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1 Introduction and summary

It has been known for many years that string theory amplitudes receive non-perturbative
contribution from D-instantons [1, 2]. Many D-instanton induced terms were predicted
using S-duality invariances of various compactified string theories [2–25], but except for
the early attempts [2], the direct systematic computation of these amplitudes from first
principles has not been carried out. However during the last two years progress was made
in the context of two dimensional string theory [26–31]. In particular, [26, 27] computed
the precise contributions to the amplitudes from D-instantons in terms of some constants
that appear to be divergent in the world-sheet formalism. It was then found that string
field theory gives finite, unambiguous values of these constants [28–31].
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The goal of this paper will be to extend this analysis to type IIB string theory and
verify one of the predictions of S-duality. Our focus will be on the simplest case of ten
dimensional type IIB string theory. Tree level four graviton amplitude in this theory
receives a correction proportional to ζ(3) from an eight derivative term in the effective
action [32]. This contribution is not invariant under S-duality but can be made S-duality
invariant by adding one loop and non-perturbative corrections to the amplitude [2, 3]. The
result takes the form:1

i

4 26π7g2
s Kc

[
2ζ(3) + 2π2

3 g2
s + 4π g3/2

s {e2πiτ+e−2πiτ̄}+ · · ·
]

(2π)10 δ(10)(k1 + k2 + k3 + k4) ,

(1.1)
where τ = a+ i g−1

s , gs is the string coupling defined so that the D-instanton action is given
by 2π/gs, a is the vacuum expectation value of the RR scalar field and Kc is a kinematic
factor depending on the momenta {ki} and polarizations {e(i)} of the external graviton
states, as described in (6.25), (6.26). The expression (1.1) has been written in the string
frame, as should be clear from the explicit factor of g2

s multiplying the tree level term
proportional to ζ(3). In the Einstein frame the expression (1.1) is multiplied by a factor of
g
−7/2
s and becomes proportional to the S-duality invariant function E3/2(τ, τ̄) [2, 3]. The
one loop term 2π2g2

s/3 in (1.1) is known to agree with the results of explicit computation [35,
36]. In this paper we shall verify that the leading non-perturbative term proportional to
e2πiτ also agrees with the leading D-instanton contribution to this amplitude.

Formally the leading D-instanton contribution to the four graviton amplitude is given
by the product of four disk amplitudes, each with a single graviton vertex operator and
four open string fermion zero mode insertions [2]. This part of the amplitude can be
computed using straightforward world-sheet methods. However the amplitude is multiplied
by an overall normalization factor that can be formally identified as the exponential of the
annulus amplitude with no vertex operator insertion. Physically it represents the one loop
determinant of the open string fields on the D-instanton. Due to cancellation between the
contributions from the NS and R sector states the annulus partition function vanishes and
if we take this literally, it would appear that the normalization factor is unity. However,
this is deceptive since the contribution from the zero modes cannot be represented as a
determinant and the zero mode integrations must be carried out separately. To deal with
this we proceed as follows:

1. First we show that the exponential of the annulus partition function can be formally
expressed as an integral over the bosonic and fermionic modes of the open string
with precise normalization. Since there is no subtlety in the non-zero mode sector,
the vanishing of the annulus partition function implies cancellation between the in-
tegrals over the non-zero modes of the open string and we focus on the zero mode
sector integrals.

2. Then we show that the integral over the zero modes can be regarded as the re-
sult of Siegel gauge fixing of a gauge invariant integral over the (zero dimensional)

1The prediction of S-duality was shown to be consistent with some results in N = 4 super Yang-Mills
theory via AdS/CFT correspondence [33]. This is also consistent with the analysis of graviton scattering
amplitude using S-matrix bootstrap [34].
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open string fields. The gauge fixing is done following the standard Faddeev-Popov
formalism.

3. Some of the zero modes in the gauge fixed version represent bosonic and fermionic
collective modes and must be treated carefully. However one pair of fermionic zero
modes in the NS sector can be identified as the Faddeev-Popov ghosts arising from
gauge fixing. The vanishing of the quadratic term of the action of these modes
indicate the vanishing of the Faddeev-Popov determinant and hence the breakdown
of the Siegel gauge [37, 38].

4. We avoid this problem with gauge fixing by using the original gauge invariant version
of the path integral instead of the Siegel gauge fixed version. Since the normaliza-
tion of the gauge fixed version was known, this fixes the normalization of the gauge
invariant version. This version does not have integration over the Faddeev-Popov
ghost modes, but has an extra integral over an out of Siegel gauge mode of the open
string. It also has division by the volume of the gauge group.

5. The out of Siegel gauge mode gives a non-zero contribution to the action. The
integration over this mode takes the form of a Gaussian integral and can be carried
out explicitly.

6. We find the volume of the gauge group by relating the string field theory gauge trans-
formation parameter θ to the rigid U(1) gauge transformation parameter θ̃ under
which an open string connecting the original D-instanton to a spectator D-instanton
picks up a phase eiθ̃. This relationship is found by comparing the gauge transforma-
tion laws in string field theory to the rigid U(1) gauge transformation laws. Once
this is done we can express the integration over θ in terms of integration over θ̃ and
then use the fact that θ̃ has period 2π to compute the volume of the gauge group.

7. The remaining modes in the NS sector represent bosonic zero modes related to col-
lective modes of the D-instanton describing its location in space-time. We determine
the precise normalization relating the two sets of modes by comparing the coupling
of the open string zero modes to closed strings to the expected coupling of the col-
lective modes to closed strings. Using this we can express the integration over these
bosonic zero modes in terms of integration over the collective modes with some spe-
cific normalization factor. The integration over the collective modes is left aside, to
be done at the end after combining the contribution from all the pieces. The final
integration over these modes generate the usual energy-momentum conserving delta
function (2π)10 δ(10)(

∑
i pi).

8. In the R sector there are 16 fermion zero modes, and all of these can be related to the
fermionic collective modes of the D-instanton associated with broken supersymmetry.
Integration over these modes is also set aside till the end after we combine all the
pieces. In particular, we need to insert 16 fermionic modes into the four disks,
each carrying a single graviton vertex operator. The integration over the fermionic
collective modes now produces a suitable 16-dimensional ε tensor that needs to be
combined with the rest of the amplitude.
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The answer for the one instanton contribution to the four graviton amplitude, com-
puted this way, takes the form:

i e2πia e−2π/gs 26 π8 g7/2
s Kc (2π)10 δ(10)(k1 + k2 + k3 + k4) . (1.2)

EQ. (1.2) agrees with the term proportional to e2πiτ in (1.1). a dependence of the amplitude
can be obtained by exponentiating the disk one point function of the RR scalar field since
that is the only amplitude that involves a and not its derivative. The overall phase of the
term is not determined due to the usual ambiguities in evaluating path integral over chiral
fermions, but this phase can be absorbed into a shift of a.

The fact that the instanton contribution gives the correct dependence on gs was already
noted in [39]. The ratio of the subleading non-perturbative corrections, hidden in the · · ·
in (1.1), to the leading non-perturbative correction is also being analyzed in [39].

The rest of the paper is organized as follows. In sction 2 we describe our normalization
conventions in the world-sheet string theory and compare them with those of [40] whose
results we use. In sction 3 we describe our normalization conventions in string field theory,
and compare the coupling constants and fields that arise there with those appearing in [40].
Sections 4–6 contain the main results of this paper. In sction 4 we compute the normal-
ization of the D-instanton amplitudes by manipulating the exponential of the annulus zero
point function following the procedure described earlier in this section. This computes
the total contribution from the steepest descent contour passing through the instanton.
However the actual contribution of the instanton to the full amplitude depends on how
the steepest descent contour fits inside the actual integration contour. This produces a
multiplier factor that accompanies the normalization. In sction 5 we argue that for the
D-instanton of type IIB string theory this multiplier factor is one. In sction 6 we compute
the disk amplitude with one graviton and four fermionic open string zero mode insertions
and combine this with the result of sction 4 to compute the leading D-instanton contribu-
tion to the four graviton amplitude. In sction 7 we review the prediction of S-duality for
this amplitude and show that the result of explicit D-instanton calculation agrees with the
prediction of S-duality. In sction 8 we discuss possible generalization of this analysis to
D-instanton contribution in other (compactified) string theories, including the contribution
from Euclidean D-branes wrapped along compact cycles.

2 Conventions for the world-sheet theory

In this section we shall describe our normalization conventions. Since we are trying to
reproduce a single constant, it is important that we carefully keep track of all the constants
in our analysis. We work in the α′ = 1 unit. For the rest of the conventions, we shall try
to follow closely the ones used in [41]. In a few places we shall differ from the convention
of [41]; we shall mention them as we encounter these differences.

The world-sheet of type IIB string theory has a set of 10 scalar fields Xµ describing the
target space-time coordinates, their superpartner left and right-moving fermions ψµ, ψ̄µ,
the world-sheet grassmann odd ghost fields b, c, b̄, c̄ and the grassmann even ghost fields
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β, γ, β̄, γ̄. The β,γ system is ‘bosonized’ by introducing scalar fields φ, φ̄, and fermionic
fields ξ, η, ξ̄, η̄ via the relations:

β = ∂ξ e−φ, γ = η eφ, β̄ = ∂̄ξ̄ e−φ̄, γ̄ = η̄ eφ̄ . (2.1)

The operator products between various fields take the form:

∂Xµ(z)∂Xν(w) = − ηµν

2(z − w)2 + · · · , ψµ(z)ψν(w) = − ηµν

2(z − w) + · · · ,

c(z)b(w) = (z − w)−1 + · · · ,

ξ(z)η(w) = (z − w)−1 + · · · ,

eq1φ(z)eq2φ(w) = (z − w)−q1q2e(q1+q2)φ(w) + · · · ,

∂φ(z) ∂φ(w) = − 1
(z − w)2 + · · · , (2.2)

where · · · denote less singular terms whose knowledge will not be needed for our analysis.
The Minkowski metric ηµν is taken to have mostly + signature, and is replaced by δµν
in the euclidean computation. There are similar operator product expansions involving
anti-holomorphic fields that we have not written down. In the following discussion we shall
only write down the various relations involving the holomorphic fields, with the implicit
understanding that there are similar relations involving anti-holomorphic fields as well.

We assign ghost number 1 to c, c̄, γ, γ̄, η, η̄, −1 to b, b̄, β, β̄, ξ, ξ̄ and 0 to the rest of the
fields. We also assign picture number q to eqφ and eqφ̄, 1 to ξ, ξ̄, −1 to η, η̄ and 0 to the rest
of the fields. The SL(2,C) invariant vacuum carries zero ghost number and picture number.

The stress tensor T (z) and its fermionic partner TF (z) for the matter sector take
the form:

Tm(z) = −∂Xµ∂Xνηµν + ψµ∂ψ
µ, TF (z) = −ψµ∂Xµ , (2.3)

with similar expressions for their anti-holomorphic counterparts. The operator product
expansions involving Tm and TF take the form:

Tm(z)Tm(w) = 15
2

1
(z − w)4 + 2

(z − w)2Tm(w) + 1
z − w

∂Tm(w) + · · · ,

TF (z)TF (w) = 5
2

1
(z − w)3 + 1

2
1

z − w
Tm(w) + · · · ,

Tm(z)TF (w) = 3
2

1
(z − w)2TF (w) + 1

z − w
∂TF (w) + · · · . (2.4)

The stress tensors of the ghost fields are given by

Tb,c = −2 b ∂ c+ c ∂ b, Tβ,γ(z) = 3
2β∂γ + 1

2γ∂β = Tφ + Tη,ξ , (2.5)

where
Tη,ξ = −η∂ξ , Tφ = −1

2∂φ∂φ− ∂
2φ . (2.6)
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The BRST charge is given by
QB =

∮
dzB(z) , (2.7)

where

B(z) = c(z){Tm(z) + Tβ,γ(z)}+ γ(z)TF (z) + b(z)c(z)∂c(z)− 1
4γ(z)2b(z) , (2.8)

and
∮
is normalized to include the 1/(2πi) factor so that

∮
dz/z = 1.

The picture changing operator (PCO) X [42, 43] will be taken to be:

X (z) = 2 {QB, ξ(z)} = 2 c ∂ξ + 2 eφTF −
1
2∂η e

2φ b− 1
2∂
(
η e2φ b

)
. (2.9)

This differs from the one used in [41] by a factor of 2. Since the picture number non-
conservation on a Riemann surface of genus g is proportional to 2g − 2, and since string
amplitudes carry factors of g2g−2

s where gs is the string coupling constant, the difference
in the normalization of the PCO can be absorbed into a redefinition of the string coupling
and the normalization of the vertex operators. We shall see that (2.9) is a convenient
normalization to use for computation of amplitudes.

We also introduce the inverse picture changing operator

Y = 2 c ∂ξ e−2φ . (2.10)

Both X and Y commute with the BRST operator. Furthermore, they have a non-singular
operator product expansion:

Y(z)X (w) = 1 +O(z − w) . (2.11)

Since we shall be using some of the results from [40] we shall now give the relation
between the normalization conventions used here and those used in [40]. The results of [40]
can be found by making the following replacements in our formulæ:2

β → −β/2, γ → 2 γ, ξ → ξ/2, η → 2η, φ→ φ,

Xµ → Xµ, ψµ → −i ψµ/
√

2, Tm → TB, TF → TF /2 . (2.12)

Next we introduce the 16-component spin fields Sα and Sα in the matter sector, car-
rying opposite chirality. We shall use the convention that e−φ/2Sα and e−3φ/2Sβ are GSO
even operators. The relevant operator product involving the spin fields are:

ψµ(z) e−φ/2Sα(w) = i

2 (z − w)−1/2 (γµ)αβe−φ/2 Sβ(w) + · · · ,

ψµ(z) e−φ/2Sα(w) = i

2 (z − w)−1/2 (γµ)αβe−φ/2 Sβ(w) + · · · ,

e−3φ/2Sα(z) e−φ/2Sβ(w) = (z − w)−2 δαβ e
−2φ(w) + · · · ,

e−φ/2Sα(z) e−φ/2Sβ(w) = i (z − w)−1 (γµ)αβ e−φ ψµ(w) + · · · , (2.13)

2With these replacements, the bosonization rule for β, γ should take the form β = e−φ ∂ξ, γ = η eφ.
Ref. [40] states the bosonization rules as β = e−φ ∂ξ, γ = eφ η, but this is inconsistent with the operator
product expansion γ(z)β(w) ' (z − w)−1 used in [40] if we take ξ, η to anti-commute with e±φ.
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where the 16× 16 matrices γµαβ satisfy the identities:

(γi)αβ = (γi)βα, (γi)αβ = (γi)αβ , {γi, γj} = 2 δij , for 1 ≤ i ≤ 9 ,

(γ0)αβ = δαβ , (γ0)αβ = −δαβ . (2.14)

These are related to the full ten dimensional gamma matrices Γµ as follows:

Γµ =
( 0 (γµ)αβ

(γµ)αβ 0

)
. (2.15)

An explicit choice of such gamma matrices can be found e.g. in appendix A of [44]. It will
be understood that when we take product of the γµ’s, the successive γµ’s will have their
indices alternating between upper and lower indices. Therefore (γµγν)αβ will correspond
to (γµ)αδ(γν)δβ . With this convention, we have

{γµ, γν} = 2 ηµν I16 , (2.16)

where I16 denotes the 16× 16 identity matrix. The consistency of (2.13) with (2.2) can be
seen by studying various correlation functions. For example, we have

〈ce−φψµ(z1)ce−φ/2Sα(z2)ce−φ/2Sβ(z3)〉 = iK γµαβ/2 , (2.17)

where K is an overall constant giving 〈c∂c∂2ce−2φ〉/2 in the holomorphic sector. This can
be obtained by either taking the operator product of the second and third operators first
using (2.13) and then using (2.2), or by taking the operator product of the first and the
second operator first using (2.13) and then using (2.13) again.

We now give the mode expansion of the various fields. The ghost and the matter fields
have mode expansions

b(z) =
∑

bnz
−n−2, c(z) =

∑
n

cnz
−n+1,

β(z) =
∑
n

βnz
−n− 3

2 , γ(z) =
∑
n

γnz
−n+ 1

2 ,

η(z) =
∑
n

ηnz
−n−1, ξ(z) =

∑
n

ξnz
−n ,

i
√

2 ∂Xµ(z) =
∑
n

αµnz
−n−1, i

√
2ψµ(z) =

∑
n

dµnz
−n−1/2 . (2.18)

Also useful will be the mode expansions of the total stress tensors of the matter and ghost
superconformal field theory and the super-stress tensor of the matter theory:

T (z) =
∑

Lnz
−n−2 , TF (z) = 1

2
∑
n

G(m)
n z−n−3/2 . (2.19)

Note that in this equation T (z) refers to the total stress tensor of all the fields, while TF
is the super-stress tensor of the matter fields only. The superscript (m) of G(m)

n will serve
to remind us of this.
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The normalization conventions described above will be used for both closed and open
strings For open strings the expansion coefficients of the anti-holomorphic fields are not
independent, but are related to those of the holomorphic fields. For computing correlation
functions on the upper half plane, this relationship is used to arrive at the doubling trick in
which we replace the upper half plane by the full complex plane and the anti-holomorphic
fields in the upper half plane by holomorphic fields at the complex conjugate points.

Finally, we state the normalization of the vacua of the closed string and the open string.
For the closed string vacuum carrying momentum k, we choose the normalization [41]:

〈k|c−1c̄−1c0c̄0c1c̄1 e
−2φ(0)e−2φ̄(0)|k′〉 = −(2π)10δ(10)(k + k′) . (2.20)

The normalization of the open string vacuum on a p-brane will be chosen as:

〈k|c−1c0c1 e
−2φ(0)|k′〉 = (2π)p+1δ(p+1)(k + k′) . (2.21)

3 Conventions for string field theory

We shall now review some of the relevant properties of open-closed superstring field theory
that describes the coupled dynamics of the degrees of freedom of a D-p-brane and the
closed string degrees of freedom. We shall need only a small part of the string field theory
and not the full details. The full details can be found in [45, 46], but our convention
differs from that of [46] in one important way. In the analysis of [46] the kinetic term of
the closed string fields was accompanied by a factor of g−2

s , that of the open string fields
was accompanied by a factor of g−1

s and the normalization of the interaction terms were
specified only implicitly by requiring that they satisfy appropriate sewing identities. Here
we shall accompany the kinetic term of the closed string fields by a constant κ−2 and that of
the open string fields by a different constant g−1

o and adjust the relation between κ and go
so that the interaction terms have simple normalization. This corresponds to appropriate
rescaling of the closed and the open string fields. We shall introduce a third constant gs
such that the tension of a BPS D-p-brane is given by (2π)−p/gs. In particular the type IIB
D-instanton action will be given by 2π/gs.

3.1 Closed string sector of string field theory

We shall begin by writing down the kinetic term and the sphere 3-point interaction terms
for the NSNS sector classical closed string field. We denote the NSNS sector classical closed
string field by a state |ψc〉 in the NSNS sector of the closed string Hilbert space of ghost
number 2, satisfying,

(b0 − b̄0)|ψc〉 = 0, (L0 − L̄0)|ψc〉 = 0 , (3.1)

and write the quadratic and the cubic term in the action as:

Sc = 4
κ2

(1
2〈ψc|c

−
0 (QB +QB)|ψc〉+ 1

3!{ψ
3
c}
)
, c−0 ≡ (c0 − c̄0)/2 , (3.2)

where {V1V2V3} is given by the sphere correlation function of a pair of PCOs and three
closed string vertex operators V1, V2, V3, inserted using appropriate local coordinate system

– 8 –
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specified by string field theory. The correlation function is computed with the normaliza-
tion (2.20). Our sign convention for the action is such that in the Euclidean (Lorentzian)
theory we take the weight factor in the path integral to be eS (eiS). The string field |φc〉
with canonical normalization is related to ψc via

|ψc〉 = κ|φc〉 , (3.3)

so that
Sc = 4

(1
2〈φc|c

−
0 (QB +QB)|φc〉+ κ

3!{φ
3
c}
)
, c−0 ≡ (c0 − c̄0)/2 , (3.4)

To check that the kinetic term has the correct normalization, we can fix Siegel gauge
b0|φc〉 = 0. In this gauge we can replace QB +QB by c0L0 + c̄0L̄0, and the kinetic term of
the action reduces to:

〈φc|c0c̄0(L0 + L̄0)|φc〉 . (3.5)

Since each of L0 and L̄0 have additive terms k2/4, the kinetic term has the correct nor-
malization k2/2. In particular, if we define the graviton field hµν as the following term in
the expansion of |φc〉:

−
∫

d10k

(2π)10 hµν(k) c1c̄1d
µ
−1d̄

ν
−1 e

−φ(0)e−φ̄(0)|k〉 , (3.6)

then, with the normalization (2.20), the kinetic term for hµν will take the form:

− 1
2

∫
d10k

(2π)10 hµν(−k) k2 hµν(k) . (3.7)

This agrees with the quadratic term in the Einstein action,

1
2κ2

∫
d10x

√
− det g R , (3.8)

in the de Donder gauge, if we expand the metric as

gµν = ηµν + 2κ
∫

d10k

(2π)10 hµν(k) eik.x . (3.9)

In this convention, a normalized graviton state of momentum k and polarization eµν
in the (−1,−1) picture has the form:

− eµν c1 c̄1 d
µ
−1d̄

ν
−1 e

−φ(0) e−φ̄(0)|k〉 , eµν = eνµ, ηµνeµν = 0, kµ eµν = 0, eµνeµν = 1 .
(3.10)

Using (2.18), the associated vertex operator is given by

V = −2 eµν c c̄ e−φ ψµ e−φ̄ ψ̄ν eik.X . (3.11)

We shall also need the zero picture vertex operator of this state, obtained by multiplying
this by the picture changing operators X X̄ . This takes the form:

2 eµν c̄ c {∂Xµ + i kρ ψ
ρψµ}

{
∂̄Xν + i kσ ψ̄

σψ̄ν
}
eik.X + · · · , (3.12)
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where · · · involves terms proportional to γ ψµ and γ̄ψ̄ν that will not be needed for our
analysis. This agrees with the conventions of [40] after using the translation rules (2.12).

We shall now argue that with this normalization the three point functions of the
gravitons also agree with that of [40]. For this let us consider three gravitons with momenta
{ki} and polarizations e(i)

µν for 1 ≤ i ≤ 3. Let us denote by Vi’s their vertex operators.
Comparing (3.6) with (3.10) we see that the Vi’s are given as in (3.11). It now follows
from (3.4) that the three graviton amplitude is given by

4 i κ {V1V2V3} = 4 i κ 〈V1(z1)V2(z2)V3(z3)〉 , (3.13)

where 〈 〉 denotes correlation function on the sphere and z1, z2 and z3 are three fixed points
on the sphere. The factor of i is the standard factor that arises in the computation of the
S-matrix, taking into account the fact that in Lorentzian signature the path integral is
weighted by eiS . On the other hand, in the notation of [40], the same amplitude would
have been given by

i g3
c

8π
g2
c

〈V1(z1)V2(z2)V3(z3)〉 = 8π i gc 〈V1(z1)V2(z2)V3(z3)〉, gc = κ

2π . (3.14)

The factor of g3
c arises from the convention that each closed string vertex operator is

accompanied by a factor of gc and the 8π/g2
c factor multiplies every sphere amplitude,

determined in [40] by the requirement of factorization. The relation gc = κ/(2π) was
needed to get the correct three graviton coupling as computed from (3.8), (3.9).

We now see that (3.13) and (3.14) agree. Since it was shown in [40] that (3.14) com-
puted with these vertex operators (3.11) agrees with the one computed from the Einstein-
Hilbert action with gravitational coupling κ, we conclude that κ appearing in (3.2) is
the gravitational coupling constant appearing in (3.8). Once the conventions have been
matched, it follows that all the higher order amplitudes computed from the action (3.2) also
agree with those computed in [40]. We shall now briefly indicate how this works for the four
point function. According to (3.2) there will be a contribution to the four point function
obtained by joining a pair of three point vertices by a propagator. In the Euclidean theory
three point vertices are each proportional to 4κ times appropriate three point functions on
the sphere, while it follows from (3.5) that the propagator is given by

− 1
2 b̄0b0(L0 + L̄0)−1 δL0,L̄0

= 1
2

1
2π b0 b̄0

∫ ∞
0

ds

∫ 2π

0
dθ e−s(L0+L̄0)eiθ(L0−L̄0) . (3.15)

Standard manipulation in conformal field theory now shows that the effect of the expo-
nential factors and sum over all the internal states in the propagator is to sew the two
three punctured spheres into a four punctured sphere. The b0, b̄0 factors convert one of
the unintegrated vertex operators into an integrated vertex operator and the integral over
s and θ generates integration over the location z of the integrated vertex operator with
measure d2z/2 where for z = x+ iy, d2z ≡ 2dxdy. This has been reviewed in appendix A.
Therefore after Wick rotation to Lorentzian signature, we get a net normalization factor:

i (4κ)2
( 1

4π

) 1
2 = 2 i κ2/π , (3.16)
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besides the integral over the sphere four point function with three fixed and one integrated
vertex operators with measure d2z. On the other hand, according to the prescription
of [40] the amplitude will get a factor of g4

c from the four vertex operators, a factor of
8π/g2

c from the sphere and the standard factor of i for the S-matrix. This generates a
multiplicative factor:

i g4
c × 8π g−2

c = i 8π (κ/(2π))2 = 2 i κ2/π . (3.17)

This is in agreement with (3.16). This agreement is not surprising, since the normalization
of the amplitude was fixed in [40] by demanding that the amplitudes factorize correctly,
while in the amplitudes computed from string field theory, the factorization of the ampli-
tude is guaranteed.

This can also be generalized to higher point function. Given an n-point function,
adding another vertex operator can be achieved by sewing of a three point function us-
ing a propagator. From (3.4), the three point function gives a factor of 4κ, whereas the
propagator generates an integral with measure d2z/(8π). Therefore the net effect is multi-
plication by a factor of κ/(2π) = gc and the integration over the location of the puncture
with measure d2z. This agrees with the prescription of [40].

The Ramond sector of closed string field theory is somewhat more involved, but we
shall not need this for our analysis.

3.2 Open string sector of string field theory

We now turn to the open string sector of the open-closed string field theory on a Dp-brane.
The NS sector string field |ψNS〉 is taken to be a state with picture number −1 in the open
string Hilbert space, and the quadratic and cubic terms in the action take the form:

1
g2
o

[1
2〈ψNS|QB|ψNS〉+ 1

3!{ψ
3
NS}

]
, (3.18)

where in the definition of {V1V2V3} we include disk amplitudes with one PCO insertion,
computed with the standard normalization given in (2.21) and sum over both cyclic ordering
of the open string vertex operators V1, V2, V3. This explains the factor of 1/3! instead of
the usual factor of 1/3. go is the open string coupling whose relation to the closed string
coupling constant κ will be given later. If we define the field |φNS〉 via,

|ψNS〉 = go|φNS〉 , (3.19)

then, up to this order, the action takes the form

1
2〈φNS|QB|φNS〉+ go

3! {φ
3
NS} . (3.20)

Since in the Siegel gauge QB is replaced by c0L0, and since L0 acting on open string
states has an additive term k2, the kinetic term has standard normalization. Therefore the
3-point coupling between three physical open string states is given by g0 times the disk 3-
point function of the vertex operators with the standard normalization (2.21), without any
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additional factor. Furthermore, following analysis similar to the one described for closed
strings, one can show that each additional external open string state gives an additional
factor of go, and the new vertex operator has to be converted to integrated picture and
integrated along the real axis. This agrees with the normalization used in [40]. Therefore
the go appearing in (3.18) agrees with the one used in [40].3

The infinitesimal gauge transformation parameter of the NS sector of the classical open
string field theory corresponds to an arbitrary NS sector state |θ〉 of ghost number 0. The
gauge transformation law up to order φNS takes the form:

δ|φNS〉 = QB|θ〉 − go [θφNS] , (3.21)

where [AB] is defined so that for any state |C〉,4

〈C|[AB]〉 = {CAB} . (3.22)

Finally we turn to the Ramond sector of the theory. Usually the construction of the
kinetic term requires either adding a free field [41] or including a projection operator [49].
However the construction simplifies if we focus on the effective action involving only the
zero mass level states, after integrating out all the massive modes. In this case we can take
the classical string field to be a state |ψR〉 of the open string of ghost number 1 and picture
number −1/2 and the action up to the cubic order can be taken to be of the form:

S = 1
g2
o

[1
2〈ψR|Y0QB|ψR〉+ 1

3!{ψ
2
RψNS}

]
, (3.23)

where {ψ2
RψNS} is given by the disk amplitude without any PCO insertion and,

Y0 =
∮
dz

z
Y(z), X0 =

∮
dz

z
X (z) . (3.24)

The
∮
includes a factor of 1/(2π) so that

∮
dz/z = 1. For the full string field theory this

is not an acceptable action since the Hilbert space contains states in the kernel of Y0, but
at mass level zero this problem is absent. Defining |φR〉 = |ψR〉/go, we can express the
action as

1
2〈φR|Y0QB|φR〉+ go

3! {φ
2
RφNS} . (3.25)

Note that we have used the same coupling constant go for the NS and R-sector action.
This can be seen from the fact that a four point amplitude of two NS and two R sector
states has contribution from a pair of R-R-NS interaction vertices connected by an R-sector
propagator and also one R-R-NS and one NS-NS-NS interaction vertex connected by an
NS sector propagator. Therefore if we use different coupling constants for the R-R-NS and
NS-NS-NS interaction terms, the moduli space integrands of these two contributions to
R-R-NS-NS amplitude will not match.

3One should keep in mind however that the relation between go and κ or gs depends on the value of p,
i.e. the particular Dp-brane we are considering.

4When the states A, B, C are not all grassmann odd, the contributions to {ABC} from different
cyclic orderings come with opposite signs [46], e.g. in Witten’s open string field theory [47, 48], [θφNS] =
θ ∗ φNS − φNS ∗ θ .
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3.3 Interaction between open and closed strings

We shall now describe the normalization of some interaction terms that involve closed
strings (and possibly open strings) on Riemann surfaces with boundaries. Since our analysis
in sction 6, where these interaction terms will be used, will involve product of four copies
of the disk amplitude with identical interaction vertices, the overall sign and factors of i in
these interaction terms will not be important and will be ignored.5

The elementary interaction term is the one point function of the closed string on the
disk. The corresponding term in the action, denoted by {ψc}D is defined via the relation:

{ψc}D = T2 〈(c
−
0 ψc)〉D (3.26)

where T is the tension of the Dp-brane under consideration, and 〈 〉D on the right hand side
is the closed string one point function on the disk computed with the normalization (2.21).
The closed string is inserted at the center of the disk z = 0 using the local coordinate
eβ z, where z is the coordinate system in which the disk is described by |z| ≤ 1 and β is a
parameter that characterizes the string field theory under consideration [46]. (3.26) can be
taken as the definition of the D-brane tension. It has been shown in appendix B that this
definition of the brane tension agrees with the usual definition based on the low energy
effective action.

Next we shall describe the interaction term involving disk amplitudes with multiple
insertions of closed strings and open strings. In the action it will appear as:

∑
m,n

1
m!n!{ψ

m
c ψ

n
o }D =

∑
m,n

1
m!n!κ

mgno {φmc φno}D , (3.27)

where ψo stands for the open string fields ψNS or ψR, φc = ψc/κ and φo = ψo/go are the
canonically normalized fields, and,

{ψmc ψno }D = π T
∫
〈ψmc ψno 〉D . (3.28)

Here 〈ψmc ψno 〉D denotes correlation function on the disk / upper half plane with appropri-
ate number of PCO insertions, computed with the normalization (2.21), with the vertex
operators inserted with choice of local coordinates appropriate to the string field theory
under consideration and the integral runs over part of the moduli space of the associated
Riemann surface with punctures, as prescribed by the particular version of the string field
theory we consider. If we use the SL(2,R) invariance to fix the position of one closed string
puncture and one open string puncture, then for the rest of the punctures the integration
measure is fixed as follows. For a variable closed string puncture at position z = x + iy,
the integration measure is taken to be d2z/(2π) where d2z = 2dxdy, whereas for a variable

5If we want to be more careful, we need to include additional factor of i in (3.28) in order to have
compatibility with sewing relations. This is related to the fact that for a disk amplitude with closed and
open strings, if we make an SL(2, R) transformation to go from a configuration with one fixed closed string
puncture and one fixed open string puncture to one with three fixed open string punctures, the resulting
integration measure over the closed string puncture is given by i d2z instead of d2z.
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open string puncture at position x, the integration measure is taken to be dx. This is
consistent with the normalization of the integration measure over closed string punctures
on the sphere and open string punctures on the disk found in sction 3.1 and sction 3.2.
The extra factor of 2π in (3.28) relative to (3.26) reflects the fact that the disk with one
closed string insertion at the origin has a conformal Killing vector that rotates the disk
around the origin, and the volume of this group is 2π. Therefore in the computation of the
one point function of closed strings on the disk there is an implicit division by a factor of
2π that needs to be removed in (3.28).

With this normalizations, we can check iteratively that the interaction terms will sat-
isfy the appropriate sewing relations needed for the gauge invariance of the theory. For
example, let us consider a disk amplitude with m on-shell closed strings and n on-shell
open strings with canonically normalized external states. Part of this contribution comes
from a Feynman diagram where a closed string three point vertex with two external states
is connected to a disk amplitude with m− 1 closed strings and n open strings by a closed
string propagator. In this case we get a factor of 1/(4π) from the propagator (3.15), and
another factor of 1/2 while writing dsdθ in terms of d2z as discussed above (3.16) and in
appendix A. Therefore the amplitude involves a factor of 4κ from the closed string three
point vertex as given in (3.13), a factor of πT κm−1gno from the disk amplitude with (m−1)
closed string and n open strings, a factor of (2π)−(m−2) associated with the integration
measure of the (m−2) integrated closed string puncture on the disk and a factor of 1/(8π)
from the closed string propagator. This gives a net factor of T κmgno /2×(2π)−(m−2) accom-
panying this diagram. On the other hand, the same amplitude also gets a contribution from
the interaction vertex (3.27) with m external closed strings and n external open strings,
covering a different region of the moduli space. The associated normalization factor is
πT κmgno times (2π)−(m−1) since there are (m − 1) integrated closed string punctures on
the disk with m closed string punctures. Therefore the two normalization factors match,
as required by gauge invariance. A similar analysis involving sewing via an open string
propagator connecting a disk amplitude with m closed strings and (n−1) open strings and
the disk amplitude with three open strings can be used to check consistency of the relative
normalization given in (3.28) for (m,n) and (m,n− 1).

3.4 Relation between the different coupling constants

We are now in a position to discuss the relation between κ, go and T . In the following
we shall ignore factors of i and minus signs in the intermediate steps since κ, go and
T are all positive. The relation between go and T may be found as follows. Let us
consider a disk amplitude with m on-shell closed strings and n on-shell open strings with
canonically normalized external states. Part of this contribution comes from the interaction
vertex (3.28) withm closed strings and n open strings, with associated normalization factor
πT κmgno times (2π)−(m−1). We shall write this as T κmgno /2 × (2π)−(m−2). On the other
hand, the same amplitude receives contribution from another class of Feynman diagrams
in which a disk amplitude with p closed string states and q open string states is joined to
another disk amplitude with m− p closed string states and n− q+ 2 open string states by
an open string propagator. In this case this amplitude gets a factor of π T κpgqo×(2π)−(p−1)
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and π T κm−pgn−q+2
o × (2π)−(m−p−1) from the two interaction vertices. The Siegel gauge

open string propagator
b0(L0)−1 = b0

∫ ∞
0

e−sL0 , (3.29)

does not generate any extra factor. This gives a net factor of π2T 2κmgn+2
o × (2π)−(m−2).

Equating the two factors associated with the two Feynman diagrams we get T κmgno /2 =
π2T 2κmgn+2

o . This gives
T = 1

2π2g2
o

. (3.30)

This agrees with the result of [50] obtained by different method and also with the result
of [40]. For D-instantons we shall label T as

T = 2π
gs
. (3.31)

Therefore, we have
g2
o = gs/(4π3) . (3.32)

gs is a useful parameter since τ = a + i g−1
s , where a is the vacuum expectation value of

the Ramond-Ramond scalar, transforms as τ → −1/τ under S-duality transformation.
The relation between κ and T can be found by considering the annulus zero point

function. On the one hand, this can be obtained by joining a pair of disk one point
function of closed strings by a closed string propagator. Since the disk one point function
of canonically normalized closed string is proportional to κT , this contribution will be
proportional to (κT )2. On the other hand this contribution may be expressed as an integral
of the open string partition function that does not depend on any parameter. Equating
these two expressions we can determine κT . This computation was carried out in [40] and
since our conventions for the parameters agree with that of [40] we just state the result:

κ2T 2 = 1
2 (2π)7−2p . (3.33)

For D-instantons p = −1 and T = 2π/gs. This gives

κ2 = 26 π7 g2
s . (3.34)

4 Normalization of the D-instanton amplitude

The general expression for the contribution to an amplitude due to a single D-instanton in
type IIB string theory, with action 2π/gs, takes the form

N e−2π/gs A , (4.1)

where N is a normalization constant and A is the usual world-sheet contribution to the
amplitude. We have not explicitly written down the e2πia factor since we have not switched
on RR scalar background, but the presence of this factor follows from general considera-
tions. Our goal in this section will be to compute N . As mentioned below (1.2), we shall
not be careful about the overall phase of N since it can be absorbed into a shift of a.
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4.1 Annulus partition function

The general procedure for computing the normalization of the D-instanton amplitude was
described in [31]. As in [31], we shall formally write the normalization N as:

N = i ζ eA . (4.2)

Here ζ is a possible multiplier factor that specifies what multiple of the full steepest descent
contour of the D-instanton is included in the actual integration contour over the string
fields. This will be analyzed in sction 5. The factor of i is common to all string amplitudes
and reflects the usual factor of i that appears while relating the analytic continuation of the
Euclidean momentum space Green’s functions to the S-matrix via the LSZ prescription. A
is the annulus partition function, formally written as [40]

A =
∫ ∞

0

dt

2t

[1
2 η(it)−12

{
ϑ3(0|it)4 − ϑ4(0|it)4 − ϑ2(0|it)4 + ϑ1(0|it)4

}]
, (4.3)

where the ϑi’s are the Jacobi theta functions and η is the Dedekind η function. The
coefficient of e−2π n t inside the square bracket counts the difference between the bosonic
and fermionic open string states on the D-instanton with L0 eigenvalue n. The first two
terms inside the square bracket reflect the contribution from the NS sector states and the
last two terms reflect the contribution from the R sector states. The last term is actually
zero, but we have written it here since this is the form in which it arises when we take
the trace over open string states. The 1/2 inside the square bracket comes from the GSO
projection operator (1 + (−1)f )/2 where f is the world-sheet fermion number.

Now the annulus partition function A given in (4.3) actually vanishes due to cancel-
lation between the NS and R sector states. However this cancellation cannot be trusted
since the L0 = 0 sector represents NS and R sector zero modes for which (4.3) is not
applicable. Nevertheless the cancellation in the L0 > 0 sector shows that the contribution
to N comes entirely from the zero mode sector. Our strategy, following [31], will be to
represent the zero mode contribution to N as integrals over the zero mode string fields,
and then explicitly carry out these integrals.

To proceed further, it will be useful to regulate the contribution from the L0 = 0
states to (4.3) by giving a small positive value to L0. This can be achieved for example
by considering open strings stretched from one D-instanton to a neighboring D-instanton
separated by a small distance a and noting that in the limit of zero separation the spectrum
reduces to that of open strings with two ends lying on the same D-instanton. For non-zero
separation between the two D-instantons, both the NS and the R-sector modes get a small
positive contribution to L0 given by h = a2/(4π2), introducing an additional multiplicative
factor e−2πth in the integrand. Noting that the term inside the square bracket in (4.3) gets
a contribution of 8 each from the NS and the R-sector zero modes, we can express the
regulated zero mode contribution to (4.2) as:

N = i ζ exp
[∫ ∞

0

dt

2t
(
8 e−2πth − 8 e−2πth

)]
. (4.4)
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We can now use the general result6

∫ ∞
0

dt

2t

[
n∑
i=1

e−2πthbi −
n∑
i=1

e−2πthfi

]
= 1

2 ln
∏n
i=1 h

f
i∏n

i=1 h
b
i

, (4.5)

to express N as

N = i ζ

√
h8

h8 . (4.6)

For reasons that will be clear soon, we shall express this as an integral of the form:

N = i ζ

∫ { 9∏
µ=0

dξµ√
2π

}
dp dq exp

[
− 1

2h
9∑

µ=0
ξµξ

µ − h p q
] ∫ 16∏

α=1
dχα exp

[1
2gαβχαχβ

]
,

(4.7)
where ξµ are grassmann even modes, p, q are grassmann odd modes, χα are grassmann odd
modes and gαβ is an anti-symmetric, 16× 16 hermitian matrix with the property:

g2 = h I16 , (4.8)

where I16 is the 16 × 16 identity matrix. Note that even though we have written the
quadratic term in ξµ as ξµξµ, in euclidean signature this is just

∑
µ(ξµ)2 and the integral

over the ξµ’s is well-defined.
We shall now proceed as follows.

1. First we shall show that (4.7) may be interpreted as the Siegel gauge fixed path
integral of the open string field theory on the D-instanton with appropriate normal-
ization. Up to normalization, the modes ξµ will represent the translation modes of
the D-instanton in the h→ 0 limit, the modes p and q will represent Faddeev-Popov
ghosts in the NS sector and the modes χα will represent the fermionic collective
modes on the D-instanton in the h→ 0 limit.

2. Then we shall show that the Siegel gauge becomes singular in the h → 0 limit, and
this is the reason why the coefficient of the p q term, representing the ghost kinetic
operator, vanishes. The remedy will be to work with the original gauge invariant
path integral before gauge fixing.

3. We shall integrate over the collective modes at the end following standard procedure.
In particular we shall determine the correct normalization factor that relates the
modes ξµ to the locations ξ̃µ of the D-instanton in Euclidean space time. The inte-
gration over the ξ̃µ’s will then generate the standard energy momentum conserving
delta function for the momenta of external states entering the amplitude A in (4.1).
The integration over the modes χα will force us to insert the vertex operators of each
of the sixteen χα’s into the world-sheet defining the amplitude A, since otherwise the
integral will vanish.

6To arrive at (4.5) we need to put a lower cut-off ε on the t integral and take the ε→ 0 limit at the end
of the calculation. A discussion on this may be found in sction 8 and [51].
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4.2 Gauge invariant string field theory in the L0 = 0 sector

Since open strings living on the D-instanton do not carry any continuous momenta, the
associated open string field theory is zero dimensional, containing a discrete set of modes.
Since we shall be working with only the L0 = 0 sector, we begin by listing the basis states
in this sector.7

NS : β−1/2c1| − 1〉, c1d
µ
−1/2| − 1〉, β−1/2c0c1| − 1〉,

γ−1/2c1| − 1〉, c0c1d
µ
−1/2| − 1〉, γ−1/2c0c1| − 1〉, (4.9)

R : (γ0)nc1| − 1/2, α〉, (γ0)nc0c1| − 1/2, α〉 , (4.10)

where we have defined,

| − 1〉 ≡ e−φ(0)|0〉, | − 1/2, α〉 = e−φ/2Sα(0)|0〉 . (4.11)

Since classical open string fields carry ghost number 1, we have the following expansion of
the classical fields |φNS〉 and |φR〉 introduced in (3.2):

|φNS〉 = i φ1 β−1/2c0c1| − 1〉+ ξµc1d
µ
−1/2| − 1〉 , (4.12)

|φR〉 = χαc1| − 1/2, α〉 , (4.13)

where φ1 and ξµ are grassmann even modes and χα for 1 ≤ α ≤ 16 are grassmann odd
modes. The i multiplying the coefficient φ1 reflects the fact that the reality condition on
the string field requires an expansion of the form given in (4.12) with real φ1 [52]. As
discussed in sction 3.2, the kinetic term of the action is given by:

S = SNS + SR, SNS = 1
2〈φNS|QB|φNS〉, SR = 1

2〈φR|Y0QB|φR〉 . (4.14)

Since gauge transformation parameters are described by states of ghost number 0, we see
from (4.10) that there is no gauge transformation parameter in the R sector, while the NS
sector contains a single gauge transformation parameters θ:

|θNS〉 = i θ β−1/2c1| − 1〉 , (4.15)

where again the factor of i reflects that real gauge transformation parameter in string field
theory corresponds to real θ. Classical gauge transformation law

δ|φNS〉 = QB|θNS〉 , (4.16)

translates to the following transformation of φ1 and ξµ:

δφ1 = θ 〈−1|γ1/2c−1QBβ−1/2c1| − 1〉 , δξµ = i θ 〈−1|dµ1c−1c0QBβ−1/2c1| − 1〉 . (4.17)

The partition function of the theory may now be defined as:

I =
∫ 

9∏
µ=0

dξµ

 dφ1
{ 16∏
α=1

dχα

}
eS
/∫

dθ . (4.18)

At this stage the overall normalization of the partition function has been chosen arbitrarily.
The final result will be independent of this choice.

7Note that in the regulated version, what we refer to as L0 = 0 states actually have L0 = h.
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4.3 Gauge fixing to Siegel gauge

We now consider the Siegel gauge in the NS sector:

b0|φNS〉 = 0 . (4.19)

This translates to:
φ1 = 0 . (4.20)

Using (4.17) we see that the corresponding Faddeev-Popov determinant is given by:

〈−1|γ1/2c−1QBβ−1/2c1| − 1〉 . (4.21)

This may be represented by introducing a pair of grassmann odd ghost fields p, q defined via,

|φghost〉 = −p γ−1/2c1| − 1〉+ q β−1/2c1| − 1〉 , (4.22)

with action,

Sghost = 1
2〈φghost|QB|φghost〉 = −p q 〈−1|γ1/2c−1QBβ−1/2c1| − 1〉 , (4.23)

so that
∫
dp dq eSghost gives us the Faddeev-Popov determinant (4.21).

Since the Siegel gauge NS sector field and the ghost field (4.22) both satisfy the Siegel
gauge condition b0|ψ〉 = 0, the BRST operator QB reduces to c0L0. Therefore the sum of
the classical action and the ghost action now takes the form:

SNS + Sghost = −1
2

9∑
µ=0

h ξµξµ − h p q , (4.24)

where we have used the fact that the L0 eigenvalues of these states is given by h. On the
other hand, using the form of Y given in (2.10), and of QB given in (2.7), (2.8), and the
fact that we need total φ-charge −2 to get a non-vanishing disk correlation function, we see
that the Ramond action SR given in (4.14) gets contribution only from the γTF = η eφ TF
term in QB. Using the expansion (2.19) we may express the R sector kinetic term as

SR = 1
2 gαβ χα χβ , gαβ = 〈−1/2, α|c−1c0G

(m)
0 c1| − 3/2, β〉 . (4.25)

There is a comment that is in order here. If we regularize the path integral over zero
modes by considering open strings stretched between a pair of D-instantons, then the string
field theory action naturally pairs strings of opposite orientation. This necessarily doubles
the spectrum of the theory. In the NS sector we can avoid this problem by working with
states with Chan-Paton factors σ1 or σ2, since QB will not mix these sectors. However
for the fermions, the operator G(m)

0 will still pair the states in these two sectors, since
G

(m)
0 is linear in the perturbation that separates the D-instantons and this perturbation is

proportional to σ3. Therefore if we just pick states in the sector σ1 or σ2 then the kinetic
term will vanish. This can be avoided as follows. Let us suppose that we have separated
the instantons along the x1 direction. In that case it follows from (2.3) and (2.19) that
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acting on the R sector ground state, G(m)
0 will be proportional to γ1, which has non-zero

matrix element between the dotted and undotted spinors of the SO(8) group that acts
on the coordinates 1, · · · , 8. If we now pick the dotted spinors of SO(8) from the sector
with Chan-Paton factor σ1 and the undotted spinors of SO(8) from the sector with Chan-
Paton factor σ2, then G

(m)
0 will have non-zero matrix element between these states and

will provide an action of the form given in (4.25). This of course leaves the phase of the
partition function ambiguous, but as mentioned below (1.2), this phase can be absorbed
into a redefinition of the vacuum expectation value a of the RR scalar field.

Now using (2.19) and (2.4) we see that

{G(m)
0 , G

(m)
0 } = 2

(
L

(m)
0 − 5

8

)
. (4.26)

On the other hand c1| − 3/2, β〉 has Lghost
0 = −5/8. Therefore (4.26) gives,

(G(m)
0 )2c1| − 3/2, β〉 = L0 c1| − 3/2, β〉 = h c1| − 3/2, β〉 . (4.27)

This in turn shows that the matrix gαβ defined in (4.25) squares to h times the 16 × 16
identity matrix.

After gauge fixing, the partition function I defined in (4.18) takes the form:

I =
∫ {∏

µ

dξµ
}
dp dq

{∏
α

dχα

}
eS+Sghost

=
∫ {∏

µ

dξµ
}
dp dq

{∏
α

dχα

}
e
− 1

2
∑9

µ=0 h ξ
µξµ−h p q+ 1

2gαβ χα χβ . (4.28)

Comparing this with (4.7), we get,

N = i ζ (2π)−5 I . (4.29)

Let us now set h = 0. Since gαβ squares to h times the identity matrix, gαβ also
vanishes. In this case the action vanishes identically and the integrand becomes indepen-
dent of {ξµ}, {χα} and p, q. Lack of dependence on {ξµ} and {χα} may be traced to the
fact that these are bosonic and fermionic collective modes of the D-instanton, but the lack
of dependence on p and q indicates the vanishing of the Faddeev-Popov determinant and
therefore the breakdown of the Siegel gauge choice.

4.4 Gauge invariant partition function

We circumvent the problem of breakdown of Siegel gauge by replacing I in (4.29) by the
original gauge invariant expression (4.18). This gives,

N = i ζ (2π)−5
∫ {∏

µ

dξµ
}
dφ1

{∏
α

dχα

}
eS
/∫

dθ . (4.30)

We shall now set h = 0 and regard ξµ, φ1 and χα as degrees of freedom of the open string
with both ends lying on the same D-instanton. Substituting (4.12) and (4.13) into (4.14),
we get

S = −1
4(φ1)2 . (4.31)
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We can now carry out the φ1 integral, generating a factor of 2
√
π. This gives,

N = i ζ (2π)−5 2
√
π

∫ {∏
µ

dξµ
}{∏

α

dχα

}/∫
dθ . (4.32)

It is to be understood that even though we have written the ξµ and χα integrals as part
of N , these integrals need to be performed after taking the product of N with the rest of
the world-sheet amplitude A appearing in (4.1).

Our next task is to find the relation between ξµ and the D-instanton locations ξ̃µ along
the Euclidean space-time. This analysis proceeds as in [31]. We note that the integrated,
zero picture vertex operators associated with the mode ξµ is given by

X (z) i
√

2ψµ e−φ(z) = i
√

2 ∂Xµ(z) . (4.33)

Now consider the effect of inserting the field ξµ into a disk amplitude of open and
closed strings with the closed strings carrying total momentum pµ. It follows from (3.28)
and (4.33) that this will insert a vertex operator∫

dz go ξµ i
√

2 ∂Xµ(z) , (4.34)

with the integral running along the boundary of the disk. The factor of go arises from the
relation |ψo〉 = go|φo〉 and that ξµ appears in (4.12) as coefficients in the expansion of field
|φNS〉 with canonically normalized kinetic term. Using the operator product expansion

∂Xµ(z) eipi.X(zi) = − i pµi
2(z − zi)

eipi.X(zi) , (4.35)

we can now evaluate the integration over z and get a factor of

go ξµ i
√

2 2π i
(
− i2

∑
i

pµi

)
= i go π

√
2 ξµ

(∑
i

pµi

)
, (4.36)

multiplying the original amplitude without ξµ insertion. On the other hand if ξ̃µ denotes
the D-instanton location, then the dependence on ξ̃µ of the amplitude is expected to be
via a multiplicative factor of the form,

ei ξ̃µ(
∑

i
pµi ) = 1 + i ξ̃µ

(∑
i

pµi

)
+ · · · . (4.37)

Comparing (4.36) with (4.37) we get,

go π
√

2 ξµ = ξ̃µ . (4.38)

This gives
9∏

µ=0
dξµ = g−10

o π−10 2−5
9∏

µ=0
dξ̃µ . (4.39)
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By virtue of (4.37), the integration over {ξ̃µ} will generate the momentum conserving delta
function (2π)10δ(10)

(∑
p pi
)
, keeping in mind that these integrals have to be performed after

multiplying N by the rest of the world-sheet amplitude A as given in (4.1). Therefore, for
now we leave the ξ̃µ’s unintegrated and write

N = i ζ g−10
o π−10 2−5 (2π)−5 2

√
π

∫ {∏
µ

dξ̃µ

}{∏
α

dχα

}/∫
dθ . (4.40)

Next we shall analyze the result of integration over θ. As in the case of [31], θ is related
to the rigid gauge transformation parameter θ̃ under which an open string connecting the
D-instanton under study to a second spectator D-instanton picks up a factor of eiθ̃. Let
us express the NS sector open string field |φ̂NS〉 associated with the open string connecting
the two instantons by an expansion similar to (4.12), but with the coefficients denoted by
ξ̂µ and φ̂1. This will carry a Chan-Paton factor

( 0 1
0 0
)
. Then according to (3.21), under the

gauge transformation generated by θ, the transformation of |φ̂NS〉 is given by,

δ|φ̂NS〉 = −go [θφ̂NS] . (4.41)

In particular the transformation law of ξ̂µ may be obtained by taking the inner product of
this with the state c1c0d

µ
−1| − 1〉 with Chan-Paton factor

( 0 0
1 0
)
. This gives, up to a sign,

δξ̂µ = go {(c1c0d
µ
−1| − 1〉)(i θ β−1/2c1| − 1〉)(ξ̂νc1d

ν
−1| − 1〉} . (4.42)

The trace over the Chan-Paton factors ensures that only one of the cyclic ordering con-
tributes to the three point function on the disk that defines the { } in the above equation.
There is one PCO inside this correlation function. Taking its location to coincide with the
vertex operator c ∂ξ e−2φ of the state β−1/2c1| − 1〉 multiplying the gauge transformation
parameter θ, we can convert the vertex operator of the gauge transformation parameter to:

X (z) c ∂ξ e−2φ(z) = 1
2I , (4.43)

where I is the identity operator. Therefore we have

δξ̂µ = go i θ
1
2 ξ̂ν

〈(
i
√

2c∂cψµe−φ(z1)
) (
i
√

2c ψνe−φ(z2)
)〉

D
= i

2 goθ ξ̂
µ . (4.44)

Comparing this with the infinitesimal rigid U(1) transformation δξ̂µ = iθ̃ξµ, we get θ =
2θ̃/go. Since θ̃ has period 2π, this gives,∫

dθ = 4π/go . (4.45)

Substituting this into (4.40) we get

N = i ζ g−10
o π−10 2−5 (2π)−5 2

√
π
go
4π

∫ {∏
µ

dξ̃µ

}{∏
α

dχα

}
. (4.46)

Finally note that the variables χα are the coefficients of expansion of the field |φR〉. It will
be useful to express N as integration over the coefficients of expansion of the field |ψR〉
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since this enters the interaction terms (3.28) without any additional factor of go. To this
end we introduce the variables χ̃α via

|ψR〉 = χ̃α c1| − 1/2, α〉 , (4.47)

Comparing this with (4.13) and using |ψR〉 = go|φR〉, we get

χ̃α = go χα,
∏
α

dχα = g16
o

∏
α

dχ̃α , (4.48)

since χα are grassmann odd variables. Substituting this into (4.46) we get

N = i ζ g7
o 2−11 π−31/2

∫ {∏
µ

dξ̃µ

}{∏
α

dχ̃α

}
. (4.49)

Finally we use (3.32) to express this as:8

N = N0

∫ {∏
µ

dξ̃µ

}{∏
α

dχ̃α

}
, N0 = i ζ g7/2

s 2−18 π−26 . (4.50)

Integration over the grassmann odd variables shows that unless the rest of the amplitude
contains insertions of the 16 χ̃α’s, the result vanishes identically. This will be discussed in
sction 6.

5 The multiplier factor

There are two steps involved in the evaluation of the contribution due to a given instanton
to the amplitude. The first is to evaluate the contribution to the integral from the steep-
est descent contour / Lefschetz thimble associated with each saddle point, including the
classical vacuum and the various instanton solutions. This amounts to integration over the
full set of field fluctuations around each saddle point, with each field integrated over its full
range, but possibly deformed into the complex plane. The second step is to express the
actual integration contour, along which the path integral over the fields is to be performed,
as a (weighted) union of the Lefschetz thimbles for different saddle points [53–55]. This as-
sociates a multiplier factor ζ to each instanton, with which we need to multiply the steepest
descent contribution, before we add the contribution to the amplitude. This can sometime
be non-trivial, e.g. in the analysis of [31] in two dimensional bosonic string theory, the
multiplier factor associated with the D-instanton turned out to be 1/2. Our analysis in
sction 4 can be interpreted as part of the first step of the analysis since we integrate all
the modes from −∞ to ∞ without worrying about whether the actual integration contour
involves the whole range. In this section we shall carry out the second step.

The D-instantons are complex solutions in the Euclidean type IIB string theory since
the RR scalar field is imaginary for the D-instanton solution [2]. This may lead one to
wonder whether the D-instantons contribute to the amplitude at all, since usually the
integration contour in the Euclidean field theory runs over real field configurations, and

8This dependence on gs was first observed in [39].
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therefore would seem to miss the D-instanton configurations altogether. However we shall
now argue that this is not the correct way to view the D-instantons since they are not
regular solutions of supergravity. Instead one should regard the D-instantons as regular
solutions in the open string field theory on an unstable D-brane system whose vacuum
describes the regular perturbative vacuum [56]. For example a D-instanton in type IIB
string theory can be regarded as a kink solution on a non-BPS Euclidean D0-brane or a
vortex solution in the euclidean D1-D̄1 brane system. These are regular real solutions of
the open string field theory and the reason that the solution appears to be complex in
the closed string theory is due to the fact that in the Euclidean theory there is a complex
contribution to the action of closed and open strings. For example in the non-BPS D0-
brane action there is a term proportional to

∫
χdT , where χ is the RR scalar and T is

the open string tachyon, and in the Euclidean theory this gets a factor of i due to the
dT term acquiring an i from the Wick rotated time direction. Since from the open string
perspective the D-instantons are real solutions, we conclude that the integration contour
over the open string fields include the full steepest descent contour of the D-instanton.
Therefore the multiplier factor ζ is 1.

6 4-graviton amplitude

We shall now compute the leading D-instanton contribution to the four graviton amplitude.
Naively, the leading contribution comes from the product of four disk one point functions,
with a graviton vertex operator inserted at the center of each disk. However the contribu-
tion from such configurations to the four graviton amplitude vanishes due to the left over
integration over the χ̃α’s in (4.50). The remedy is to consider a different amplitude where,
besides the four graviton vertex operators inserted at the centers of the four disks, we also
have 16 χ̃α’s as external states [2]. As will be explained below, this gives a contribution
to the effective action containing product of 16 χ̃α’s and can give a non-zero result after
integration over the χ̃α’s.

We shall now proceed as follows:

1. We shall first show that the disk amplitude with a single graviton and n χ̃α’s vanish
for n = 0, 2, so we need at least four χ̃α insertions on the disk to get a non-vanishing
result. Therefore the 16 χ̃α’s must be equally distributed among the four disks.

2. Let Aαβγδ(e, k) eik.ξ̃ be the disk amplitude of a single graviton of polarization eµν
and external open string modes χ̃α, χ̃β , χ̃γ and χ̃δ. Note that we have included
the dependence of the amplitude on the position ξ̃ of the instanton. This can be
summarized by saying that the effective action of the open closed string field theory,
after integrating out the L0 > 0 modes, has a term9

1
4!

∫
d10k

(2π)10 e
ik.ξ̃ Aαβγδ(h(k), k) χ̃αχ̃βχ̃γχ̃δ . (6.1)

9For writing the effective action (6.1) we need an off-shell continuation of the function Aαβγδ. Any
off-shell continuation will serve our purpose since eventually we shall evaluate this for on-shell external
gravitons.
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Eq. (4.1) and (4.50) now show that, after integrating out the open string modes, the
closed string effective field theory will have a term

N0 e
−2π/gs

∫ ∏
µ

dξ̃µ
16∏
α=1

dχ̃α exp
[

1
4!

∫
d10k

(2π)10 e
ik.ξ̃ Aαβγδ(h(k), k) χ̃αχ̃βχ̃γχ̃δ

]
.

(6.2)
After expanding the exponential and using the result

∫ 16∏
α=1

dχ̃α χ̃α1 · · · χ̃α16 = εα1···α16 ,

∫ ∏
µ

dξ̃µ eiξ̃.
∑

i
ki = (2π)10δ(10)

(∑
i

ki

)
,

(6.3)
we get a four graviton interaction term in the closed string effective field theory:

N0 e
−2π/gs 1

4!
1

(4!)4 εα1β1γ1δ1···α4β4γ4δ4

×
∫

d10k1
(2π)10 · · ·

d10k4
(2π)10 (2π)10δ(10)(k1 + k2 + k3 + k4)

×
4∏
i=1
Aαiβiγiδi(h(ki), ki) . (6.4)

This generates the following contribution to the four graviton amplitude with polar-
izations e(i)

µν and momentum ki with 1 ≤ i ≤ 4:

N0 e
−2π/gs 1

(4!)4 εα1β1γ1δ1···α4β4γ4δ4

×
4∏
i=1
Aαiβiγiδi(e(i), ki) (2π)10δ(10)(k1 + k2 + k3 + k4) . (6.5)

Therefore our main task will be to compute Aαβγδ(e, k).

We shall begin by showing that the disk amplitude of a single graviton with po-
larization eµν vanishes. The vertex operator in the (−1,−1) picture up to a sign is
2 eµν c c̄ e−φe−φ̄ψµψ̄ν . We place the vertex operator at the point i in the upper half plane
and, using the doubling trick, replace ψ̄ν(i) by ψν(−i). The ψ correlator now produces
a factor of ηµν which shows that the amplitude is proportional to ηµνeµν . This vanishes
since the polarization tensor is traceless.

Next we compute the disk amplitude for one graviton and a pair of fermion zero modes
χ̃α and χ̃β . We insert the graviton vertex operator at i on the upper half plane as before,
but convert this to (0,−1) picture by taking the product with the PCO X , represent χα by
the unintegrated −1/2 picture vertex operator c e−φ/2 Sα inserted at the origin of the upper
half plane, and represent χβ by an integrated −1/2 picture vertex operator e−φ/2Sβ(z) and
integrate z along the real axis. The amplitude is proportional to:∫

dz 〈2 eµν c c̄ {∂Xµ + i kρ ψ
ρψµ} eik.Xe−φ̄ψ̄ν(i) ce−φ/2Sα(0) e−φ/2Sβ(z)〉UHP . (6.6)
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We can now use the doubling trick to convert this to a correlation function on the full
complex plane:∫

dz 〈2 eµν c {∂Xµ + i kρ ψ
ρψµ} eik.X(i) c e−ik.Xe−φψν(−i) ce−φ/2Sα(0) e−φ/2Sβ(z)〉plane ,

(6.7)
where all the fields are regarded as holomorphic. The z integral may be taken to pass
either above or below the origin where ce−φ/2Sα is inserted since, according to (2.13), the
difference between these two choices of contour is proportional to γµαβ which is symmetric
under the exchange of α and β. Since eventually we need to contract this amplitude with
εαβ···, the contribution of this term will vanish. Let us take the contour to pass above
the origin. We can now deform this to pick up the residue from the ψρψµ insertion at i.
Using (2.13) we see that the resulting contribution will be proportional to

1
2 kρ eµν (γρµ) γ

β 〈c e
−φ/2Sγe

ik.X(i) c e−ik.Xe−φψν(−i) ce−φ/2Sα(0)〉plane

∝ kρ eµν (γρµ) γ
β (γν)γα , (6.8)

where γµ1···µn is the totally antisymmetric product of γµ1 , · · · , γµn , normalized so that it
is given by γµ1 · · · γµn when all the µi’s are different. After expressing γρµγν as a linear
combination of γµνρ, ηρνγµ and ηµνγρ, we see that (6.8) vanishes using the symmetry and
tracelessness of eµν and the condition kµeµν = 0.

We shall now compute the amplitude Aαβγδ(e, k) with one canonically normalized
graviton and four χ̃’s inserted on the disk. During this computation we shall not be careful
about factors of i and minus signs since according to (6.5) the result will be raised to fourth
power. We shall convert the graviton vertex operator at i to an unintegrated zero picture
vertex operator given in (3.12) and call this VC :

VC = 2 eµν c̄ c {∂Xµ + i kρψ
ρψµ}{∂̄Xν + i kσψ̄

σψ̄ν} eik.X + · · · . (6.9)

The · · · terms have non-zero φ charge and will not contribute to the correlation function.
We denote the unintegrated −1/2 picture vertex operator of χ̃α by cWα where,

Wα = e−φ/2Sα . (6.10)

The corresponding integrated vertex operator is Wα. We take the vertex operator of χ̃α to
be unintegrated, placed at the origin, and those of χ̃β , χ̃γ and χ̃δ to be integrated along
the real axis. Therefore, according to (3.28), the amplitude will be given by:10

Aαβγδ(e, k) = κπT
∫
dy1dy2dy3 〈VC(i) cWα(0)Wβ(y1)Wγ(y2)Wδ(y3)〉UHP . (6.11)

10String field theory fixes the assignment of PCOs near each degeneration. This translates to the following
simple rule for the amplitude under consideration. If the net number of fermionic open string states that
approach each other is even, then their picture number must add up to −1, while if this is number is odd,
then their picture number should add up to −3/2. We can see that the picture number assignment we
have taken is consistent with this rule when two or three open strings come together, but when all four
open strings come together, we need to move one of the PCOs from the closed string vertex operator to
near the open string vertex operators. The effect of this movement can be computed using the trick of
vertical integration following [57], and can be shown to vanish in this case. Therefore (6.11) gives the
correct expression for the amplitude.
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The factor of κ comes from having to express ψc as κφc, since the external graviton is
taken to be the canonically normalized field. Since χ̃α’s appear in the expansion of |ψR〉,
it follows from (3.28) that we do not get any extra factor of gs.

We can represent the vertex operator VC as

VC(z) = 2 eµν c̄(z̄) c(z)Uµ(z)Uν(z̄) , (6.12)

where Uµ is a holomorphic operator,

Uµ = (∂Xµ + i kρψ
ρψµ) eik.X . (6.13)

This allows us to use the doubling trick and express the amplitude in terms of correlation
functions of holomorphic fields on the full complex plane:

Aαβγδ(e, k) = 2π κ T eµν
∫
dy1dy2dy3 〈cUµ(i) cUν(−i) cWα(0)Wβ(y1)Wγ(y2)Wδ(y3)〉 ,

(6.14)
where it will be understood that due to Dirichlet boundary condition on Xµ, the eik.X

factor is replaced by e−ik.X in the expression for Uµ(−i). Due to the symmetry arguments
described earlier, the relative positions of the integration contours does not matter. We
shall choose the y1 contour to be above the real axis and y2 and y3 contours to be below the
real axis with Im(y2) > Im(y3). The holomorphic correlation functions will be normalized
following the open string prescription (2.21), with the (2π)p+1δ(p+1)(k) factor absent for
D-instantons.

We can now deform the y1 contour into the upper half plane and the y3 contour into
the lower half plane to pick residues at i and −i respectively. For this we use the operator
product expansion derived from (2.13):

Wα(y)Uµ(z) = 1
y − z

i

4 kρ (γρµ) β
α Wβ(z) eik.X(z) . (6.15)

Similarly we close the y3 contour in the lower half plane, picking up the residue at −i. This
gives, after including the (2π)2 factor from the residue theorem,

Aαβγδ(e, k) = 8π3 κ T eµν
∫
dy2

〈
c(i) i4kρ(γ

ρµ) β′

β Wβ′(i) eik.X(i) (6.16)

c(−i) i4kσ(γσν) δ′
δ Wδ′(−i) e−ik.X(−i)c(0)Wα(0)Wγ(y2)

〉
.

Next we can deform the y2 contour to pick the residue at −i using the operator product
expansion derived from (2.13):

Wγ(y)Wδ′(z) = 1
y − z

i (γτ )γδ′ e−φ ψτ (z) . (6.17)

This gives

Aαβγδ(e, k) = 16π4 κ T eµν
〈
c(i) i4kρ(γ

ρµ) β′

β Wβ′(i) eik.X(i) (6.18)

c(−i) i4kσ(γσνγτ )δγe−φψτ (−i)e−ik.X(−i) c(0)Wα(0)
〉
.
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Finally we can use the result

〈c(i)Wβ′(i) eik.X(i)c(0)Wα(0)c(−i)e−φψτ (−i) e−ik.X(−i)〉 = i

2(γτ )β′α , (6.19)

and drop all factors of i since we have not kept track of these factors even in the interaction
vertex (3.28) that we have been using. This gives,

Aαβγδ(e, k) = 1
2 π

4 κ T eµν (γρµγτ )βα(γσνγτ )δγ kρ kσ . (6.20)

Using the result,
γρµγτ = γρµτ + ηµτγρ − ηρτγµ , (6.21)

and the fact that γρ, γµ are symmetric matrices and that we eventually anti-symmetrize
the amplitude under the permutation of α, β, γ, δ, we can write

Aαβγδ(e, k) = 1
2π

4 κ T eµν (γρµτ )βα(γσντ )δγ kρ kσ . (6.22)

Using (6.5) and (6.22) we now get the single D-instanton contribution to the 4-graviton
amplitude:

N0 e
−2π/gs

(1
2π

4 κ T
)4 1

(4!)4 ε
α1β1γ1δ1···α4β4γ4δ4

4∏
i=1

{
e(i)
µiνi (γρiµiτi)βiαi(γ

σiνiτi)δiγi k(i)
ρi k

(i)
σi

}
.

(6.23)
We now use the result:11

εα1β1γ1δ1···α4β4γ4δ4
4∏
i=1

{
e(i)
µiνi (γρiµiτi)βiαi(γ

σiνiτi)δiγi k(i)
ρi k

(i)
σi

}
= (4!)4 212Kc , (6.24)

where

Kc(e1, e2, e3, e4) = tµ1ν1···µ4ν4 tρ1σ1···ρ4σ4
4∏
j=1

e(j)
µjρjk

(j)
νj k

(j)
σj , (6.25)

and tρ1σ1···ρ4σ4 is defined via the relation:

tµ1ν1···µ4ν4
4∏
j=1

f (j)
µj k

(j)
νj = 1

8 [4 Tr(M1M2M3M4)− Tr(M1M2)Tr(M3M4)]

+2 permutations ,

Miµν ≡ k(i)
µ f (i)

ν − f (i)
µ k(i)

ν . (6.26)

This gives the amplitude to be

N0 e
−2π/gs 28 (π4κT )4Kc . (6.27)

Using (3.31), (3.34) and (4.50), and the result ζ = 1, we can express this as:

e−2π/gs i g7/2
s 2−18 π−26 28(π4 × 23π7/2gs × 2π/gs)4Kc = i e−2π/gs 26 π8 g7/2

s Kc . (6.28)

This reproduces (1.2). We shall check in sction 7 that it agrees with the prediction of
S-duality.

11This result was stated in [2] up to an overall normalization factor. The proportionality between the two
sides of (6.24) follows from space-time supersymmetry which fixes the tensor structure of the four graviton
amplitude. We have computed the normalization by numerically evaluating both sides for special cases.
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7 Prediction for the D-instanton contribution to the four graviton am-
plitude from duality

We shall now derive the prediction for the same amplitude using S-duality of type IIB
string theory. In the convention of [40], which agrees with ours, the tree level scattering
amplitude takes the form:

i

4 κ
2Kc

[ 64
stu

+ 2ζ(3)
]

(2π)10 δ(10)(k1 + k2 + k3 + k4) . (7.1)

The first term can be identified as the contribution to the scattering amplitude from the
Einstein-Hilbert action [58] and can be used to check the overall normalization of (7.1).
This is S-duality invariant by itself as can be seen by converting this result to the Einstein
frame by multiplying this be a factor of 1/g2

s . The second term can be identified as the
contribution from a new term in the action proportional to the fourth power of the Riemann
tensor [32]. This term is not S-duality invariant by itself, but admits a completion to an S-
duality invariant action by adding a one loop and non-perturbative terms [2]. This modifies
the four graviton amplitude to:12

i

4 κ
2Kc

[
64
stu

+ 2ζ(3) + 2π2

3 g2
s + 4πg3/2

s {e2πiτ+e−2πiτ̄}+ · · ·
]

(2π)10δ(10)(k1+k2+k3+k4) ,

(7.2)
where,

τ = a+ i

gs
, (7.3)

with a being the expectation value of the RR scalar field. The coefficient of e2πiτ gives
the single D-instanton contribution to the amplitude and the coefficient of e−2πiτ̄ gives the
anti-D-instanton contribution. Therefore the expected contribution to the amplitude from
a single D-instanton is:

e2πia e−2π/gs i

4 κ
2Kc 4π g3/2

s = i e2πia e−2π/gs 26 π8 g7/2
s Kc, (7.4)

where in the last step we have used (3.34). This agrees with (6.28) for vanishing RR scalar.

8 Generalizations

In this section we shall discuss possible generalizations of our analysis.
The computation of the D-instanton amplitude in this paper consisted of two parts.

The subtle part involved the computation of the normalization constant N in sction 4.
This part of the computation will be the same for all single D-instanton amplitudes in type
IIB string theory, irrespective of the number of external lines, their nature and the order
of gs to which we want to compute the amplitude. The second part of the analysis, that
in sction 6, is specific to the amplitude we are interested in, and will have to be redone for
a different amplitude.

12The original paper [2] had a typographical error in the coefficient of the e2πiτ term, but the correct
coefficient can be found in later papers e.g. in [3].
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Next we shall discuss generalization of this analysis to other theories. Our analysis in
this paper, as well as in [31], simplified since the contribution from the L0 > 0 states in
the integrand of the annulus partition function (4.3) cancelled and we had to deal with a
finite number of modes. However this is not necessary. Let us suppose that the annulus
partition function A has the form:

A =
∫ ∞

0

dt

2t f(t) . (8.1)

Then the key property that is needed to generalize our analysis is the vanishing of f(t)
in the t → 0 limit so that the integral does not have any divergence from the lower end.
This is valid in any string theory without closed string tachyons, since the contribution
from the small t region can be interpreted as coming from the infrared region of a single
loop of closed strings emitted and absorbed by the D-instanton. This contribution is finite
as long as there are no closed string tachyons and we have more than two non-compact
dimensions. For this reason we only have to deal with possible divergences from the t→∞
region associated with the tachyonic and zero modes of the open string. Let us express the
tachyonic and the zero mode contributions to f(t) as

m∑
i=1

e−2πthbi −
n∑
j=1

e−2πthfj , (8.2)

where the sum runs over the non-positive hbi and h
f
j values. If m and n are equal, then (8.2)

vanishes at t→ 0, and we can analyze the contribution of (8.2) to eA by representing it as
integral over bosonic and fermionic modes as in this paper and deal with the zero modes
appropriately. For the tachyonic modes we can simply use the steepest descent contour
as in [31]. For the rest of the contribution to f(t), coming from L0 > 0 modes, we can
evaluate the integral over t in (8.1) explicitly (if necessary numerically) and get a finite
result since the integrand vanishes sufficiently fast both as t → 0 and t → ∞. If on the
other hand m and n in (8.2) are not equal, we can simply include the contribution from
appropriate number of positive hbi or hfj modes in the sum in (8.2) to make them equal,
and then proceed as before. One can easily verify that the final result is independent of
which set of positive hi values we include in the sum in (8.2).

This gives a systematic procedure for computing the contribution of a D-instanton
to an amplitude from the steepest descent contour (Lefschetz thimble) of the instanton.
However we also need to understand how the steepest descent contour fits inside the full
integration contour. If the instanton is a real solution in open string field theory on unstable
D-brane system and has no tachyons, then we expect the full steepest descent contour to
be part of the integration contour and the multiplier factor will be unity. Otherwise we
need to do further analysis to evaluate the multiplier factor.

This shows that the ability to carry out systematic computation of D-instanton cor-
rection to string theory amplitudes does not rely on supersymmetry but on the ultraviolet
finiteness of string theory. Finally we would like to note that the arguments given above
hold also for other Euclidean D-branes as long as they are wrapped on compact cycles and
have more than two transverse non-compact directions. Therefore the same method could
be used to compute the contribution to the superpotential induced by Euclidean D-branes
in N=1 supersymmetric string compactification.
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A Sphere four point function from sewing of two three point functions

In this appendix we shall review how connecting a pair of three point interaction vertices
by the propagator (3.15) generates the four point amplitude with the normalization factor
given in (3.16). For simplicity we shall illustrate this in the context of bosonic string theory,
but the same analysis can be carried out for superstring theory.

Let us suppose that the three point interaction vertices are described by a three point
function on the sphere with vertex operators placed at 0, 1 and ∞. We shall denote by z
the global coordinate on the complex plane and choose the local coordinate at 0 to be z and
that at ∞ to be −1/z. This choice is not symmetric under the permutation of the vertex
operators, but will serve to demonstrate the main point of the analysis, i.e. to determine
the normalization given in (3.16). We now denote the global coordinates associated with
the two three point vertices by z and z′ and sew the puncture at 0 of the first interaction
vertex with the puncture at∞ of the second interaction vertex using the sewing parameter

q = e−s+iθ , (A.1)

where s and θ are the parameters introduced in sction 3.1. This gives

z

(
− 1
z′

)
= q , (A.2)

i.e. z = −qz′. Therefore in the z plane the punctures at z′ = 0 and z′ = 1 are located at
0 and −q respectively. The amplitude obtained by sewing two three point functions with
the propagator (3.15) is now given by:

i(4κ)2
( 1

4π

) ∫ ∞
0

ds

∫ 2π

0
dθ

〈
c̄cW1(1) c̄cW2(∞)

∮
dzzb(z)

∮
dz̄z̄b̄(z̄) c̄cW3(0) c̄cW4(−q)

〉
,

(A.3)
where

∮
is a contour enclosing the points 0 and −q and Wi’s are dimension (1,1) primaries

in the matter sector. The 4κ factors come from the three point functions as in sction 3.1
and the i is the usual factor in the expression for the S-matrix. We can now carry out the
contour integrals to express this as:

4 iκ2

π

∫ ∞
0

ds

∫ 2π

0
dθ
〈
c̄cW1(1) c̄cW2(∞) c̄cW3(0) |q|2W4(−q)

〉
. (A.4)

Defining w = −q = −e−s+iθ as the location of the fourth vertex operator and d2w = 2dxdy
for w = x+ iy, we can express this as

2 i κ2

π

∫
d2w 〈c̄cW1(1) c̄cW2(∞) c̄cW3(0)W4(w)〉 . (A.5)

This reproduces (3.16).
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B Comparison of the two definitions of the brane tension

In this appendix we shall check that the brane tension T that enters (3.26) agrees with
the usual definition based on the low energy effective action. For this we recall that the
presence of a Dp-brane gives a contribution to the action of the form:

− T
∫
dp+1x

√
− detGe−Φ , (B.1)

where G denotes the string metric along the brane and Φ is the dilaton field. Using (3.9),
and assuming that the Dp-brane is placed at the origin of the transverse coordinates, (B.1)
leads to the following contribution to the action linear in hµν and Φ:

− T
∫
d9−pk⊥
(2π)9−p

[
κ

p∑
µ,ν=0

ηµνhµν(0, k⊥)− Φ(0, k⊥)
]
, (B.2)

where k⊥ denotes components of momenta transverse to the brane and we have used the
same symbol Φ to label the Fourier transform of the dilaton field.

We can now compare this with the terms linear in hµν obtained from (3.26) using the
expansion of |ψc〉 = κ|φc〉 from (3.6). Let us denote these coefficients by h′µν instead of the
same symbol hµν that appears in the expansion of the metric. This gives a term in the
action of the from:

1
2 κ T

∫
d10k

(2π)10 h
′
µν(k)

〈
(−2 c−0 c c̄ e−φψµe−φ̄ψ̄νeik.X(0))

〉
D
, (B.3)

where
c−0 = 1

2

(∮
dww−2 c(w)−

∮
dw̄ w̄−2 c̄(w̄)

)
, (B.4)

with the contours evaluated around the origin of the disk and containing factors of
(±2πi)−1. One can map this into the correlation function on the upper half plane by mak-
ing appropriate transformation of coordinates and then use the doubling trick and (2.21)
to evaluate the matrix element. The result is,

1
2 κ T

∫
d9−pk⊥
(2π)9−p

[
−

p∑
µ=0

ηµνh′µν(0, k⊥) +
9∑

µ=p+1
ηµνh′µν(0, k⊥)

]
, (B.5)

where the relative minus sign between the two terms in the square bracket is due to the
difference in the boundary condition on the ψµ’s for µ tangential and transverse to the
D-brane. Similarly (3.26) can be used to calculate the term linear in the scalar Ψ that
multiplies the state (β−1/2γ̄−1/2 + β̄−1/2γ−1/2)c1c̄1| − 1,−1〉 in the expansion of the string
field. By choosing the normalization of Ψ appropriately we can express this as:

1
2 κ T

∫
d9−pk⊥
(2π)9−p Ψ(k) . (B.6)

In order to compare (B.2) with the sum of (B.5) and (B.6), we need to know the relation
between the fields (hµν ,Φ) and (h′µν ,Ψ). Since hµν and h′µν are known to transform in the
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same way under the linearized gauge transformation laws in supergravity and closed string
field theory respectively, they can differ at most by a term proportional to the scalar field Φ.
Therefore the general form of the relationship between the two sets of fields takes the form:

h′µν = hµν + aΦ ηµν , Ψ = bΦ + c
9∑

µ=0
ηµνhµν , (B.7)

for some constants a, b and c. Note that for non-zero c, Ψ transforms under gauge trans-
formation — indeed this can be seen directly using the linearized gauge transformation
laws of closed string field theory. We can find the constants a, b and c by comparing the
action and gauge transformation laws of the low energy supergravity with the action and
gauge transformation laws of closed string field theory [59], but we shall take a shortcut.
Substituting (B.7) into the sum of (B.5) and (B.6), we get:

−κT2

∫
d9−pk⊥
(2π)9−p

[
(1− c)

p∑
µ=0

ηµνhµν(0, k⊥)− (1 + c)
9∑

µ=p+1
ηµνhµν(0, k⊥) (B.8)

+ {a(2p− 8)− b}Φ(0, k⊥)
]
.

Comparing this with (B.2) for different values of p, we see that we must have:

c = −1, a = 0, b = 2/κ . (B.9)

We also see that if we had started with some arbitrary normalization on the right hand
sides of (B.5) and (B.6), the comparison between (B.8) and (B.2) would have fixed them
to be κT /2 as given in (B.5) and (B.6), This in turn confirms the normalization of (3.26).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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