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D.7 Scattering: Niu
M → d̄M d̄′M 28

D.8 Scattering: fAf ′B → fAf ′B 28
D.9 Scattering: fAf̄A → f ′B f̄ ′B 29
D.10 Combined evolution equations 29

E Higgs signal strengths constraints 35

F Computation of the mirror atom abundance 36

– i –



J
H
E
P
1
2
(
2
0
2
1
)
1
6
0

1 Introduction

The Twin Higgs [1, 2] attempts to solve the little hierarchy problem by introducing partners
that are neutral under the Standard Model (SM) gauge groups and is the prime example
of Neutral Naturalness. Its simplest version is the Mirror Twin Higgs. In this model, a
copy of every SM field is introduced. The principal difference is that these mirror partners
are instead charged under new gauge groups that reflect those of the Standard Model.
The Higgs doublet and its mirror partner can then be combined to write a potential that
respects an approximate global SU(4) symmetry. Its spontaneous breaking to SU(3) results
in seven (pseudo)-Goldstone bosons. Three are eaten by the massive SM gauge bosons and
three by their partners. The remaining one corresponds to the experimentally observed
Higgs boson. Its mass is protected at one loop by a Z2 interchange symmetry which ensures
that the leading correction to the potential respects SU(4) and hence does not contribute
to the Higgs mass directly. The latter is then effectively protected by neutral partners.
This symmetry imposes an equality between the Yukawa and gauge couplings of the two
sectors. Without unacceptable tuning, the mirror partners are typically a factor of a few
heavier than their SM equivalents.

It is a well established fact that the Z2 symmetry must be broken for the Twin Higgs
to be compatible with the Higgs signal strengths measurements. During the early days of
the model and often still to this day, this was done by introducing explicit soft Z2 breaking.
The possibility of doing without this explicit Z2 breaking and having the symmetry only
broken spontaneously is both aesthetically appealing and likely to facilitate UV comple-
tions. Refs. [3–7] demonstrated that, at least as far as collider constraints are concerned,
it is possible to do so and in addition the amount of tuning required decreases.

At the same time, the Twin Higgs model can be consistent with cosmology, which is
already the subject of a considerable literature [8–25].1 In a similar fashion to the Higgs
signal strengths, the cosmology of the Twin Higgs also requires Z2 breaking. It was amply
demonstrated that viable cosmology can be obtained via explicit Z2 breaking. However,
one question that is still unanswered in the literature is whether cosmology requires this
breaking to be explicit. Indeed, all previous works either included some sort of explicit
Z2 breaking, be it some gauge or Yukawa couplings being different, some particles being
absent in one sector or even more esoteric possibilities, or never presented a full model that
could address all known issues while providing an adequate dark matter candidate.

The fact however is that the cosmology of the Twin Higgs with explicit Z2 breaking
already presents major challenges. With only spontaneous breaking, these challenges are
exacerbated, as respecting this symmetry imposes additional constraints and reduces our
set of tools to address them.

The first such challenge is baryogenesis. The Z2 symmetry being only broken sponta-
neously almost unavoidably leads to domain walls, which may overclose the Universe. As
long as inflation lasts long enough, their density can thankfully be brought to acceptable
levels. In addition, domain walls will not be reintroduced during reheating as long as the
reheating temperature does not reach the Z2 restoration scale. However, most standard

1See also refs. [26–36] for examples of cosmology in Mirror World.
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baryogenesis mechanisms take place at temperatures higher or not too far from the ex-
pected Z2 restoration temperature. One obvious way to solve this apparent conflict is for
baryogenesis to take place below the Z2 restoration scale. However, this could be challeng-
ing in general for mechanisms like electroweak baryogenesis [37–39] or leptogenesis [40].
This is even more difficult if one wishes for dark hadrons to represent dark matter via some
realization of Asymmetric Dark Matter [41–43].

The second challenge is the contribution of the mirror photon and mirror neutri-
nos to the effective number of relativistic degrees of freedom Neff, which is severely con-
strained by both the Cosmic Microwave Background (CMB) and Big Bang Nucleosynthesis
(BBN) [44, 45]. With explicit Z2 breaking, such particles can be removed or made heavier,
but this is non-trivial when Z2 is not broken explicitly. Note however that some exist-
ing solutions to the Neff problem only need some expectation values to differ between the
two sectors and could in principle be accommodated without explicit Z2 breaking (see e.g.
refs. [8–10, 12]).

The third challenge is that, even if it could explain the observed dark matter abundance
via Asymmetric Dark Matter, the standard Mirror Twin Higgs would lead to dark matter
in the form of mirror atoms. The problem with this scenario is that these would display
self-interactions similar to normal atoms. If dark atoms were to represent the entirety of
dark matter, their self-interactions would be ruled out by orders of magnitude or would
require tuning at an unacceptable level [46–48]. It is then crucial to be able to modify the
model such that the dark matter takes a more acceptable form, such as mirror neutrons.

With this context in mind, the goal of the present paper is to study the feasibility
of constructing cosmologically viable Twin Higgs Models without explicit Z2 breaking.
The construction of a full model is rather ambitious and we will instead limit ourselves
to studying whether it is possible to individually solve the three challenges mentioned
above. More specifically, we will study whether it is possible to realize baryogenesis without
reintroducing domain walls, whether the same process can also generate the correct dark
matter abundance and/or solve the Neff problem and whether dark matter can be converted
into an acceptable form.

The end result will be that it is indeed possible to overcome these challenges. This will
be demonstrated by presenting two different models. The first one includes two Majorana
fermions. The heaviest one is assumed to dominate the energy content of the Universe at
early times. It then decays and produces a net amount of both baryons and mirror baryons,
as well as some amount of the lighter Majorana fermion. As the Universe expands, the
lighter Majorana fermion comes to dominate the energy abundance. Because of kinematical
reasons, it then decays mainly to the Standard Model sector, thus reheating that sector.
The model can provide the correct matter abundance while maintaining temperatures that
are low enough not to reintroduce domain walls. It can also either solve the Neff problem
and reduce the abundance of dark atoms to an acceptable level or provide the correct dark
matter abundance.

The second model solves the remaining problem of dark matter self-interactions. A set
of vector quarks is introduced in each sector. These mix with their respective up quarks via
Yukawa interactions with the Higgs. This mixing has the effect of adding to the mass of the
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up quark of a given sector a contribution proportional to the vev of the Higgs of that sector
cubed. This results in the mass of the mirror up quark increasing faster than the mass
of the mirror down as the vev of the mirror Higgs increases. As such, the mirror proton
can be made considerably heavier than the mirror neutron. Dark matter then consists of
mirror neutrons and the abundance of mirror atoms can be brought to negligible levels.
The smallness of the mass of the up quark ensures that the required amount of mixing is
small enough to be comfortably below any current experimental constraints.

The article is organized as follows. The first model is introduced, its mechanism ex-
plained, its constraints discussed and its parameter space studied. The second model
is then introduced, its constraints discussed, its parameter space studied and alternative
models presented. An appendix presents some useful results on energy exchange between
different sectors for cosmological evolution. Additional appendices discuss the decay asym-
metry, scattering asymmetries, the evolution equations, the Higgs signal strengths and the
computation of the dark atom abundance.

2 Addressing baryogenesis, dark matter abundance and Neff

We begin this paper by introducing a toy model which can potentially address baryogenesis,
dark matter abundance and Neff while maintaining temperatures below the Z2 restoration
scale. The model serves as a proof of principle and it goes without saying that variations
are possible. This section contains a description of the model, an explanation of the
mechanisms involved, a discussion of the different constraints and some summary scans of
parameter space. To avoid obscuring the discussion with technicalities, all mathematical
details concerning the cosmological evolution are relegated to appendices A, B, C and D.

2.1 Model summary

The field content of the model is as follows. First, a complete copy of the Standard Model
is introduced. Fields from the SM sector are labelled with an A and those of the mirror
sector with a B.2 The Higgs doublets are labelled as HM and obtain expectation values
〈HM0〉 = vM/

√
2, with vB larger than vA by a factor of a few to satisfy Higgs signal

strength requirements. How these vevs are acquired is irrelevant to the present discussion,
but can be done via spontaneous breaking [3–7]. In addition, several fields without SM
equivalents are introduced. Every field labelled by χ is a left-handed Weyl spinor and those
labelled by φ are complex scalars. The fields are

χN1 : (1,1, 0,1,1, 0) , χN2 : (1,1, 0,1,1, 0) ,

φA :
(

3,1,−1
3 ,1,1, 0

)
, φB :

(
1,1, 0,3,1,−1

3

)
,

(2.1)

where we used the notation

(SU(3)A, SU(2)A,U(1)A, SU(3)B, SU(2)B,U(1)B). (2.2)
2When referring to an unspecified sector, we will use the index M .
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The Lagrangian containing the interactions relevant to us can be separated into two
parts. The first one involves the fermions and can be written as

L1 =− 1
2mN1χN1 · χN1 −

1
2mN2χN2 · χN2 + h.c.

+ λ3ij
[
(φA)†χdAiR · χuAjR + (φB)†χdBiR · χuBjR

]
+ h.c.

+ λ4ij
[
φAχNj · χdAiR + φBχNj · χdBiR

]
+ h.c.

(2.3)

This can be rewritten in terms of Majorana spinors Ni as

L1 =− 1
2mN1N̄1N1 −

1
2mN2N̄2N2

+ λ3ij
[
(φA)†d̄Ai PL(uAj )c + (φB)†d̄Bi PL(uBj )c

]
+ h.c.

+ λ∗4ij

[
(φA)†N̄jPRd

A
i + (φB)†N̄jPRd

B
i

]
+ h.c.

(2.4)

It is easy to verify that this Lagrangian allows for both baryon number and CP violation.
The second part of the Lagrangian is responsible for providing different masses to

φA and φB without explicit Z2 breaking. This can be done in several ways. First, the
Lagrangian could contain the term

− λ0
[
|HA|2|φA|2 + |HB|2|φB|2

]
. (2.5)

Replacing the Higgs doublets by their expectation values will affect the masses of φA and
φB differently. Alternatively, new scalar fields could be introduced and play a similar role
to HM . This can be done for example by introducing another Higgs doublet and its partner
or by introducing a real scalar and its partner. In these cases, the different vevs can be
obtained again by spontaneous breaking of the Z2 symmetry. Since there are so many
possibilities and since this is sufficient, we will simply work with the effective Lagrangian

L2 = −m2
φ

[
|φA|2 + |φB|2

]
−∆m2

φA |φ
A|2 −∆m2

φB |φ
B|2

= −m2
φA |φ

A|2 −m2
φB |φ

B|2.
(2.6)

2.2 Description of the mechanism

We now proceed to describe how this model solves the issues it is designed to address. We
refer to figure 1 for illustration of the evolution of different relevant quantities in a given
benchmark. The parameters are taken as

mN1 = 150 GeV, mN2 = 1500 GeV, mφA = 15267 GeV, mφB = 25000 GeV
vB/vA = 5, λ323 = 0.05, λ431 = 0.05, λ432 = 0.0005 eiπ/4.

(2.7)

All unspecified λ3ij and λ4ij are set to zero. The initial density of N2 is set to 107 GeV3

and its temperature to zero. All other initial densities are set to zero. The mass of φA
is chosen to reproduce the correct baryon abundance. This benchmark also leads to an
rT = TB/TA of 0.408, which satisfies the bounds on Neff as will be discussed in section 2.3.
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Figure 1. Evolution of the (a) energy fractions, (b) asymmetries, (c) temperatures and (d) tem-
perature ratio for the benchmark of section 2.2.

The abundance of dark baryons is ΩB = 6.02× 10−4. Even assuming all dark baryons are
mirror atoms, this is still considerably below experimental bounds, as will be discussed in
section 2.3. The value of vB/vA satisfies the Higgs signal strengths, which are discussed in
appendix E. The temperature of sector M is labelled as TM , its energy density as ρM , its
entropy density as sM , its net baryon density as ∆BM and

∆YBM = ∆BM
sA

. (2.8)

This benchmark is not special and a summary exploration of the parameter space will be
performed in section 2.4.3 The whole process can be separated into three qualitative phases.

Initially, the energy content of the Universe is dominated by the heavier Majorana
fermion N2. This situation could easily be realized through the decay of the inflaton if its
coupling to N2 is considerably stronger than its other couplings. Early on, N2 starts to

3Since the φM scalars are always treated as heavy, the results can easily be rescaled by making the
transformations mφM → αmφM , λ3ij → αλ3ij and λ4ij → αλ4ij , where α is a real constant.
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decay. It can decay to the A sector mainly via three channels: to three quarks, to three
antiquarks or to N1, a quark and an antiquark. Similar decays to the mirror sector are also
present. Because of the presence of a third decay channel in each sector and in conjunction
with the Nanopoulos-Weinberg theorem [49], N2 can present an asymmetry in its decay to
baryons and antibaryons and similarly for its decay to the mirror sector. In practice, this
comes from the interference of the diagrams of figure 7. The asymmetry in the B sector
can be adjusted by changing the ratio mφB/mφA . Once the N2 are mostly decayed, the
Universe is populated with particles from the A and B sectors as well as some N1. Baryon
asymmetries are also present in both sectors.

As time passes, the expansion of the Universe dissolves the energy densities of the
different particles. As the A and B sectors are radiation dominated, their energy densities
scale as a−4, where a is the scale factor. Since N1 is mostly non-relativistic, its energy
density instead scales as a−3 and soon comes to dominate the energy abundance.

Finally, the N1 population starts to decay. In principle, N1 could decay to particles of
either sector. However, there exists a sizable region of parameter space, which includes the
benchmark, where the decay to the B sector is strongly suppressed because of kinematics.
In the benchmark, N1 can decay to the A sector as an off-shell top, a bottom and a strange.
It however cannot decay to a mirror top, a mirror bottom and a mirror strange or even
two mirror bottoms, a mirror strange and a mirror W as both the mirror top and mirror
W are too heavy to be produced on-shell. This results in the N1 population transferring
its energy almost exclusively to the A sector and thus a relative reheating of that sector.
This constitutes the main mechanism through which the Neff problem is solved. This is
also why the Ni were assumed to couple mainly to up-type quarks of the third generation,
as having the decay of N1 only being possible to one sector is easy to accomplish thanks to
the large mass of the top quark. The decay of N1 does not generate any sizable asymmetry
and in fact partially dissolves the asymmetries by injecting entropy.

The end result of this mechanism is an A sector with a net population of baryons
and a B sector with a much smaller net population of mirror baryons. This both explains
baryogenesis and satisifies the bounds on dark matter self-interactions associated with the
dark atoms. The fact that the mirror sector is much cooler also ensures that the Neff
constraints are satisfied. The temperature of each sector is also maintained at all times
considerably below the electroweak scale.

2.3 Constraints

Neff. The number of effective relativistic degrees of freedom Neff is measured by Planck
to be 2.99± 0.17 [45]. During BBN and the creation of the cosmic microwave background,
the numbers of relativistic degrees of freedom in both sectors are about the same, which
puts a limit on

rT = TB
TA

=
(∆Neff

7.4

)1/4
(2.9)

of ∼ 0.44 at 95% CL, where we used the fact that the SM value of Neff is 3.046.
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Fraction of dark atoms. Without additional model building, dark matter would take
the form of mirror atoms. However, a too large fraction of dark atoms XDA is excluded
by limits on dark matter self-interactions. Ref. [50] claims that this fraction can still be as
high as about 10%, though the amount of uncertainty on this number is rather unclear. In
addition, ref. [14] claims that the limit on XDA might be brought to the few percent level in
the not-so-distant future. When relevant, we will present contours of XDA and emphasize
that the region above 10% is disfavoured.

Big Bang Nucleosynthesis. If N1 is sufficiently long-lived, it will disturb BBN by
injecting energetic hadrons and modify the observed abundances of primordial elements.
Unfortunately, the cosmology of the model is rather exotic and no study of the decay of
metastable particles during BBN perfectly mimics it. As such, we will simply ask that the
lifetime of N1 be below 0.1 s, which is the typical bound (see for example refs. [51–53]).
Considering that BBN limits are generally not strongly dependent on parameters such as
the mass of the metastable particle and its branching ratio to hadronic channels, a more
advanced treatment is not expected to change this constraint much.

Higgs signal strengths. The limits on the Higgs signal strengths are applied using the
results of appendix E.

Direct collider searches. The only new coloured particle in the model is the colour-
triplet scalar φA. Its pair production at the 13TeV LHC in the mass range we consider
(& 5TeV) is negligible (� 1 event). The fermions N1 and N2 are gauge singlets and
do not need to have any significant couplings that involve pairs of light quarks, so their
direct production is irrelevant too. In part of the parameter space, N1 can be produced in
top quark decays, but the branching fraction is highly suppressed by the mass of φA, the
small couplings and phase space. Part of the B sector particles can be produced in Higgs
decays (and escape the detectors invisibly), but the resulting effect on the visible branching
fractions of the Higgs is too small to be seen in the current datasets (see appendix E).

2.4 Parameter space and comments

We now provide some summary scans and comment on various properties of the model.
Figure 2 shows contours of different relevant quantities as a function of mφA and mφB

for vB/vA = 5 and mN1 = 150GeV. The other parameters are set to

mN2 = 1500 GeV, λ323 = 0.05, λ431 = 0.05, λ432 = 0.0005 eiπ/4. (2.10)

All other λ couplings are set to zero. The initial density of N2 is set to 107 GeV3 and its
temperature to zero. All other initial densities are set to zero. Figures 3 and 4 show in
different colours the regions of parameter space that provide a sufficient amount of matter,
a sufficient amount of dark matter, a sufficiently low ∆Neff or a sufficiently low dark atom
abundance. These plots use the same parameters as figure 2, except for different values of
vB/vA and mN1 . The region excluded by BBN is outside the plot to the right.

As can be seen, there are regions of parameter space that can individually provide
the correct matter abundance, the correct dark matter abundance or a sufficiently low
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Figure 2. Contours of constant (a) ΩA, (b) ΩB , (c) TB/TA and (d) Tmax
A for the benchmark of

eq. (2.10) with vB/vA = 5 and mN1 = 150GeV.

∆Neff. At low mφA , the amount of normal matter is small because wash-out effects erase
most of the asymmetry. At high mφA , the amount of matter is also small because the decay
asymmetry is suppressed. The amount of matter is therefore optimized for an intermediary
value of mφA . The same discussion applies to the B sector. The only difference is that
the wash-out effects are less important because they involve the mirror top, which is very
heavy and thus suppresses wash-out. The contribution to Neff simply decreases as mφA

and mφB become larger, as this increases the lifetime of N1 and decreases the efficiency of
processes that destroy N1 around the time N2 decays.

In addition, there are regions that can meet several of these requirements at the same
time. Two of them are especially interesting. First, the blue/green region provides a
sufficient amount of matter and dark matter. It however does not provide a sufficiently low
∆Neff and the dark matter self-interactions are too large. These two issues could however be
addressed by additional model buildings. Second, the blue/purple/yellow region provides a
sufficient amount of matter and a sufficiently low ∆Neff. It also has the benefit of leading to
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Figure 4. Regions of sufficient matter abundance (blue), sufficient dark matter abundance (green),
sufficiently low ∆Neff (purple) and sufficiently low dark atom abundance (yellow).
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an amount of mirror atoms sufficiently low to pass the dark matter self-interactions bounds.
This region is especially interesting, as it only requires an additional source of dark matter
for it to provide a complete valid cosmology. Assuming the mechanism responsible for
the production of this extra dark matter is over when N2 starts to decay, our mechanism
wouldn’t be affected much by the small amount of dark matter that would lead to the
current density. Otherwise, the consequences of the production of this extra dark matter are
too model dependent to make a general statement. More extensive scans of the parameters
of eq. (2.10) and initial conditions did not reveal any region that could at the same time
provide the correct matter and dark matter abundance with a sufficiently low ∆Neff. If
such a region exists, it is most likely unnatural or requires a large reheating temperature.

Different branching ratios of N2 to the A and B sectors have relatively little impact
on the final temperature ratio. This is because the A and B sectors acquire sufficiently
high temperatures to reach thermal equilibrium via Higgs boson exchange. The initial
temperature difference is simply erased. Also, this thermal equilibration between the A
and B sectors makes it necessary for N1 to decay after the two sectors have decoupled.
However, the amount of time required for N1 to dominate the energy abundance is typically
much larger and generally controls the required lifetime of N1.

The process N1N1 → b̄MbM is responsible for the destruction of a large fraction of the
N1. This is why relatively so few of them are present in figure 1a immediately after the
decay of N2, despite its relatively large branching ratio to N1b

M b̄M .
The peak that can be seen in figure 1d at 10−5 s corresponds to the B sector QCD

phase transition quickly followed by the A sector QCD phase transition. Despite its rather
striking nature, it affects relatively little the final results as the A and B sectors have
decoupled by this point. If the decoupling of the two sectors had taken place between the
two QCD phase transitions, this could have contributed to a partial solution of the Neff
problem, which was explored in ref. [8].

Arguably the most crucial question concerning baryogenesis is whether it can be done
while maintaining temperatures low enough not to reintroduce domain walls. A rigorous
answer to that question however requires the knowledge of the full potential and not simply
vA and vB as we have only provided. As such, this question cannot be fully answered here.
However, it can be seen in figure 2d that the reheating temperatures can be comfortably
below the electroweak scale. As long as N1 is sufficiently light, this reheating temperature
is mostly independent of mN1 and vB/vA. Barring any esoteric model building, the Z2
symmetry restoration temperature of a given Twin Higgs model should be far higher than
such temperatures and domain walls should not be a problem. We also mention that these
temperatures are considerably above the lower bound for reheating from BBN [54].

3 Mirror neutrons as dark matter

As explained before, dark matter cannot realistically take the form of dark atoms in the
Mirror Twin Higgs. In this section, we discuss a model without explicit Z2 breaking
in which dark matter consists of mirror neutrons. The model is summarized and the
constraints discussed. Two alternative models are then presented.
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3.1 Model summary

One easy albeit not necessarily obvious way to make the mirror proton heavier than the
mirror neutron is via the inclusion of vector quarks. Introduce the vector fermions

UA :
(

3,1, 2
3 ,1,1, 0

)
, UB :

(
1,1, 0,3,1, 2

3

)
,

QA :
(

3,2, 1
6 ,1,1, 0

)
, QB :

(
1,1, 0,3,2, 1

6

)
.

(3.1)

The part of the Lagrangian that controls the up-type quark masses is

L =− yu
[
(H̃A)†ūAPLqA + (H̃B)†ūBPLqB

]
+ h.c.

− YQ
[
(H̃A)†ūAPLQA + (H̃B)†ūBPLQB

]
+ h.c.

− YU
[
(H̃A)†ŪAPLqA + (H̃B)†ŪBPLqB

]
+ h.c.

− YV
[
(H̃A)†ŪAPRQA + (H̃B)†ŪBPRQB

]
+ h.c.

−MU

(
ŪAUA + ŪBUB

)
−MQ

(
Q̄AQA + Q̄BQB

)
,

(3.2)

where H̃M = iσ2(HM )∗ and where we considered only the first generation. The mass of
the lightest eigenstate ûM1 of sector M is then given approximately by

mûM1
≈ yuv

M

√
2

+ YUYQY
∗
V (vM )3

2
√

2MQMU

. (3.3)

A similar mixing could take place for the down quark, but we will assume it to be negligible.
The main point of this mechanism is the correction to mûM1

that goes as (vM )3. As-
suming this term is negligible for the down quark, the presence of this correction ensures
that the mass of the mirror up quark increases more rapidly than the mirror down quark as
vB increases. Barring any experimental constraints, this is sufficient to make the mirror up
quark heavier than the mirror down quark and results in the mirror proton being heavier
than the mirror neutron, which decreases the abundance of mirror atoms.

As a more technical aside, the presence of the (vM )3 term is especially interesting.
Ref. [22] studied the mirror neutron as a dark matter candidate in the Mirror Twin Two
Higgs Doublet Model (MT2HDM). One of the major challenges was that increasing the
mirror vevs could certainly increase the splitting between the mass of the mirror proton
and mirror neutron, but it also reduces the mirror Fermi constant. This reduction has the
effect of making processes that convert mirror protons to mirror neutrons freeze-out earlier.
These two effects partially cancel each other, either requiring tan βA to be small or forcing
certain parameters to be closer to their experimental limits. This dependence on (vM )3

ensures that this cancellation is much weaker, avoiding the main issue of the MT2HDM.

3.2 Constraints

Neff, Higgs signal strengths and fraction of dark atoms. The constraints on Neff
and the Higgs signal strengths are applied as in section 2.3. The fraction of dark atoms is
computed using the procedure of appendix F.
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Precision measurements. The mixing of chiral quarks with vector quarks also af-
fects electroweak precision measurements. The masses of the up-like quarks coming from
eq. (3.2) are

L ⊃ −
(
ūM ŪM ŪMQ

)
yuvM√

2 0 YQv
M

√
2

YUv
M

√
2 MU 0

0 Y ∗V v
M

√
2 MQ


PLu

M

PLU
M

PLU
M
Q

+ h.c., (3.4)

where UMQ (DM
Q ) is the positively (negatively) charged part of QM . This can be diagonalized

by performing the basis change
PLu

M

PLU
M

PLU
M
Q

 = RML

PLû
M
1

PLû
M
2

PLû
M
3

 ,
PRu

M

PRU
M

PRU
M
Q

 = RMR

PRû
M
1

PRû
M
2

PRû
M
3

 , (3.5)

where ûMi are the mass eigenstates of sector M ordered from lightest to heaviest. We
consider three types of precision measurements.

First, the S and T parameters can be computed using the results of refs. [55–58] (see
also refs. [59, 60] for their use in relation to vector fermions)

S =Nc

2π
∑
i,j

{(
|ALij |2 + |ARij |2

)
ψ+(yi, yj) + 2Re

(
ALijA

R∗
ij

)
ψ−(yi, yj)

− 1
2
[(
|XL

ij |2 + |XR
ij |2
)
χ+(yi, yj) + 2Re

(
XL
ijX

R∗
ij

)
χ−(yi, yj)

] }
,

T = Nc

16πs2
W c

2
W

∑
i,j

{(
|ALij |2 + |ARij |2

)
θ+(yi, yj) + 2Re

(
ALijA

R∗
ij

)
θ−(yi, yj)

− 1
2
[(
|XL

ij |2 + |XR
ij |2
)
θ+(yi, yj) + 2Re

(
XL
ijX

R∗
ij

)
θ−(yi, yj)

] }
,

(3.6)

where Nc is the number of colours, sW (cW ) is the sin (cos) of the weak mixing angle,
yi = m2

i /m
2
Z ,

ψ+(y1, y2) = 1
3 −

1
9 ln y1

y2

ψ−(y1, y2) = − y1 + y2
6√y1y2

χ+(y1, y2) = 5(y2
1 + y2

2)− 22y1y2
9(y1 − y2)2 + 3y1y2(y1 + y2)− y3

1 − y3
2

3(y1 − y2)3 ln y1
y2

χ−(y1, y2) = −√y1y2

[
y1 + y2
6y1y2

− y1 + y2
(y1 − y2)2 + 2y1y2

(y1 − y2)3 ln y1
y2

]
θ+(y1, y2) = y1 + y2 −

2y1y2
y1 − y2

ln y1
y2

θ−(y1, y2) = 2√y1y2

[
y1 + y2
y1 − y2

ln y1
y2
− 2

]
,

(3.7)
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with
ALûid = (RAL)∗1i, ARûid = 0, ALûiDQ = (RAL)∗3i, ARûiDQ = (RAR)∗3i,

XL
dd = −1, XR

dd = 0, XL
DQDQ

= XR
DQDQ

= −1,

XL
ûiûj =

(
1− 4

3s
2
W

)
(RAL)∗1i(RAL)1j +

(
1− 4

3s
2
W

)
(RAL)∗3i(RAL)3j

− 4
3s

2
W (RAL)∗2i(RAL)2j + 4

3s
2
W δij ,

XR
ûiûj = −4

3s
2
W (RAR)∗1i(RAR)1j +

(
1− 4

3s
2
W

)
(RAR)∗3i(RAR)3j

− 4
3s

2
W (RAR)∗2i(RAR)2j + 4

3s
2
W δij .

(3.8)

The new physics contributions to the oblique parameters are then

∆S = S − SSM, ∆T = T − TSM, (3.9)

with
SSM = Nc

6π

[
1− 1

3 ln
m2
uA

m2
dA

]
, TSM = Nc

16πs2
W c

2
W

θ+(yuA , ydA). (3.10)

Second, the weak nuclear charges of 133Cs and 204Tl from atomic parity violation are
computed using the results of ref. [61]. This gives a contribution from new physics of

δQW = (2Z +N)
[(

1− 4
3s

2
W

)
|(RAL)11|2 +

(
1− 4

3s
2
W

)
|(RAL)31|2 −

4
3s

2
W |(RAL)21|2

− 4
3s

2
W |(RAR)11|2 +

(
1− 4

3s
2
W

)
|(RAR)31|2 −

4
3s

2
W |(RAR)21|2 − 1 + 8

3s
2
W

]
,

(3.11)

where Z and N are respectively the number of protons and neutrons in an element.
Third, mixing of the chiral up with vector quarks leads to violation of the unitarity of

the CKM matrix. The first row is the most precisely measured and the sum of the absolute
values of its elements squared becomes

|Vud|2 + |Vus|2 + |Vub|2 = 1− δV, (3.12)

where
δV = 1− |(RAL)2

11|. (3.13)

Direct collider searches. Searches for vector partners of the light quarks have been
performed by ATLAS and CMS in the 8TeV, 20 fb−1 dataset [62, 63] and excluded pair
production of such quarks up to masses of 845GeV or lower, depending on branching
fractions. Even though dedicated searches for such signatures have not yet been done on
the full currently available dataset, it is reasonable to assume that vector quarks with
masses ∼ 1.5TeV and higher are still consistent with the data, given that recent dedicated
searches for vector partners of the heavy quarks, whose decays include b jets (which is an
easier signature) set limits only up to ∼ 1.6TeV [64, 65]. Additionally, scenarios with large
mixing have significant cross sections for single and pair production of vector quarks via
electroweak processes, which can be constrained by various LHC measurements [66].
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3.3 Parameter space and comments

Figure 5 shows the allowed parameter space as a function of vB/vA and YU = YQ forMU =
2TeV, MQ = 3TeV, YV = 1 and rT = 0.4. The parameter yu is adjusted to reproduce
the correct mass of the up quark. This choice of parameters ensures that no regions of the
plots are excluded by the precision measurements, but is not in any way uncharacteristic.
Contours corresponding to the dark atom abundance and the contributions to the different
electroweak precision measurements of section 3.2 are also shown. The oblique parameters
are almost constant over the region shown and are given by ∆S ∼ 6.6 × 10−4 and ∆T ∼
2.6× 10−3. Figure 6 shows contours of XDA for other values of rT .

As can be seen, the fraction of dark atoms can easily be brought to extremely low
levels. This can be done while leading to contributions to experimental measurements well
below any current limits. In addition, mixing of the chiral up quark with vector quarks
could in principle contribute enough to its mass that it might require some amount of
tuning for it to remain light. As such, we can define a measure of tuning as

∆ = max
p∈P

{∣∣∣∣∣d lnmûA1

d ln p

∣∣∣∣∣
}
, (3.14)

where P = {yu, YQ, YU , YV ,MU ,MQ, vA}. The tuning is then given by t = 1/∆. As can be
seen in figure 5e, all constraints can be satisfied without t needing to be small.

Do note that a sufficiently large splitting between the masses of the mirror down and
mirror up could eventually lead to the spin-3/2 baryon dBdBdB being lighter than the
mirror neutron. This would reintroduce the dark atoms problem. A naive estimate in
combination with the lattice results of ref. [67] reveals that this takes place at values of
YU = YQ and vB/vA much larger than those required to obtain a sufficiently low XDA.

In simple terms, the mechanism works so well because the mass of the up quark is so
small that it can be considerably modified without introducing much mixing.

3.4 Alternative models

In this section, we describe two alternative models to obtain mirror neutrons as dark matter
candidates. We only present the models and leave detailed studies of their constraints for
future work.

Both models are inspired by ref. [22], which showed that mirror atoms could be brought
to acceptable abundances in the MT2HDM with explicit Z2 breaking. The idea of the
paper was to introduce two Higgs doublets HA

1 and HA
2 and their partners HB

1 and HB
2 .

By assumption, HA
2 provides mass to the up-type quarks and HA

1 to the down-type quarks.
The masses of the quarks of the A and B sectors obey the following relation

muB

mdB
= tan βB

tan βA
muA

mdA
, (3.15)

where tan βM = 〈HM
2 〉/〈HM

1 〉. As such, taking a sufficiently large tan βB/ tan βA leads
to a mirror proton heavier than the mirror neutron and should decrease the abundance
of dark atoms. The main challenge however is that increasing the mirror vevs decreases
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Figure 5. Constraints on the vector quarks model with MU = 2TeV, MQ = 3TeV, YV = 1 and
rT = 0.4. The red region is excluded at 95% confidence level by the Higgs signal strengths and the
yellow one is disfavoured by dark matter self-interactions bounds.
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Figure 6. Similar to figure 5 but for different values of rT .

the mirror Fermi constant and makes the processes that convert mirror protons to mirror
neutrons freeze-out earlier. It is then necessary to go to relatively low tan βA or be willing
to accept a mass of the up quark closer to its experimental upper limit. In the end, the
model is compatible with current bounds and does not require additional tuning besides
the one necessary to pass the Higgs signal strengths requirements.

The correct structure of vevs was obtained in ref. [22] by including soft masses that
explicitly broke the Z2 symmetry. The idea of the models of this section is to obtain a
similar vevs structure without any explicit Z2 breaking.

In the first model, a pair of new real scalars SA and SB are introduced. The following
potential can then be introduced

V =− µ2
S

(
(SA)2 + (SB)2

)
+ λS

(
(SA)2 + (SB)2

)2
+ α(SA)2(SB)2

+ λ1
(
(SA)2|HA

1 |2 + (SB)2|HB
1 |2

)
+ λ2

(
(SA)2|HA

2 |2 + (SB)2|HB
2 |2

)
.

(3.16)

Assuming α > 0, the Z2 symmetry will be broken spontaneously by the first line. At tree
level, only one of SA or SB will get a vev and we can assume it to be SB. The second
line of eq. (3.16) then effectively acts as soft Z2 breaking masses that can be adjusted to
reproduce the results of the MT2HDM with explicit Z2 breaking.

The second model is based on ref. [3]. The following potential is introduced

V =− µ2
1

(
|HA

1 |2 + |HB
1 |2

)
+ λ1

(
|HA

1 |2 + |HB
1 |2

)2
+ α1|HA

1 |2|HB
1 |2

− µ2
2

(
|HA

2 |2 + |HB
2 |2

)
+ λ2

(
|HA

2 |2 + |HB
2 |2

)2
+ α2|HA

2 |2|HB
2 |2

−Bµ
(
(HA

1 )†HA
2 + (HB

1 )†HB
2

)
+ h.c.

(3.17)

First, assume Bµ is zero. If αi is positive and the other negative, the i Higgs spontaneously
breaks the Z2 symmetry by obtaining a vev in only one sector, which can be taken to be
the B sector. The other Higgs obtains a vev that maintains the Z2 symmetry. Once the
Bµ term is turned on, the Z2 breaking is transmitted from the broken to the unbroken
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Higgs sector. It was shown that such a vev structure can pass the Higgs signal strengths
requirements. There are then two standard behaviors:

(1) α1 > 0 and α2 < 0 : tan βA > 1, tan βB < 1,
(2) α1 < 0 and α2 > 0 : tan βA < 1, tan βB > 1.

(3.18)

The first possibility is the exact opposite of what is required. The second possibility however
leads to a tan βB/ tan βA that can be considerably larger than one and at the same time
a low tan βA. All the tools necessary to obtain a sufficiently low abundance of dark atoms
are then present. The main drawback is that the model leads to a low tan βA, which can
complicate UV completions.

4 Conclusion

The Twin Higgs attempts to solve the little hierarchy problem by introducing a mirror copy
of the Standard Model related by a Z2 symmetry. Because of the measurements of the Higgs
signal strengths and cosmology, the Z2 symmetry must however be broken. The possibility
of only breaking this symmetry spontaneously is certainly aesthetically appealing. It was
already demonstrated that this can be done for the Higgs signal strengths, but it remained
an open question as to whether this could be done for cosmology. As such, the goal of
this paper was to determine whether it is possible to create Twin Higgs models in which
the Z2 symmetry is only broken spontaneously that can successfully lead to baryogenesis,
provide the correct dark matter abundance, solve the Neff problem and provide a viable
dark matter candidate.

We found that it is indeed possible to create models that address the above issues. To
demonstrate this, we built and studied two of them. In the first model, a pair of Majorana
fermions is introduced. In the early Universe, the heaviest Majorana fermion dominates the
energy abundance. It then decays, producing a net amount of baryons and mirror baryons
as well as some amount of the lighter Majorana fermion. The latter eventually comes to
dominate the energy abundance of the Universe. Because of the masses of the particles
involved, the lighter Majorana fermion then decays almost exclusively to the Standard
Model sector thus reheating it. This model can provide the correct matter abundance
without reaching temperatures that would reintroduce domain walls. It can also either
solve the Neff problem and generate an acceptably low abundance of dark atoms or provide
the correct dark matter abundance.

The second model attempts to convert the dark matter to a form compatible with
limits on dark matter self-interactions. This is done by introducing vector quarks that mix
with the up quark of their respective sector via Yukawa interactions involving the Higgs.
This contributes to the mass of the up quark of a given sector a term proportional to the
vev of the Higgs of that sector cubed. This can easily make the mirror up heavier than the
mirror down and thus result in a mirror proton heavier than the mirror neutron. The dark
matter then takes the form of mirror neutrons and the amount of mirror atoms can be
brought to negligible levels. All considered experimental constraints can easily be satisfied
and the model can be combined with the first one without adverse side effects.
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As a closing word, the models presented in this paper indeed show that the challenges
associated to the cosmology of the Twin Higgs without explicit Z2 breaking can be solved
individually and sometimes multiple at a time. However, whether there exists a simple
model that can solve all of these problems at the same time is still an open question.
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A Thermal averages and energy exchange rates

In this appendix, we present the computations for the thermally averaged cross sections
and energy exchange rates. This is done by expanding the work of ref. [68], from which we
reuse the notation.

A.1 General approach to energy exchange

We focus on 2→ 2 processes of the form

ij → mn, (A.1)

where i, j, m and n are a set of particles not necessarily of distinct species. We will refer
to a generic particle from this set by a lower case Greek letter. The mass and number of
internal degrees of freedom of particle α are labelled respectively as mα and gα. In a fixed
‘laboratory’ frame, the momentum of particle α is labelled as pα, its energy as Eα and its
three-momentum as pα. A convenient and complete basis for these energies is

E+ = Ei + Ej , E− = Ei − Ej , E′+ = Em + En, E′− = Em − En. (A.2)

All thermal averages we will be concerned with are of the form

〈F (s, E+, E−)vij〉
Ti,Tj
ij→mn =

∫ d3pi
(2π)3

d3pj
(2π)3F (s, E+, E−)vijfifj∫ d3pi

(2π)3
d3pj
(2π)3 fifj

, (A.3)

where Tα is the temperature of particles α, F (s, E+, E−) is a generic function, s = (pi+pj)2,
vij is the Møller velocity given by

vij =

√
(pi · pj)2 −m2

im
2
j

EiEj
= 2
E2

+ − E2
−

√
(s− (mi +mj)2)(s− (mi −mj)2), (A.4)

and fα the Maxwell-Boltzmann distribution for particle α

fα = e−
Eα
Tα . (A.5)
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Since vij can be expressed as a function of E+, E− and s, the derived result will still be
generic. The inclusion of the vij factor is simply more convenient. The denominator is
trivially given by ∫

d3pi
(2π)3

d3pj
(2π)3 fifj = neqi

gi

neqj
gj
, (A.6)

where neqα is the equilibrium number density of particle α at temperature Tα

neqα = Tα
2π2 gαm

2
αK2

(
mα

Tα

)
, (A.7)

where Kn is the modified Bessel function of the second kind of order n. To simplify the
treatment of the numerator, introduce the notation

TS = 2TiTj
Tj + Ti

, TA = 2TiTj
Tj − Ti

. (A.8)

This can be used to rewrite fifj in the more convenient form

fifj = e
−E+
TS e

−E−
TA . (A.9)

Considering that the only non-trivial angular dependence of the differential element is on
the angle between the momenta of particles i and j, it can be rewritten as

d3pi
(2π)3

d3pj
(2π)3 = E2

+ − E2
−

(2π)4
dE+dE−ds

8 , (A.10)

where the equality is as far as integration is concerned. In terms of these variables, the
region of integration is given by

s > (mi +mj)2, E+ >
√
s, Emin

− < E− < Emax
− , (A.11)

where

E
min/max
− =

E+(m2
i −m2

j )
s

∓ 2pij

√
E2

+ − s
s

, (A.12)

where pij is the norm of the center-of-mass (CM) three-dimensional momentum of particle
i or j and is given by

pij = E2
+ − E2

−
4
√
s

vij =

√
(s− (mi +mj)2)(s− (mi −mj)2)

2
√
s

. (A.13)

With this change of variables, the numerator becomes∫
d3pi
(2π)3

d3pj
(2π)3F (s, E+, E−)vijfifj = 1

32π4

∫
dsdE+dE−

√
spijF (s, E+, E−)e−

E+
TS e

−E−
TA .

(A.14)
Finally, the thermal average is given by

〈F (s, E+, E−)vij〉
Ti,Tj
ij→mn =

∫
dsdE+dE−

√
spijF (s, E+, E−)e−

E+
TS e

−E−
TA

8TiTjm2
im

2
jK2(miTi )K2(mjTj )

. (A.15)

To obtain the cross sections or exchange rates that appear in the cosmological evolution
equations, it suffices to evaluate eq. (A.15) with the proper F (s, E+, E−). For the most
part, this is trivial. The only exception is for E′−, which we elaborate on in the next
subsection. The final results are collected in section A.3.
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A.2 E′− computation

Consider a given collision ij → mn. In addition to the ‘laboratory’ frame, one can define a
center-of-mass frame. Its three-velocity with respect to the ‘laboratory’ is labelled as vCM
and has norm vCM. Conversely, the three-velocity of the ‘laboratory’ in the CM frame is
labelled vlab and has norm vlab = vCM. Quantities in the CM frame are labelled with a
CM subscript. As long as the coordinate systems are properly aligned, the following holds

vlab
vlab

= −vCM
vCM

= − pi + pj
|pi + pj|

= − p+
|p+|

, (A.16)

where p± = pi ± pj and
|p+| =

√
E2

+ − s. (A.17)

The quantity E′− is then related to its CM value by a simple Lorentz transformation

E′− = γCM
[
(E′−)CM − vlab · (p′−)CM

]
, (A.18)

where p′± = pm ± pn. The first term of eq. (A.18) is easily evaluated in terms of standard
2→ 2 kinematics and gives

(E′−)CM = m2
m −m2

n√
s

. (A.19)

The second term can be evaluated as follows. First, decompose (pm)CM as

(pm)CM = pmn cos θm
(pi)CM
pij

+ (p⊥m)CM, (A.20)

where pmn = |(pm)CM| and θm is the angle between (pm)CM and (pi)CM. The three-vector
(p⊥m)CM is the component of (pm)CM perpedicular to (pi)CM. In E′−, it leads to a term
proportional to cos of an azimuthal angle. In the thermal averages, this term vanishes once
integrated over that angle as long as axial symmetry is respected. We will ignore (p⊥m)CM
from now on. Then, we have

vlab · (p′−)CM = 2vCMpmn cos θlab cos θm, (A.21)

where θlab is the angle between vlab and (pi)CM and we used the fact that (pm)CM =
−(pn)CM. The quantity cos θlab is given by

cos θlab = (pi)CM · vlab
|(pi)CM||vlab|

= (p−)CM · vlab
2pij |vlab|

= −(p−)CM · p+
2pij |p+|

. (A.22)

The three-vector (p−)CM is related to its ‘laboratory’ value by a Lorentz transformation

(p−)CM = p− + (γCM − 1)
v2
CM

(p− · vCM)vCM − γCME−vCM

= p− + (γCM − 1)
|p+|2

(p− · p+)p+ − γCME−vCM
p+
|p+|

.

(A.23)

With the results

vCM =

√
E2

+ − s
E+

, γCM = E+√
s
, p− · p+ = E+E− −m2

i +m2
j , (A.24)
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taking the dot product of eq. (A.23) and p+ leads to

(p−)CM · p+ = 1√
s

(
E−s− E+(m2

i −m2
j )
)
. (A.25)

Assembling everything finally leads to the main result of this section4

E′− = E+
s

(
m2
m −m2

n

)
+

(
E−s− E+(m2

i −m2
j )
)

s

pmn
pij

cos θm. (A.26)

A.3 Results for thermal averages and energy exchange rates

With the results of the previous two sections, it is a trivial matter to obtain the thermally
averaged cross sections and energy exchange rates. It suffices to use eq. (A.15) and then
perform the integral over E−, which can easily be done analytically. The results are

〈σv〉Ti,Tjij→mn =
TA
∫∞
smin

ds
∫∞√

s dE+
[
e−A+ − e−A−

]
pij
√
sσ(s)

8TiTjm2
im

2
jK2

(
mi
Ti

)
K2

(
mj
Tj

) ,

〈σvE+〉
Ti,Tj
ij→mn =

TA
∫∞
smin

ds
∫∞√

s dE+E+
[
e−A+ − e−A−

]
pij
√
sσ(s)

8TiTjm2
im

2
jK2

(
mi
Ti

)
K2

(
mj
Tj

) ,

〈σvE−〉
Ti,Tj
ij→mn =

TA
∫∞
smin

ds
∫∞√

s dE+
[
B+e

−A+ −B−e−A−
]
pij
√
sσ(s)

8TiTjm2
im

2
jK2

(
mi
Ti

)
K2

(
mj
Tj

) ,

〈σvE′+〉
Ti,Tj
ij→mn =

TA
∫∞
smin

ds
∫∞√

s dE+E+
[
e−A+ − e−A−

]
pij
√
sσ(s)

8TiTjm2
im

2
jK2

(
mi
Ti

)
K2

(
mj
Tj

) ,

〈σvE′−〉
Ti,Tj
ij→mn =

TA
∫∞
smin

ds
∫∞√

s dE+
(m2

m−m2
n)

s E+
[
e−A+ − e−A−

]
pij
√
sσ(s)

8TiTjm2
im

2
jK2

(
mi
Ti

)
K2

(
mj
Tj

)
+
TA
∫∞
smin

ds
∫∞√

s dE+
[
C+e

−A+ − C−e−A−
]
pmn
√
sσt(s)

8TiTjm2
im

2
jK2

(
mi
Ti

)
K2

(
mj
Tj

) ,

(A.27)

where the indices on vij are now implicit, smin = max{(mi +mj)2, (mm +mn)2},

A± = E+
TS

+ E
min/max
−
TA

, B± = TA + E
min/max
− , C± = TA ∓ 2pij

√
E2

+ − s
s

, (A.28)

and
σt =

∫ t0

t1

dσ

dt
cos θmdt =

∫ t0

t1

dσ

dt

[
1 + t− t0

2pijpmn

]
dt, (A.29)

where t is the standard Mandelstam variable and

t0(t1) =
[
m2
i −m2

j −m2
m +m2

n

2
√
s

]2

− (pij ∓ pmn)2 . (A.30)

4We reiterate that a term proportial to cos of an azimuthal angle was dropped from eq. (A.26) as it
vanishes in all relevant thermal averages.
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With these results, the computation of any exchange rate is trivial.5 In a given 2 → 2
process, it suffices to use eqs. (A.27) and eq. (A.2) to know exactly the rate at which a
specific incoming or outgoing particle gains or loses energy. Knowing the rate at which
particles of a given type either gain or lose energy is then trivial. In the limit of Ti = Tj = T ,
the results of eq. (A.27) reduce to

〈σv〉T,Tij→mn =
∫∞
smin

1√
s
(s− (mi +mj)2)(s− (mi −mj)2)σ(s)K1

(√
s
T

)
ds

8Tm2
im

2
jK2

(mi
T

)
K2

(mj
T

) ,

〈σvE+〉T,Tij→mn =
∫∞
smin

(s− (mi +mj)2)(s− (mi −mj)2)σ(s)K2
(√

s
T

)
ds

8Tm2
im

2
jK2

(mi
T

)
K2

(mj
T

) ,

〈σvE−〉T,Tij→mn =
∫∞
smin

(m2
i−m

2
j )

s (s− (mi +mj)2)(s− (mi −mj)2)σ(s)K2
(√

s
T

)
ds

8Tm2
im

2
jK2

(mi
T

)
K2

(mj
T

) ,

〈σvE′+〉
T,T
ij→mn =

∫∞
smin

(s− (mi +mj)2)(s− (mi −mj)2)σ(s)K2
(√

s
T

)
ds

8Tm2
im

2
jK2

(mi
T

)
K2

(mj
T

) ,

〈σvE′−〉
T,T
ij→mn =

∫∞
smin

(m2
m−m2

n)
s (s− (mi +mj)2)(s− (mi −mj)2)σ(s)K2

(√
s
T

)
ds

8Tm2
im

2
jK2

(mi
T

)
K2

(mj
T

) .

(A.31)

B Decay asymmetry

In this section, we compute the asymmetry between the decay of N2 to baryons and an-
tibaryons. Similar albeit partial results can be found in refs. [69–71]. In an effort to make
the result applicable to more generic models, we do the computation for the toy Lagrangian

L =− 1
2mN1N̄1N1 −

1
2mN2N̄2N2 −m2

φ|φ|2

+ λ3φ
†d̄′PLu

c + h.c.
+ φ†N̄a (LaPL +RaPR) d+ h.c.

(B.1)

The down-type quarks d and d′ are assumed distinct. Two assumptions are made: d and
d′ are massless and φ is heavy. These assumptions are made to simplify the calculations,
but are not crucial to the mechanism. The mass of u is labelled mu and is not neglected.
The fermion N2 is assumed heavier than both N1 and u.

5It is of course understood that 〈σvE′−〉
Ti,Tj

ij→mn is a shorthand notation for

〈
σv
E+

s

(
m2
m −m2

n

)〉Ti,Tj

ij→mn
+

〈
σtv

(
E−s− E+(m2

i −m2
j )
)

s

pmn
pij

〉Ti,Tj

ij→mn

.
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Figure 7. (a) Tree-level decay of N2 to three quarks. (b) NLO correction to that decay.

The leading order diagram for the decay of N2 to three quarks is shown in figure 7a and
the next-to-leading order diagram in figure 7b. The interference term of these diagrams
leads to an asymmetry in the decay to baryons and antibaryons ∆ΓN2

udd′ ≡ ΓN2
udd′ − ΓN2

ūd̄d̄′
.

First, define the variables

A = mu

mN2
, B = mN1

mN2
, u = 1 +A2 − x− y, (B.2)

where x and y are integration variables. Then, also define

f̃(x) = min
{

1 +A2 −B2 − x, (x−A2)(1− x)
x

}
. (B.3)

Finally, define

G1(A,B) =
∫ min{1,1+A2−B2}

A2
dx

∫ f̃(x)

0
dy(1− u)(u−A2)(u−B2)2 1

u
,

G2(A,B) =
∫ min{1,1+A2−B2}

A2
dx

∫ f̃(x)

0
dy(1− u)(u−A2)(u−B2)2 B

u2 .

(B.4)

When B > A, these functions are given by

G1(A,B) =−A
4B6

3 −3A4B4+4A4B4 lnB+3A4B2+4A4B2 lnB+A4

3 +A2B8

6

− 4A2B6

3 +4A2B4 lnB+ 4A2B2

3 −A
2

6 −
B10

30 +B8

6 −
B6

3 +B4

3 −
B2

6 + 1
30 ,

G2(A,B) = 3A4B5−2A4B5 logB−8A4B3 lnB−3A4B−2A4B lnB+ 2A2B7

3

+6A2B5−8A2B5 lnB−6A2B3−8A2B3 lnB− 2A2B

3 −B
9

12 + 2B7

3

−2B5 lnB− 2B3

3 + B

12 .

(B.5)
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When A > B, they are instead given by

G1(A,B) =−A
10

30 +A8B2

6 +A8

6 −
A6B4

3 − 4A6B2

3 −A
6

3 −3A4B4+4A4B4 lnA

+4A4B2 lnA+A4

3 +3A2B4+4A2B4 lnA+ 4A2B2

3 −A
2

6 +B4

3 −
B2

6 + 1
30 ,

G2(A,B) =−A
8B

12 + 2A6B3

3 + 2A6B

3 +3A4B5−2A4B5 lnA+6A4B3−8A4B3 lnA

−2A4B lnA−8A2B5 lnA−6A2B3−8A2B3 lnA− 2A2B

3 −2B5 lnA−3B5

− 2B3

3 + B

12 .

(B.6)

With all this, we get the asymmetry

∆ΓN2
udd′ = 3|λ3|2

2048π4
m7
N2

m6
φ

[
2Im {L∗2L1R

∗
2R1}G1(A,B) + Im

{
(L∗2L1)2 + (R∗2R1)2

}
G2(A,B)

]
.

(B.7)

C Scattering asymmetries

In a similar fashion to decays, scattering processes of the form Niq̄ → qq and Niq → q̄q̄

can present an asymmetry in their cross sections. This is due to variations of the diagrams
of figure 7. We maintain the notation and assumptions of section B. There are then two
possibilities. First, there is the asymmetry

∆σNid̄→d′u ≡
σNid̄→d′u − σNid→d̄′ū

2

=
∑
j

|λ3|2

512π2m6
φ

(s−m2
u)2(s−m2

Nj
)2

s3 θ(s−m2
Nj )

×
[
2Im {L∗iLjR∗iRj} s+ Im

{
(L∗iLj)2 + (R∗iRj)2

}
mNimNj

]
.

(C.1)

Obviously, only terms where i 6= j contribute. In practice, eq. (C.1) means that N2 can
always present an asymmetry in this scattering, but N1 can only for a sufficiently large
center-of-mass energy. Second, there is also the asymmetry

∆σNid̄′→du≡
σNid̄′→du−σNid′→d̄ū

2

=
∑
j

|λ3|2

512π2m6
φ

m8
Ni

(s−m2
Ni

)2 θ

(
m2
Ni
m2
u

m2
Nj

−s
)

×
[
2Im{L∗iLjR∗iRj}G3(A,B,C)+Im

{
(L∗iLj)2+(R∗iRj)2

}
G4(A,B,C)

]
,

(C.2)
where

A = mu

mNi

, B =
mNj

mNi

, C =
√
s

mNi

, (C.3)
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with

G3(A,B,C) =
∫ A2

C2

B2
dx(x− 1)(x−A2)(x−B2)2 1

x
,

G4(A,B,C) =
∫ A2

C2

B2
dx(x− 1)(x−A2)(x−B2)2 B

x2 .

(C.4)

More concretely, these functions are given by

G3(A,B,C) = A8

4C8−
A8

3C6−
2A6B2

3C6 +A6B2

C4 −
A6

3C6 + A6

2C4 +A4B4

2C4 −
A4B4

C2 +A4B2

C4

− 2A4B2

C2 +A2B6

3 −A
2B4

C2 −2A2B4 lnC+ 3A2B4

2 +2A2B4 lnA

−2A2B4 lnB−B
8

12 +B6

3 ,

G4(A,B,C) = A6B

3C6 −
A6B

2C4 −
A4B3

C4 + 2A4B3

C2 −A
4B

2C4 +A4B

C2 +A2B5

C2 +2A2B5 lnC

− 3A2B5

2 −2A2B5 lnA+2A2B5 lnB+ 2A2B3

C2 +4A2B3 lnC−4A2B3 lnA

+4A2B3 lnB−2B5 lnA−B
7

3 −B
5C2+2B5 lnC− 3B5

2 +2B5 lnB. (C.5)

Because of the kinematics, only N2 can present an asymmetry and only for N1 lighter than
u and sufficiently low center-of-mass energy. The channel Niū → dd′ does not present an
asymmetry at this order of perturbation.

D Evolution equations

In this section, we present the evolution equations that are used to compute the relic
densities in section 2. The relevant processes are first introduced and some important
properties are then discussed. To simplify the treatment, we will work with the Lagrangian

L =− 1
2mN1N̄1N1 −

1
2mN2N̄2N2 −m2

φA |φ
A|2 −m2

φB |φ
B|2

+ λ3
[
(φA)†d̄′APL(uA)c + (φB)†d̄′BPL(uB)c

]
+ h.c.

+ λ∗4i

[
(φA)†N̄jPRd

A + (φB)†N̄PRdB
]

+ h.c.,

(D.1)

where d and d′ are distinct. This is equivalent to eqs. (2.4) and (2.6) with λ3ij and λ4ij
each having only one combination of flavours for which they are non-zero. In this section,
decay widths and cross sections are averaged over all incoming degrees of freedom and
summed over all outgoing degrees of freedom, including particles and antiparticles when
distinct. The only exception are the asymmetries which maintain their definitions. The
scalars φM are again assumed heavy and the masses of dM and d′M are neglected unless
stated otherwise.
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D.1 Decay: N2 → N1dM d̄M

The decay width is

ΓN2
N1dM d̄M

= |λ41λ42|2

1024π3
m5
N2

m4
φM

[
f1

(
mN1

mN2

)
+ 2mN1

mN2
f2

(
mN1

mN2

)
cos 2φ12

]
, (D.2)

with
f1(x) = 1− 8x2 + 8x6 − x8 − 24x4 ln x,
f2(x) = 1 + 9x2 − 9x4 − x6 + 12x2(1 + x2) ln x,

(D.3)

and
cos 2φij = Re

{
(λ∗4iλ4j)2}
|λ4iλ4j |2

. (D.4)

The average energy fraction of N1 in the centre-of-mass frame is obtained by computing
the expectation value of m2

23 = (pd + pd̄)2, which gives

〈m
2
23

m2
N2

〉 =
3
10f3

(
mN1
mN2

)
+ mN1

mN2
f4
(
mN1
mN2

)
cos 2φ12

f1
(
mN1
mN2

)
+ 2mN1

mN2
f2
(
mN1
mN2

)
cos 2φ12

, (D.5)

where
f3(x) = 1− 15x2 − 80x4 + 80x6 + 15x8 − x10 − 120x4(1 + x2) ln x,
f4(x) = 1 + 28x2 − 28x6 − x8 + 24x2(1 + 3x2 + x4) ln x.

(D.6)

It is then a basic exercise in kinematics to compute the average energy fraction of N1 in
the centre-of-mass frame, which gives

〈EN1

mN2
〉 = 1

2

(
1 +

(
mN1

mN2

)2
− 〈m

2
23

m2
N2

〉
)
. (D.7)

D.2 Decay: Ni → uM dM d′M

The decay width is

ΓNi
uMdMd′M

= |λ3λ4i|2

512π3
m5
Ni

m4
φM

f1

(
muM

mNi

)
. (D.8)

In some regions of parameter space, the decay of N1 to three quarks is forbidden. The
particle N1 is then forced to go through a four-body decay where uM is off-shell. This
decay width is computed numerically, including the width of uM and the mass of dM . The
numerical result is also used for mN1 not too far removed from muM , as the narrow width
approximation is not necessarily a good approximation when these two masses are close.

D.3 Scattering: NiNj → d̄M dM

The cross section is

σNiNj→d̄MdM = |λ4iλ4j |2

64πm4
φM

(
2s2 − (m2

Ni
+m2

Nj
)s− (m2

Ni
−m2

Nj
)2 − 6mNimNjs cos 2φij

)
((s− (mNi +mNj )2)(s− (mNi −mNj )2))1/2 ,

(D.9)
and

σt
NiNj→d̄MdM = 0. (D.10)

– 27 –



J
H
E
P
1
2
(
2
0
2
1
)
1
6
0

D.4 Scattering: Nid
M → NjdM

The cross section is

σNidM→NjdM = |λ4iλ4j |2

384πm4
φM

(s−m2
Nj

)2

s3

(
8s2 + (m2

Ni +m2
Nj )s+ 2m2

Nim
2
Nj

+6mNimNjs cos 2φij
)
,

(D.11)

and

σtNidM→NjdM = |λ4iλ4j |2

384πm4
φM

(s−m2
Nj

)2

s3

(
s2 −m2

Nim
2
Nj − 2mNimNjs cos 2φij

)
. (D.12)

D.5 Scattering: Nid
M → d̄′M ūM

The cross section is
σNidM→d̄′M ūM = |λ3λ4i|2

32πm4
φM

(s−m2
uM

)2

s
, (D.13)

and
σt
NidM→d̄′M ūM = 0. (D.14)

D.6 Scattering: Nid
′M → d̄M ūM

The cross section is

σNid′M→d̄M ūM = |λ3λ4i|2

192πm4
φM

(s−m2
uM

)2(2s2 + (m2
Ni

+m2
uM

)s+ 2m2
Ni
m2
uM

)
s3 , (D.15)

and
σt
Nid′M→d̄M ūM = |λ3λ4i|2

192πm4
φM

(s−m2
uM

)2(s2 −m2
Ni
m2
uM

)
s3 . (D.16)

D.7 Scattering: Niu
M → d̄M d̄′M

The cross section is

σNiuM→d̄M d̄′M = |λ3λ4i|2

192πm4
φM

(2s2 − (m2
Ni

+m2
uM

)s− (m2
Ni
−m2

uM
)2)

((s− (mNi +muM )2)(s− (mNi −muM )2))1/2 , (D.17)

and
σt
NiuM→d̄M d̄′M = − |λ3λ4i|2

192πm4
φM

s. (D.18)

D.8 Scattering: fAf ′B → fAf ′B

The cross section between an A sector fermion and a B sector fermion that is not necessarily
its partner is

σfAf ′B→fAf ′B =
m2
fA
m2
f ′B

48π((vA)2+(vB)2)2m4
h

1
(s−(mfA+mf ′B )2)(s−(mfA−mf ′B )2)s3

×
(
s6−9(m2

fA−m
2
f ′B

)2s4+16(m6
fA−3m4

fAm
2
f ′B
−3m2

fAm
4
f ′B

+m6
f ′B

)s3

−9(m2
fA−m

2
f ′B

)4s2+(m2
fA−m

2
f ′B

)6
)
,

(D.19)

– 28 –



J
H
E
P
1
2
(
2
0
2
1
)
1
6
0

and

σt
fAf ′B→fAf ′B =−

m2
fA
m2
f ′B

96π((vA)2 + (vB)2)2m4
h

(s2 − (mfA +mf ′B )4)(s2 − (mfA −mf ′B )4)
s3 .

(D.20)

D.9 Scattering: fAf̄A → f ′Bf̄ ′B

The cross section is

σfAf̄A→f ′B f̄ ′B =
m2
fA
m2
f ′B

32π((vA)2 + (vB)2)2m4
h

N c
f ′B

N c
fA

(s− 4m2
f ′B

)3/2

(s− 4m2
fA

)1/2 , (D.21)

where N c
p is the number of colours of particle p and

σt
fAf̄A→f ′B f̄ ′B = 0. (D.22)

D.10 Combined evolution equations

We now combine the different results together. The number density of particle p is labelled
as np, its energy density as ρp and its pressure as Pp.6 The differences between the baryon
number densities are labelled as ∆BM . The equations are

dnN1

dt
=− 3HnN1

+
A,B∑
M

〈ΓN2
N1dM d̄M

〉TN2nN2

−
A,B∑
M

[
〈ΓN1
uMdMd′M

〉TN1nN1 − 〈ΓN1
uMdMd′M

〉TMneqN1
(TM )

]

−
A,B∑
M

[
〈σv〉TN1 ,TN1

N1N1→d̄MdM
n2
N1 − 〈σv〉

TM ,TM
N1N1→d̄MdM

(neqN1
(TM ))2

]

−
A,B∑
M

[
〈σv〉TN1 ,TN2

N1N2→d̄MdM
nN1nN2 − 〈σv〉

TM ,TM
N1N2→d̄MdM

neqN1
(TM )neqN2

(TM )
]

−
A,B∑
M

[
〈σv〉TN1 ,TM

N1dM→N2dM
nN1 − 〈σv〉

TN2 ,TM
N2dM→N1dM

nN2

]
neq
dM

(TM )

−
A,B∑
M

[
〈σv〉TN1 ,TM

N1dM→d̄′M ūM
nN1 − 〈σv〉

TM ,TM
N1dM→d̄′M ūM

neqN1
(TM )

]
neq
dM

(TM )

−
A,B∑
M

[
〈σv〉TN1 ,TM

N1d′M→d̄M ūM
nN1 − 〈σv〉

TM ,TM
N1d′M→d̄M ūM

neqN1
(TM )

]
neq
d′M

(TM )

−
A,B∑
M

[
〈σv〉TN1 ,TM

N1uM→d̄M d̄′M
nN1 − 〈σv〉

TM ,TM
N1uM→d̄M d̄′M

neqN1
(TM )

]
neq
uM

(TM ),

6When considering their densities, quarks and antiquarks are treated as a single particle with twice as
many degrees of freedom, i.e. they have gp = 12.
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dnN2

dt
= −3HnN2 −

A,B∑
M

〈ΓN2
N1dM d̄M

〉TN2nN2

−
A,B∑
M

[
〈ΓN2
uMdMd′M

〉TN2nN2 − 〈ΓN2
uMdMd′M

〉TMneqN2
(TM )

]

−
A,B∑
M

[
〈σv〉TN2 ,TN2

N2N2→d̄MdM
n2
N2 − 〈σv〉

TM ,TM
N2N2→d̄MdM

(neqN2
(TM ))2

]

−
A,B∑
M

[
〈σv〉TN1 ,TN2

N1N2→d̄MdM
nN1nN2 − 〈σv〉

TM ,TM
N1N2→d̄MdM

neqN1
(TM )neqN2

(TM )
]

−
A,B∑
M

[
〈σv〉TN2 ,TM

N2dM→N1dM
nN2 − 〈σv〉

TN1 ,TM
N1dM→N2dM

nN1

]
neq
dM

(TM )

−
A,B∑
M

[
〈σv〉TN2 ,TM

N2dM→d̄′M ūM
nN2 − 〈σv〉

TM ,TM
N2dM→d̄′M ūM

neqN2
(TM )

]
neq
dM

(TM )

−
A,B∑
M

[
〈σv〉TN2 ,TM

N2d′M→d̄M ūM
nN2 − 〈σv〉

TM ,TM
N2d′M→d̄M ūM

neqN2
(TM )

]
neq
d′M

(TM )

−
A,B∑
M

[
〈σv〉TN2 ,TM

N2uM→d̄M d̄′M
nN2 − 〈σv〉

TM ,TM
N2uM→d̄M d̄′M

neqN2
(TM )

]
neq
uM

(TM ),

dρN1

dt
= −3H(ρN1 + PN1) +

A,B∑
M

ΓN2
N1dM d̄M

mN2nN2〈
EN1

mN2
〉

−
A,B∑
M

[
ΓN1
uMdMd′M

mN1nN1 − ΓN1
uMdMd′M

mN1n
eq
N1

(TM )
]

− 1
2

A,B∑
M

[
〈σvE+〉

TN1 ,TN1
N1N1→d̄MdM

n2
N1 − 〈σvE+〉TM ,TMN1N1→d̄MdM

(neqN1
(TM ))2

]

−
A,B∑
M

[
〈σvEN1〉

TN1 ,TN2
N1N2→d̄MdM

nN1nN2 − 〈σvEN1〉
TM ,TM
N1N2→d̄MdM

neqN1
(TM )neqN2

(TM )
]

+
A,B∑
M

〈σv(Eout
N1 − E

in
N1)〉TN1 ,TM

N1dM→N1dM
nN1n

eq
dM

(TM )

−
A,B∑
M

[
〈σvEN1〉

TN1 ,TM
N1dM→N2dM

nN1 − 〈σvEN1〉
TN2 ,TM
N2dM→N1dM

nN2

]
neq
dM

(TM )

−
A,B∑
M

[
〈σvEN1〉

TN1 ,TM

N1dM→d̄′M ūM
nN1 − 〈σvEN1〉

TM ,TM
N1dM→d̄′M ūM

neqN1
(TM )

]
neq
dM

(TM )

−
A,B∑
M

[
〈σvEN1〉

TN1 ,TM

N1d′M→d̄M ūM
nN1 − 〈σvEN1〉

TM ,TM
N1d′M→d̄M ūM

neqN1
(TM )

]
neq
d′M

(TM )

−
A,B∑
M

[
〈σvEN1〉

TN1 ,TM

N1uM→d̄M d̄′M
nN1 − 〈σvEN1〉

TM ,TM
N1uM→d̄M d̄′M

neqN1
(TM )

]
neq
uM

(TM ),
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dρN2

dt
= −3H(ρN2 + PN2)−

A,B∑
M

ΓN2
N1dM d̄M

mN2nN2

−
A,B∑
M

[
ΓN2
uMdMd′M

mN2nN2 − ΓN2
uMdMd′M

mN2n
eq
N2

(TM )
]

− 1
2

A,B∑
M

[
〈σvE+〉

TN2 ,TN2
N2N2→d̄MdM

n2
N2 − 〈σvE+〉TM ,TMN2N2→d̄MdM

(neqN2
(TM ))2

]

−
A,B∑
M

[
〈σvEN2〉

TN1 ,TN2
N1N2→d̄MdM

nN1nN2 − 〈σvEN2〉
TM ,TM
N1N2→d̄MdM

neqN1
(TM )neqN2

(TM )
]

+
A,B∑
M

〈σv(Eout
N2 − E

in
N2)〉TN2 ,TM

N2dM→N2dM
nN2n

eq
dM

(TM )

+
A,B∑
M

[
〈σvEN2〉

TN1 ,TM
N1dM→N2dM

nN1 − 〈σvEN2〉
TN2 ,TM
N2dM→N1dM

nN2

]
neq
dM

(TM )

−
A,B∑
M

[
〈σvEN2〉

TN2 ,TM

N2dM→d̄′M ūM
nN2 − 〈σvEN2〉

TM ,TM
N2dM→d̄′M ūM

neqN2
(TM )

]
neq
dM

(TM )

−
A,B∑
M

[
〈σvEN2〉

TN2 ,TM

N2d′M→d̄M ūM
nN2 − 〈σvEN2〉

TM ,TM
N2d′M→d̄M ūM

neqN2
(TM )

]
neq
d′M

(TM )

−
A,B∑
M

[
〈σvEN2〉

TN2 ,TM

N2uM→d̄M d̄′M
nN2 − 〈σvEN2〉

TM ,TM
N2uM→d̄M d̄′M

neqN2
(TM )

]
neq
uM

(TM ),

dρA
dt

= −4H

1 + 1
4TA

g′∗A
g∗A

1 + 1
3TA

g′∗A
g∗A

 ρA + ΓN2
N1dAd̄A

mN2nN2

(
1− 〈EN1

mN2
〉
)

+
2∑
i=1

[
ΓNi
uAdAd′A

mNinNi − ΓNi
uAdAd′A

mNin
eq
Ni

(TA)
]

+ 1
2

2∑
i,j=1

[
〈σvE+〉

TNi ,TNj
NiNj→d̄AdA

nNinNj − 〈σvE+〉TA,TANiNj→d̄AdA
neqNi(TA)neqNj (TA)

]

+
2∑

i,j=1
〈σv(Eout

dA − E
in
dA)〉TNi ,TA

NidA→NjdAnNin
eq
dA

(TA)

+
2∑
i=1

[
〈σvENi〉

TNi ,TA

NidA→d̄′AūA
nNi − 〈σvENi〉

TA,TA
NidA→d̄′AūA

neqNi(TA)
]
neq
dA

(TA)

+
2∑
i=1

[
〈σvENi〉

TNi ,TA

Nid′A→d̄AūA
nNi − 〈σvENi〉

TA,TA
Nid′A→d̄AūA

neqNi(TA)
]
neq
d′A

(TA)

+
2∑
i=1

[
〈σvENi〉

TNi ,TA

NiuA→d̄Ad̄′A
nNi − 〈σvENi〉

TA,TA
NiuA→d̄Ad̄′A

neqNi(TA)
]
neq
uA

(TA)

+
∑

fA,f ′B

〈σv(Eout
fA − E

in
fA)〉TA,TB

fAf ′B→fAf ′Bn
eq
fA

(TA)neq
f ′B

(TB)

− 1
2
∑

fA,f ′B

[
〈σvE+〉TA,TAfAf̄A→f ′B f̄ ′B (neq

fA
(TA))2 − 〈σvE+〉TB ,TBfAf̄A→f ′B f̄ ′B (neq

fA
(TB))2

]
,
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dρB
dt

= −4H

1 + 1
4TB

g′∗B
g∗B

1 + 1
3TB

g′∗B
g∗B

 ρB
+ ΓN2

N1dB d̄B
mN2nN2

(
1− 〈EN1

mN2
〉
)

+
2∑
i=1

[
ΓNi
uBdBd′B

mNinNi − ΓNi
uBdBd′B

mNin
eq
Ni

(TB)
]

+ 1
2

2∑
i,j=1

[
〈σvE+〉

TNi ,TNj
NiNj→d̄BdB

nNinNj − 〈σvE+〉TB ,TBNiNj→d̄BdB
neqNi(TB)neqNj (TB)

]

+
2∑

i,j=1
〈σv(Eout

dB − E
in
dB )〉TNi ,TB

NidB→NjdBnNin
eq
dB

(TB)

+
2∑
i=1

[
〈σvENi〉

TNi ,TB

NidB→d̄B ūB
nNi − 〈σvENi〉

TB ,TB
NidB→d̄B ūB

neq
uB

(TB)
]
neq
dB

(TB)

+
2∑
i=1

[
〈σvENi〉

TNi ,TB

Nid′B→d̄B ūB
nNi − 〈σvENi〉

TB ,TB
Nid′B→d̄B ūB

neqNi(TB)
]
neq
d′B

(TB)

+
2∑
i=1

[
〈σvENi〉

TNi ,TB

NiuB→d̄B d̄′B
nNi − 〈σvENi〉

TB ,TB
NiuB→d̄B d̄′B

neqNi(TB)
]
neq
uB

(TB)

−
∑

fA,f ′B

〈σv(Eout
fA − E

in
fA)〉TA,TB

fAf ′B→fAf ′Bn
eq
fA

(TA)neq
f ′B

(TB)

+ 1
2
∑

fA,f ′B

[
〈σvE+〉TA,TAfAf̄A→f ′B f̄ ′B (neq

fA
(TA))2 − 〈σvE+〉TB ,TBfAf̄A→f ′B f̄ ′B (neq

fA
(TB))2

]
,

d∆BA
dt

= −3H∆BA

+ 〈∆ΓN2
uAdAd′A

〉TN2nN2 − 〈∆ΓN2
uAdAd′A

〉TAneqN2
(TA)

− 9
2∑
i=1
〈ΓNi
uAdAd′A

〉TA
neqNi(TA)
neq
qA

(TA)∆BA

+
2∑
i=1

[
〈∆σv〉TNi ,TA

Nid̄A→d′AuA
nNi − 〈∆σv〉

TA,TA
Nid̄A→d′AuA

neqNi(TA)
]
neq
dA

(TA)

+
[
〈∆σv〉TN2 ,TA

N2d̄′A→dAuA
nN2 − 〈∆σv〉

TA,TA
N2d̄′A→dAuA

neqN2
(TA)

]
neq
d′A

(TA)

− 3
2∑
i=1

[
〈σv〉TNi ,TA

NidA→d̄′AūA
nNi + 2〈σv〉TA,TA

NidA→d̄′AūA
neqNi(TA)

] neq
dA

(TA)
neq
qA

(TA)∆BA

− 3
2∑
i=1

[
〈σv〉TNi ,TA

Nid′A→d̄AūA
nNi + 2〈σv〉TA,TA

Nid′A→d̄AūA
neqNi(TA)

] neq
d′A

(TA)
neq
qA

(TA) ∆BA

− 3
2∑
i=1

[
〈σv〉TNi ,TA

NiuA→d̄Ad̄′A
nNi + 2〈σv〉TA,TA

NiuA→d̄Ad̄′A
neqNi(TA)

] neq
uA

(TA)
neq
qA

(TA) ∆BA,
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d∆BB
dt

= −3H∆BB

+ 〈∆ΓN2
uBdBd′B

〉TN2nN2 − 〈∆ΓN2
uBdBd′B

〉TBneqN2
(TB)

− 9
2∑
i=1
〈ΓNi
uBdBd′B

〉TB
neqNi(TB)
neq
qB

(TB)∆BB

+
2∑
i=1

[
〈∆σv〉TNi ,TB

Nid̄B→d′BuB
nNi − 〈∆σv〉

TB ,TB
Nid̄B→d′BuB

neqNi(TB)
]
neq
dB

(TB)

+
[
〈∆σv〉TN2 ,TB

N2d̄′B→dBuB
nN2 − 〈∆σv〉

TB ,TB
N2d̄′B→dBuB

neqN2
(TA)

]
neq
d′B

(TB)

− 3
2∑
i=1

[
〈σv〉TNi ,TB

NidB→d̄′B ūB
nNi + 2〈σv〉TB ,TB

NidB→d̄′B ūB
neqNi(TB)

] neq
dB

(TB)
neq
qB

(TB)∆BB

− 3
2∑
i=1

[
〈σv〉TNi ,TB

Nid′B→d̄B ūB
nNi + 2〈σv〉TB ,TB

Nid′B→d̄B ūB
neqNi(TB)

] neq
d′B

(TB)
neq
qB

(TB) ∆BB

− 3
2∑
i=1

[
〈σv〉TNi ,TB

NiuB→d̄B d̄′B
nNi + 2〈σv〉TB ,TB

NiuB→d̄B d̄′B
neqNi(TB)

] neq
uB

(TB)
neq
qB

(TB) ∆BB.

A few comments are in order:

• We defined neq
qM

(TM ) via

neq
qM

(TM ) =
∑

i∈{quarks M}
neqi (TM ). (D.23)

These appear in the equations because the baryon asymmetries redistribute them-
selves amongst the different quarks of a given sector.

• We defined 〈Γ〉T via
〈Γ〉T

Γ = 〈m
E
〉T = 〈1

γ
〉T = 〈

√
1− v2〉T = K1(m/T )

K2(m/T ) . (D.24)

In practice, this is simply the decay rate corrected by the fact that boosted particles
decay more slowly.

• In equilibrium at temperature T , massive particles respect

neq(T ) = gm2T

2π2 K2(m/T )

ρeq(T ) = gm2T

2π2 (mK1(m/T ) + 3TK2(m/T ))

P eq(T ) = gm2T 2

2π2 K2(m/T )

(D.25)

These equations do not hold out-of-equilibrium, but ratios such as ρ/n remain un-
changed. For massive particles, this means that we can obtain their temperature
from the ratio of their energy and number densities. At leading order, we have

T = 2m
3

(
ρ

nm
− 1

)
. (D.26)

This is the result expected from the equipartition theorem.
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• Assume a process ij → mn and its inverse mn→ ij. At a given temperature T , the
definition of thermal equilibrium implies

〈σv〉T,Tij→mnn
eq
i (T )neqj (T ) = 〈σv〉T,Tmn→ijneqm(T )neqn (T ). (D.27)

This equation was used to simplify the evolution equations. Generalization to energy
transfers and decays is trivial.

• The Hubble constant is given by

H2 = 8πGρtot
3 , (D.28)

where ρtot = ρN1 + ρN2 + ρA + ρB is the total energy density.

• The quantity g∗M corresponds to the effective number of relativistic degrees of free-
dom in sector M and is computed following standard procedure. A prime represents
a derivative with respect to TM .

• The QCD and mirror QCD coupling constants are assumed to unify at high enough
scale and are run at one loop order.

• In the dρM/dt equations, the first term is simply 3H(ρM + PM ), where we took into
account that PM is not exactly ρM/3 when particles are not fully relativistic. The
correction factor takes values in the range [3/4, 1]. This is interesting as, when g′∗
goes to infinity, the energy density scales as the number density. From eq. (D.26),
this means that the temperature remains constant during that time. This is why a
loss of degrees of freedom in one sector results in the temperature of that sector rising
with respect to the other sector.

• The inverse decay of N2 to N1 and quarks or mirror quarks is neglected. Its treatment
is complicated, but Boltzmann suppression ensures that it is negligible.

• In some regions of parameter space, the decay uM → Nid̄
M d̄′M is allowed. In the B

sector, the large mass of the mirror top and Boltzmann suppression render this effect
negligible. In the A sector, the decay width to this channel is typically sufficiently
small that it would only come into play once the top density is negligible. As such,
this effect is neglected.

• At sufficiently high temperatures, certain processes like ZAZB → ZAZB can con-
tribute significantly to energy exchange between the A and B sectors. However, such
high temperatures result in the A and B sectors having almost identical temperatures
and their inclusion would have a negligible effect. This is the same reason why the
Higgs can be assumed heavy in eqs. (D.19), (D.20), (D.21) and (D.22).

• The evolution equations are not very stiff in the regions of parameter space studied
in this paper. The only exception is for annihilation/scattering between fermions of
both sectors via Higgs exchange. At very high temperatures, this process can take
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place at a rate too high to easily manage numerically. Thankfully, this also means
that the two sectors have extremely close temperatures. As such, the problem can be
circumvented by treating the A and B sectors as a single population. This is done
when the rate at which a sector can exchange energy with the other sector via Higgs
exchange is much larger than the rate it receives energy from other sources.

E Higgs signal strengths constraints

In this section, we discuss how the bounds on the Higgs couplings are applied. We follow
the procedure of ref. [22] which is based on the κ formalism [72], albeit the present situation
is considerably simpler. Assume a production mechanism i with cross section σi or decay
process i with width Γi. The parameter κi is defined such that

κ2
i = σi

σSMi
or κ2

i = Γi
ΓSM
i

, (E.1)

where σSMi and ΓSM
i are the corresponding SM quantities. For the Mirror Twin Higgs, all

κi are equal at leading order and given by

κ = vB√
(vA)2 + (vB)2

. (E.2)

In addition, the Higgs can also decay to mirror particles that escape the detector unseen.
The decay width to a pair of mirror fermions fB is

Γh
f̄BfB

= Nc

8π
m2
fA

(vA)2 + (vB)2

(m2
h − 4m2

fB
)3/2

m2
h

, (E.3)

where Nc is the number of mirror colours of fB. The decay width to a pair of mirror gluons
is given by

ΓhgBgB = (αBS )2m3
h

128π3

(
vA

vB

)2 1
(vA)2 + (vB)2

∣∣∣∣∣∣
∑
fB

F

(4m2
fB

m2
h

)∣∣∣∣∣∣
2

, (E.4)

where
F (τ) = −2τ(1 + (1− τ)f(τ)), (E.5)

with

f(τ) =
{

arcsin2
√

1
τ if τ ≥ 1,

−1
4

[
ln
(

1+
√

1−τ
1−
√

1−τ

)
− iπ

]2
if τ < 1,

(E.6)

and αBS is the mirror strong coupling constant. Because of the constraints on vB/vA, decays
to mirror massive gauge bosons require both gauge bosons to be off-shell and can therefore
be neglected. All other decays to mirror particles are also negligible.

With the above results, limits on the ratio vB/vA can be obtained using the searches
of ref. [73] by ATLAS and ref. [74] by CMS. These are the most up-to-date available global
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Figure 8. χ2 fit of the Higgs signal strengths of the Twin Higgs based on the measurements of
refs. [73] and [74]. The horizontal lines correspond to the 95% and 99% confidence level limits
on χ2.

fits of the Higgs signal strengths and provide all the information necessary to perform a χ2

fit within the κ formalism. The branching ratio to invisible is not directly constrained by
these searches, but indirectly via the reduction of the signal strengths of visible channels.
In the allowed range of vB/vA, this branching ratio is far below current constraints (see for
example refs. [75, 76]), a fact that was already noted for the Twin MSSM in ref. [77]. A
simple χ2 fit is performed combining the results of the two experiments and assuming no
correlations between them. The results are shown in figure 8 and give the following limits

95% : v
B

vA
> 4.86, 99% : v

B

vA
> 4.13. (E.7)

F Computation of the mirror atom abundance

In this section, we explain how the mirror atom abundance is computed under the assump-
tion that the mirror proton is heavier than the mirror neutron. We follow the procedure
of ref. [22], from which we summarize the most important elements and to which we refer
for more details. Three quantities first need to be computed.

• The mirror QCD scale is computed by requesting that the strong coupling constants
of both sectors unify at high enough scale using one loop beta functions.
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• The binding energy of mirror deuteron BDB is computed via

BDB

ΛBQCD
= B1

mπB

ΛBQCD
+B2, (F.1)

with B1 ≈ 0.033 and B2 ≈ −0.011. This equation is obtained by a fit of the lattice
QCD results of refs. [78–83] which compute the binding energy of deuteron for differ-
ent pion masses and the appropriate rescaling. Note that these results contain large
uncertainties and as such we will limit all computations to simple approximations.

• The difference between the masses of the mirror proton and neutron is given by

mB
pn = mpB −mnB = C0

(
C1(muB −mdB ) + C2αEMΛBQCD

)
, (F.2)

where αEM is the fine structure constant, C1 ≈ 0.86, C2 ≈ 0.54 and C0 is fixed to
reproduce the equivalent SM value of mA

pn. This result also comes from lattice QCD
and is obtained from figure 3 of ref. [84] or alternatively table 2.

With these three quantities, the ratio of mirror proton and mirror neutron abundances
can be computed following refs. [14, 85, 86]. At high temperatures, collisions with electrons
and neutrinos maintain the protons and neutrons in equilibrium. This proceeds at a rate

ΓpBeB→nBνBe = 1 + 3g2
A

2π3 (GBF )2(mB
pn)5J

(
−∞,−meB

mB
pn

)
, (F.3)

where

J(a, b) =
∫ b

a

√
1−

(meB/m
B
pn)2

q2
q2(q − 1)2dq1 + e

mBpn

TBν
(q−1)

(1 + e
−
mBpn
TB

q

) , (F.4)

where gA = 1.27, GBF the mirror Fermi constant and TBν the temperature of the mirror
neutrinos, i.e. TB before and (4/11)1/3TB after electron recombination. Conversion freezes-
out at a temperature of the mirror sector TFOB

B at which this rate is equal to the Hubble
expansion rate. At this time, the ratio of abundances is npB/nnB ≈ f1 ≈ exp(−mB

pn/T
FOB
B ).

As long as they are unstable, free protons continue to decay until deuterium formation at
a rate of

Γp
B

nBeBνBe
= 1 + 3g2

A

2π3 (GBF )2m5
eBλ0(mB

pn/meB ), (F.5)

where
λ0(Q) =

∫ Q

1
dqq(q −Q)2(q2 − 1)1/2. (F.6)

The mirror deuterium bottleneck is crossed when the mirror sector reaches the temper-
ature TDBB

B ≈ (BDB/BDA)TDBA
A , where TDBA

A is 0.08MeV [86]. This occurs at tDBB ≈
0.301g−1/2

? mPlr
2
T /(TDBB

B )2, meaning that npB/nnB further decreased by a factor of f2 ≈
exp(−Γp

B

nBeBνBe
tDBB ). At the onset of deuterium formation, the proton to neutron abun-

dance ratio is then (npB/nnB )DBB ≈ f1×f2. Almost all mirror protons are quickly absorbed
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into Helium-4 nuclei. If the splitting between the mirror up and mirror down is not too
extreme, Helium-4 can safely be assumed to be stable and almost all neutrons end up in
this isotope. If the splitting is very large, the abundance of mirror protons is bound to be
far below experimental constraints and its exact abundance is irrelevant to us. As such,
we perform the computation assuming mirror Helium-4 to be stable and mention that the
results might not be accurate for extremely low abundances. The final fraction of dark
atoms XDA is then

XDA ≈
2(npB/nnB )DBB

1 + (npB/nnB )DBB
. (F.7)
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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