φ)

= γ(φ)−1
(
dF|φ(Xφ) +

[
F (φ),dγγ−1

|φ(Xφ)
])
γ(φ),

that is dF γ = γ−1
(
dA+

[
F,dγγ−1])γ (2.12)
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This can also be checked algebraically, using (2.7) in dF γ = DAγ (dAγ).

• Covariant derivative map: let us consider the H-equivariant covariant derivative map
D : Φ → Ω1

tens(P, V ), φ = (A,ϕ) 7→ DAϕ = dA + ρ∗(A)ϕ, s.t. R?γD = ρ(γ)−1D.
Given X ∈ Γ(TΦ) with flow fτ , we get:

dD|φ(Xφ) = X
(
D
)
(φ) = d

dτ
Dfτ (A)fτ (ϕ)

∣∣
τ=0

= d

dτ
dfτ (ϕ) + ρ∗

(
fτ (A)

)
fτ (ϕ)

∣∣
τ=0,

= DA
(
d

dτ
fτ (ϕ)

∣∣
τ=0

)
+ ρ∗

(
d

dτ
fτ (A)

∣∣
τ=0

)
ϕ,

= DA
(
dϕ|φ(Xφ)

)
+ ρ∗

(
dA|φ(Xφ)

)
ϕ,

which we can write dDAϕ = DA(dϕ) + ρ∗(dA)ϕ, (2.13)

by a slight abuse of notation (on the left-hand side) to make the expression more
transparent. As one expects, the verticality property of dDAϕ reproduces the in-
finitesimal H-transformation of DAϕ:

dDAϕ|φ(χvφ) =DA(dϕ|φ(χvφ)
)

+ ρ∗
(
dA|φ(χvφ)

)
ϕ

=DA(− ρ∗(χ)ϕ
)

+ ρ∗
(
DAχ

)
ϕ = −ρ∗(χ)DAϕ. (2.14)

As for the H-equivariance, we have

R?γdD
Aϕ|φγ (Xφ) = dDAϕ|φγ (Rγ?Xφ)

= DAγ (dϕ|φγ (Rγ?Xφ)
)

+ ρ∗
(
dA|φγ (Rγ?Xφ)

)
ϕγ ,

= DAγ (R?γdϕ|φγ (Xφ)
)

+ ρ∗
(
R?γdA|φγ (Xφ)

)
ϕγ ,

= DAγ (ρ(γ)−1dϕ|φ(Xφ)
)

+ ρ∗
(
γ−1dA|φ(Xφ) γ

)
ϕγ ,

= ρ(γ)−1
(
DA(dϕ|φ(Xφ)

)
+ ρ∗

(
dA|φ(Xφ)

)
ϕ
)
,

which is R?γdD
Aϕ = ρ(γ)−1dDAϕ. (2.15)

Which also results from [R?γ ,d] = 0. Again, by (2.14)–(2.15) and (2.4) we get the
H-gauge transformation:

(dDAϕ)γ(X) =
(
Ψ?dDAϕ

)
(X) = dDAϕ (Ψ?X) = . . .

⇒ (dDAϕ)γ = ρ(γ) −1
(
dDAϕ− ρ∗(dγγ−1)DAϕ

)
. (2.16)

Lagrangians. A gauge theory is specified by a choice of Lagrangian functional L : Φ→
Ωn(P), φ := (A,ϕ) 7→ L(φ) = L(A,ϕ), with n = dimM , whose H-equivariance is usually
prescribed. Said otherwise L ∈ Ω0

eq(Φ), so that a Lagrangian can be seen as a section of
some bundle associated with Φ. We consider the following three cases.

• Case 1: invariant gauge theories. The Lagrangian strictly satisfies the gauge prin-
ciple, R?γL = L, so L ∈ Ω0

basic(Φ). This means that ∃ L̄ ∈ Ω0(M) s.t. L = π?L̄.
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It also means that L is the section of the bundle associated with Φ via the trivial
representation. So is Z := exp i

∫
L ∈ Ωbasic(Φ,C). Thus, they are both H-invariant:

Lγ = L and Zγ = Z. The Yang-Mills Lagrangian is an example.

• Case 2: non-invariant gauge theories transforming via representations. The La-
grangian has H-equivariance R?γL = L + ρ̃(γ), so that R?γZ = ρ(γ)−1Z, where
ρ(γ) := exp−i

∫
ρ̃(γ) is a representation of H on C. We have L,Z ∈ Ω0

eq(Φ) (by
a slight abuse of notation in the case of L), they are sections of standard bundles
associated with Φ. So, their H-gauge transformations are Lγ := Ψ?L = L + ρ̃(γ)
and Zγ = ρ(γ)−1Z. A simple example is the 3D Abelian Chern-Simons Lagrangian.

• Case 3: non-invariant gauge theories transforming via cocycles. The Lagrangian
has H-equivariance R?γL = L + c( , γ), so that R?γZ = C( , γ)−1Z, where C( , γ) :=
exp−i

∫
c( , γ) is a 1-cocycle for the action of H on C. We have L,Z ∈ Ω0

eq(Φ, C)
(by a slight abuse of notation in the case of L), they are sections of twisted bundles
associated to Φ. So their H-gauge transformations are Lγ := Ψ?L = L+ c( ,γ) and
Zγ = C( ,γ)−1Z. The Lagrangians of 3D non-Abelian Chern-Simons and massive
Yang-Mills theories illustrate this case.

In the next two sections, we discuss structures that are a priori non-canonical on the
bundle Φ. In the first, we elaborate around the standard notion of Ehresmann — or
principal — variational connection, and then briefly comment on a generalisation called
twisted variational connection. In the next, we give a nutshell presentation of a tool to
build basic forms, known as the dressing field method. The material exposed in both these
sections will be used to address the problem of boundaries in the presymplectic structure
of invariant gauge theories (case 1 above) in section 4, where we will only make passing
comments on the case of non-invariant theories (cases 2 and 3).

2.2 Variational connections on field space

2.2.1 Variational Ehresmann connections

As mentioned above, to split the SES (2.2) and to define a notion of horizontality, one
needs to introduce a choice of Ehresmann connection on Φ. Such a variational connection
ω ∈ Ω1

eq(Φ,LieH) is by definition s.t.

R?γω = γ−1ω γ, (2.17)
ω(χv) = χ ∈ LieH. (2.18)

It is not unique, and from the definition follows that the space of variational connections
is affine and modeled on the vector space Ω1

tens(Φ,LieH). That is, for β ∈ Ω1
tens(Φ,LieH),

we have that ω′ = ω + β is another connection. In view of the above defining axioms,
by (2.4) the H-gauge transformation of a connection is ωγ := Ψ?ω = γ−1ωγ + γ−1dγ.
At any point φ ∈ Φ, the horizontal complement to VφΦ ⊂ TφΦ is HφΦ := kerω|φ. We have
then the horizontal subbundle s.t. TΦ = HΦ ⊕ V Φ. This allows to define the horizontal
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projection,

|h : Γ(TΦ)→ Γ(HΦ),
X 7→Xh := X − [ω(X)]v, (2.19)

as it is clear by (2.18) that Xh ∈ kerω. One easily shows that, by (2.17), Rγ?Xh =
(Rγ?X)h, proving that the horizontal distribution thus defined isH-equivariant, Rγ?HφP =
HφγΦ, as it must.

The connection thus allows to define a notion of covariant derivation, Dω := d ◦ |h :
Ω•eq(Φ,V ) → Ω•+1

tens(Φ,V ), that is Dωα(X1,X2, . . .) := dα(Xh
1 ,X

h
2 , . . .). The horizon-

tality of the resulting form is obvious, and the preservation of the H-equivariance is
shown by R?γDωα(X, . . .) = Dωα(Rγ?X, . . .) := dα

(
(Rγ?X)h, . . .

)
= dα

(
Rγ?X

h, . . .
)

=
dR?γα(Xh, . . .) = ρ(γ)−1dα(Xh, . . .) =: ρ(γ)−1Dωα(X, . . .). On Ω•tens(Φ,V ), the covari-
ant derivative has the alternative expression Dω = d + ρ∗(ω). And on Ω•basic(Φ,V ), for
which ρ is trivial, it clearly reduces to the exterior derivative Dω = d. That is, d is a
canonical covariant derivative on basic forms of Φ.8

The curvature of the connection is Ω := Dωω = dω + 1
2 [ω,ω] ∈ Ω2

tens(Φ,LieH),9
and its H-transformation is thus Ωγ = γ−1Ωγ. It is easily shown that on Ω•tens(Φ,V ),
Dω ◦Dω = ρ∗(Ω). The curvature satisfies the Bianchi identity DωΩ = dΩ + [ω,Ω] ≡ 0.
As we have Ω(X,Y ) = dω(Xh,Y h) = −ω([Xh,Y h]), if [Xh,Y h] = [X,Y ]h then Ω ≡ 0.
The curvature thus mesures the failure of (2.19) to be a Lie algebra morphism.

Connection associated with an equivariant metric. As verticality is canonically
defined on Φ, if it is endowed with a Riemannian metric g : Γ(TΦ) × Γ(TΦ) → C∞(Φ),
the horizontal bundle HΦ can be defined as the g-orthogonal complement of V Φ. But
for the horizontal distribution to be H-equivariant, so must be the metric, R?γg = g (the
bundle structure of Φ must be respected). Thus, given a H-equivariant metric g there is
an associated connection ωg s.t. kerωg = Γ(V Φ)⊥ :=

{
ker g

(
χv,

)
, ∀χv ∈ Γ(V Φ)

}
, and

defined implicitly using (2.19) by g
(
χv,X− [ωg(X)]v

)
= 0, ∀χ ∈ LieH. Of course a metric

is a priori no more canonical than a connection, and it is an even “richer” structure.
In the case of the H-subbundle of connections (on P) A ⊂ Φ, we have TAA '

Ω1
tens(P,LieH). So, assuming the existence of a Hodge dual (thus of a metric) on P,

and for LieH semisimple, there is a ‘natural’ metric built via the Killing form on LieH, i.e.
the trace: g̊|A : TAA × TAA → R, (α, β) 7→ g̊|A

(
α, β

)
:=
∫

Tr (α ∧ ∗β) (it is tacit that the
arguments are compactly supported). The connection associated with this metric on A is
introduced by Singer [39, 40], and termed the Singer-de Witt connection in [7, 8, 10].
Singer indeed defines the horizontal subspace as HAA :=

{
A+ α | DA†α = 0

}
where

DA† := (−)k ∗−1DA ∗ : Ωk
eq(P,LieH) → Ωk−1

tens(P,LieH) it the adjoint of the covariant

8Which we knew already from the observation in section 2.1 that the basic complex
(
Ω•basic(Φ),d

)
is a

subcomplex of the de Rham complex of Φ.
9It is the covariant derivative of the connection, but as the latter isn’t tensorial, the second equality is

not due to the alternative expression just mentioned with ρ∗ = ad, as the factor 1
2 should tell. It is rather

known as the Cartan structure equation for the curvature.
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derivative DA w.r.t. the inner product 〈ζ, η〉 :=
∫

Tr(ζ ∧ ∗η), with ζ, η ∈ Ωk
eq(P,LieH),10

the orthogonality condition being 0 = g̊
(
DAχ, α

)
=
∫

Tr
(
DAχ ∧ ∗α

)
=
∫

Tr
(
χ ∧ ∗DA†α

)
,

∀χ ∈ LieH = Ω0
eq(P,LieH) and the metric being non-degenerate.

Dual horizontalisation of forms. Since a connection allows to define the horizontal
projection of vector fields, by duality it allows to define the “horizontalisation” of forms.
Given α ∈ Ω•(Φ), one defines the corresponding αh := α ◦ |h ∈ Ω•hor(Φ). In view of the
expression for the horizontal projection (2.19), the explicit form of αh in terms of α and
ω depends on the verticality property of α.

It is thus clear that if α ∈ Ω•eq(Φ,V ), then αh ∈ Ω•tens(Φ,V ). In-
deed, much like the computation of the equivariance of Dωα above, we have
R?γα

h(X, . . .) = αh
(
Rγ?X, . . .

)
:= α

(
(Rγ?X)h, . . .

)
= α

(
Rγ?X

h, . . .
)

= R?γα(Xh, . . .) =
ρ(γ)−1α(Xh, . . .) =: ρ(γ)−1αh(X, . . .). Idem, then, for twisted forms: for α ∈ Ω•eq(Φ, C),
we have αh ∈ Ω•tens(Φ, C).

As illustrative applications, consider first the basis dφ = {dA,dϕ} ∈ Ω1
eq(Φ), to which

is associated dφh =
{
dAh,dϕh

}
∈ Ω1

tens(Φ), whose explicit form is, by (2.5) and (2.19),

dφh|φ = dφ|φ − δωφ ⇒

 dA
h
|φ = dA|φ −DAω,

dϕh|φ = dϕ|φ + ρ∗(ω)ϕ.
(2.20)

Remark that despite a superficial resemblance, these are not covariant derivative formulae
(φ is a point of Φ not an equivariant function on it). We find that applying the covariant
derivative on dφh results in Dωdφh = −δΩφ. Indeed,

DωdAh = d(dAh) + ρ∗(ω)dAh = d(−DAω) + [ω,dA−DAω],

= −DA(dω)− [dA,ω] + [ω,dA]−DA
(1

2[ω,ω]
)

= −DAΩ. (2.21)

Dωdϕh = d(dϕh) + ρ∗(ω)dϕh = d
(
ρ∗(ω)ϕ

)
+ ρ∗(ω)

(
dϕ+ ρ∗(ω)ϕ

)
,

= ρ∗(dω)ϕ+ ρ∗(ω ∧ ω)ϕ = ρ∗(Ω)ϕ. (2.22)

Equation (2.20) gives, for example, a general expression for 1-forms: given α = α
(
dφ;φ

)
∈

Ω1(Φ), we have

αh = α
(
dφh;φ

)
= α− ι[ω]vα = α− α

(
δωφ;φ

)
∈ Ω1

hor(Φ). (2.23)

Consider then dF,dDAϕ ∈ Ω1
eq(Φ) to which, by (2.10), (2.14) and (2.19), one associates

dF h, (dDAϕ)h ∈ Ω1
tens(Φ) given respectively by

dF h = dF − [F,ω] and (dDAϕ)h = dDAϕ+ ρ∗(ω)DAϕ. (2.24)

10This generalises the construction of the codifferential δ := (−)k ∗−1d ∗ : Ωk(P,R)→ Ωk−1(P,R) as the
adjoint of the exterior derivative d w.r.t. the inner product 〈ζ, η〉 :=

∫
ζ ∧ ∗η for ζ, η ∈ Ωk(P,R).
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But remark that since F,DAϕ ∈ Ω0
eq(Φ) = Ω0

tens(Φ) we have DωF,Dω(DAϕ) ∈ Ω1
tens(Φ)

with explicit expressions,

DωF = dF + [ω, F ] and Dω(DAϕ) = dDAϕ+ ρ∗(ω)DAϕ. (2.25)

In this occasion then, (2.24) are indeed covariant derivative expressions. Which is not
surprising as, by definition, Dω := d ◦ |h on Ω•eq(Φ), so that the ‘horizontalisation’ of dF
and dDAϕ is precisely the definition of the covariant derivative of F and DAϕ. It is then
immediate that,

Dω(dF h) = Dω ◦DωF = [Ω, F ] and Dω(dDAϕ)h = Dω ◦Dω(DAϕ) = ρ∗(Ω)DAϕ.

(2.26)

A case of special relevance to our general purpose is that to α ∈ Ω•inv(Φ) one then
associates αh ∈ Ω•basic(Φ). In this case only, one may observe that both Dωα := (dα)h
and dαh are basic forms, yet in general dαh 6= Dωα. For α = α

(
dφ;φ

)
∈ Ω1

inv(Φ) in
particular, we prove in appendix A that the following formula holds,

Dωα = dαh + ι[Ω]vα = dαh + α
(
δΩφ;φ

)
, (2.27)

using the notation introduced in equation (2.5). So that, only in the special case of a flat
ω̊ do we get Dω̊α = dαh.

Ambiguity in the choice of connection. As already seen, connections are non-
canonical and form an affine space. So, the above ‘horizontalisation’ and ‘basification’
of forms suffers from an ambiguity due to an a priori arbitrariness in the choice of connec-
tion. Given any β ∈ Ω1

tens(Φ, lieH), both ω and ω′ = ω+β are valid choices of connections.
Given α ∈ Ω•(Φ), denote αhω and αhω′ the corresponding horizontal forms obtain by the
above procedure respectively through ω and ω′. One may ask how they are related. The
answer is easily found for 1-forms via a well known trick (familiar e.g. from the proof of
the Chern-Weil homomorphism theorem).

Consider the affine curve in the space of connections ωτ := ω+ τβ, with τ ∈ [0, 1], s.t.
ω0 = ω and ω1 = ω′. Given α ∈ Ω1(Φ), we have by definition αhωτ = α−ι[ωτ ]vα ∈ Ω1

hor(Φ).
We have then the generic result,∫ 1

0
dτ

d

dτ
αhωτ = αhω′ −αhω = −ι[β]vα,

↪→ αhω′ = αhω − ι[β]vα ∈ Ω1
hor(Φ). (2.28)

In particular, considering dφ ∈ Ω1
eq(Φ) we have

dφhω′ = dφhω − ι[β]vdφ = dφhω − δβφ ∈ Ω1
tens(Φ). (2.29)

From this, one can in principle work out the precise relation between αhω′ = α
(
∧•dφhω′ ; φ

)
and αhω = α

(
∧•dφhω ; φ

)
. We do not do so as we will not make use of such a general result.
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In the case of special interest to us α = α
(
dφ;φ

)
∈ Ω1

inv(Φ), as the above procedure
produces basic forms, we alter the notation in eq. (2.28) to have more suggestively,

αbω′ = αbω − ι[β]vα ∈ Ω1
basic(Φ),

= αbω − α
(
δβφ;φ

)
. (2.30)

Consequently, the covariant derivatives are related by

dαbω′ = dαbω − dα
(
δβφ;φ

)
∈ Ω2

basic(Φ). (2.31)

These two results we will use when considering the basic presymplectic structure of
gauge theories.

The ambiguity in the procedure being worked out, it may still be that there is a choice
of connection more natural than others. Such would be the case, as seen above, if it is
associated with a natural bundle metric.

2.2.2 Variational twisted connections

We briefly review a notion of connection which, relatively to the aim of covariant differ-
entiation, is a slight generalisation of Ehresmann’s. A variational twisted connection is by
definition ω̃ ∈ Ω1

eq(Φ,LieG)C satisfying:

R?γω̃|φγ = C(φ, γ)−1ω̃|φC(φ, γ) + C(φ, γ)−1dC( , γ)|φ, (2.32)

ω̃|φ(χvφ) = d

dτ
C
(
φ, exp(τχ)

)∣∣
τ=0, χ ∈ LieH. (2.33)

It is non-canonical, and from the above defining axioms follows that the space of
twisted connections is affine and modelled on the vector space Ω1

tens(Φ,LieG)C : for
β ∈ Ω1

tens(Φ,LieG)C , we have that ω̃′ = ω̃ + β is another twisted connection. In view
of (2.32)–(2.33), and by (2.4), it takes some doing to show that the H-gauge transforma-
tion of a twisted connection is ωγ := Ψ?ω = C(γ)−1ωC(γ) + C(γ)−1dC(γ), where we
introduce the convenient notation C

(
γ(φ)

)
:= C

(
φ,γ(φ)

)
.

A covariant derivation is defined on twisted forms by Dω̃ := d + ω̃ : Ω•tens(Φ,V )C →
Ω•+1

tens(Φ,V )C , and of courseDω̃ = d on Ω•basic(Φ,V ). The curvature of a twisted connection
is defined via Cartan’s structure equation, Ω̃ := dω̃ + 1

2 [ω̃, ω̃] ∈ Ω2
tens(Φ,LieG)C , thus it

satisfies a Bianchi identity Dω̃Ω̃ ≡ 0, and has H-transformation Ω̃γ = C(γ)−1Ω̃C(γ). As
usual Dω̃ ◦Dω̃ = Ω̃.

Twisted connection are the adequate tool to tackle general non-invariant gauge the-
ories (case 3, just above 2.2). As we have seen, the Lagrangian of such a theory has
H-equivariance R?γL = L + c( , γ), whose infinitesimal version gives the classical gauge
anomaly LχvL = d

dτ c( , exp τχ)
∣∣
τ=0 =: α(χ, ). Considering the associated functional Z :=

exp i
∫
L ∈ Ω0

tens(Φ,C)C , s.t. R?γZ = C( , γ)−1Z with C( , γ) := exp−i
∫
c( , γ) ∈ U(1),

we see that a non-invariant theory defines a section of the twisted associated line bundle
Ẽ := Φ×C C. The adapted abelian twisted connection is ω̃ ∈ Ω1

eq(Φ, iR)C s.t.

R?γω̃|φγ = ω̃|φ − i
∫
dc( , γ)|φ, (2.34)

ω̃|φ(χvφ) = −i
∫
α(χ, φ) =: −i a(χ, φ). (2.35)
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The verticality property of the twisted connection encodes the gauge anomaly, and con-
sequently the tensoriality of the curvature Ω̃ = dω̃ encodes the Wess-Zumino consistency
condition:

Ω̃(χv, ηv) = dω̃(χv, ηv) = χv · ω̃(ηv)− ηv · ω̃(χv)− ω̃([χv, ηv]) ≡ 0 (2.36)
↪→ χv · a(η, φ)− ηv · a(χ, φ)− a([χ, η], φ) = 0.

To be compared e.g. to eq. (8.62) and eq. (10.76) in [48], or eq. (12.25) in [49].
Interestingly, one find a ‘modified basic action’ from the twisted covariant derivative

of Z. Indeed,

Dω̃Z = dZ + ω̃Z =
(
id
∫
L+ ω̃

)
Z =

(
idS + ω̃

)
Z, (2.37)

where S :=
∫
L is the classical action. Since Z and Dω̃Z ∈ Ω•tens(Φ,C)C , we have that

idS + ω̃ ∈ Ω1
basic(Φ, iR). This is easily checked explicitly by (2.34)–(2.35),

R?γ
(
idS + ω̃

)
= id(

∫
L+ c( , γ)) + ω̃ − i

∫
dc( , γ) = idS + ω̃, (2.38)(

idS + ω̃
)
(χv) = i

∫
LχvL+ ω̃(χv) = i

∫
α(χ, )− i

∫
α(χ, ) = 0. (2.39)

The quantity dS−iω̃ is a generalisation of the notion of Wess-Zumino ‘improved’ action [50,
51]. Indeed, if the connection is locally exact, ω̃ = d$̃, then S − i$̃ ∈ Ω0

basic(Φ,R) =
Ω0

inv(Φ,R), and $̃ is a Wess-Zumino functional. In section 2.3.1 we will see how such a
term can be built explicitly from the cocycle c and a dressing field.

What is done here for classical gauge anomalies holds also for quantum gauge anoma-
lies, see sections of 2.3 and 4.2 of [33], and [47] for a full exposition of the geometry of
twisted connections

The extraction of a basic action 0-form above is quite incidental. As a twisted connec-
tion is a priori not meant to split the SES (2.2), it does not provide a notion of horizontality
on Φ and thus would not be used to extract the horizontal part of any given form. A for-
tiori, it is unlikely to provide a general strategy to build basic forms. In the following
section we discuss a general method designed to do just that.

2.3 The dressing field method

The dressing field method (DFM) is a systematic way to build basic forms on a bundle,
thus to obtain gauge-invariants in gauge theory. It has gradually developed [52–54] in
recent years, and its immediate implications regarding the philosophy of gauge theories —
relevant to the present paper — has been first expound in [55]. In relation to the topic
of the presymplectic structure of gauge theories, the DFM is the geometric underpinning
of the so-called edge modes [5, 14–17, 23–25]. A relatively complete and self-contained
exposition can be found in sections 3 and 4.3 of [33]. But in the interest of the reader, we
give here a summary of the essentials of the method.

Consider a H-principal bundle P with connection A, and α ∈ Ω•tens(P, V ). Let K /H

be a normal subgroup of the structure group, so that the quotient H/K = J is a group.
Correspondingly we have the gauge subgroups K,J ⊂ H. Also, letG be a group s.t.G ⊂ H.
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We define the space ofK-dressing fields as Dr[K,G] :=
{
u : P → G | R∗ku = k−1u, ∀k ∈

K
}
, a definition that implies that the K-gauge transformation on P of a dressing is uγ =

γ−1u. By means of the dressing field, one defines the map fu : P → P/K = P ′, p 7→
fu(p) := pu(p), where P ′ is a J-principal subbundle of P. In other words, the existence of
a K-dressing field implies that the bundle P is trivial along K: P ' P ′ × K. This map
satisfies fu ◦Rk = fu, so R∗k ◦ f∗u = f∗u and fu∗Xv = 0 for X ∈ LieK (it kills vertical vector
fields generated by the action of K). Therefore, the following dressed fields

Au := f∗uA = u−1Au+ u−1du, and αu := f∗uα = ρ(u)−1α, (2.40)

are K-basic on P, thus descend on P ′. This implies that both are K-invariant: (Au)γ = Au

and (αu)γ = αu for γ ∈ K. In particular, the curvature F ∈ Ω2
tens(P,LieH) and ϕ ∈

Ω0
tens(P, V ) ' Γ(E) dress as F u = u−1Fu = dAu + 1

2 [Au, Au] (which is then the curvature
of Au) and ϕu = ρ(u)−1ϕ.

Let us emphasize an important fact: it is clear from the definition that u /∈ K, so
that despite the formal resemblance (2.40) are not gauge transformations. This means,
in particular, that the dressed connection is not a H-connection, Au /∈ A, and a fortiori
is not a point in the gauge K-orbit OK[A] of A, so that Au must not be confused with a
gauge-fixing of A.

We also point out that, with minimal adjustments, the above results can be extended
to the case G ⊃ H: one needs only to assume that G is (a subgroup of) the structure group
of a bigger principal bundle of which P is a subbundle/a reduction. This is typically the
case for Cartan geometries, on which gauge gravity theories are based. See section 2.2, and
footnote 12, in [33].

Finally, remark that if K = H the bundle is trivial, P ' M × H, and Au, αu ∈
Ω•basic(P). This means in particular that in this case there is a 1:1 association between
the dressed fields φu = (Au, ϕu) and the H-gauge orbit OH[φ]. So, φu can be thought of
as a ‘coordinatisation’ for the gauge class [φ] such that Φu ' Φ/H = M. This must be
qualified, as the dressed fields may exhibit residual transformations.

Residual gauge symmetry. If K / H, one expects (2.40) to display a residual J -
gauge transformations which will depend on the J -transformation of u (that of A,α being
known already), the latter in turn given by its J-equivariance. We will not linger on the
details here, referring to section 3.2 of [33] for details, only to mention one interesting case
which is when the K-dressing field has J-equivariance R∗ju = j−1uj so that its J -gauge
transformation is uη = η−1uη and that of the dressed fields is then,

(Au)η := Ψ∗Au = η−1Auη + η−1dη, and (αu)η := Ψ∗αu = ρ(η)−1αu, (2.41)

for Ψ ∈ Autv(P, J) ' Autv(P ′) (J-automorphism) s.t. Ψ(p) = pη(p) with η ∈ J . This can
be checked algebraically from (Au)η = (Aη)uη .

In the rest of this paper we will consider the case of dressing fields u ∈ Dr[H,G] for
simplicity.11 Yet, even in this case the dressed fields may display another form of residual

11Although, as we have remarked, it is a strong constraint on the topology of P — it is trivial — which
in turn has interpretive implications [55] quite significant for the ‘edge mode’ strategy, as argued in [33]
and as we will further comment ahead.
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transformations worth stressing, stemming from an ambiguity in the choice of dressing field.

Ambiguity in the choice of a dressing field. Given their defining property, two
dressing fields u, u′ ∈ Dr[H,G] may a priori be related by u′ = uξ, with ξ ∈ G :=
{ ξ : P → G |R∗hξ = ξ }. By analogy with the notation for the action of the gauge group H,
let us denote the action of G on Dr[H,G] as uξ = uξ. By definition G acts trivially on A
and α, a fact we denote by Aξ = A and αξ = α. On the other hand, it is clear how G must
act on dressed fields:

(Au)ξ := Au
ξ = Auξ = ξ−1Auξ + ξ−1dξ, and (αu)ξ := αu

ξ = αuξ = ρ(ξ)−1αu, (2.42)

which implies in particular (F u)ξ = ξ−1F uξ and (ϕu)ξ = ρ(ξ)−1ϕu.
This invites to think of the space of dressed fields Φu as fibered by the right action of

G, noted then Rξφ
u := (φu)ξ, so that Φu is a G-principal bundle over Φu/G := Mu. As

such, and in complete analogy with Φ, it gives rise to a SES

0 Autv(Φu) ' G Aut(Φu) Diff(Mu) 0,ι π̃ (2.43)

where Aut(Φu) is the automorphism group defined as usual, and the subgroup of vertical
automorphisms is isomorphic to the gauge group G :=

{
ξ : Φu → G | R?ξξ = ξ−1ξξ

}
. Its

infinitesimal version is,

0 ΓG(V Φu) ' LieG ΓG(TΦu) Γ(TMu) 0,ι π? (2.44)

As usual, the action by pullback of Autv(Φu) on elements of Ω•(Φu) defines their G-gauge
transformations which is thus determined by their G-equivariance and verticality properties,
i.e. the result of their evaluation on ζv ∈ Γ(V Φu) for ζ ∈ LieG. We will have more to say
on this shortly.

Or course, (φu)ξ is H-basic (and H-invariant) ∀ξ ∈ G, so any given representative in
the G-orbit OG [φu] is as good a coordinatisation for [φ] ∈M as any other. Said otherwise
there is a 1 : 1 correspondence OH[φ] ∼ OG [φu]. Which means that, contrary to a first
analysis, it is Φu/G := Mu that is isomorphic to Φ/H = M (not Φu). As the latter
is the physical state space, it follows that G is not a transformation group of physical
states (it acts trivially on them). Rather, as we know, Diff(Φ/H) ' Diff(Φu/G) is, with
infinitesimal counterpart Γ(Φ/H) ' Γ(Φu/G).

This being clarified, there are only two relevant options regarding the physical status of
the group G: either it is an interesting new gauge symmetry, as is the case in gauge gravity
theories where G = GL(n) is the group of local coordinate changes (see, section 5.3.1.b
in [33]), and as such the associated Noether charges may be observables when ‘measured’
against background field configurations for whom elements of G are Killing symmetries
(a topic we address first for H in section 3.2, then for G in section 4.2). Or there are
compelling reasons as to why the group G must be ‘small’ compared to H (perhaps even
reduced to a global/rigid or discrete group). For either options to stand a chance of being
realised, a dressing field must be introduced not by hand as new degrees of freedom, but
built from elements of the initial field space.

This suggests to consider field-dependent dressing fields which, as it turns out, also
permit to build basic forms on the H-bundle Φ.
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Field-dependent dressing fields. A Φ-dependent dressing field is a map u : Φ →
Dr[H,G], φ 7→ u(φ), thus satisfying R?γu = γ−1u — i.e. u(φγ) = γ−1u(φ) — for γ ∈ H.12

Given the above considerations, it allows to define

Fu : Φ→M
φ 7→ Fu(φ) := φu = (Au, ϕu), s.t. Fu ◦Rγ = Fu. (2.45)

This map in a sense realises the projection map π of Φ. So clearly, Γ(V Φ) ⊂ kerFu: for χv ∈
Γ(V Φ) generated by χ ∈ LieH, we have Fu? χvφ = d

dτ

(
Fu◦Reτχ

)
(φ)
∣∣
τ=0 = d

dτFu(φ)
∣∣
τ=0 = 0.

Despite the formal resemblance with a vertical automorphism, Fu /∈ Autv(Φ), as is clear
from the fact that u /∈ H. Yet, in exact analogy with the computation of Ψ?X for
X ∈ Γ(TΦ), eq. (2.4), (which owes nothing to the H-equivariance of γ ∈H), we have:

Fu? : TφΦ→ TφuM

Xφ 7→ Fu?Xφ = ρ(u)−1
(
X(φ) + δduu−1

|φ (Xφ)φ

)
δ

δ[φ] , (2.46)

Dually, the pullback application allows to realise basic forms on Φ,

F?u : Ω•(M)→ Ω•basic(Φ)
ᾱ|[φ] 7→ F?uᾱ |φ =: αu|φ. (2.47)

Indeed, as Fu ∼ π, Ω•basic(Φ) = Im π? ' ImF?u. The H-basicity of αu is easily proven:
R?γα

u = R?γF?uᾱ = F?uᾱ = αu, with γ ∈ H, and αu
(
χv
)

=
(
F?uᾱ

)
(χv) = ᾱ

(
Fu? χv

)
= 0.

The H-invariance ensues, (αu)γ = αu for γ ∈H.
As it stands, αu = F?uᾱ is the basic counterpart of ᾱ ∈ Ω•(M). But as the notation

suggests, we would rather like to see αu as the basic version of some given form α ∈ Ω•(Φ)
whose functional expression could presumably be given in terms of α and u. This is indeed
possible via a shift of viewpoint: one may notice that to a given α|φ = α

(
∧•dφ ; φ

)
∈ Ω•(Φ)

corresponds ᾱ|[φ] = α
(
∧•d[φ] ; [φ]

)
∈ Ω•(M) built via the same functional α( ; ) (the only

difference being the type of arguments the latter takes in). Now we can define the dressed
version, or dressing, of α via (2.47) as being

αu|φ := F?uᾱ |φ = α
(
∧•F?ud[φ];Fu(φ)

)
= α

(
∧•dφu;φu

)
∈ Ω•basic(Φ), (2.48)

where we have defined the basic basis 1-form dφu := F?ud[φ] ∈ Ω1
basic(Φ), with d[φ] ∈

Ω1(M) basis of forms on M. As per our stated desiderata, the latter can be written
explicitly, via (2.46), in terms of dφ and u:

dφu|φ(Xφ) :=
(
F?ud[φ]|[φ]

)
(Xφ) = d[φ]|[φ]

(
Fu?Xφ

)
= ρ(u)−1

(
X(φ) + δduu−1

|φ (Xφ)φ

)
= ρ(u)−1

(
dφ|φ(Xφ) + δduu−1

|φ (Xφ)φ

)
=
[
ρ(u)−1 (dφ+ δduu−1φ)

]
|φ

(Xφ),

that is dφu = ρ(u)−1 (dφ+ δduu−1φ) =

 dAu = u−1(dA+D
{
duu−1})u

dϕu = ρ(u)−1(dϕ− ρ∗(duu−1)ϕ
) (2.49)

12Again, we here work with the simplifying assumption of a H-dressing. But the following can be
adapted with minor adjustments to Φ-dependent K-dressing fields u : Φ→ Dr[K,G], s.t. R?γu = γ−1u for
γ ∈ K ⊂ H, leaving then residual J -gauge transformations (called residual transformations of the first kind
in [33]).
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Comparing this to (2.7), we see that due to the formal similarity between Fu and Ψ, their
actions are formally alike. This generalises to α above. Indeed, given that its H-gauge
transformation is

αγ |φ := Ψ?α |φ = α
(
∧•Ψ?dφ; Ψ(φ)

)
= α

(
∧•dφγ ;φγ

)
, (2.50)

by comparison with (2.48) we see that the general rule of thumb to obtain the dressed
version αu ∈ Ω•basic(Φ) of α ∈ Ω•(Φ) is to replace γ → u in αγ .13

Seing now (2.48) as a form on the G-bundle of dressed fields Φu, the G-transformation
of αu is obtained in exactly the same way as the H-transformation of α on Φ. We thus
obtain (αu)ξ by replacing α→ αu and γ → ξ in the formula for αγ . Both αu and (αu)ξ
are basic forms (corresponding to α) on the H-bundle Φ.

Taking the example of dφu, in analogy with (2.5)–(2.6),we have R?ξdφu = ρ(ξ)−1dφu

and dφu|φu
(
ζvφu
)

= δζφ
u (the infinitesimal version of eq. (2.42)), where ζv ∈ Γ(V Φu) and

ζ ∈ LieG.14 So, by the same computation leading to (2.7), the G-transformation of dφu is

(dφu)ξ = ρ(ξ)−1
(
dφu + δdξξ−1φu

)
=


(dAu)ξ = ξ−1

(
dAu +DAu

{
dξξ−1}) ξ

(dϕu)ξ = ρ(ξ)−1
(
dϕu − ρ∗(dξξ−1)ϕu

) (2.51)

This result, together with eq. (2.42), allows to cross-check algebraically the G-
transformation of αu, which is(

αu
)ξ = α

(
∧•
(
dφu

)ξ; (φu)ξ
)
. (2.52)

To repeat, given the functional properties of α, the latter is formally identical to the H-
transformation of α. In particular, for αu ∈ Ω1

inv(Φu), eq. (2.52) specialises as(
αu
)ξ = α

(
dφu + δdξξ−1φu;φu

)
,

= αu + α
(
δdξξ−1φu;φu

)
. (2.53)

Reverting back to the original viewpoint, equations (2.51)–(2.53) can also be seen as
relations between forms on the initial H-bundle Φ. Seing that indeed (2.51) is rewritten as

(dφu)ξ = ρ(ξ)−1
(
dφu + ρ(u)−1δudξξ−1u−1φ

)
∈ Ω1

basic(Φ), (2.54)

so that for α = α
(
dφ;φ

)
∈ Ω1

inv(Φ), (2.53) is also(
αu
)ξ = αu + α

(
δudξξ−1u−1φ;φ

)
∈ Ω1

basic(Φ). (2.55)

One may then notice the striking similarity between (2.55) and eq.(2.30) reflecting the
ambiguity in building basic forms from variational Ehresmann connections. This is no
coincidence, as we clarify in the following section concluding this review of the DFM.

13The latter being obtained, as we’ve seen, either geometrically via the equivariance and verticality
properties of α, or algebraically by inserting (2.7) in its functional expression as suggested by (2.50).

14These can be taken as axiomatic on Φu, or can motivated by reference to Φ: since by assumption
φξ = φ, we can formally admit dφ(ζv) = 0, and since by definition uξ = uξ, infinitesimally we can formally
admit du(ζv) = ζv(u) = uζ. By the definition (2.49) of dφu, its G-equivariance is clear, while it is easy to
show explicitly that dφu|φu

(
ζvφu

)
= ρ(u)−1δuζu−1φ = δζφ

u.
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2.3.1 Field-dependent dressing fields and variational connections

Flat Ehresmann variational connections. By definition of a field-dependent dressing
field, we have for γ ∈ H and χvφ ∈ VφΦ:

R?γ(−duu−1) = −d(R?γu) R?γu−1 = γ−1(−duu)−1γ,

−duu−1
|φ (χvφ) = −(χvu)(φ)u(φ)−1 = +χu(φ)u(φ)−1 = χ ∈ LieH.

As it is furthermore clear that d(−duu−1) + 1
2 [duu−1,duu−1] ≡ 0, the quantity ω̊ :=

−duu−1 = udu−1 is thus a flat variational Ehresmann connection, Ω̊ = 0.
The same is true of ω̊′ := −du′u′−1 = u′du′

−1 with u′ = uξ = uξ, since by definition
R?γξ = ξ. From this also follows that ω̊′ = ω̊+β̊, where β̊ := −udξξ−1u−1 ∈ Ω1

tens(Φ) since

R?γβ̊ = γ−1(−udξξ−1u−1)γ = γ−1β̊γ,

β̊(χv) = −udξ(χv) ξ−1u−1 = 0.

Therefore, the existence of a field-dependent dressing field u is equivalent to the existence
of a flat variational Ehresmann connection ω̊ on field space Φ, and the a priori ambiguity
in choosing/building such a dressing field (u′/u) translates as an ambiguity (assuming a
specific form, β̊ having the form it has) in picking a choice within the affine space of flat
connections. It is thus not surprising to find some similarities in the way basic form are
built via dressing and via non-flat connections. Yet, the differences are also worth stressing.

Using ω̊ we could perform the horizontalisation procedure seen in section 2.2.1, with
in particular

dφhω̊ = dφ− δω̊φ ∈ Ω1
hor(Φ) (2.56)

as a special case of eq. (2.20). Then, we have that eq. (2.49) is rewritten as

dφu = ρ(u)−1dφhω̊ = ρ(u)−1 (dφ− δω̊φ) ∈ Ω1
basic(Φ), (2.57)

Through this simplest example, we see on display the crucial difference between the DFM
and the horizontalisation via connection: the dressing operation takes care not only of
horizontalisation, via the term δω̊φ, but also of trivialising the equivariance via the term
ρ(u)−1. Hence, while one can use Ehresmann connections to produce basic forms out of
invariant forms only, one can use the DFM to produce basic forms out of forms of any
equivariance.15

As to the matter of ambiguity, eq. (2.54) is

(dφu)ξ = ρ(ξ)−1
(
dφu + ρ(u)−1δβ̊φ

)
∈ Ω1

basic(Φ), (2.58)

which is close to eq. (2.29) but not quite the same. The difference being again only in the
equivariance, i.e. the presence of ρ(ξ) and ρ(u). But in the case of α = α

(
dφ;φ

)
∈ Ω1

inv(Φ),
the latter disappear so eq. (2.55) rewritten as(

αu
)ξ = αu − α

(
δβ̊φ;φ

)
∈ Ω1

basic(Φ) (2.59)

is indeed seen to be special case of (2.30), with
(
αu
)ξ = αb

ω̊′
and αu = αbω̊.

15Twisted equivariant forms included.
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When considering the construction of basic forms out of invariant forms, as will be
our main concerns ahead w.r.t. invariant gauge theories, one may thus expect convergence
between the formal results one obtains from either variational Ehresmann connections or
the DFM. But the respective merits of both approaches must be parsed and kept in mind.

One the one hand, the existence of a field-dependent dressing field, thus of a flat connec-
tion, is likely a strong constraint on the topology of field space Φ.16 There is then no guaran-
tee that it will always be possible to find/build such a dressing field globally defined across
Φ (Gribov-Singer-like obstructions may exist). On the contrary, Φ can always be endowed
with a non-flat Ehresmann connection, which imposes no such topological constraint.

On the other hand, the ambiguity of choice among the affine space of connections
generally cannot be associated with some underlying useful symmetry transformations.
Especially so if a connection comes from a natural bundle metric (as e.g. on A), so that this
ambiguity could arguably be discarded. Whereas, as we have remarked already, the group
G controlling the ambiguity in the choice/building of dressing fields may be a physically
relevant symmetry to which potentially observable charges can be associated.

There is no telling in advance which method to choose, as much will depend on the
specific examples under consideration. If a bundle metric exists, then it is natural to
use the associated connection. If a dressing field is readily identified, one should use
the full power of the DFM. In section 4, we will nonetheless give the most general form,
according to both scheme, of the basic presymplectic structure for invariant gauge theories.
Before that, we say a final word about how dressing fields may also give rise to twisted
variational connections.

Flat twisted variational connections. Considering again a field-dependent dressing
field u : Φ → Dr[H,G] and a 1-cocycle C, we define a twisted dressing field C(u) by
C
(
u
)
(φ) := C

(
φ,u(φ)

)
. Due to the cocycle defining property we indeed have, for γ ∈ H,[

R?γC
(
u
)]

(φ) = C
(
φγ ,u(φγ)

)
= C

(
φγ , γ−1u(φ)

)
= C

(
φγ , γ

)
C
(
φ, γu(φ)

)
= C

(
φ, γ

)−1
C
(
φ, γu(φ)

)
,

=
[
C( , γ)−1C

(
u
)]

(φ). (2.60)

The infinitesimal version of which is

LχvC
(
u
)

= ιχvdC
(
u
)

= − d

dτ
C
(
, exp τχ

)∣∣
τ=0C

(
u
)
, (2.61)

with χv ∈ Γ(V Φ).
In the same manner that u defines a flat variational Ehresmann connection ω̊, via

the cocycle it defines a flat twisted variational connection $̊ = −dC
(
u
)
C
(
u
)−1 =

C
(
u
)
dC
(
u
)−1. From the above follows indeed easily,

R?γ$̊|φγ = C(φ, γ)−1$̊|φC(φ, γ) + C(φ, γ)−1dC( , γ)|φ,

$̊|φ(χvφ) = dC
(
u
)
C
(
u
)−1(χv) = + d

dτ
C
(
, exp τχ

)∣∣
τ=0,

16In the finite dimensional case, a principal bundle over a connected manifold can have a flat connection
only if it is trivial!
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the defining axioms (2.32)–(2.33) of a twisted connection. Clearly, d$̊ + 1
2 [$̊, $̊] = 0.

In section 2.2.2, we saw that a general non-invariant Lagrangian is R?γL = L+ c( , γ),
with classical gauge anomaly LχvL = d

dτ c( , exp τχ)
∣∣
τ=0 =: α(χ, ). It is associated with

the twisted functional Z := exp i
∫
L ∈ Ω0

tens(Φ,C)C s.t. R?γZ = C( , γ)−1Z with C( , γ) :=
exp−i

∫
c( , γ) ∈ U(1).

Admitting a dressing field exists, the corresponding flat twisted connection is $̊ =
id
∫
c(u) := id

∫
c( ,u). The associated twisted covariant derivative of Z is thus,

D$̊Z = dZ + $̊Z = (id
∫
L+ c(u)) Z ∈ Ω1

tens(Φ,C)C . (2.62)

We have then that L+ c(u) ∈ Ω0
basic(Φ). This is none other than a Wess-Zumino improved

(i.e. H-invariant) Lagrangian, and c(u) is a Wess-Zumino functional which (usually by
special design) satisfies Lχvc

(
u
)

= −α(χ, ).
A WZ functional is thus seen to be the pre-potential of a flat twisted connection.

Any twisted connection ω̃ adapted to this context (i.e. fit to induce a twisted covariant
derivative) satisfies ω̃(χv) = −i

∫
α(χ, ) — see eq. (2.35). Here, we have indeed $̊(χv) =

i
∫
dc(u)(χv) = i

∫
Lχvc(u) = −i

∫
α(χ, ) as a special case of (2.61).

Let us finally remark that the above improved Lagrangian is precisely what is immedi-
ately given by application of the DFM: the dressed version of the non-invariant Lagrangian
L ∈ Ω0

eq(Φ)C is

Lu(φ) :=
(
F?uL

)
(φ) = L

(
Fu(φ)

)
= L(φu) = L(φ) + c

(
φ,u(φ)

)
,

↪→ Lu =L+ c(u) ∈ Ω0
basic(Φ). (2.63)

This illustrates a commentary we made in the previous subsection, to the effect that the
DFM can associate basic forms to forms of any equivariance, including twisted equivariance.
This was extensively used in [33], section 5.3.2, to produce the basic (dressed) presymplectic
structure of non-invariant pure gauge theories.

After these long technical preliminaries, we are ready for our main application con-
cerning the presymplectic structure of invariant matter coupled gauge theories.

3 Presymplectic structures of matter coupled gauge theories over
bounded regions

In this section we first briefly remind one original aim of the covariant phase space formalism
for gauge field theory, and the impediment posed by the presence of boundaries: that is the
boundary problem. Then we provide results of some generality about the presymplectic
structure of invariant matter coupled gauge theories. Some of these are necessary to show
how one may try to answer the boundary problem by constructing basic presymplectic
structures obtained either via the DFM or via variational connections.

3.1 Covariant phase space formalism

As already evoked just before section 2.2, a gauge theory is specified by a Lagrangian
functional L : Φ → Ωn(P,R), φ 7→ L(φ) = L(A,ϕ), n the dimension of spacetime M . For
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the associated action S =
∫
U L to be finite,17 one usually assumes the region U ⊂M to be

compact or closed, or that the fields are either compactly supported or satisfy sufficiently
fast fall-off conditions at infinity (which amounts to an effective compactification of M).

The variational principle stipulates that the field equations are found from requiring S
to be stationary, δS = 0 ∀δφ, under well-defined boundary conditions. In the formulation
adopted here this translates as dS(X) = 0 ∀X ∈ Γ(TΦ) , i.e the functional S : Φ → R is
closed, dS = 0. Admitting that d and

∫
commute, this gives

dS =
∫
U
dL =

∫
U
E + dθ =

∫
U
E +

∫
∂U
θ = 0 (3.1)

where E|φ = E(dφ;φ) is the field equations 1-form and θ|φ = θ(dφ;φ) is the presymplectic
potential current 1-form. Here E and θ are different functionals of φ, both linear in dφ
(nonetheless based on the same functional as L).

The point of the covariant phase space approach, or covariant Hamiltonian formalism,
is to associate a phase space equipped with a symplectic form to a field theory over a region
U ⊆M, and doing so while keeping all spacetimes symmetries manifest. Such a symplectic
structure would be the starting point for a canonical or geometric quantization procedure,
or so was one original motivation. Some attribute the inception of the idea to [1–3], but
it actually goes further back and has close ties to the multisymplectic formalism as shown
in [56], which we recommend. Classical references are [57, 58], and modern introductions
are [59, 60] (see also [61] for a compact summary). The recent review [4] gives historical
context and shows the relation of covariant phase space methods to other approaches such
as the multisymplectic formalism and the variational bicomplex.

The configuration space is the field space, here the H-bundle Φ. The covariant phase
space is the solution space S — the shell — defined by E = 0. The physical, or reduced,
phase space is S/H =:MS if it can be endowed with a well-defined symplectic 2-form. No-
tice then that the Hamiltonian flow belongs to the physical transformation group Diff(M)
in the SES (2.1), and the corresponding Hamiltonian vector field thus belongs to Γ(TM)
in the SES (2.2).

The presymplectic potential θ allows to define the Noether currents and charges associ-
ated with the action of H, and a natural candidate symplectic form is derived from it. Since
[d, d] = 0, we have 0 ≡ d2L = dE + d(dθ). So, the 2-form Θ := dθ is d-closed on-shell,
dΘ = 0 |S . Given a codimension 1 submanifold Σ ⊂ U , we have ΘΣ :=

∫
Σ Θ ∈ Ω2(Φ,R).

The presymplectic potential is θΣ :=
∫

Σ θ ∈ Ω1(Φ,R), so that ΘΣ = dθΣ. Since dΘΣ = 0,
ΘΣ is a presymplectic 2-form (hence the name given to θ and θΣ). It allows to define a
Poisson bracket between charges.

For θΣ and ΘΣ to induce a symplectic structure on S/H = MS , they must be basic
on Φ. This requires that on-shell the H-equivariance and verticality properties of θ and
Θ are right, i.e. that adequate boundary conditions are specified. This last requirement
is jeopardised when considering bounded regions, or when one considers the partitioning

17Since we took the viewpoint that L is a n-form on P, actually S =
∫
σ(U) L =

∫
U
σ∗L with σ : U → P

a local section and σ∗L written in terms of the gauge potential σ∗A. For convenience, we shall omit σ in
writing integration domains.
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a region into subregions sharing a fictitious boundary. This is what we call the boundary
problem: the obstruction to the basicity of θΣ and ΘΣ due a boundary ∂Σ.

Before considering potential answers to the boundary problem in section 4, we want to
give general results on the presymplectic structure of invariant gauge theories. Precisely,
we are interested in identifying the Noether currents and charges, the Poisson bracket of
charges, and most importantly the H-gauge transformations of θΣ and ΘΣ. Whenever
possible we will give these results as functions of the field equations E so that on-shell
restrictions are read-off immediately.

3.2 Presymplectic structure of invariant matter coupled gauge theories

We are concerned with gauge theories that strictly respect the gauge principle, so that
L ∈ Ω0

basic(Φ) (case 1 mentioned just before section 2.2). As d is a covariant derivative on
basic forms, we know immediately that dL ∈ Ω1

basic(Φ).
In the pure gauge case, L ∈ Ω0

basic(A), the Utiyama theorem [62, 63] states that L must
factorise through the curvature map, L = L̃ ◦ F , with L̃ a Ad(H)-invariant functional on
Ω•tens(P,LieH). By extension, in the coupled case L must depend on tensorial quantities
and otherwise factors through the curvature and covariant derivative maps,

L(φ) = L̃(ϕ, F,DAϕ) =: L̃({φ}), (3.2)

with L̃ a H-invariant multilinear fonctional on Ω•tens(P): L̃
(
ρ(h){φ}

)
= L̃({φ}), h ∈ H and

we remind that ρ := (Ad, ρ). We notice that the set {φ} = (F,ϕ,DAϕ) is closed under D,
as on the one hand by Bianchi DF = 0, and on the other hand D2ϕ = ρ∗(F )ϕ, D3ϕ =
ρ∗(F )Dϕ and D2nϕ = ρ∗(Fn)ϕ, D2n+1ϕ = ρ∗(Fn)Dϕ. We may denotes this D{φ} ⊂ {φ}.
Then it comes that dL will be linear in dφ or DA(dφ), dL|φ = L̃

(
dφ,DA(dφ); {φ}

)
.

By (2.9)–(2.13) and using the H-invariance of L̃, we have

dL|φ = L̃
(
dϕ,dF,dDA(ϕ); {φ}

)
,

= L̃
(
dϕ; {φ}

)
+ L̃

(
DA(dA); {φ}

)
+ L̃

(
DA(dϕ) + ρ∗(dA)ϕ; {φ}

)
,

= L̃
(
dϕ; {φ}

)
+ dL̃

(
dA; {φ}

)
+ L̃

(
dA;DA{φ}

)
+ dL̃

(
dϕ; {φ}

)
− L̃

(
dϕ;DA{φ}

)
+ L̃

(
ρ∗(dA)ϕ; {φ}

)
,

= L̃
(
dA;DA{φ}

)
+ L̃

(
ρ∗(dA)ϕ; {φ}

)
+ L̃

(
dϕ; {φ} −DA{φ}

)
+ dL̃

(
dφ; {φ}

)
,

=: Ẽ
(
dφ; {φ}

)
+ dθ̃

(
dφ; {φ}

)
= E

(
dφ;φ

)
+ dθ

(
dφ;φ

)
= E + dθ. (3.3)

The last three equalities will help keep track of what the notations of the functionals E
and θ means here. It is clear in particular that by (2.6), since {φ} ∈ Ω•tens(P), and due to
the H-invariance of L̃, the H-equivariance of E and θ are trivial

R?γE = E and R?γθ = θ, i.e. E,θ ∈ Ω1
inv(Φ). (3.4)

↪→ E(dφγ ;φγ) = E(dφ;φ) and θ(dφγ ;φγ) = θ(dφ;φ).

We can already say that their H-gauge transformations are thus controlled only by their
respective verticality properties. The latter are also related to the definition of conserved
currents and charges associated with the action of H.

– 26 –



J
H
E
P
1
2
(
2
0
2
1
)
1
8
6

Noether currents and charges. As L is basic, the infinitesimal version of its trivial
equivariance is, for χv ∈ Γ(V Φ), LχvL = ιχvdL = ιχvE + dιχvθ = 0. The quantity
J(χ;φ) := ιχvθ is thus conserved on-shell, dJ(χ;φ) = 0|S . This is the Noether current
associated with H. We might be interested in further determining its general form. Using
the above definition (3.3) of θ and E we have,

J(χ;φ) := ιχvθ = L̃
(
ιχvdφ; {φ}

)
,

= L̃
(
DAχ; {φ}

)
+ L̃

(
− ρ∗(χ)ϕ; {φ}

)
,

= dL̃
(
χ; {φ}

)
− L̃

(
χ;DA{φ}

)
− L̃

(
ρ∗(χ)ϕ; {φ}

)
,

= dθ
(
χ;φ

)
− E

(
χ;φ

)
. (3.5)

The on-shell d-exacteness of J(χ;φ) is manifest in this form. In the last equality the
notation means that the current is (of course) written in terms of the LieH-linear pieces
of θ and E. Notice it implies that the details of the contribution of the matter field to the
presymplectic potential is irrelevant to the on-shell form of the current!

The Noether charge is defined as QΣ(χ;φ) :=
∫

Σ J(χ;φ), and is also written QΣ(χ;φ) =
ιχvθΣ. Given (3.5), it is explicitly

QΣ(χ;φ) =
∫
∂Σ
θ
(
χ;φ

)
−
∫

Σ
E
(
χ;φ

)
. (3.6)

On-shell, it is a purely boundary term. To reiterate the previous point: the above result
proves that the contribution of the matter field is irrelevant to the on-shell form of the
charge, which depends only on the contribution of the connection/gauge potential. Now,
the presymplectic 2-form Θ = dθ induces a Poisson bracket for these charges.

Poisson bracket of charges. To see this, let us first notice that the infinitesimal version
of the trivial H-equivariance of θ, eq. (3.4), gives a relation between the Noether charge
and the presymplectic 2-form

Lχvθ = ιχvdθ + dιχvθ =: ιχvΘ + dJ(χ;φ) = 0.

↪→ so that ιχvΘΣ = −dQΣ(χ;φ) = −
∫
∂Σ
dθ(χ;φ) +

∫
Σ
dE(χ;φ). (3.7)

From this, using [LY , ιX ] = ι[Y ,X], we obtain that for χv, ηv ∈ Γ(VA)

Θ(χv, ηv) = ιηv
(
ιχvΘ

)
= −ιηvdιχvθ = −Lηv ιχvθ = −ιχvLηvθ − ι[ηv ,χv ]θ = ι[χ,η]vθ, (3.8)

where in the last step we use the fact that the map LieH → Γ(VA) is a isomorphism. The
Poisson bracket of charges defined by the presymplectic 2-form is thus,{

QΣ(χ;φ), QΣ(η;φ)
}

:= ΘΣ(χv, ηv) =
∫

Σ
ι[χ,η]vθ =

∫
Σ
J([χ.η];φ) = QΣ([χ, η];φ). (3.9)

It is clearly antisymmetric, and the Jacobi identity is satisfied for the Poisson bracket
because it holds in LieH. So the map LieH →

(
QΣ( ;φ),

{
,
}
) is a Lie algebra morphism.

Written functionally, (3.9) reproduces the Peierls-DeWitt bracket (see [64] Theorem 4,
also [60]).
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Through this Poisson bracket, the Noether charges are also generators of LieH-
transformations. Consider indeed a functional f : Φ → Ωn−1(P), φ 7→ f(φ). Define
its associated variational Hamiltonian vector field V f , as one does, via ιV fΘΣ = −

∫
Σ df .

The action of LieH on f is usually given by the Lie derivative along a vertical vector field,∫
Σ
Lχvf =

∫
Σ
ιχvdf + d���ιχvf = ιχv (−ιV fΘΣ) = ιV f ιχvΘΣ =:

{
QΣ(χ;φ), f

}
, (3.10)

↪→ = − ιV fdQΣ(χ;φ).

The first line shows why Noether charges generate LieH-transformations via the Poisson
bracket, the second line gives the explicit mean of computation: one must first deter-
mine the Hamiltonian vector field of f via the symplectic 2-form ΘΣ, then feed it to the
variational 1-form dQΣ(φ;χ).

Field-dependent gauge transformations. We are interested in finding the general
form of the field-dependent H-gauge transformations of θ and Θ. But let us first, as a
warm-up, show that an invariant theory is well-behaved by finding the H-transformation
of the field equations E.

As already pointed out in section 2.1, given eq. (2.4) the H-transformation of a form
depends on its H-equivariance and its verticality property. For the field equations we have
R?γE = E by (3.4), and ιχvE = dE(χ;φ) by LχvL = 0 and (3.5) above. So, for γ ∈ H
corresponding to Ψ ∈ Autv(A), we get

Eγ |φ(Xφ) :=
(
Ψ?E

)
|φ(Xφ) = Eφγ

(
Ψ?Xφ

)
= E|φγ

(
Rγ(φ)?

(
Xφ +

{
dγγ−1

|φ(Xφ)
}v
φ

))
,

= R?γ(φ)E|Aγ

(
Xφ +

{
dγγ−1

|φ(Xφ)
}v
φ

)
= E|φ

(
Xφ +

{
dγγ−1

|v(Xφ)
}v
φ

)
,

= E|φ
(
Xφ

)
+ dE

(
{dγγ−1

|φ (XA)};φ
)
,

that is Eγ = E + dE
(
dγγ−1;φ

)
. (3.11)

The action ofH does not take us off-shell. Which is to be expected if the bundle S H−→MS ,
and the reduced phase spaceMS , are to be well-defined.18

The H-transformation of θ goes similarly. We have R?γθ = θ by (3.4), and its verti-
cality property is the very definition of the Noether current (3.5). Thus,

θγ |φ(Xφ) :=
(
Ψ?θ

)
|A(Xφ) = θAγ

(
Ψ?Xφ

)
= θ|φγ

(
Rγ(φ)?

(
Xφ +

{
dγγ−1

|φ(XA)
}v
φ

))
,

= R?γ(φ)θ|φγ

(
Xφ +

{
dγγ−1

|φ(Xφ)
}v
φ

)
18But this is by no means automatic, as some non-invariant theories are not well behaved in this way

(e.g. massive Yang-Mills theory, see appendix F in [33]).
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= θ|φ

(
Xφ +

{
dγγ−1

|φ(Xφ)
}v
φ

)
,

= θ|φ
(
Xφ

)
+ J

(
{dγγ−1

|φ (Xφ)};φ
)
,

that is θγ = θ + dθ
(
dγγ−1;φ

)
− E

(
dγγ−1;φ

)
. (3.12)

The H-transformation of the presymplectic potential is then obviously,

θγΣ = θΣ +QΣ(dγγ−1;φ) = θΣ +
∫
∂Σ
θ(dγγ−1;φ)−

∫
Σ
E(dγγ−1;φ), (3.13)

From this, or from (3.4)–(3.5), it is clear that the presymplectic potential is H-invariant,
basic, if we are on-shell and if either ∂Σ = ∅ or φ→ 0 and/or γ → 1 at ∂Σ or at infinity.

We finally turn our attention to the H-gauge transformation of Θ := dθ. It can be
guessed from (3.12) above using the naturality of pullbacks, i.e. [Ψ?,d] = 0 here. But
we might want an explicit check using the method above. For this, as the verticality of
Θ is given by (3.7)–(3.8) in therm of the Noether current, we only need to determine its
H-equivariance. But then again, we must appeal to the naturality of pullbacks, in this case
[R?γ ,d] = 0, so that R?γΘ = R?γdθ = dR?γθ = dθ = Θ. Then,

Θγ
|φ
(
Xφ,Y φ

)
:=
(
Ψ?Θ

)
|φ(Xφ,Y φ) = Θ|φγ (Ψ?Xφ,Ψ?Y φ) ,

= Θ|φγ
(
Rγ(φ)?

(
Xφ +

{
dγγ−1

|φ(XA)
}v
φ

)
,

Rγ(φ)?

(
Y φ +

{
dγγ−1

|φ(Y φ)
}v
φ

))
,

=R?γ(φ)Θ|φγ
(
Xφ +

{
dγγ−1

|φ(Xφ)
}v
φ
,Y φ +

{
dγγ−1

|φ(Y φ)
}v
φ

)
,

= Θ|φ
(
Xφ,Y φ

)
+ Θ|φ

({
dγγ−1

|φ(Xφ)
}v
φ
,Y φ

)
+ Θ|φ

(
Xφ,

{
dγγ−1

|φ(Y φ)
}v
φ

)
+ Θ|φ

({
dγγ−1

|φ(Xφ)
}v
φ
,
{
dγγ−1

|φ(Y φ)
}v
φ

)
,

= Θ|φ
(
Xv,Y φ

)
− ιY d J

({
dγγ−1

|φ (Xφ)
}
;φ
)

+ ιXd J
({
dγγ−1

|φ (Y φ)
}
;φ
)

+ θ|φ
([
dγγ−1

|φ (Xφ),dγγ−1
|φ (Y A)

]v
φ

)
,

= Θ|φ
(
Xφ,Y φ

)
− Y · J

({
dγγ−1

|φ (Xφ)
}
;A
)

+X · J
({
dγγ−1

|φ (Y φ)
}
;A
)

+ J
({

[dγγ−1
|φ (Xφ),dγγ−1

|φ (Y φ)
]}

;φ
)
. (3.14)

Notice that in the step before last, we used (3.8), and (3.7) which is only valid for φ-
independent gauge parameters χ ∈ LieH. So the quantity dγγ−1

|φ (Zφ) is considered φ-
independent, and only the underlined φ’s in J

({
dγγ−1

|φ (Zφ)
}
;φ
)
are acted upon by the

variational vector fields in (3.14).
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Actually, the quantity d J
({
dγγ−1

|φ
}
;φ
)
is a 2-form on Φ, and by the Koszul formula,

evaluated on two vectors it gives

d J
({
dγγ−1

|φ
}
;φ
) (
Xφ,Y φ

)
= X · J

({
dγγ−1

|φ (Y φ)
}
;φ
)
− Y · J

({
dγγ−1

|φ (Xφ)
}
;φ
)

− J
({
dγγ−1

|φ ([X,Y ]φ)
}
;φ
)
, (3.15)

where all the φ’s in the terms J
({
dγγ−1

|φ (Zφ)
}
;φ
)
are acted upon. Observe also that

[
dγγ−1(X),dγγ−1(Y )

]
= dγγ−1(X)dγγ−1(Y )− dγγ−1(Y )dγγ−1(X)
= −dγ(X)dγ−1(Y ) + dγ(Y )dγ−1(X),
=
(
− dγdγ−1)(X,Y ) = d

(
dγγ−1)(X,Y ),

which is simply a “flatness", or Maurer-Cartan type, condition d
(
dγγ−1) −

1
2
[
dγγ−1,dγγ−1] = 0. But then, again by Koszul we have,[
dγγ−1

|φ (Xφ),dγγ−1
|φ (Y φ)

]
= d

(
dγγ−1)

|φ(Xφ,Y φ)

= X ·
{
dγγ−1

|φ (Y φ)
}
− Y ·

{
dγγ−1

|φ (Xφ)
}
− dγγ−1

φ

([
X,Y

]
φ

)
,

where we stressed that the underlined φ’s are acted upon. Inserting this in the last term
of (3.14), remembering that J( ;φ) is linear in the first argument and using (3.15), we have

Θγ
|φ
(
Xφ,Y φ

)
= Θ|φ

(
Xφ,Y φ

)
+X · J

({
dγγ−1

|φ (Y φ)
}
;φ
)
− Y · J

({
dγγ−1

|φ (Xφ)
}
;φ
)

+ J

({
X ·

{
dγγ−1

|φ (Y φ)
}
− Y ·

{
dγγ−1

|φ (Xφ)
}
− dγγ−1

φ

([
X,Y

]
φ

)}
;φ
)
,

= Θ|φ
(
Xφ,Y φ

)
+X · J

({
dγγ−1

|φ (Y φ)
}
;φ
)

− Y · J
({
dγγ−1

|φ (Xφ)
}
;φ
)
− J

({
dγγ−1

|φ ([X,Y ]φ)
}
;φ
)
,

= Θ|φ
(
Xφ,Y φ

)
+ d J

({
dγγ−1

|φ
}
;φ
) (
Xφ,Y φ

)
.

Which is finally, using (3.5),

Θγ = Θ + d J
({
dγγ−1};φ

)
= Θ + d

(
dθ
(
dγγ−1;φ

)
− E

(
dγγ−1;φ

))
, (3.16)

consistent with (3.12). The H-gauge transformation of the presymplectic 2-form is then,

Θγ
Σ = ΘΣ + dQΣ(dγγ−1;φ) = ΘΣ +

∫
∂Σ
dθ
(
dγγ−1;φ

)
−
∫

Σ
dE
(
dγγ−1;φ

)
, (3.17)

consistent with (3.13). As for θΣ, the presymplectic 2-form is H-invariant, basic, if we are
on-shell and if either ∂Σ = ∅ or φ→ 0 and/or γ → 1 at ∂Σ or at infinity. In which case it
induces a symplectic 2-form onMS .

We can use the results just derived to say a word about the charges associated with
field-dependent gauge parameters χ ∈ LieH and their Poisson bracket.
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On charges and bracket associated with field-dependent gauge parameters. As
L ∈ Ω0

inv(Φ), we have Lγ = L for γ ∈ H, whose linearisation is LχvL = 0 for χ ∈ LieH.
As the latter relation is ιχvE + dιχvθ = 0, it is still true that the current associated with
a field-dependent gauge parameter defined by

J(χ;φ) := ιχvθ = dθ
(
χ;φ

)
− E

(
χ;φ

)
(3.18)

is conserved on-shell. Integration over a codimension 1 submanifold Σ defines the associated
Noether charge,

QΣ(χ;φ) =
∫
∂Σ
θ
(
χ;φ

)
−
∫

Σ
E
(
χ;φ

)
. (3.19)

The question is now to find the relation of this current/charge to the presymplectic potential
and 2-form.

This will be easily done after we have clarified a few technical points. First, let us
define the bracket

{χ,η} := [χ,η] + χv(η)− ηv(χ), (3.20)

where the first term on the right-hand side is the standard Lie bracket in LieH. Of course,
for χ,η ∈ LieH we have that χv(η) = [η,χ],19 so (3.20) reduces to {χ,η} = −[χ,η].
While for χ, η ∈ LieH this bracket reduces to the standard one {χ, η} = [χ, η]. We will
keep the general bracket because we have in mind applications of this formalism where
the relevant transformation group is not a gauge group H, but Diff(M). In this case, the
linearised gauge parameters are vector fields χ, η ∈ LieDiff(M) ' Γ(TM), with [ , ] the Lie
bracket of vector fields. Then, χ,η : Φ → Γ(TM) are field-dependent vector fields s.t.
χv(η) 6= [η,χ] and is generally left unspecified.

The bracket (3.20) enters the following commutation relations, proven in appendix C,
[ιχv , ιdηv ] = ι[χv(η)]v ,

[Lχv , ιηv ] = ι{χ,η}v ,

[Lχv ,Lηv ] = L{χ,η}v .

(3.21)

The third is a consequence of the second. Notice that in the case χ, η ∈ LieH we recover
[Lχv ,Lηv ] = L[χv ,ηv ], since [χ, η]v = [χv, ηv]. While in the case χ,η ∈ LieH we also
recover [Lχv ,Lηv ] = L[χv ,ηv ], since −[χ,η]v = [χv,ηv]. In line with the general formula
[LX ,LY ] = L[X,Y ] valid ∀X,Y ∈ Γ(TΦ).

With the above relation at hand, we proceed. The linearisation version of the H-
transformation of θ, eq. (3.12), is Lχvθ = J(dχ;φ) = ιdχvθ. That is,

ιχvΘ = −dJ(χ;φ) + J(dχ;φ), (3.22)
= −dJ(χ;φ).

The notation in the second line is meant to suggest that, given the linearity of J( ;φ) in
its first argument, the first line gives the same result as eq. (3.7) for a field-independent
parameter χ. That is, if χ was held (φ-) constant, the result would of course be integrable.20

19Which is the linearisation of the H-gauge transformation law ηγ = γ−1ηγ, itself resulting from the
defining H-equivariance of η ∈ LieH, R?γη = γ−1ηγ.

20This is often denoted as ιχvΘ = −/δJ(χ;φ) in the extent literature.
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From (3.22) follows immediately the relation between the presymplectic 2-form and the
charge for field-dependent parameters,

ιχvΘΣ = −dQΣ(χ;φ) +QΣ(dχ;φ), (3.23)
= −dQΣ(χ;φ).

The non-integrable term QΣ(dχ;φ) is sometimes called ‘symplectic flux’ — e.g. in [65].
In this circumstance, can we still define a Poisson Bracket for the charges (3.19)? As

it turns out yes, and it has the same expression as in the φ-independent case. To see this,
consider

Θ(χv,ηv) = ιηv
(
ιχvΘ

)
= −ιηvdιχvθ + ιηv ιdχvθ by (3.22),
= −ιχvLηvθ − ι{η,χ}vθ −�����ιdχv ιηvθ + ι[ηv(χ)]vθ by (3.21),
= −ιχv

(
ιdηvθ

)
+ ι{χ,η}vθ + ι[ηv(χ)]vθ,

= −�����ιdηv ιχvθ − ι[χv(η)]vθ + ι{χ,η}vθ + ι[ηv(χ)]vθ = ι[χ,η]vθ, (3.24)

by definition of the extended bracket (3.20) in the last step. If we define the Poisson bracket
the usual way, we get

{
QΣ(χ;φ), QΣ(η;φ)

}
:= ΘΣ(χv,ηv) =

∫
Σ
ι[χ,η]vθ =: QΣ([χ,η];φ) (3.25)

by (3.18)–(3.19). This matches eq. (3.9), and obviously reduces to it when χ → χ.
The Noether charges (3.19) for φ-dependent gauge parameters QΣ(χ;φ) generate LieH-
transformation via the PB (3.25).

In [33] a centrally extended PB of charges for φ-independent parameter was defined
for anomalous (non-invariant) gauge theories. We will show elsewhere that non-integrable
charges for φ-dependent parameters are defined similarly as above and that their PB is the
same as the centrally extended one just mentioned.

In the final paragraph of this subsection, we address the question of the physical status,
and observability, of the Noether charges derived in this framework.

On the observability of charges. Physically interpretable charges are computed
against a background field configuration enjoying special symmetries, in asymptotic do-
mains of spacetime where the theory can be approximated by its free regime [36, 66]. Let
us see how to make contact with this viewpoint in the above framework. Using the affine
structure of A, we suppose that the connexion (the gauge potential) is written,

A = A0 + α, (3.26)

with A0 a background connection, s.t. by definition of the term dA0 = 0, and α ∈
Ω1

tens(P,LieH). We have then,

dA = dα,

F = F0 + f + 1
2[α, α], and dF = DA(dα),

(3.27)
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where F0 is the background curvature (dF0 = 0) and f := DA0α = D0α is the field strength
we associate to the potential α. The field equations and presymplectic potential are then

E = E(dφ;φ) = E(dα,dϕ;φ) and θ = θ(dφ;φ) = θ(dα,dϕ;φ), (3.28)

with functionnal expressions defined in (3.3). Plugging the ansatz (3.26) in the Noether
current (3.5) and using (3.3), we have on the one hand

J(χ;φ) = ιχvθ = L̃
(
ιχvdα; {φ}

)
+ L̃

(
ιχvdϕ; {φ}

)
,

= L̃
(
[α, χ]; {φ}

)
− L̃

(
ρ∗(χ)ϕ; {φ}

)
,

= −L̃
(
χ; [α, {φ}]

)
− L̃

(
ρ∗(χ)ϕ; {φ}

)
,

by the H-invariance of L̃ in the last step. On the other hand the field equations are,

E = E(dα,dϕ;φ) = L̃
(
dα;DA{φ}

)
+ L̃

(
ρ∗(dα)ϕ; {φ}

)
+ L̃

(
dϕ; {φ} −DA{φ}

)
,

= L̃ (dα;D0{φ}+ [α, {φ}]) + L̃
(
ρ∗(dα)ϕ; {φ}

)
+ L̃

(
dϕ; {φ} −DA{φ}

)
.

Therefore, we get to write the current above in terms of the LieH-linear piece of E, so that:

J(χ;φ) = L̃
(
χ;D0{φ}

)
− E

(
χ; {φ}

)
,

= dL̃
(
χ, {φ}

)
− L̃

(
D0χ; {φ}

)
− E

(
χ; {φ}

)
,

= dθ
(
χ, φ

)
− L̃

(
D0χ; {φ}

)
− E

(
χ;φ

)
. (3.29)

This result may be interpreted as meaning that the current is conserved if we are on-shell
and if χ is a Killing symmetry of the background connection A0, D0χ = 0. The associated
Noether charges QΣ(χ;φ) = QΣ(χ;α,ϕ) can then be seen as conserved charges associated
with the symmetries of the background. Notice that the field equations for the matter
field, the piece of E linear in dϕ, plays no role in this.

We notice that (3.29) with the Killing condition is formally the same as eq. (3.5). This
means that the general expressions for the currents and charges (3.5)–(3.6) can be used
from the onset, simply plugging in the ansatz (3.26) (in concrete situations) and declaring χ
to be a Killing symmetry for A0. What one typically gets from doing so, is that QΣ(χ;α,ϕ)
splits as a background contribution from A0 — treated as a renormalisation constant —
and a physically interpreted contribution from α, considered as the dynamical gauge field.

This in particular reproduces and generalises the treatment of Abbott and Deser [34,
35] who derive charges in classical Yang-Mills theory and in metric gravity. For compar-
ison, we re-express in the language of differential forms their treatment of the YM case
in appendix B. Finally, we remark that the above manifestly holds for φ-dependent gauge
parameters χ as well.

We now illustrate the general results of the previous subsections with the classic ex-
amples of Yang-Mills theory and for 4D gravity.

3.3 Applications

In the following applications, we will consider that all the geometric objects are pulled-back
on spacetime M . So that a point in field space φ = (A,ϕ) ∈ Φ can now be understood
as referring to local fields, i.e. A is a local connection — that is a gauge potential — and
ϕ ∈ Γ(E) is indeed a section of the associated bundle E.
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3.3.1 Coupled Yang-Mills theory

The Lagrangian describing the coupling of a Yang-Mills field to a H = SU(n) multiplet
scalar field (that we keep massless to avoid unnecessary complications) is

LYM(φ) = LYM(A,ϕ) = 1
2 Tr(F ∗F ) + 1

2〈Dϕ, ∗Dϕ〉, (3.30)

and it is clear that R?γLYM = LYM for γ ∈ H = SU(n), i.e. LYM ∈ Ω0
basic(Φ). Thus, using

〈u, v〉 = Tr(|v〉〈u|),

dLYM = EYM + dθYM ∈ Ω1
basic(Φ) with:

EYM = EYM(dA;A) = Tr
(
dA {D∗F − |∗Dϕ〉〈ϕ|}

)
+ 〈dϕ,D∗Dϕ〉 ∈ Ω1

inv(Φ), (3.31)

θYM = θYM(dA;A) = Tr
(
dA ∗F

)
+ 〈dϕ, ∗Dϕ〉 ∈ Ω1

inv(Φ). (3.32)

We denote J = |∗Dϕ〉〈ϕ| the (n− 1)-form current sourcing the YM field. By the general
formula (3.6), the Noether charge associated with χ ∈ LieSU(n) is then

QYM
Σ (χ;φ) =

∫
∂Σ
θYM(χ;φ)−

∫
Σ
EYM(χ;φ),

=
∫
∂Σ

Tr
(
χ ∗F

)
−
∫

Σ
Tr
(
χ {D∗F − J}

)
. (3.33)

A result that can be checked by direct computation from the definition QYM
Σ (χ;φ) :=

ιχvθ
YM
Σ , using (3.32) and (2.5). Notice how only the LieH-linear piece of EYM contributes.

On-shell, this charge is the same as in the pure YM case, QYM
Σ (χ;φ) = QYM

Σ (χ;A) |S (see [33]
section 5.1.1). The presymplectic 2-form is,

ΘYM
Σ =

∫
Σ
dθYM = −

∫
Σ

Tr
(
dA ∗dF

)
− 〈dϕ, ∗dDϕ〉 ∈ Ω2

inv(Φ). (3.34)

and by (3.7) relates to the charge as

ιχvΘYM
Σ = −dQYM

Σ (χ;φ) = −
∫
∂Σ

Tr
(
χ ∗dF

)
+
∫

Σ
Tr
(
χd{D∗F − J}

)
. (3.35)

By (3.9) it induces the Poisson bracket of charges
{
QYM

Σ (χ;φ), QYM
Σ (η;φ)

}
= QYM

Σ ([χ, η];φ),
as could be checked explicitly by computing ΘYM

Σ (χv, ηv) from (3.34) — and us-
ing (2.5), (2.10) and (2.14). The map χ→ QYM

Σ (χ;φ) is thus a morphism of Lie algebras.
By (3.19), the charge associated with a field-dependent gauge parameter χ ∈ LieH is

QYM
Σ (χ;φ) =

∫
∂Σ
θYM(χ;φ)−

∫
Σ
EYM(χ;φ),

=
∫
∂Σ

Tr
(
χ ∗F

)
−
∫

Σ
Tr
(
χ {D∗F − J}

)
. (3.36)

This time it is non-integrable, as by (3.23) we have

ιχvΘYM
Σ = −dQYM

Σ (χ;φ) +QYM
Σ (dχ;φ) = −dQΣ(χ;φ),

= −
∫
∂Σ

Tr
(
χ ∗dF

)
+
∫

Σ
Tr
(
χd{D∗F − J}

)
. (3.37)
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Still, by (3.25) the non-integrable charges (3.36) satisfy the Poisson algebra{
QYM

Σ (χ;φ), QYM
Σ (η;φ)

}
= QYM

Σ ([χ,η];φ), with PB defined by ΘYM
Σ , thus represent-

ing LieH.
Considering the question of the physical interpretation of charges (integrable or not):

by the affine ansatz (3.26) A = A0 + α s.t. D0χ ≡ 0, i.e. χ is a Killing symmetry of
the background YM field A0, one plugs the expansion (3.27) of the field strength in the
charge (3.33) which is then on-shell

QYM
Σ (χ;φ) =

∫
∂Σ
θYM(χ;φ) |S

=
∫
∂Σ

Tr
(
χ ∗
{
F0 + f + 1

2[α, α]
})

,

=
∫
∂Σ

Tr
(
χ ∗F0

)
+ Tr

(
χ ∗f

)
=: QYM

Σ (χ;A0) +QYM
Σ (χ;α), (3.38)

where we used Tr
(
χ[α, α]

)
= −Tr

(
[α, χ]α

)
≡ 0 by the H-invariance of Tr(α ∧ α). The

contribution QYM
Σ (χ;A0) comes entirely from the background, while the second term

QYM
Σ (χ;α) =

∫
∂Σ

Tr
(
χ ∗f

)
=
∫
∂Σ
∗dTr

(
χα
)

(3.39)

is the contribution from the perturbation α in the YM field, and reproduces the charge
Qχ of Abbott & Deser [34] — see (B.8)–(B.9) in appendix B. All this holds still for field-
dependent gauge parameters χ→ χ.

One may be interested in expressing this conserved charge in terms of the charged
field ϕ sourcing the YM equation. To do so, one first looks at the expansion of the field
equations D ∗ F = J ,

D0 ∗F0 + [α, ∗F0] +D0 ∗f + [α, ∗f ] +DA ∗ 1
2[α, α] = J. (3.40)

Collecting on one side the terms linear in α and redefining a new source j := J −{D ∗F}R

where {D ∗ F}R are the remaining terms, we get

D0 ∗f + [α, ∗F0] = j. (3.41)

Together with the Killing condition D0χ = 0, this can be used to rewrite the charge (3.39)
as a bulk integral of j,

QYM
Σ (χ;α) =

∫
Σ
dTr

(
χ ∗f

)
=
∫

Σ
Tr
(
D0χ ∗f + χD0∗f

)
=
∫

Σ
Tr
(
χ {j − [α, ∗F0]}

)
,

=
∫

Σ
Tr
(
χ j
)
. (3.42)

Where we have used Tr
(
χ [α, ∗F0]

)
= −Tr

(
[α, χ] ∗F0

)
= Tr

(
α [∗F0, χ]

)
≡ 0, by the H-

invariance of Tr in the second equality and the Killing condition in the last.
This is the reverse of the logic of Abbott-Deser, who start with the expansion of the

coupled YM equation to define the d-closed singlet current Tr
(
χ j
)
, and work so as to

obtain the charge (3.39) above. As their procedure depends only on the field equations
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EYM, it is insensitive to LYM, thus to θYM. One may take advantage of this and renormalise
the charge QYM

Σ (χ;φ) by the addition of a boundary term to LYM, so as to eliminate the
background contribution QYM

Σ (χ;A0). The AD charge can thus be seen as a renormalisation
of the Noether charge coming from the covariant phase space formalism.

For future reference, when we will consider the basic presymplectic structure of the
theory, lets us finally write down the field-dependent H-gauge transformations of the field
equations and presymplectic structure. By (3.11), for γ ∈H = SU(n) we get,

EγYM = EYM + dEYM
(
dγγ−1;φ

)
= E + dTr

(
dγγ−1{D ∗F − J}

)
. (3.43)

This can be verified algebraically by EγYM = EYM
(
dφγ ;φγ

)
using (2.7) in (3.31). By (3.13)–

(3.17) we have immediately,

(θYM
Σ )γ = θYM

Σ +
∫
∂Σ
θYM

(
dγγ−1;φ

)
−
∫

Σ
EYM

(
dγγ−1;φ

)
,

= θYM
Σ +

∫
∂Σ

Tr
(
dγγ−1 ∗F

)
−
∫

Σ
Tr
(
dγγ−1 {D∗F − J}

)
, (3.44)

(ΘYM
Σ )γ = ΘYM

Σ +
∫
∂Σ
dθYM

(
dγγ−1;φ

)
−
∫

Σ
dEYM

(
dγγ−1;φ

)
,

= ΘYM
Σ +

∫
∂Σ
dTr

(
dγγ−1 ∗F

)
−
∫

Σ
dTr

(
dγγ−1 {D∗F − J}

)
. (3.45)

Notice how only the LieH-linear pieces of θ and E contribute to the final results. This
can be verified by direct computation, using (2.7), (2.12) and (2.16) in (3.32) and (3.34).
Clearly, only on-shell and under proper boundary conditions are θYM

Σ an ΘYM
Σ H-invariant,

i.e. basic forms on Φ, and induce a symplectic structure onMS .

Comments. Considering spinor fields ψ instead of scalar fields ϕ would change nothing
of substance in the above results. Indeed, as we have observed several times now, only the
LieH-linear part of θYM and EYM contributes to the expression of the Noether currents and
charges, as well as to the H-gauge transformations, so that the matter field contribution
plays little to no role. Therefore, here the only change would be hidden in the current J
sourcing the gauge field, which would then be the Dirac current: J can thus be treated as
a black box wherein one can have any type of matter field.

For the same reason, the addition of a potential term V (ϕ) for the scalar field to LYM

wouldn’t affect the results presented in this section, as it just modifies the dϕ-linear part
of EYM. In particular, with the typical potential V (ϕ) = µ2〈ϕ, ∗ϕ〉 + λ〈ϕ, ∗ϕ〉2 where
µ2 ∈ R and λ > 0, the Lagrangian becomes the prototype of a Yang-Mills-Higgs model,
encompassing the electroweak model as a special case, and the above gives its charge and
presymplectic structure.

3.3.2 Coupled 4D gauge gravity

We employ here the language of Cartan geometry [67, 68]. Meaning that we consider the
underlying kinematics as given by Cartan-deSitter geometry (P, Ā), where P is a principal
bundle whose structure group is H = SO(1, 3) and whose gauge group is thusH = SO(1, 3),
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while the Cartan connection Ā takes value in the de Sitter/anti-de Sitter Lie algebra,
LieSO(1, 4) or LieSO(2, 3), according to the sign of Λ.

The geometry is called reductive as we have the H-invariant splitting Ā = A+ 1
` e, where

A = Aab is the Ehresmann LieH-valued connection (the Lorentz or spin connection) and
e = ea is the R4-valued soldering form. The Cartan curvature is thus F̄ = dĀ+ 1

2 [Ā, Ā] =
F + 1

`T =
(
R − ε

`2 ee
t
)

+ 1
`D

Ae, where et := eT η = eaηab and R = dA + 1
2 [A,A] is the

LieH-valued Riemann 2-form. In matrix form,

Ā =
(

A 1
` e

[2mm]−ε` et 0

)
, F̄ = dĀ+ Ā2 =

 F 1
`T

−ε
` T

t 0

 =

 R− ε
`2 ee

t 1
`D

Ae

−ε
` (DAe)t 0

 ,
with 1

`2 = 2|Λ|
(n−1)(n−2) = |Λ|

3 for n = 4 = dimM, and ε = ± is the sign of Λ. The
so-called normal Cartan connection Ā|N is the unique torsion-free connection, so that
A = A(e), meaning that the only d.o.f. in the normal connection are those of the soldering,
Ā|N = Ā|N (e).21 Cartan flatness, F̄ ≡ 0, means (in addition to vanishing torsion) F = 0→
R = ε

`ee
t, that is the base manifold (spacetime) is the homogeneous de Sitter or anti-de

Sitter space, M ' (A)dS.
Given the bilinear form η : R4 × R4 → R, the Cartan connection induces via its

soldering component a metric on M , g := η(e, e) : Γ(TM)× Γ(TM)→ R. In components
ea = eaµdx

µ, where eaµ is the (co-) tetrad field, so we have the well-known relation
gµν = eµ

aηabe
b
µ. To introduce notations that will be useful latter on (in section 4.3.2), let

us rewrite this in the index-free fashion e := eaµ and g = eT ηe.
Dirac spinors are sections of the spin bundle S associated with P via the spin repre-

sentation ρ of H = SO(1, 3) on C4. We have then ψ ∈ Γ(S) ' Ω0
eq(P,C4). A point of the

field space Φ under consideration is φ = {Ā, ψ} = {A, e, ψ} and the right action φ→ R?γφ

of H on Φ is explicitly

R?γĀ = Āγ = γ−1Āγ + γ−1dγ ⇒

 R?γA = Aγ = γ−1Aγ + γ−1dγ,

R?γe = eγ = γ−1e,

R?γψ = ψγ = ρ(γ−1)ψ.

(3.46)

It follows that, as special cases of (2.5)–(2.6), the basis dφ = {dĀ,dψ} = {dA,de,dψ}
∈ Ω1

eq(Φ) is s.t.

R?γdφ = ρ(γ)−1dφ :=
(
γ−1dĀγ , ρ(γ)−1dϕ

)
=
(
γ−1dAγ , γ−1de , ρ(γ)−1dψ

)
,

dφ(χv) =
(
dĀ(χv) , dψ(χv)

)
=
(
DĀχ , −ρ∗(χ)ψ

)
=
(
DAχ , −χe , −ρ∗(χ)ψ

)
=: δχφ.

(3.47)

21This is generically what the normality condition implies for normal Cartan connections in more elaborate
situations, such as conformal Cartan geometry or more general parabolic geometries.

– 37 –



J
H
E
P
1
2
(
2
0
2
1
)
1
8
6

From which follows, as a special case of (2.7), the field-dependent H-gauge transformation
on Φ

dφγ = ρ(γ)−1
(
dφ+ δdγγ−1φ

)
=


dAγ = γ−1

(
dA+DA

{
dγγ−1})γ,

deγ = γ−1 (de− dγγ−1e
)
γ,

dψγ = ρ(γ)−1
(
dψ − ρ∗(dγγ−1)ψ

)
.

(3.48)

Similarly, as special instances of (2.10)–(2.12), from R?γdF̄ =
(
γ−1dFγ, γ−1T

)
and

dF̄ (χv) =
(
[F, χ], −χT

)
, we have

dF̄ γ =

 dF γ = γ−1 (dF +
[
F,dγγ−1])γ,

dT γ = γ−1 (dT − dγγ−1T
])
.

(3.49)

To write the pure gravity sector of the theory in an index-free way, we consider the
multilinear polynomial P : ⊗kM(2k,R)→ R given by

P
(
A1, . . . , Ak

)
= A1 • . . . •Ak := Ai1i21 Ai3i42 . . . A

i2k−1i2k
k εi1...i2k , (3.50)

where the second equality defines the notation. Given G ∈ GL(2k,R), it satisfies the
identity

P
(
GA1G

T , . . . , GAkG
T )

= GA1G
T • . . . •GAkGT ,

= Gi1j1A
j1j2
1 Gj2

i2 Gi3j3A
j3j4
2 Gj4

i4 . . . Gi2k−1
j2k−1A

j2k−1j2k
k Gj2k

i2k εi1...i2k ,

= det(G) Aj1j21 Aj3j42 . . . A
j2k−1j2k
k εj1...j2k ,

= det(G) A1 • . . . •Ak = det(G) P
(
A1, . . . , Ak

)
. (3.51)

Then, P is SO(2k)-invariant, since for S ∈ SO(2k), ST = S−1, we have
P
(
S−1A1S, . . . , S

−1AkS
)

= P
(
A1, . . . , Ak

)
. Also, given some matrix M ∈ M(2k,R) de-

composed as the sum of its symmetric and antisymmetric parts as M = 1
2(M + MT ) +

1
2(M −MT ) =: S + A, we have

M •A2 • . . . •Ak =
(
���Si1i2 + Ai1i2

)
Ai3i42 . . . A

i2k−1i2k
k εi1i2...i2k = A •A2 . . . •Ak. (3.52)

We have then a Ad
(
SO(2k)

)
-invariant map P : ⊗kso(2k) → R.22 For X ∈ LieSO(r, s),

r + s = 2k, Xη−1 is antisymmetric, and for S ∈ SO(r, s) we have S−1XSη−1 =
S−1Xη−1(S−1)T . Thus P (X1η

−1, · · · , Xkη
−1) is a Ad

(
SO(r, s)

)
-invariant polynomial

P : ⊗kso(r, s) → R that one can use to write the Lagrangians of even dimensional gauge
gravity theories. To lighten the notation, we will omit η−1 in front of LieSO(r, s)-valued
variables when writing expressions involving P , as it should be clear from the context that
indices must be raised.

22Remark that the diagonal combination P (A, . . . , A) = Pf(A) is the Pfaffian of the 2k×2k antisymmetric
matrix A, which is the square root of its determinant Pf(A)2 = det(A). Conversely, P is the polarisation
of the Pfaffian polynomial.
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We consider the Lagrangian of General Relativity with cosmological constant Λ, à la
McDowell-Mansouri, coupled to Dirac spinors (massless to avoid unnecessary complica-
tions) to be,

LGR(φ) = LMM(Ā) + LDirac(Ā, ψ)

= 1
2F • F + 〈ψ, /Dψ〉,

= 1
2R •R−

ε

`2

(
R • e ∧ eT − ε

2`2 e ∧ e
T • e ∧ eT

)
+ 〈ψ, γ ∧ ∗Dψ〉,

= 1
2R

abRcdεabcd −
ε

`2

(
Rabeced − Λ

6 e
aebeced

)
εabcd + 〈ψ, γ ∧ ∗Dψ〉.

(3.53)

We have introduced convenient notations, and the gamma-matrices 1-form γ := γae
a =

γae
a
µdx

µ =: γµdxµ with {γa,γb} = ηab14, from which follows {γµ,γν} = gµν14, as gµν =
eµ
aηabe

b
ν . It allows to define the top form /Dψ =

√
|g| d4x γµg

µνDνψ on M . Of course,
Dψ = dψ + ρ∗(A)ψ is the minimal coupling of spinors to gravity via the spin connection.
The bilinear map 〈 , 〉 : Γ(S)× Γ(S)→ R is ρ(H)-invariant.

The first term in the Lagrangian is the Euler density, LEuler, a topological invariant
of M : it doesn’t change the field equations but contributes to the total presymplectic
potential. Indeed it is easy to see that dLEuler = EEuler + dθEuler = dA •DAR+ d (dA •R),
and the field equations vanish identically, being just the Bianchi identity DAR ≡ 0.

It is clear that R?γLGR = LGR for γ ∈ H = SO(1, 3), i.e. LGR ∈ Ω0
basic(Φ). The only

computation needed is:

dLGR = EGR + dθGR ∈ Ω1
basic(Φ) with :

EGR = −2ε
`2
dA • T ∧ eT + Tr

(
|ρ∗(dA)ψ〉〈∗γψ|

)
− 2ε
`2
de ∧ eT •

(
R− ε

`2
e ∧ eT

)
+ deaTa

+ 〈dψ,γ ∧ ∗Dψ〉 − 〈D(∗γψ),dψ〉 ∈ Ω1
inv(Φ) (3.54)

θGR = dA •
(
R− ε

`2
e ∧ eT

)
+ Tr

(
|dψ〉〈∗γψ|

)
, ∈ Ω1

inv(Φ). (3.55)

The dA-linear part of EGR gives the coupling of the torsion to the spin density 3-form
Sab,c ∗ ec = 〈ψ,γcσabψ〉 ∗ ec, where σab = 1

8 [γa,γb] is a representation (ρ∗) of the basis
of LieSO(1, 3). The de-linear part of EGR gives of course Einstein’s equations, with the
stress-energy tensor 3-form Ta of the Dirac field, whose Hodge dual 1-form is ∗Ta = Tabeb =(
〈ψ,γaDbψ〉 − ηabηij〈ψ,γiDjψ〉

)
eb (and coincide with the traceless canonical stress-energy

tensor). The dψ-linear part of EGR gives Dirac’s equation, /Dψ = 0.
By the general formula (3.6), the Noether charge associated with χ ∈ LieSO(1, 3) is,

QGR
Σ (χ;φ) =

∫
∂Σ
θGR(χ;φ)−

∫
Σ
EGR(χ;φ),

=
∫
∂Σ
χ •

(
R− ε

`2
e ∧ eT

)
+
∫

Σ

2ε
`2
χ • T ∧ eT − Tr

(
|ρ∗(χ)ψ〉〈∗γψ|

)
, (3.56)
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as can be checked by direct computation. As is now usual to remark, only the LieH-linear
piece of EGR contributes, the Einstein and Dirac equations have no bearing on the result.
On-shell, the charge is the same as in the pure gravity case QGR

Σ (χ;φ) = QGR
Σ (χ; Ā) |S

(see [33] section 5.1.4) and vanishes on the ground state of the theory, the homogeneous
(anti-) de Sitter space (A)dS, which thus sets the zero mass-energy reference.

It would take some work to check directly what (3.7) ensures, i.e. that the presymplectic
2-form

ΘGR
Σ =

∫
Σ
dθGR = −

∫
Σ
dA • d

(
R− ε

`2
e ∧ eT

)
+ Tr

(
|dψ〉〈d(∗γψ)|

)
, ∈ Ω1

inv(Φ), (3.57)

relates to the charges via ιχvΘGR
Σ = −dQGR

Σ (χ;φ). From which can also be verified that
{
QGR

Σ (χ;φ), QGR
Σ (η;φ)

}
:= ΘGR

Σ (χv, ηv) = QGR
Σ ([χ, η];φ), (3.58)

as the general formula (3.9) allows to write immediately. By (3.19), (3.23) and (3.25), the
above formulae holds for field-dependent Lorentz parameters, χ → χ, so that both LieH
and LieH are represented faithfully by the Poisson algebra of charges, even though in the
field-dependent case the Lorentz charges (3.56) are non-integrable.

Remark that, writing the charge in term of F = R− ε
`2 e∧ e

T ∈ Ω2 (M,LieSO(1, 3)), it
is on-shell

QGR
Σ (χ;φ) = QGR

Σ (χ; Ā) =
∫
∂Σ
χ • F |S =

∫
∂Σ
χabF cd εabcd. (3.59)

The striking similarity with the YM case is no surprise as we wrote the pure gravity sector
à la McDowell-Mansouri, LMM(Ā) = 1

2 F • F = 1
2F

abF cdεabcd. Thus, the question of the
physical interpretation of charges can be answered in essentially the same terms as in YM
theory. One first make the affine ansatz (3.26) Ā = Ā0 +ᾱ s.t. D0χ := DĀ0χ ≡ 0, i.e. χ is a
Killing symmetry of the background gravitational field (Cartan connection) Ā0 = A0 + e0,
while ᾱ = α+ε is a perturbation. From it follows the analogue of expansion (3.27) for the
Cartan curvature, F̄ = F̄0 + f̄ + 1

2 [ᾱ, ᾱ], whose Lorentz component gives

F = F0 +
(
DA0α− ε

`2
(e0 ∧ εt + ε ∧ et0)

)
+
(1

2[α, α]− ε

`2
ε ∧ εt

)
=: F0 + f + 1

2[α, α].

(3.60)

Plugging this into the charge (3.56), it becomes on-shell

QGR
Σ (χ;φ) =

∫
∂Σ

χ •
(
F0 + f + 1

2[α, α]
)
,

=
∫
∂Σ

χ • F0 + χ • f =: QGR
Σ (χ; Ā0) +QGR

Σ (χ; ᾱ), (3.61)

where we used χ• [α, α] = [α, χ]•α ≡ 0 by the H-invariance of α•α. Here again, QGR
Σ (χ; ᾱ)

is the charge measured against the background Ā0, which in particular can chosen to be
the (A)dS groundstate so that QGR

Σ (χ; Ā0) ≡ 0.
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Finally, for future expression of the basic presympletic structure, let us write the
field-dependent transformations of the field equations and presymplecture structure of the
theory. By (3.11), (3.13) and (3.17), for γ ∈H = SO(1, 3):

EγGR = EGR + dEGR
(
dγγ−1;φ

)
= EGR − d

{2ε
`2
(
dγγ−1 • T ∧ eT

)
− Tr

(
|ρ∗(dγγ−1)ψ〉〈∗γψ|

)}
, (3.62)

(θGR
Σ )γ = θGR

Σ +
∫
∂Σ
θGR

(
dγγ−1;φ

)
−
∫

Σ
EGR

(
dγγ−1;φ

)
, (3.63)

= θGR
Σ +

∫
∂Σ
dγγ−1 • F +

∫
Σ

2ε
`2
dγγ−1 • T ∧ eT − Tr

(
|ρ∗(dγγ−1)ψ〉〈∗γψ|

)
,

(ΘGR
Σ )γ = ΘGR

Σ +
∫
∂Σ
dθGR

(
dγγ−1;φ

)
−
∫
∂Σ
dEGR

(
dγγ−1;φ

)
,

= ΘGR
Σ +

∫
∂Σ
d
(
dγγ−1 • F

)
+
∫

Σ

2ε
`2
d(dγγ−1 • T ∧ eT )

− dTr
(
|ρ∗(dγγ−1)ψ〉〈∗γψ|

)
, (3.64)

which can be checked by explicit computation, with some work, via (3.48)–(3.49) and (2.16)
(which holds for ϕ→ ψ). Remark that for solutions of the theory that asymptotically decay
to the (A)dS ground state, F̄ = 0, both θGR

Σ and ΘGR
Σ are SO(1, 3)-invariant, and thus

induce respectively a symplectic potential and 2-form on the physical phase space MS .

4 Basic presymplectic structures

As we have seen, the non-horizontality of θ and Θ is crucial to the very definition of
Noether currents and charges (3.5)–(3.6), and to the construction of the associated Poisson
bracket (3.7)–(3.9). But is also results in their non-trivialH-gauge transformations (3.13)–
(3.17), which is a problem regarding the goal of associating a symplectic structure to a gauge
theory over a bounded region. This lack of horizontality, thus of basicity, of θ and Θ is
what we have called the boundary problem.

Yet, in the case at hand L ∈ Ω0
basic(Φ), thus dL ∈ Ω1

basic(Φ). This means first that
∃ L̄ ∈ Ω0(M) s.t. L = π?L̄, by definition of a basic form. Then, by the same argument
leading to (3.3), on M we have dML̄ = Ē + dθ̄, with Ē, θ̄ ∈ Ω1(M). Therefore, by
naturality and linearity of the pullback we must have

dL = dπ?L̄ = π?dML̄ = π?(Ē + dθ̄) = π?Ē + d(π?θ̄) =: Eb + dθb,

with Eb,θb ∈ Ω1
basic(Φ). (4.1)

It would thus seem that we should be able to define a basic presymplectic potential θb, from
which to naturally derive a basic presymplectic 2-form Θb := dθb ∈ Ω2

basic(Φ) — since d is
the covariant derivative on basic forms, i.e. preserves the space. But how are we to find such
a basic presymplectic structure starting from the known θ and Θ? In sections 2.2 and 2.3
we have already seen two methods to do so, using respectively variational connections or
the DFM. In the following, we consider the results of each approach in turn.
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4.1 Via variational connections

We use the general results of section 2.2.1 about the dual horizontalisation of forms rely-
ing on a variational Ehresmann connection ω. When a Lagrangian L is invariant so are
its associated field equations and presymplectic potential E,θ ∈ Ω1

inv(Φ), eq. (3.4). So,
applying the formula (2.23), and using first ιχvE = dE(χ;φ) — stemming from LχvL = 0
and (3.5) — we get the basic field equations:

Eb
ω = E − dE(ω;φ) ∈ Ω1

basic(Φ), (4.2)

By (2.23) still, and given (3.5), we get the ω-dependent basic presymplectic potential,

θbω = θ − J(ω;φ), ∈ Ω1
basic(Φ), (4.3)

= θ − dθ
(
ω;φ

)
+ E

(
ω;φ

)
.

The H-invariance of both Eb
ω and θbω, although structurally garanteed, is easily checked

explicitly knowing (3.11)–(3.12) and ωγ = γ−1ωγ + γ−1dγ. The basic presymplectic
2-form naturally associated with θbω is then,

Θb
ω :=dθbω ∈ Ω2

basic(Φ), (4.4)

= Θ− dJ(ω;φ),
= Θ− d

(
dθ
(
ω;φ

)
− E

(
ω;φ

))
,

whose H-invariance is again easily checked via (3.16). We may remark that contrary to
what one could be tempted to do, the correct approach is not to build the horizontal
version of Θ ∈ Ω2

inv(Φ), as it is actually by definition the covariant derivative — w.r.t. ω -
of θ ∈ Ω1

inv(Φ):

Θh := Θ ◦ |h := dθ ◦ |h =: Dωθ, ∈ Ω2
basic(Φ). (4.5)

If it is basic indeed, it is not d-closed, so cannot play the role of a presymplectic form.
Actually, specialising eq. (2.27) to this case and using again (3.5), we get

Dωθ = dθbω + ι[Ω]vθ,

Θh = Θb
ω + J(Ω;φ), (4.6)

= Θb
ω + dθ(Ω;φ)− E(Ω;φ),

where of course Ω ∈ Ω2
tens(Φ) is the curvature of ω. Thus, the actual basic presymplectic

2-form is the d-exact part of the covariant derivative of the presymplectic potential θ.
The above formula generalises the remark already made by Gomes & Riello in the YM
case – [9], corollary 3.2 and section 3.4, see also [13] end of section 3.1. Manifestly, for a
flat connections ω̊ the situation is degenerate, Θ̊ h := Dω̊θ = Θb

ω̊ (this is relevant to our
discussion of the approach via the DFM).

The basic presymplectic structure is then given by

θbω,Σ = θΣ −
∫
∂Σ
θ
(
ω;φ

)
+
∫

Σ
E
(
ω;φ

)
, ∈ Ω1

basic(Φ),

Θb
ω,Σ = ΘΣ −

∫
∂Σ
dθ
(
ω;φ

)
+
∫

Σ
dE
(
ω;φ

)
, ∈ Ω2

basic(Φ).
(4.7)

– 42 –



J
H
E
P
1
2
(
2
0
2
1
)
1
8
6

which descend toM, and on-shell turnMS into the desired reduced phase space associated
with the gauge theory L over Σ. The presence of a boundary is no longer a problem.

Notice how in the above construction of basic forms, only the LieH-linear part of
E (and θ) contributes, so that the field equations for the matter fields are irrelevant to
the scheme.23

Ambiguity in the choice of connection. As the notation suggests though, the use
of a connection ω makes (4.2), (4.3) and (4.4) “coordinatisations” of the abstract basic
objects Eb,θb and Θb. By the work done at the end of section 2.2.1, we easily find what
happens under change of coordinatisation, i.e. under change of variational connection. As
a special case of equation (2.30), and using again (3.5), we have that basic presymplectic
potentials built from connections ω and ω′ s.t. ω′ = ω + β with β ∈ Ω1

tens(Φ,LieH), are
related as

θbω′ = θbω − J(β;φ),

= θbω − dθ
(
β;φ

)
+ E

(
β;φ

)
.

so that θbω′,Σ = θbω,Σ −
∫
∂Σ
θ
(
β;φ

)
+
∫

Σ
E
(
β;φ

)
.

(4.8)

Similarly for basic field equations 1-forms,

Eb
ω′ = Eb

ω − dE(β;φ). (4.9)

As a special case of (2.31), and following directly from (4.8), basic presymplectic 2-forms
are related as,

Θb
ω′ = Θb

ω − dJ(β;φ),

= Θb
ω − d

(
dθ
(
β;φ

)
− E

(
β;φ

))
.

so that Θb
ω′,Σ = Θb

ω,Σ −
∫
∂Σ
dθ
(
β;φ

)
+
∫

Σ
dE
(
β;φ

)
.

(4.10)

The ambiguity relations (4.8)–(4.10) stems from the affine structure of the space of varia-
tional connections. It can be reasonably neglected if a preferred choice is available. Such
would be the case in pure gauge theories since, as discussed in section 2.2.1, A has a distin-
guished connection ωg̊ associated with a natural bundle metric g̊ (called the Singer-deWitt
connection by Gomes-Riello).

These ambiguity relations could also be interpreted as reflecting gluing properties: if
one imagines that observers on regions Σ′ and Σ separated by a boundary ∂Σ use different
variational connections to build their respective basic presymplectic structures, then (4.8)–
(4.10) — with Σ on the left-hand side replaced by Σ′ — are gluing relations between these
structures. Thus understood, the above results generalise the discussion of section 6.7 in [9]
on gluings of basic Yang-Mills presymplectic potentials built via Singer-deWitt connections.

23We could see this as another hint supporting the conceptual primacy/priority of the principal bundle
P — hence of gauge interactions — over all associated bundles — i.e. the matter fields.
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4.2 Via dressing fields

We use the general results of section 2.3 on the construction of basic forms relying on a
field-dependent dressing fields u. Applying the general formula (2.48), and using our rule of
thumb explained around (2.50) together with the results we obtained in section 3.2 for the
H-gauge transformations of the field equations (3.11), the presymplectic potential (3.12)–
(3.13) and the presymplectic 2-form (3.16)–(3.17), we immediately get their associated
dressed basic forms. First the dressed field equations,

Eu = E + dE(duu−1;φ) ∈ Ω1
basic(Φ). (4.11)

Then the dressed presymplectic structure,

θuΣ = θΣ +
∫
∂Σ
θ
(
duu−1;φ

)
−
∫

Σ
E
(
duu−1;φ

)
, ∈ Ω1

basic(Φ),

Θu
Σ = ΘΣ +

∫
∂Σ
dθ
(
duu−1;φ

)
−
∫

Σ
dE
(
duu−1;φ

)
, ∈ Ω2

basic(Φ).
(4.12)

As with (4.2)–(4.7), these can be seen as realisations of the basic Eb,θbΣ and Θb
Σ asso-

ciated with the invariant Lagrangian L - as suggested in the introduction to section 4.
But a complementary viewpoint, central to the DFM philosophy, is available and worth
stressing: (4.11)–(4.12) are the field equations and presymplectic structure associated with
the dressed Lagrangian

Lu := F?uL = L ◦ Fu ∈ Ω0
basic(Φ), i.e. Lu(φ) = L(φu), (4.13)

and obtained in the standard way from dLu = Eu + dθu, and Θu = dθu.

dLu = Eu + dθu = E(dφu;φu) + dθ(dφu;φu) ∈ Ω1
basic(Φ). (4.14)

The latter expression would allow to cross-check algebraically (4.11)–(4.12) by insert-
ing (2.49) and (2.45)–(2.40) in E and θ.

This viewpoint is relevant to the question of ambiguity in the choice of dressing, as we
are about to discuss. But let us also remark that it clarifies the meaning of the edge mode
strategy as introduced by Donnelly & Freidel [5], and applied in various contexts since [14–
17, 23–25, 32], where dressing fields are known as ‘edge modes’. As argued in [33], the
DFM is the geometric foundation of this strategy. Taking indeed (4.12) on-shell, it may
seem that u needs only to live on ∂Σ, hence the name ‘edge mode’ it received elsewhere.
But considering the boundary as a fictitious one, being arbitrarily moved around, we see
that actually u must in general be defined across Σ. This indeed makes all the more sense
considering that u is built from φ which is defined across Σ.

The striking similarity between (4.11)–(4.12) and (4.2)–(4.7) is of course no accident.
As we observed in section 2.3.1, the 1-form ω̊ := −duu−1 is a flat variational Ehresmann
connection. So, regarding the question of realising the basic presymplectic structure of
invariant gauge theories, the dressed structure (4.11)–(4.12) can be seen as a special case
of (4.2)–(4.7) involving a flat connection. This generalises the observation of Gomes-
Riello [7] according to which the edge mode strategy of Donnelly-Freidel as applied to YM
theory could be seen as a special case of their use of a connection.
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Yet, there is a noticeable difference in what can be done via the DFM that wouldn’t be
accessible through the use of a variational connection, and this relates to how ambiguities
in the respective schemes arise.

Ambiguity in the choice of dressing field and residual G-transformations.
Again, as the notation suggests, (4.11)–(4.12) are “coordinatisations” of the abstract basic
objects Eb,θb and Θb. From sections 2.3 and 2.3.1, we know what happens under change
of coordinatisation, i.e. under change of dressing field u′,u : Φ→ Dr[H,G].

We have already seen that such a change is, in the most general case, of the form
u′ = uξ for some φ-dependent G-valued map ξ s.t. R?γξ = ξ. By application of (2.59)
(or (2.55)), we immediately get the relations

(Eu)ξ = Eu − dE(β̊;φ),

(θuΣ)ξ = θuΣ −
∫
∂Σ
θ
(
β̊;φ

)
+
∫

Σ
E
(
β̊;φ

)
,

(4.15)

with β̊ = −udξξ−1u−1 ∈ Ω1
tens(Φ). From which follows,

(Θu
Σ)ξ = Θu

Σ −
∫
∂Σ
dθ
(
β̊;φ

)
+
∫

Σ
dE
(
β̊;φ

)
. (4.16)

These can of course be interpreted as special cases of (4.8)–(4.10) since change of dressing
fields reflects a case of the affine character of connection space, ω̊′ = ω̊ + β̊. But there is
more to it.

In section 2.3, we made the case that dressed variational forms αu, basic on Φ, can be
seen as forms on the G-bundle of dressed fields Φu, arising from the ambiguity in the choice
of dressing. From that point of view, the above relations are transformations under the
gauge group G of Φu — remember the SES (2.43). Recalling indeed that the first version
of eq. (2.55)–(2.59) is the general equation (2.53), we apply the latter to rewrite (4.15)–
(4.16) as

(Eu)ξ = Eu + dE(dξξ−1;φu),

(θuΣ)ξ = θuΣ +
∫
∂Σ
θ
(
dξξ−1;φu

)
−
∫

Σ
E
(
dξξ−1;φu

)
,

(Θu
Σ)ξ = Θu

Σ +
∫
∂Σ
dθ
(
dξξ−1;φu

)
−
∫

Σ
dE
(
dξξ−1;φu

)
.

(4.17)

which, of course, look exactly like the H-transformations of E (3.11), θΣ (3.13) and
ΘΣ (3.17). What is especially interesting though is that since the dressing ambiguity
is encoded by a transformation group G, which is the structure group of the bundle Φu,
associated Noether charges and their Poisson bracket can be defined.

Indeed, as by (2.42) we have that Rξφu, ξ ∈ G is formally identical to Rγφ, γ ∈ H, and
since obviously L and Lu have the same functional properties, among which invariance, it
follows that R?ξLu = Lu, i.e. Lu ∈ Ω0

basic(Φu). Therefore, dLu ∈ Ω1
basic(Φu) and on Φu

we get,

dLu = Eu + dθu = E(dφu;φu) + dθ(dφu;φu). (4.18)
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From which is defined Θu := dθu. From there, the whole covariant phase space approach
on Φu can be run through as in section 3.2. We immediately get to write down the dressed
Noether charges associate to κ ∈ LieG, generating the vertical vector fields κv ∈ Γ(V Φu):

QΣ(κ;φu) =
∫
∂Σ
θ(κ;φu)−

∫
Σ
E(κ;φu). (4.19)

These are related to the dressed presymplectic 2-form as ικvΘu
Σ = −dQΣ(κ;φu) - κ is

field-independent so the charges are integrable - so that a Poisson bracket is defined the
usual way: {

QΣ(κ;φu), QΣ(κ′;φu)
}

:= Θu
Σ
(
κv,κ′v

)
= QΣ

(
[κ,κ′];φu

)
. (4.20)

The Poisson algebra of dressed Noether charges is then isomorphic to LieG, and infinitesimal
G-transformations (of objects on Φu) can be generated via

{
QΣ(α;Au),

}
.

Equations (4.17) are, as we said, φu-dependent G-gauge transformations. They are
used to extend the above to dressed charges associated with κ ∈ LieG, for which we get

QΣ(κ;φu) =
∫
∂Σ
θ(κ;φu)−

∫
Σ
E(κ;φu),

which are s.t. ικvΘu
Σ = −dQΣ(κ;φu) + dQΣ(dκ;φu), (4.21)

= −dQΣ(κ;φu).

These non-integrable dressed charges still satisfy a well-behaved Poisson bracket,{
QΣ(κ;φu), QΣ(κ′;φu)

}
:= Θu

Σ
(
κv,κ′v

)
= QΣ

(
[κ,κ′];φu

)
. (4.22)

As to the matter of the physical interpretation of dressed charges, and their observ-
ability, two cases occur. If u = u(ϕ), the ansatz (3.26) implies its dressed version

Au = Au0 + αu
(
:= (u−1A0u+ u−1du) + (u−1αu)

)
, (4.23)

which can simply be plugged into (4.19), so that if we further declare the Killing equation
DAu0 κ ≡ 0 valid, QΣ(κ;φu) is interpretable as a charge associated with the symmetries of
the background field Au0 conserved on-shell. It splits as a constant contribution from Au0 ,
against which is measured/observed the contribution from αu (and ϕu).

In case u = u(A), special care must be taken as the dressing field is then itself af-
fected by the affine ansatz (3.26). Splitting of the charge into background and physical
contributions may be trickier.

None of this is available when using connections to realise the basic presymplectic
structure of L, for which the ambiguity — or change of “coordinatisation” — is not in
general captured/parametrised by a group G.

Comments 1. In most of the literature on edge mode, the dressed presymplectic struc-
ture (4.12) goes by the name of extended presymplectic structure, as edge modes are seen
as new degrees of freedom (d.o.f.) living at the boundary. The interpretation being that
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∂Σ breaks gauge invariance and that edge modes are kind of Goldstone bosons. Yet the
DFM shows [33] that if a φ-independent dressing field u is introduced by fiat in a theory
— as its interpretation as new d.o.f. implies — it means that the underlying bundle one
works with is trivial and that one actually has G ' H, i.e. the ‘ambiguity’ symmetry G is
just the original gauge symmetry H in another guise. This would be a challenge to the
interpretation of G as a new symmetry stemming from the introduction of edge modes.

Another notion found in the edge mode literature that we are here bound to challenge,
is the interpretation of G — and G — as a physical transformation group, usually referred
to as surface or boundary symmetry,24 insofar as it is seen as a transformation group
acting non-trivially on physical degrees of freedom. Seing that φu are H-invariant fields,
thus potentially physical d.o.f., eq. (2.42) would indeed seem to suggest that G transforms
physical field configurations, making it literally a physical symmetry. Yet as we have
argued in section 2.3 and reminded above, G is the structure group of Φu, whose baseMu is
isomorphic to the physical configuration spaceM (the base of the H-bundle Φ). And as the
SES (2.43) shows, G acts trivially onMu 'M and therefore cannot be a physical symmetry
as understood in the edge mode literature. Physical symmetries, understood as acting non-
trivially on physical d.o.f., rather belong to (subgroups of) Diff(Mu) ' Diff(M). This is
not in contradiction with the above discussion on the physical interpretability of charges
associated with G. It simply means that the problem of the physical relevance of G as a
symmetry group is of the same nature as that of the original gauge group H, and does not
enjoy a more immediate physical interpretation.

In the recent [69], edge modes are interpreted as a type of “dynamical reference frames”,
that is d.o.f. chosen to keep track of the evolution of all the others. In that case edge mode
are not new d.o.f. added arbitrarily, but built from the field content of the theory —
which is in line with the philosophy using variational connections as advocated e.g. in [9].
So, they are indeed field-dependent dressing fields as described here: compare eq. (60)
to our definition above eq. (2.45). In the case at hand, where one wants to keep track
of the d.o.f. of a region of spacetime w.r.t. those of its complement, these “group-valued
reference frames” are built explicitly as Wilson lines. Such examples of non-local field-
dependent dressing fields is often encountered, Dirac dressings being the prototype [70, 71].
We elaborate on the relevance of the existence of local vs non-local dressing fields in our
next comment.

Comments 2. Regarding the aim of building a basic symplectic structure associated with
a theory L, the existence of G as a symmetry of the dressed theory Lu spoils everything: the
boundary problem posed by theH-symmetry of L as been solved, but as is clear from (4.17),
a boundary problem reemerges w.r.t. G. This reflects the two options we had advertised
(below (2.44)): either 1) the constructive procedure of building a dressing field u from the
field content φ is free (enough) of ambiguity so that G is ‘small’, perhaps reduced to a rigid
or discret group, in which case the boundary problem can be considered solved. Or 2) G
is indeed a new meaningful gauge symmetry giving rise to its own boundary problem, but
whose physical relevance may manifests through charges.

24Again, because u is usually seen as living on ∂Σ when introduced to restore the invariance (horizontality)
of on-shell quantities, so that ξ ∈ G is seen as a map ξ : ∂Σ→ G.
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Yet even in the first case an important remark should be raised. It the constructive
procedure ends-up producing a dressing field u which is local (in the sense of field theory),
then the theory can be rewritten so that each individual field variable φu is a gauge singlet
yet still remains local. If the gauge symmetry of a theory can be thus eliminated without
losing locality, it is said to be an artificial gauge symmetry [72] (the terminology “fake
symmetry” of Jackiw & Pi [73] covers the same notion). On the contrary, if it happens that
no dressing field can be found, or that only non-local ones can be produced, then the dressed
variables φu are H-invariant but non-local. In such theories, the gauge symmetry is only
eliminated at the cost of locality, and this is usually recognised as hallmark and physical
signature of substantial gauge symmetries. This distinction between two classes of gauge
symmetries, one physically relevant the other not, generalises the well-know distinction
between artificial and substantive general covariance familiar in the foundation of general
relativistic physics [72]. The DFM methods can then be used as a tool to assess the nature
of the gauge symmetry of a theory [55, 74].

Arguably there is no genuine boundary problem in a theory with an artificial gauge
symmetry, or if there is, the dressed presymplectic structure (4.12) solves it in case 1). A
genuine boundary problem arises only for substantial gauge symmetries — be it the original
H or the new G, case 2) — and the fact that it is only solved by sacrificing the locality
of the theory may be seen as yet another signal of the non-local — or non-separable —
character of the physics described by (true) gauge field theories [31, 75–79].

Let us know consider immediate applications of the last two sections to Yang-Mills
theory and 4D gauge gravity, which will illustrate in particular the above discussion.

4.3 Applications

4.3.1 Yang-Mills theory

We here start from, and rely on, the results of section 3.3.1. We have H = SU(n), H =
SU(n) = G.

Basic with connections. As the Lagrangian of the theory is basic, LYM ∈ Ω0
basic(Φ), the

field equations and the presymplectic structure are invariant, EYM,θ
YM
Σ ,ΘYM

Σ ∈ Ω•inv(Φ).
Therefore, given a connection ω ∈ Ω1

eq(Φ,LieH), one can proceed and write down the
corresponding basic versions.

By application of (4.2) and given (3.31), we get the basic field equations

EYM
ω = EYM − dEYM(ω;φ),

= EYM − dTr
(
ω {D ∗F − J}

)
, ∈ Ω1

basic(Φ). (4.24)

By (4.7) and given (3.31)–(3.32), we obtain immediately the basic presymplectic structure,

θYM
ω,Σ = θΣ −

∫
∂Σ
θYM

(
ω;φ

)
+
∫

Σ
EYM

(
ω;φ

)
∈ Ω1

basic(Φ),

= θYM
Σ −

∫
∂Σ

Tr
(
ω ∗F

)
+
∫

Σ
Tr
(
ω {D∗F − J}

)
, (4.25)
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ΘYM
ω,Σ = ΘΣ −

∫
∂Σ
dθYM

(
ω;φ

)
+
∫

Σ
dEYM

(
ω;φ

)
∈ Ω2

basic(Φ),

= ΘYM
Σ −

∫
∂Σ
dTr

(
ω ∗F

)
+
∫

Σ
dTr

(
ω {D∗F − J}

)
, (4.26)

This reproduces eq. (6.28)–(6.33) of [8] (who consider coupling to spinors rather than
to scalar fields, which changes nothing of substance). Eq. (4.25)–(4.26) would be one
coordinatisation of the phase space of YM theory over Σ, (MS ,Θb

Σ)YM. Others are obtained
under change of connection ω′ = ω + β, as by (4.9), (4.8) and (4.10) we have:

EYM
ω′ = EYM

ω − dTr
(
β {D ∗F − J}

)
,

θYM
ω′,Σ = θYM

ω,Σ −
∫
∂Σ

Tr
(
β ∗F

)
+
∫

Σ
Tr
(
β {D∗F − J}

)
,

ΘYM
ω′,Σ = ΘYM

ω,Σ −
∫
∂Σ
dTr

(
β ∗F

)
+
∫

Σ
dTr

(
β {D∗F − J}

)
.

(4.27)

As we commented at the end of section 4.1, these can also be seen a gluing relations of
a sort between the basic objects constructed by two observers on each side of a region
partitioned in two subregions by a boundary ∂Σ. Thus interpreted, (4.27) — the second
line in particular — reproduces (on-shell) the results of section 6.7 of [9] and section 5.3
of [80] (see in particular eq. (83), in the free abelian case).

Let us remark that the relation between DωθYM
Σ and ΘYM

ω,Σ, both basic 2-forms, is
immediately read-off (4.6) — itself a special case of (2.27) — to be:

DωθYM
Σ = ΘYM

ω,Σ +
∫
∂Σ
θYM(Ω;φ)−

∫
Σ
EYM(Ω;φ),

= ΘYM
ω,Σ +

∫
∂Σ

Tr
(
Ω ∗F

)
−
∫

Σ
Tr
(
Ω {D∗F − J}

)
, (4.28)

with Ω ∈ Ω2
tens(Φ,LieH) the curvature of ω. This reproduces (on-shell) the corollary 3.2

and the equation in section 3.4 of [9] (also found in footnote 27 of [13]), see also eq. (6.31)–
(6.32) of [8].

Basic with dressing fields. As we know by now, the existence of a φ-dependent dressing
field u : Φ → Dr[H,H] induces the existence of a flat connection ω̊ := −duu−1, and
another choice of dressing field u′ = uξ induces ω̊′ = ω̊ + β̊. So, we could simply say that
all of the above formulae specialise to ω,β → ω̊, β̊,25 and leave it there.

But there is of course more to say. By (4.11)–(4.12) and given (3.31)–(3.32),26 we have

EuYM = EYM + dEYM
(
duu−1;φ

)
∈ Ω1

basic(Φ),

= EYM + dTr
(
duu−1{D ∗F − J}

)
, (4.29)

(θYM
Σ )u = θYM

Σ +
∫
∂Σ
θYM

(
duu−1;φ

)
−
∫

Σ
EYM

(
duu−1;φ

)
∈ Ω1

basic(Φ),

= θYM
Σ +

∫
∂Σ

Tr
(
duu−1 ∗F

)
−
∫

Σ
Tr
(
duu−1 {D∗F − J}

)
, (4.30)

25With in particular the remark that (4.28) specialises to Dω̊θYM
Σ = ΘYM

ω̊,Σ, i.e. the dressed presymplectic
2-form (right) coincides with the ω̊-covariant derivative of the original potential θYM

Σ .
26Or using (3.43) and (3.44)–(3.45) together with the rule of thumb γ → u.
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(ΘYM
Σ )u = ΘYM

Σ +
∫
∂Σ
dθYM

(
duu−1;φ

)
−
∫

Σ
dEYM

(
duu−1;φ

)
∈ Ω2

basic(Φ),

= ΘYM
Σ +

∫
∂Σ
dTr

(
duu−1 ∗F

)
−
∫

Σ
dTr

(
duu−1 {D∗F − J}

)
. (4.31)

Observe again how only the LieH-linear part of E (and θ) contributes here, so that the
field equations for the matter fields are irrelevant. Eq. (4.30)–(4.31) generalise, on-shell,
eq. (2.19) and eq. (2.22)–(2.23) in [5]. As observed in section 4.2, these are the field
equations and presymplectic structure of the dressed Lagrangian,

LuYM = F?uLYM i.e. LuYM(φ) = LYM(φu) = 1
2 Tr(Fu ∗Fu) + 1

2〈D
uϕu, ∗Duϕu〉, (4.32)

seen as an invariant 0-form on Φu, and obtained via

dLuYM = EuYM + dθuYM = EYM(dφu;φu) + dθYM(dφu;φu). (4.33)

Now, the a priori ambiguity in the choice/construction of a dressing is parametrised
by a group G = SU(n) (still) which is the structure group of Φu and a symmetry of LuYM.
We can thus associate to it Noether charges which, for κ ∈ LieG inducing κv ∈ Γ(V Φu),
are immediately given by (4.19)

QYM
Σ (κ;φu) =

∫
∂Σ
θYM(κ;φu)−

∫
Σ
EYM(κ;φu), s.t. ικv(ΘYM

Σ )u = −dQYM
Σ (κ;φu),

=
∫
∂Σ

Tr
(
κ ∗Fu

)
−
∫

Σ
Tr
(
κ {Du∗Fu − Ju}

)
. (4.34)

where Ju = |∗Duϕu〉〈ϕu| = |ρ(u)−1∗Dϕ〉〈ρ(u)−1ϕ| = u−1|∗Dϕ〉〈ϕ|u = u−1Ju. Quite
naturally, the dressed 2-form (ΘYM

Σ )u induces a Poisson bracket for these dressed charges
which is by (4.20){

QYM
Σ (κ;φu), QYM

Σ (κ′;φu)
}

:= (ΘYM
Σ )u

(
κv,κ′v

)
= QYM

Σ
(
[κ,κ′];φu

)
. (4.35)

This generalises eq. (2.35)–(2.36)–(2.38) of [5]. Comparable formulae holds for field-
dependent gauge parameters κ ∈ LieG, despite the fact that this time the dressed charges
are non-integrable so that,

ικv(ΘYM
Σ )u = −dQYM

Σ (κ;φu) + dQYM
Σ (dκ;φu) = −dQYM

Σ (κ;φu), (4.36)

= −
∫
∂Σ

Tr
(
κ ∗dFu

)
+
∫

Σ
Tr
(
κ d{Du∗Fu − Ju}

)
.

The dressed charge (4.34) could gain a clearer physical status by plugging the affine ansatz
Au = Au0 +αu and declaring κ a symmetry of the background Au0 , so that similarly to (3.38)
we get on-shell

QYM
Σ (κ;φu) =

∫
∂Σ
θYM(κ;φu) |S

=
∫
∂Σ

Tr
(
κ ∗

{
Fu0 + fu + 1

2[αu, αu]
})

,

=
∫
∂Σ

Tr
(
κ ∗Fu0

)
+ Tr

(
κ ∗fu

)
=: QYM

Σ (κ;Au0 ) +QYM
Σ (κ;αu), (4.37)
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with the second term interpreted as the contribution of the perturbation measured against
the background. Of course, if the dressing field is built from the connection, it is itself
affected by the affine ansatz (3.26) and special care must be applied as the charge may not
be as simply written as in (4.37).

Seen as forms on the G-bundle Φu, (4.29)–(4.31) of course transform under its gauge
group G by (4.17) as,

[EuYM]ξ = EuYM + dTr
(
dξξ−1{Du∗Fu − Ju}

)
,

= EuYM − dTr
(
β̊ {D∗F − J}

)
,

[(θYM
Σ )u]ξ = (θYM

Σ )u +
∫
∂Σ

Tr
(
dξξ−1 ∗Fu

)
−
∫

Σ
Tr
(
dξξ−1 {Du∗Fu − Ju}

)
,

= (θYM
Σ )u −

∫
∂Σ

Tr
(
β̊ ∗F

)
+
∫

Σ
Tr
(
β̊ {D∗F − J}

)
,

[(ΘYM
Σ )u]ξ = (ΘYM

Σ )u +
∫
∂Σ
dTr

(
dξξ−1 ∗Fu

)
−
∫

Σ
dTr

(
dξξ−1 {Du∗Fu − Ju}

)
,

= (ΘYM
Σ )u −

∫
∂Σ
dTr

(
β̊ ∗F

)
+
∫

Σ
dTr

(
β̊ {D∗F − J}

)
.

(4.38)

The display of each second line, where β̊ = −udξξ−1u−1, invites comparison with (4.27)
and illustrates (4.15)–(4.16). These show that a boundary problem may reappear w.r.t. G.
Comments are thus in order.

Comments. We here have an occasion to illustrate the discussion held at the end of
section 4.2 on the local vs non-local dressing fields in a model and the nature of its gauge
symmetry.

In pure YM theory, there are no local dressing fields that can be built from the gauge
potential (as far as is known). Only non-local dressings u = u(A) seem possible, and
basically related to holonomies of the connection. This is also true in YM theory coupled
to spinors, as no local SU(n)-dressing field can be constructed from a spinor field. In
the special case of abelian YM theory coupled to spinors, i.e. spinorial electromagnetism
(EM), the well-known Dirac phase [70] (see also [71] section 80) is an instance of non-local
dressing field u = u(A).27 In these cases, one would then conclude that the SU(n)-gauge
symmetry is substantial, as it is killed only at the cost of the locality of the theory.

In YM theory coupled to scalar fields, things are different. Considering for example the
simple case of abelian YM theory coupled to a C-scalar field, i.e. scalar electromagnetism,
one can extract a local dressing field from the complex field by polar decomposition of the
latter: ϕ = ρu(ϕ) ∈ C, where ρ = |ϕ| ∈ R+ and u(ϕ) = eiθ ∈ U(1). Obviously the phase
carries the gauge transformation, u(ϕ)γ = u(ϕγ) = γ−1u(ϕ). That is, the dressing field is
simply the phase of the scalar field, which is local. Thus the invariant dressed field (2.40)
Au = A + u−1du and ϕu = ρ are both local and U(1)-invariant. Any U(1)-invariant
Lagrangian L(A,ϕ) can thus be dressed as in (4.32), giving a local theory with no gauge

27Dirac’s eq. (16) and (21) in [70] — and eq. (110) in [71] — are abelian instances of the invariant dressed
fields (2.40) above, and his non-local dressing field built from the gauge potential is given in eq. (18)–(19).
Eq. (111) in [71] is the spinorial version of our Ju after (4.34).
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symmetry. The U(1)-symmetry of L is then artificial. Furthermore, one may consider that
the polar decomposition if rather unambiguous, so that no G-transformations arise. This
has noteworthy interpretive consequences for models couched in the framework of C-scalar
EM. Let us consider two: a semi-classical description of the Aharonov-Bohm (AB) effect
and the abelian Higgs model.

The AB effect is usually seen as the prototypical phenomenon illustrating the non-
locality (or non-separability) inherent to gauge theories, as the phase shift in the inter-
ference pattern cannot be explained by the local interaction of electrons described by ϕ

with the gauge potential A, which are both non-invariant fields.28 Yet as we just saw, the
theory can be rewritten so that electrons and the EM potential can be described by ρ and
Au respectively, which are invariant fields. Formulated within scalar EM, the AB effect is
thus entirely non-problematic, as the phase shift can be explained via local interaction of
invariant fields (as noted by philosopher D. Wallace [81]). Of course, in the more realistic
framework of spinorial EM, since as stated above there is no extracting local dressings
from spinors, the U(1)-gauge symmetry is truly substantial, so the AB effect does actually
highlights the non-local/non-separable character of EM phenomena.

The abelian Higgs model is often given as the simplest illustration of the notion of
Spontaneous Symmetry Breaking (SSB): the gauge potential A is minimally coupled to a
C-field ϕ embedded in a potential V (ϕ) = µ2ϕ∗ϕ+λ(ϕ∗ϕ)2 whose minima are ϕ0 = 0 and
{ϕ0} = {|ϕ0| =

√
−µ2

2λ }. The first is unique and U(1)-invariant, while the others form a
U(1)-orbit. The theory has two phases given by the sign of −µ2: one in which the only
vacuum solution is ϕ0 = 0, U(1) preserved, and in which A is massless. Another where
the vacuum is degenerate, so that upon spontaneous selection of one point in {ϕ0}, U(1)
is broken and A gains a mass proportional to

√
−µ2

2λ .
But, upon dressing, the Lagrangian is rewritten as in (4.32) with the field Au minimally

coupled to the R+-field ρ embedded in the potential V (ρ) = µ2ρ2 + λρ4 with only two
minima ρ0 = 0 and ρ0 =

√
−µ2

2λ . This theory has no U(1)-symmetry, yet still two phases
according to the sign of −µ2: one in which Au is massless, one in which it has a mass
proportional to

√
−µ2

2λ . One can thus appreciate that the notion of SSB is not what does
the heavy lifting in the mass acquisition mechanism. Rather, the true operative notion is
that of a phase transition between two vacuum structures (which are non-degenerate), and
this doesn’t necessarily coincide with a symmetry breaking — as is clearly the case here
since the artificial U(1)-symmetry is eliminated, and the physical d.o.f. exhibited, in both
phases of the theory.

Coming back to general YM theories coupled to scalar fields, the same considerations
applies to the electroweak (EW) model, where a local SU(2)-dressing field u = u(ϕ) is
extracted from a polar decomposition of the C2-scalar field ϕ, coupled minimally to the
U(1) × SU(2) gauge potential A = a + B. One may conclude that SU(2) is artificial and
eliminate it, thereby exhibiting physical d.o.f, in both the massless and massive phases of
the theory, leaving U(1) as the only substantial gauge symmetry of the model. SSB is thus

28Curiously, emphasis is often on the non-invariance of the gauge potential only, as if the wave function
of the electron was unproblematic regarding gauge invariance.

– 52 –



J
H
E
P
1
2
(
2
0
2
1
)
1
8
6

bypassed and the EW vacuum phase transition shown to be the operative phenomenon.
For technical details on the DFM treatment of the EW model, and discussions on attending
philosophical issues, see [54, 55], and [74] (to appear) for the inclusion of chiral fermions.
The polar decomposition of ϕ ∈ C2 may be seen as suffering from some ambiguity, giving
rise to residual G-transformations, but [82] gives arguments as to why this ambiguity might
be reduced to a discret choice.

Thus challenging the SSB interpretation of the EW model may seem an heretical thing
to do. But it turns out that gauge-invariant treatments of Yang-Mill-Higgs models have
a long history, starting very early on with Higgs and Kibble themselves in 1966 and 1967
(before the papers by Weinberg and Salam): one can easily see that eq. (23) in [83] and
eq. (66) [84] are instances of (4.32). Before the conclusion of his paper, Kibble explicitly
says “It is perfectly possible to describe [the theory] without ever introducing the notion of
symmetry breaking”. After the advent of the EWmodel, invariant treatments independently
emerged several times, e.g. in [85] (compare eq. (75) and (77) to (2.40) and (4.32)) or in [86]
(compare eq. (6.1) to (2.40)), and more recently [82, 87–90]. The review [91] provides an
extensive list of references on recent developments in particle physics looking at such gauge-
invariant accounts of electroweak physics. Philosopher of physics have also seize the subject
in the past fifteen years [92–97], pointing to the fact that a better understanding of the
electroweak model, and gauge symmetries, might be necessary to make genuine progress
beyond the current best established theories [74].

In any event, (4.29)–(4.31) give the dressed presymplectic structure of C-EM and C2-
YM theory, stemming from (4.32)–(4.33). From these are read-off the on-shell dressed
presymplectic structure of both the abelian Higgs and EW models since, as we observed
at the end of 3.3.1, the potential term does not contribute.

4.3.2 4D gauge gravity

We now turn to a last illustration of the general framework: gravity. We will rely on the re-
sults of section 3.3.2, where H = SO(1, 3) and H = SO(1, 3). Espousing the same template
as the previous section, we first give a very swift description of the basic structure that
would be obtained via variational connections, then engage in a more intricate discussion
on what can — or could — be done via the DFM.

Basic with connections. The Lagrangian of the theory is basic, LGR ∈ Ω0
basic(Φ), so

the field equations and the presymplectic structure are invariant, EGR,θ
GR
Σ ,ΘGR

Σ ∈ Ω•inv(Φ).
Then, given a connection ω ∈ Ω1

eq(Φ,LieH), one can write their basic counterparts. By
application of (4.2) and given (3.54), we get the basic field equations

EGR
ω = EGR − dEGR(ω;φ),

= EGR + d

{2ε
`2
ω • T ∧ eT − Tr

(
|ρ∗(ω)ψ〉〈∗γψ|

)}
, ∈ Ω1

basic(Φ). (4.39)
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By (4.7) and given (3.54)–(3.55), the basic presymplectic structure is immediately found
to be

θGR
ω,Σ = θΣ −

∫
∂Σ
θGR

(
ω;φ

)
+
∫

Σ
EGR

(
ω;φ

)
∈ Ω1

basic(Φ),

= θGR
Σ −

∫
∂Σ
ω • F −

∫
Σ

2ε
`2
ω • T ∧ eT − Tr

(
|ρ∗(ω)ψ〉〈∗γψ|

)
, (4.40)

ΘGR
ω,Σ = ΘΣ −

∫
∂Σ
dθGR

(
ω;φ

)
+
∫

Σ
dEGR

(
ω;φ

)
∈ Ω2

basic(Φ),

= ΘGR
Σ −

∫
∂Σ
d
(
ω • F

)
−
∫

Σ

2ε
`2
d(ω • T ∧ eT )− dTr (|ρ∗(ω)ψ〉〈∗γψ|) , (4.41)

Eq. (4.40)–(4.41) would be one coordinatisation of the phase space of GR over Σ,
(MS ,Θb

Σ)GR. Others would of course be obtained under change of connection ω′ = ω+β,
as by (4.9), (4.8) and (4.10) we have:

EGR
ω′ = EGR

ω + d

{2ε
`2
β • T ∧ eT − Tr

(
|ρ∗(β)ψ〉〈∗γψ|

)}
,

θGR
ω′,Σ = θGR

ω,Σ −
∫
∂Σ
β • F −

∫
Σ

2ε
`2
β • T ∧ eT − Tr

(
|ρ∗(β)ψ〉〈∗γψ|

)
,

ΘGR
ω′,Σ = ΘGR

ω,Σ −
∫
∂Σ
d
(
β • F

)
−
∫

Σ

2ε
`2
d(β • T ∧ eT )− dTr (|ρ∗(β)ψ〉〈∗γψ|) .

(4.42)

As per section 4.1, these can be seen a gluing relations the basic structures constructed by
two observers on each side of a region partitioned in two subregions by a boundary ∂Σ.

Finally, let us notice the relation between the basic 2-forms DωθGR
Σ and ΘGR

ω,Σ, which
by (4.6) — or (2.27) — is:

DωθGR
Σ = ΘGR

ω,Σ +
∫
∂Σ
θGR(Ω;φ)−

∫
Σ
EGR(Ω;φ),

= ΘGR
ω,Σ +

∫
∂Σ

Ω • F +
∫

Σ

2ε
`2

Ω • T ∧ eT − Tr (|ρ∗(Ω)ψ〉〈∗γψ|) , (4.43)

with Ω ∈ Ω2
tens(Φ,LieH) the curvature of ω. Both coincide when ω = ω̊ is flat, as would

be the case if using the DFM was an option.

Basic with dressing fields. The use of the DFM in the gravitational case is slightly
more subtle than in the YM context. It is instructive to address first the case of the pure
gravitational theory, before coming back to the coupling to spinors.

Pure gauge gravity: let us quickly set the stage. The pure gravity sector is given by
the McDowell-Mansouri term in (3.53), a basic 0-form on the H-bundle space of Cartan
connections Φ = Ā:

LMM(Ā) = 1
2F • F, ∈ Ω0

basic(Ā), so dLMM = EMM + dθMM ∈ Ω1
basic(Ā) with,

EMM = −2ε
`2

{
dA • T ∧ eT + de ∧ eT • F )

}
∈ Ω1

inv(Ā) so θMM = dA • F ∈ Ω1
inv(Ā),
(4.44)
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which is also read-off (3.54)–(3.55). The presymplectic 2-form is ΘMM
Σ = −

∫
Σ dA • dF .

From (3.6), the Lorentz charges are

QMM
Σ (χ; Ā) =

∫
∂Σ
θMM(χ; Ā)−

∫
Σ
EMM(χ; Ā) =

∫
∂Σ
χ • F +

∫
Σ

2ε
`2
χ • T ∧ eT , (4.45)

as is also seen from (3.56). In pure GR, the restriction on-shell is too strong, and im-
posing normality of Ā, that is T = 0, is enough to have the charge written as a pure
boundary term. In full generality, ΘMM

Σ induces a Poisson bracket for the above charges{
QMM

Σ (χ; Ā), QMM
Σ (η; Ā)

}
:= ΘMM

Σ (χv, ηv) = QMM
Σ ([χ, η]; Ā). The H = SO(1, 3) field-

dependent gauge transformations of EMM, θMM
Σ and ΘMM

Σ are of course found to be special
cases of (3.62)–(3.64) (without ψ-terms).

We may notice that a local SO(1, 3)-dressing field is readily available in gravity. Indeed
we have that the soldering part of the Cartan connection Ā transforms as Rγe := eγ =
γ−1e. Given a coordinate system {xµ} on U ⊂ M , the soldering is ea = eaµ dx

µ, or
e = e · dx, so the map e := eaµ : U → GL(4) is s.t. eγ = γ−1e. The tetrad is thus a
field-dependent local Lorentz dressing field u : Ā → Dr

[
SO, GL

]
, Ā 7→ u(Ā) = e, s.t.

R?γu(Ā) = u(RγĀ) = u(Āγ) = eγ = γ−1e = γ−1u(Ā).
Using the Lorentz dressing u(Ā) = e, written as the 5× 5 matrix ū = ( u 0

0 1 ), the SO-
invariant dressed Cartan connection is

Āū = ū−1Āū+ ū−1dū =
(

Au 1
`e
u

−ε
` (et)u 0

)

=
(
e−1Ae+ e−1de 1

`dx
−ε
` dx

T · g 0

)
=:
(

Γ 1
`dx

−ε
` dx

T · g 0

)
= Γ̄. (4.46)

where Γ = Γµν = Γµν, ρ dx ρ is the familiar linear connection with values in M(4,R) =
LieGL(4), dx = δ µρ dx

ρ and dxT · g = dxµgµν . The metricity condition is automatic, as
we have ∇g := dg−ΓTg− gΓ = −eT

(
AT η+ η A

)
e = 0. A similar matrix computation for

the dressed Cartan curvature gives,

F̄u = ū−1F̄ ū ⇒


Fu = e−1Fe =: F = R− ε

`2
dx ∧ dxT · g,

Tu = e−1T =: T = Γ ∧ dx,
(4.47)

where R = dΓ + 1
2 [Γ,Γ] = 1

2Rµ
ν, ρσ dx

ρ ∧ dxσ is M(4,R)-valued (with components the
usual Riemann tensor), and T = Tµ = 1

2Tµ
ρσ dx

ρ ∧ dxσ = Γµρσ dx ρ ∧ dxσ is the known
expression for the torsion.

Yet another simple matrix computation shows that, by (2.49),

dĀū = ū−1
(
dĀ+DĀ

{
dūū−1

})
ū

=

 dAu 1
`de

u

−ε
` d(et)u 0


=

e−1
(
dA+DA

{
dee−1

})
e 0

−ε
`

(
deT ηe+ eT ηde

)
0

 =:

 dΓ 0
−ε
` dx

t · dg 0

 = dΓ̄.
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where one uses that dee−1e = deaµ(e−1)µb e = deaµ dx
µ = de to have the top right

component vanish (as also heuristically expected from (4.46) and d dx = 0).
As the dressing field takes values in a group larger than the structure group SO(1,3),

to apply our general results we need to clarify the following technical point: the polyno-
mial (3.50) we used to write the pure gravity sector of the Lagrangian for 4D gravity in
sections 3.3.2 is SO-invariant by (3.51). It is the restriction of the GL-invariant polynomial
P̄ : ⊗kM(2k,R)→ R given by

P̄
(
M1, . . . ,Mk

)
=
√
| det(g)| M1 • . . . •Mk

:=
√
| det(g)| Mµ1µ2

1 Mµ3µ4
2 . . . M

µ2k−1µ2k
k εµ1...µ2k , (4.48)

The GL-invariance under the substitution g → GTgG and M → G−1M G−1T , with G =
Gαβ ∈ GL(4), is easily checked (by a computation analogue to (3.51)). One obtains the SO-
invariant polynomial P by the substitution g → η. Conversely, if in P one plugs variables
eM e−1η−1 = eM g−1eT (restoring on the left η−1 that was kept tacit) then by (3.51)
again we get

P
(
eM1e

−1η−1, . . . , eMk e
−1η−1) = eM1g

−1eT • . . . • eMkg
−1eT ,

= det(e) M1g
−1 • . . . •Mkg

−1

= P̄
(
M1g

−1, . . . ,Mkg
−1). (4.49)

To lighten the notation, we will omit g−1 in front of variables in expressions involving P̄ ,
as it should be clear from the context that indices must be raised.

Now, the dressed field equations and presymplectic structure associated with LMM are,
by (4.11)–(4.12),

EuMM = EMM + dE(duu−1; Ā) = EMM −
2ε
`2
d
(
dee−1 • T ∧ eT

)
, (4.50)

(θMM
Σ )u = θMM

Σ +
∫
∂Σ
θ(duu−1; Ā)−

∫
Σ
E(duu−1; Ā),

= θMM
Σ +

∫
∂Σ
dee−1 • F + 2ε

`2

∫
Σ
dee−1 • T ∧ eT , (4.51)

(ΘMM
Σ )u = ΘMM

Σ +
∫
∂Σ
dθ
(
duu−1; Ā

)
−
∫

Σ
dE
(
duu−1; Ā

)
.

= ΘMM
Σ +

∫
∂Σ
d
(
dee−1 • F

)
+ 2ε
`2

∫
Σ
d
(
dee−1 • T ∧ eT

)
. (4.52)

As per the DFM philosophy, section 4.2, these are none other than the field equations
and presymplectic structure of the dressed Lagrangian

LuMM(Ā) = L̄MM(Γ̄) =
√
| det(g)| 1

2 F • F, (4.53)

=
√
| det(g)| 1

2 R • R− ε

`2

(
R • dx ∧ dxT − ε

2`2dx ∧ dx
T • dx ∧ dxT

)
,

where L̄MM is based on the polynomial (4.48). This is manifestly just the Lagrangian of
GR in the ‘metric’ formulation. Which means in particular that (θMM

Σ )u is simply the
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presymplectic potential of the metric formulation,

(θMM
Σ )u = θ̄MM(dΓ̄; Γ̄) =

∫
Σ

√
| det(g)| dΓ • F =

∫
Σ

√
| det(g)| dΓ •

(
R− ε

`2
dx ∧ dxT

)
.

(4.54)

The associated 2-form is easily deduced. Equation (4.51) then gives the relation between
the metric and tetrad potentials of pure GR, and its boundary term generalises in particular
the (aptly named from the DFM viewpoint) “dressing 2-form” of DePaoli-Speziale [28] —
see also [29, 30].

In the situation at hand, we have an occasion to see that the ambiguity in the choice of
dressing field encodes a relevant gauge symmetry of the dressed theory: coordinate changes.
Indeed, we identified the components of the soldering form e = ea µ in a given coordinate
system {xµ} as a good SO-dressing field. In another coordinate system we have of course
e′ = e ξ, i.e. e′a ν = ea µ ξ

µ
ν , where ξ = ξ µν ∈ GL(4) is the Jacobian of the coordinate

change. The ambiguity in the choice of Lorentz dressing is thus parametrised by the group
of local coordinate transformations G = GL := {ξ : U → GL(4) | ξγ = ξ} acting as uξ = uξ

and of course trivially on the Cartan connection Āξ = Ā. The space of dressed Cartan
connections Āu = Γ̄ is then a G-principal bundle, with a right action of G given by

RξĀ
u = (Āu)ξ := ξ−1Āuξ + ξ−1dξ ⇒

{
(Au)ξ = Γξ = ξ−1Γξ + ξ−1dξ,

(eu)ξ = (dx)ξ = ξ−1dx.
(4.55)

By (4.48), the dressed Lagrangian (4.53) has trivial G-equivariance R?ξL̄MM = L̄MM. So, for
κ = κ µ

ν ∈ LieG generating κv ∈ V (Āu) and by (4.19), the dressed Noether charge is:

Q̄MM
Σ (κ; Āu) =

∫
∂Σ
θ̄MM(κ; Āu)−

∫
Σ
ĒMM(κ; Āu),

=
∫
∂Σ

√
| det(g)| κ • F + 2ε

`2

∫
Σ

√
| det(g)| κ • T ∧ dxT . (4.56)

It satisfies ικv(ΘMM
Σ )u = −dQ̄MM

Σ (κ; Āu) and via (4.20) the dressed presymplectic 2-form
induces the Poisson bracket{

Q̄MM
Σ (κ; Āu), Q̄MM

Σ (κ′; Āu)
}

:= (ΘMM
Σ )u

(
κv,κ′v

)
= Q̄MM

Σ
(
[κ,κ′]; Āu

)
, (4.57)

so that the Poisson algebra of dressed (metric) charges is isomorphic to the Lie algebra
of coordinate changes LieG. The same relations hold for field-dependent parameters κ ∈
LieG, where G = GL is the gauge group of the G-bundle Āu, even though in this case the
charge is non-integrable ικv(ΘMM

Σ )u = −dQ̄MM
Σ (κ; Āu).

Charges (4.45) of LMM, like those (3.59) of LGR in section 3.3.2, could be interpreted
via the affine ansatz (3.26) Ā = Ā0 + ᾱ. But when attempting to do the same with
the charges (4.56) above, echoing the caveats at the end of section 4.2, we must exercise
care as the ansatz affects the dressing field u(Ā) = e as well. Splitting in particular the
tetrad as background and fluctuation, e = e0 + ε, induces a corresponding splitting of the
metric g = g0 + h which must then be plugged in the on-shell expression for Q̄MM

Σ (κ; Āu).
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Although doable, it is cumbersome. One may rely on a simpler heuristics to interpret the
dressed charge: on-shell (or simply in the normal case) these are

Q̄MM
Σ (κ; Āu) =

∫
∂Σ

√
| det(g)| κ • F |S

=
∫
∂Σ

√
| det(g)| κ •

(
R− ε

`2
dx ∧ dxT

)
, (4.58)

=
∫
∂Σ

√
| det(g)|

(
εµνσρ α

µν 1
2Rσραβ −

ε

`2
κ µν εµναβ

)
dxα∧dxβ .

Now if one considers κ = ∂ζ = ∂ νζ
µ with ζ the components of a Killing vector field

of g, the above expression is a generalised Komar integral. It reproduces the result for
4D Zumino-Lovelock theory gravity (also known as Gauss-Bonnet gravity) obtained in [98]
eq. (17)–(20), and generalises the usual Komar mass as given in [99] (definition 4.6, eq. (4.8)
p. 460) — known to coincide with the Newtonian mass and ADM mass for (stationnary)
asymptotically flat spacetimes M and to vanish if and only if M is flat (Lemma 4.10,
Theorem 4.13 and Theorem 4.11 in [99]). The charge (4.58) gives a good notion of mass
and angular momentum (according to the nature of ζ) in gravity with Λ 6= 0 as it vanishes
on the (A)dS groundstate of the theory, i.e. the homogeneous space of the underlying
Cartan geometry.

The general formulae (4.17) applied here give the field-dependent coordinate transfor-
mations of the field equations and presymplectic structure of L̄MM

[EuMM]ξ = EuMM − d
(2ε
`2

√
| det(g)| dξξ−1 • T ∧ dxT

)
,

= EuYM + d

(2ε
`2
β̊ • T ∧ eT

)
,

[(θMM
Σ )u]ξ = (θMM

Σ )u +
∫
∂Σ

√
| det(g)| dξξ−1 • F

+ 2ε
`2

∫
Σ

√
| det(g)| dξξ−1 • T ∧ dxT ,

= (θMM
Σ )u −

∫
∂Σ
β̊ • F − 2ε

`2

∫
Σ
β̊ • T ∧ eT ,

[(ΘMM
Σ )u]ξ = (ΘMM

Σ )u +
∫
∂Σ
d

{√
| det(g)| dξξ−1 • F

}
+ 2ε
`2

∫
Σ
d

{√
| det(g)| dξξ−1 • T ∧ dxT

}
,

= (ΘMM
Σ )u −

∫
∂Σ
d(β̊ • F )− 2ε

`2

∫
Σ
d(β̊ • T ∧ eT ).

(4.59)

We provide the second line, where β̊ = −edξξ−1e−1, for comparison with (4.42). The
similarity is of course no accident as using the dressing u(Ā) = e is equivalent to using
the flat connection ω̊ := −duu−1 on the H-bundle Ā. One checks easily the two defining
properties (2.17)–(2.18) of an Ehresmann connection:

R?γω̊ = −dR?γe(R?γe)−1 = −γ−1dee−1γ = γ−1ω̊γ, for γ ∈ H = SO(1, 3),

ω̊(χv) = −dee−1(χv) = −χv(e)e−1 = −(−χe)e−1 = χ ∈ LieSO(1, 3).
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And the flatness condition is trivial dω̊ + 1
2 [ω̊, ω̊] = dede−1 + dee−1dee−1 ≡ 0. A field-

dependent coordinate change u′ = uξ induces an affine shift of flat connection ω̊′ = ω̊+ β̊.
In good illustration of the general comment 1 of section 4.2, we have no trouble appre-

ciating that G = GL is not a physical transformation group, and doesn’t permute points in
the physical phase space S/SO ' Su/G. The question of the physical relevance (or signa-
ture) of G is of the same nature as that of the original SO gauge symmetry, as illustrated
above in the discussion of the interpretation of dressed charges. Finally, (4.59) shows that
as a boundary problem for SO is solved by dressing, another emerges for G = GL which
is very likely a substantial symmetry of the dressed/metric theory, suggesting that the
boundary problem signals the non-locality, or non-separability, of gravitational physics.

Theory coupled to spinors: according to the DFM philosophy, the presence of the tetrad
as a local dressing field that can be used to rewrite the theory in terms of Lorentz-invariant
variables makes SO(1, 3) an artificial symmetry of both pure GR and of GR coupled with
bosonic and scalar fields (EM field, fluids, dust. . . ). This is an interesting contrast with,
say, the EM case: in the pure gauge theory no local dressing built from the connection
exists so U(1) is substantial, while in C-scalar EM a local dressing is extracted from the
matter sector so that U(1) is artificial.

Yet, in the same way that the coupling of the EM field to spinors makes U(1) substantial
again, the coupling of gravity to spinors a priori changes the verdict on SO(1, 3). The tetrad
being GL-valued, and for lack of finite dimensional spin representations of GL, it cannot
be used to produce a Lorentz-invariant spinor: we cannot write ψu = ρ(u)−1ψ = ρ(e)−1ψ.
This lack of local dressing for the whole theory strongly suggest that the Lorentz gauge
symmetry SO(1, 3) is substantial in GR + spinors, and the associated boundary problem
a reflection of the non-locality/non-separability of gravitational physics.

We may nuance this conclusion in light of the fact that, so long as one works on
U ⊂M, one can decompose the tetrad as e = ut, where u ∈ H = SO(1, 3) and t = tbµ has
the same d.o.f as the metric field and is s.t. g = tT ηt. For details and references on such
a decomposition, which relies on the Schweinler-Wigner orthogonalization procedure, we
refer to section 4.3 of [52] — see also the end of section 2 and footnote 12 of [55]. It is akin
to the polar decomposition of the C-scalar field in EM: u carries the gauge representation,
uγ = γ−1u with γ ∈ SO(1, 3), so that u = u(e) : Φ → Dr[H,H] is a (minimal) local
Lorentz dressing field.

As per section 4.2, it can be used to obtain the dressed Lagrangian,

LuGR = F?uLGR i.e. LuGR(φ) = LMM(Āu) + LDirac(Āu, ψu)

= 1
2F

u • Fu + 〈ψu, /Du
ψu〉 ∈ Ω0

basic(Φ). (4.60)

where invariant spinor fields ψu := ρ(u)−1ψ couples to gravity via the invariant gauge
field Au := u−1Au+u−1du (the Lorentz part of the dressed Cartan connection Āu whose
soldering part is eu = t = t · dx). From the variation of (4.60), dLuGR = EuGR + dθuGR =
EGR(dφu;φu) + dθGR(dφu;φu), one gets the associated field equations and basic presym-
plectic structure, which by (4.11)–(4.12) and given (3.54)–(3.55) — or by (3.62)–(3.64)
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together with the rule of thumb γ → u — are:

EuGR = EGR + dEGR
(
duu−1;φ

)
, ∈ Ω1

basic(Φ),

= EGR − d
{2ε
`2
(
duu−1 • T ∧ eT

)
+ Tr

(
|ρ∗(duu−1)ψ〉〈∗γψ|

)}
, (4.61)

(θGR
Σ )u = θGR

Σ +
∫
∂Σ
θGR

(
duu−1;φ

)
−
∫

Σ
EGR

(
duu−1;φ

)
, ∈ Ω1

basic(Φ),

= θGR
Σ +

∫
∂Σ
duu−1 • F

+
∫

Σ

2ε
`2
duu−1 • T ∧ eT − Tr

(
|ρ∗(duu−1)ψ〉〈∗γψ|

)
, (4.62)

(ΘGR
Σ )u = ΘGR

Σ +
∫
∂Σ
dθGR

(
duu−1;φ

)
−
∫
∂Σ
dEGR

(
duu−1;φ

)
, ∈ Ω2

basic(Φ),

= ΘGR
Σ +

∫
∂Σ
d
(
duu−1 • F

)
+
∫

Σ

2ε
`2
d(duu−1 • T ∧ eT )− dTr

(
|ρ∗(duu−1)ψ〉〈∗γψ|

)
, (4.63)

Unfortunately, (4.62)–(4.63) do not really solve the boundary problem, as these are at
best valid only locally, i.e. on a single coordinate patch. Indeed, u and by extension the
composite fields and other quantities built from it, depend on the coordinate chart {xµ}
on U ⊂ M in such a way that they have no determined well-behaved transformation law
under coordinate changes (as explained in [52]). Which makes them ill-defined as global
geometrical objects onM . This also means that our general discussion about the ambiguity
in the choice of dressing doesn’t apply in this case, and in particular no charges associated
with GL(4) can be assigned via (θGR

Σ )u.
This construction of u from a decomposition of the tetrad seems to bear some relation

to the attempts — pioneered in the ‘50s and ‘60s by DeWitt, Ogievetsky and Polubarinov
— to build spinors without introducing Lorentz gauge symmetry. See [100] for a review with
an extensive bibliography. Upon mild restrictions on the admissible coordinate systems,
the coordinate transformation law for such spinors is formally attainable, but only in the
weak field regime around a flat background, i.e when g is a small perturbation around η.
Even then, the transformation law is metric dependent and highly non-linear. It is thus not
obvious that such a framework could be satisfactory in the strong field regime of GR, or that
it can be accommodated to QFT in curved spacetime. A prudent commitment to the initial
assessment that SO(1, 3) is substantial in spinorial gravity therefore seems reasonable.

The absence of dressing for the theory ‘gravity + spinors’ is less of a problem if one
is mainly interested in charges and their Poisson algebra: on-shell, charges in the coupled
theory (3.56) are the same as charges of pure gravity (4.45) and reduce to boundary terms,
QGR

Σ (χ;φ) =
∫
∂Σ χ • F |S . Which makes sense as the matter sources presumably have

compact support while their gravitational field propagates and reaches infinity. But then
the on-shell charges of the coupled theory can be dressed as in (4.56) giving QGR

Σ (κ;φ) =∫
∂Σ
√
| det(g)|κ • F |S , and interpreted as in the free case, while their Poisson bracket is

on-shell (4.57).
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5 Conclusion

In this note we made decisive use of the bundle geometry of field space which, articu-
lated with covariant phase space methods, allows to give a series of general results on the
presymplectic structure of invariant, matter coupled, gauge theories. That is, given the
Lagrangian L of any such theory, we gave the off-shell expression of the Noether charges
for field-independent (3.6) and field-dependent (3.19) parameters, as well as their Poisson
bracket (3.9)–(3.25) induced by the presymplectic 2-form. We also gave the general field-
dependent gauge transformations of the presymplectic potential (3.13) and 2-form (3.17),
which exhibit the boundary problem in full generality. We stress that the only computa-
tion needed to apply these results in any given example, is to derive the field equations E
and the presymplectic potential θ from L. Which we did in the case of YM theory (sec-
tion 3.3.1) and GR in its Cartan geometric formulation (section 3.3.2), thereby recovering
standard results. In passing, we noticed that using the affine structure of the space of
connections A, it is possible to split the Noether charge as a background contribution and
a measurable contribution associated with a Killing symmetry of the background gauge
field. This generalises the approach of Abbott & Deser [34, 35].

Emphasis on the bundle geometry of field space Φ allows to appreciate that solving the
boundary problem boils down to one thing only: finding ways to build the basic counterpart
of a given variational form on Φ. We reminded that variational connections and the DFM
(a.k.a edge modes) are means to do just that, and conducted a systematic comparative
analysis of both in sections 2.2 and 2.3. We could apply this to produce the general basic
presymplectic structure of an invariant theory as obtained via connections (4.7) and via
dressings (4.12). Special applications to YM theory and GR reproduce several results
of the literature, e.g. [5, 8, 9], and in particular the DFM gives from first principle the
unambiguous relations (4.51)–(4.52) between the presymplectic structures of GR in the
tetrad and metric formulations, generalising the dressing 2-form of [28] — see also [29, 30].

The most relevant conceptual difference between the two approaches — beside the fact
that the existence of dressing fields imposes stronger topological constraints on field space
than (non-flat) connections — resides in how their respective ambiguities arise. Any two
choices of connections are related via an affine shift by a Ad-tensorial 1-form on Φ, leading
to relations like (2.30)/(4.8), which is not associated with any relevant new symmetries.
On the contrary, the ambiguity in the choice of dressings, while indeed manifesting itself
as a special case of affine shift of the associated connections (2.59), is more generally
encoded by a group G that may be a relevant symmetry of the dressed theory Lu. This,
the DFM shows via (2.43), is a gauge symmetry that doesn’t enjoy a more direct physical
interpretation than the original gauge symmetry H of L, but whose relevance may show
through the associated dressed charges (4.19). As a matter of fact, in GR these dressed
charges give (generalised) Komar integrals (4.58). This, we argue, also clarifies the status
of the “surface symmetries” of the edge mode literature, which are exactly instances of
G-symmetries. The corollary is of course that G may manifest its own boundary problem,
unless the construction of a dressing field in the theory under consideration is free enough
of any ambiguities — as it arguably is the case for example in C-scalar electrodynamics,
as discussed at the end of section 4.3.1.
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We remark that following the template of sections 2 and 3 above, one may analyse
the presymplectic structure of twisted gauge theories. These are gauge theories whose
configuration space is Φ̃ := Ã×Γ(Ẽ) with Ã the space of twisted connections on a standard
H-principal bundle P — generalising Ehresmann and Cartan connections — and Γ(Ẽ) the
space of sections of twisted bundles associated with P built via 1-cocycles of the structure
group H — extensions of standard associated bundles built via representations. We briefly
evoked these notions in sections 2.1 and 2.2.2 in the context of the bundle Φ, but these
have finite dimensional precursors whose elementary theory is described in [47]. As shown
there, conformal gravity is an unexpected example of twisted gauge theory, the (dressed)
conformal Cartan connection — otherwise known as the tractor or twistor connection —
being a twisted connection transforming via a cocycle of the group of Weyl rescalings (a
subgroup of the structure group of the conformal Cartan bundle [67]). The presymplectic
structure of conformal gravity — possibly coupled to twistors (or conformal tractors [101])
— would then follow as an immediate application of the suggested extension of the present
work to twisted gauge theories

A more immediate direction we wish to explore is to consider the case of non-invariant
theories, i.e. to include classical gauge anomalies. In [33], this was done for pure gauge
theories, and only charges for field-independent gauge parameters were considered. We
endeavor to maximally generalise the latter work to encompass non-invariant coupled the-
ories, to include the case where the symmetry under consideration is Diff(M) rather than
an internal gauge group, and to extend the discussion to charges for field-dependent gauge
parameters and their Poisson bracket. The latter should be a generalisation of the Barnich-
Troessaert bracket proposed in [102]. This, by the way, should provide a cross-check of
the recent [65] whose authors suggest they have found such a generalised bracket that is
not centrally extended, while generically we expect ours to be. As a matter of direct ap-
plications, we expect our Poisson algebras of charges in 3D and 4D gravity with Λ 6= 0 to
extend the bms3 and bms4 algebras, likely making contact with the Λ-bms4 algebra of [103].
Working out the Poisson algebra of charge of conformal gravity, in the framework alluded
to above, would certainly reproduce or a least make contact with the so-called Weyl-bms

algebra of [104].
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A Proof of formula (2.27)

Given α ∈ Ω1
inv(Φ), the infinitesimal version of its trivial H-equivariance reads Lχvα =

ιχvdα+ dιχvα ≡ 0 for any χ ∈ LieH. So, using [LX , ιY ] = ι[X,Y ], we have the identity

dα(χv, ηv) = ιηv ιχvdα = −ηvdιχvα = −Lηv ιχvα = −ιχvLηvα− ι[ηv , χv ]α = ι[χ,η]vα.

(A.1)
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Its covariant derivative is Dωα := (dα) ◦ |h ∈ Ω2
basic(Φ). Its horizontal counterpart is

αh := α ◦ |h ∈ Ω1
basic(Φ). And since on basic forms the covariant derivative reduces to the

exterior derivative, Dωαh = dαh ∈ Ω2
basic(Φ). We want to prove that

Dωα = dαh + ι[Ω]vα. (A.2)

Now, we have on the one hand, by the Koszul formula and (2.19):

dαh|φ(Xφ,Y φ) = X ·αh|φ(Y φ)− Y ·αh|φ(Xφ)−αh|φ
(
[X,Y ]φ

)
,

= X ·α|φ
(
Y φ − [ω|φ(Y φ)]vφ

)
− Y ·α|φ

(
Xφ − [ω|φ(Xφ)]vφ

)
−α|φ

(
[X,Y ]φ − [ω|φ([X,Y φ)]vφ

)
,

= dα|φ(Xφ,Y φ) −X ·α|φ
(
[ω|φ(Y φ)]vφ

)
+ Y ·α|φ

(
[ω|φ(Xφ)]vφ

)
+α|φ

(
[ω|φ([X,Y ]φ)]vφ

)
. (A.3)

The underlined φ in the two central terms means that the variational vector fields acting
as a differential operator ‘see’ all the φ’s. On the other hand, we have

Dωα|φ
(
Xφ,Y φ

)
:= dα|φ(Xh

φ,Y
h
φ) = dα|φ

(
Xφ − [ω|φ(Xφ)]vφ,Y φ − [ω|φ(Y φ)]vφ

)
,

= dα|φ(Xφ,Y φ)− dα|φ([ω|φ(Xφ)]vφ,Y φ)

− dα|φ(Xφ, [ω|φ(Y φ)]vφ) + dα|φ
(
[ω|φ(Xφ)]vφ, [ω|φ(Y φ)]vφ

)
,

= dα|φ(Xφ,Y φ) + ιY d
(
α|φ

(
[ω|φ(Xφ)]vφ

))
− ιXd

(
α|φ

(
[ω|φ(Y φ)]vφ

))
+ dα|φ

(
[ω|φ(Xφ)]vφ, [ω|φ(Y φ)]vφ

)
,

= dα|φ(Xφ,Y φ) + Y ·
(
α|φ

(
[ω|φ(Xφ)]vφ

))
−X ·

(
α|φ

(
[ω|φ(Y φ)]vφ

))
+α|φ

(
[ω|φ(Xφ),ω|φ(Y φ)]vφ

)
.

In the equality before last above, we have used Lχvα = 0 to rewrite the two central terms
— and the last by (A.1) — thus considering [ω|φ(Y φ)] as φ-independent. Hence the fact
that in the last equality, the variational vector fields only see the underlined φ’s. To further
rewrite the last term we use,

Ω|φ
(
Xφ,Y φ

)
= dω|φ

(
Xφ,Y φ

)
+ 1

2[ω|φ,ω|φ]
(
Xφ,Y φ

)
,

= X · ω|φ(Y φ)− Y · ω|φ(Xφ)− ω|φ
(
[X,Y ]φ

)
+ [ω|φ(Xφ),ω|φ(Y φ)].

Then we get,

Dωα|φ
(
Xφ,Y φ

)
=dα|φ(Xφ,Y φ) + Y ·

(
α|φ

(
[ω|φ(Xφ)]vφ

))
−X ·

(
α|φ

(
[ω|φ(Y φ)]vφ

))
+α|φ

(
[Y · ω|φ(Xφ]vφ)

)
−α|φ

(
[X · ω|φ(Y φ]vφ)

)
+α|φ

(
[ω|φ

(
[X,Y ]φ]vφ

))
+α|φ

(
[Ω|φ

(
Xφ,Y φ

)
]vφ
)
,
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=dα|φ(Xφ,Y φ) + Y ·α|φ
(
[ω|φ(Xφ)]vφ

)
−X ·α|φ

(
[ω|φ(Y φ)]vφ

)
+α|φ

(
[ω|φ([X,Y ]φ)]vφ

)
+α|φ

(
[Ω|φ

(
Xφ,Y φ

)
]vφ
)
,

=dαh|φ(Xφ,Y φ) +α|φ
(
[Ω|φ

(
Xφ,Y φ

)
]vφ
)
.

By (A.3) in the last equality, which proves (A.2).

B The Abbott-Deser derivation of charges in YM theory

One starts with the Yang-Mills equation for a gauge potential A sourced by an external
current (n− 1)-form.

D ∗F = J. (B.1)

Then one introduces the first ansatz, i.e. that A is written a (potentially large) perturbation
around a background configuration,

A = A0 + α. (B.2)

From this one has the expansion of the field-strength of A,

F = F0 + f + 1
2[α, α], (B.3)

with f := DA0α = D0α. It is further supposed that the background satisfies the source-free
YM equation D0 ∗F0 = 0, with F0 the field-strength of A0, so that (B.1) is rewritten,

����D0 ∗F0 + [α, ∗F0] +D0 ∗f︸ ︷︷ ︸
linear in α

+ [α, ∗f ] +DA ∗ 1
2[α, α]︸ ︷︷ ︸

:= {D ∗ F}R, order ≥ 2 in α

= J,

D0 ∗f + [α, ∗F0] = J − {D ∗ F}R := j. (B.4)

The point is to prove the fact that, on-shell, the newly defined current satisfies a covariant
conservation law w.r.t. the background. It is easily found that, on the one hand D0D0 ∗f =
[F0, ∗f ], and on the other hand

D0[α, ∗F0] = [D0α, ∗F0]− [α,����D0 ∗F0] = [f, ∗F0]. (B.5)

Thus, applying D0 on (B.4), one indeed gets the on-shell relation D0j ≈ 0.
Now the second ansatz is introduced, i.e. that one considers the Killing equation

D0χ = 0, (B.6)

so that χ is a symmetry of the background field A0, and from which follows of course
D0D0χ = [F0, χ] = 0. Then, from the D0-conservation of j and (B.6) one obtains

dTr(χj) = Tr(dχ j) + Tr(χdj) + Tr([A0, χ], j) + Tr(χ [A0, j])︸ ︷︷ ︸
= 0 by H-invariance of Tr

= Tr(D0χ j) + Tr(χD0j) ≈ 0, (B.7)
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We have then the conserved Noether current Jχ := Tr(χj), and integrated over the codi-
mension 1 surface Σ, it gives the Noether charge Qχ :=

∫
Σ Tr(χj) associated with the

background Killing symmetry χ.
But this is not over yet: using again the field equations (B.4), we get

Qχ =
∫

Σ
Tr(χj) ≈

∫
Σ

Tr(χD0 ∗f) + Tr(χ [α, ∗F0])︸ ︷︷ ︸
−Tr([α,χ]∗F0)=0

=
∫

Σ
dTr(χ ∗f)− Tr(���D0χ ∗f) =

∫
∂Σ

Tr(χ ∗f). (B.8)

Which may be compared to eq. (3.38) in section 3.3.1. A final step can be taken to get,

Qχ =
∫
∂Σ

Tr(χ ∗f) =
∫
∂Σ
∗Tr(χD0α) =

∫
∂Σ
∗ dTr(χα), (B.9)

using again the Killing equation. Abbott and Deser [34] remark that this, in component,
generalises the electric charge in electrodynamics. It reduces to it indeed in the abelian
case, as then the Killing equation is dχ = 0, so the constant gauge parameter exits the
integral — and we recover the notion that the conservation of the electric charge results
from a global (instead of gauge) abelian symmetry.

C Commutation relations with the extended bracket (3.20)

The bracket under consideration is defined by {χ,η} := [χ,η] + χv(η) − ηv(χ) for φ-
dependent gauge parameters. In this paper we have χ,η ∈ LieH, which actually reduces
the bracket to −[χ,η]. But we do not make this simplification so as to keep the calculations
valid for field-dependent diffeomorphisms. Let us compute, using (2.5),

[ιχv , ιdηv ]dφ = ιχvδdηφ−����ιdηvδχφ = δdη(χv)φ = ι[χv(η)]vdφ. (C.1)

As ιdηv is manifestly a derivation of degree 0, [ιχv , ιdηv ] is a derivation of degree −1. The
above result thus extends to arbitrary variational form: [ιχv , ιdηv ] = ι[χv(η)]v .

Now let us consider,

[Lχv , ιηv ]dφ = Lχvδηφ− ιηvd (ιχvdφ) = ιχvd (δηφ)− ιηvd (δχφ) ,
= ιχv (δdηφ+ δηdφ)− ιηv (δdχφ+ δχdφ) ,
= δχv(η)φ+ δηδχφ− δηv(χ)φ− δχδηφ,
= δ[χ,η]φ+ δχv(η)φ− δηv(χ)φ,

= ι{χ,η}vdφ. (C.2)

The bracket of ιχv and ιdηv is a derivation of degree −1 that extends to any form, so
[Lχv , ιηv ] = ι{χ,η}v . From this and [Lχv ,d] = 0 follows that,

[Lχv ,Lηv ] = [Lχv , ιηvd+ dιηv ],
= Lχv ιηvd− ιηvdLχv + Lχvdιηv − dιηvLχv ,
= Lχv ιηvd− ιηvLχvd + dLχv ιηv − dιηvLχv ,
= [Lχv , ιηv ]d+ d[Lχv ιηv ] = ι{χ,η}vd+ dι{χ,η}v ,
= L{χ,η}v . (C.3)
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