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1 Introduction

Chiral perturbation theory (ChPT) is a low energy effective field theory of quantum chro-
modynamics (QCD). It describes the dynamics of the Goldstone boson particles based on
the symmetry pattern of QCD: SU(Nf )L× SU(Nf )R/SU(NF )V . Ignoring the θ parameter
of QCD, assuming the confinement and Nf massless quarks with Nf ≥ 3 we have this
spontaneous symmetry pattern as an inevitable consequence of QCD [1, 2]. Masses of light
quarks are not zero, and this fact should be taken into account by some model assumptions
and included in the chiral theory as corrections. The most natural choice is to assume that
masses of Goldstone bosons are of the same order of magnitude as momenta. However,
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this canonical choice is not the only option, and different possibilities were also studied and
confronted with experiments [3–8]. In this work we will completely disregard this problem
as we will be working in the so-called chiral limit, i.e. we assume that Nf quarks are strictly
massless. It means that the Goldstone bosons are in fact genuine Goldstone bosons with
zero masses.

From a top-down perspective, ChPT is represented by Lagrangian monomials whose
form is dictated by the symmetry pattern of QCD. Without considering masses, the mono-
mials are arranged in a series with respect to the number of derivatives. Using the Feynman
rules, one can calculate any amplitude where the derivatives are translated to momenta.
Studying the low energy phenomena means that orders are tight with derivatives, starting
with the leading order (LO) with two derivatives (due to the Lorentz invariance) or O(p2)
order in amplitudes. The non-linear sigma model (NLSM) is usually another name for
this LO Lagrangian. Here we want to study the NLSM theory, including also its higher-
derivative corrections. To stress this fact, we will call the theory ChPT to emphasize that
we want to go beyond the leading order (i.e., beyond NLSM). This effective field theory
concerns a very active field of research, spanned over several decades, studied from both
the theoretical and phenomenological points of view. It started especially with Weinberg’s
work [9] and was considerably extended by Leutwyler and Gasser in [10] where the basis
for the next-to-leading order (NLO) was introduced. The number of independent mono-
mials rises with every order, and every such term has its own low-energy constant. As
only the above-mentioned symmetry pattern is used in the construction of monomials of
the effective Lagrangian, the constants that in principle are dictated by the underlying
QCD are taken independent and a priori unknown. Their values must be set from phe-
nomenology [11] or by lattice simulations [12]. However, one important consequence of the
non-linear realization of the symmetry is non-trivially encoded in the monomials. It is the
single soft limit (so-called Adler zero) of amplitudes.

We want to revisit the subject of formal expansion of ChPT with several simplifications.
The first substantial reduction — the chiral limit — was already mentioned. Another
simplification is to focus only on the Goldstone bosons and disregard any other particles
(like photons, resonances, fermions, etc.). In the language of ChPT, it also means that
we will not consider any external current. Last but not least, we will focus only on the
single trace operators. This is a crucial simplification for us, motivated by the large NC

assumptions. It enables us to perform a key technical manipulation — stripping of the
amplitude. It has two advantages — we get rid of the group (flavor) indices, and the
numbers of diagrams of amplitudes are much smaller as we have to deal only with cyclical
permutations. This primitive amplitude (called ordered or stripped here) will be the main
object of this work. Apart from these simplifications, we will not disregard the chiral
anomaly. It means we will include its effect in the form of the Wess-Zumino-Witten term,
which describes the odd vertices at O(p4) and include also higher orders in the odd sector.

In the first part of this work, we will merely summarize existing results in literature
from the top-down perspective simplified by our assumptions. It would include mainly the
list of Lagrangians at different orders. Using the standard Feynman rules, we can calculate
cyclically ordered amplitudes of any multiplicity. The scattering amplitudes also represent
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the connection with our second part, where we will study them directly using the on-shell
methods.

The on-shell scattering methods represent a bottom-up approach of studying the am-
plitudes differently, in some sense more directly, without explicit Lagrangian and Feynman
rules. In recent years, this revival interest in the S-matrix program has brought substan-
tial progress, especially for gauge theories and gravity. There have been many revelations
in our understanding of the structure and properties of scattering amplitudes in quantum
field theory. This includes the unexpected simplicity of final results and hidden symmetries
invisible in the conventional formulations and led to many new discoveries as: generalized
unitarity, recursion relations, CHY formulations, color-kinematics duality, geometrical lan-
guage of amplitudes [13–18]. Curiously the on-shell methods are relevant also for effective
field theories. In addition to NLSM or ChPT it involves recent studies within theories as
DBI, Volkov-Akulov, (special) Galileons, Born-Infeld and their various combinations [19–
35]. The on-shell scattering methods will also be employed in the second part of this work.
We will use them to set the most general basis for given order with a given number of scat-
tering particles. Such a general basis will then be used to calculate the so-called ordered
amplitudes. A crucial test of Adler zero fixes the final form of the studied amplitude and
consequently the final form of the basis. This basis can then be compared with existing
top-down formulations. Similar strategy was used in [36–39].

The Adler zero seems too little for what is possible to inherit from QCD. In fact, having
established many stripped amplitudes (with different orders and different multiplicities), it
is clear that they represent a vast playground for further exploration. For example in [40]
it was shown that the NLSM amplitudes satisfy Kleiss-Kuijf [41] and also Bern-Carrasco-
Johansson (BCJ) relations [42]. These relations were originally studied for Yang-Mills
theory using both the string and field theory methods. Interestingly, they are valid for
the tree-level QCD amplitudes (with or without quark masses) [43, 44]. It might be a
coincidence, but it is important to study the consequences also for higher orders and define
a core of ChPT satisfying KK and/or BCJ relations. Recently, application of the BCJ
up to O(p4) was done in [45] and dedicated study to five points in [46]. Both even and
odd sectors up to O(p6) and up to 6pt were also studied in [47]. In the same spirit, we
will also use the results of the open superstring. This theory can be generated by the
double-copy of maximally supersymmetric Yang-Mills and doubly-ordered scalars called
Z-theory [48]. The crucial for our work is the Z-function, which describes the amplitudes
of the scalars and curiously satisfies KK and BCJ relations. It carries the sole parameter
α′ of the superstring theory, and in the lowest limit when α′ → 0 it coincides with the
NLSM amplitudes. We will study in this work higher α′ corrections and connection with
the established ChPT+BCJ theory, i.e., a theory that fulfills both the Adler zero and BCJ
constraints.

2 Top-down: conventional method

In this section, we will mainly summarize the present status of the chiral Lagrangian in its
two respective sectors: of the even and of the odd intrinsic parity. The construction in both
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sectors reflects specific symmetry properties of QCD, namely the chiral symmetry in the
chiral limit (light quarks are massless), parity and charge conjugation, in combination with
the general properties of quantum field theory (e.g. Hermiticity or CPT invariance). For
detail discussion we refer to original papers (see below) or lectures and reviews, e.g. [49–54].
As mentioned in the introduction we will be focusing only on the single trace operators.
This enables to define the cyclically ordered stripped vertices Vn(p1, . . . , pn). They are
connected with the standard vertices via summing over all permutations modulo cyclicity

V a1...an
n (p1, . . . , pn) =

∑
σ∈Sn/Zn

Vn(pσ(1), . . . , pσ(n))〈taσ(1) . . . taσ(n)〉 , (2.1)

where 〈.〉 represents the trace and ta are the generators of SU(N) with normalization
〈tatb〉 = δab, so e.g. ta = σa/

√
2 for N = 2 and ta = λa/

√
2 for N = 3, with Pauli and

Gall-Mann matrices, respectively.
We will also briefly discuss the singlet part of the theory, i.e. for example, in the

three-flavor case, the difference between the nonet and octet multiplet.

2.1 Even intrinsic-parity sector

Here the situation is very well explored. We will summarize and write down all relevant
terms up to NNNLO as provided in the literature. Note that we are focusing only on
the cyclically ordered, massless theory with the SU(N)× SU(N)/SU(N) chiral symmetry
breaking pattern without external currents. The relevant terms of the Lagrangian describ-
ing dynamics of corresponding pseudoscalar Goldstone bosons start with the following
leading order

L2 = F 2

4 〈uµu
µ〉 , (2.2)

where we have introduced [55]

uµ = i(u†∂µu− u∂µu†) . (2.3)

The most convenient exponential parametrization allows to express the SU(N) multiplet
of ‘pions’ φa as

u(φ) = exp
(
iΦ(φ)
F
√

2

)
, Φ(φ) = taφa , a = 1, . . . , N2 − 1 . (2.4)

For ChPT it is also common to use the so-called LR basis with the building block

U = u2 = exp
(
i
√

2Φ(φ)
F

)
. (2.5)

The NLO, or O(p4) order is given by two terms [10, 56]:

L4 = L0〈uµuνuµuν〉+ L3〈uµuµuνuν〉 . (2.6)

The following higher orders are expressed conveniently using the covariant derivative
and its connection

∇µX = ∂µX + [Γµ, X], Γµ = 1
2(u†∂µu+ u∂µu

†) . (2.7)
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As we consider no external currents and strict massless nature of pions, following rela-
tions hold

∇µuν −∇νuµ = 0, ∇µuµ = 0, [∇µ,∇ν ]uρ = 1
4[[uµ, uν ], uρ] . (2.8)

The Lagrangian at O(p6) is represented by seven terms [28, 57]

F 2L6 = C
(6)
1 〈uµh

µνuρhνρ〉+ C
(6)
2 〈uµhνρu

µhνρ〉

+ C
(6)
3 〈uµu

µuνu
νuρu

ρ〉+ C
(6)
4 〈uµu

µuνuρu
νuρ〉+ C

(6)
5 〈uµu

µuνuρu
ρuν〉

+ C
(6)
6 〈uµuνu

µuρu
νuρ〉+ C

(6)
7 〈uµuνuρu

µuνuρ〉 . (2.9)

A new symbol was introduced

hµν = ∇µuν +∇νuµ . (2.10)

Due to the fact that ∇µuν − ∇νuµ is proportional to the external field strength and as
here the external fields are zero we can freely exchange hµν and ∇µuν (modulo 2). Note
that so far we have been using original notation (constants F and Li), however, for O(p6)
we slightly changed it to C(6)

i . In the original paper [57] these are denoted as Ki. This
notation will be used also for higher orders. In this logic the O(p4) constants could be
relabelled as

C
(4)
1 = L0 , C

(4)
2 = L3 . (2.11)

Note also that we want all C(p)
i to be dimensionless — this is the reason for having F 2

in (2.9) so that only F from all parameters is the dimensionfull quantity. There is one-to-
one correspondence between C

(6)
i and L6,i of [28], but only those terms with single trace

are kept here:
C

(6)
1 = 1

4L6,3, C
(6)
2 = 1

4L6,4, C
(6)
3...7 = L6,15...19 . (2.12)

The factor 1
4 is due to keeping hµν instead of ∇µuν in monomials. The connection with

the original Kis is worked out in appendix A of [28].
Finally the highest available order in the literature is O(p8) completed only recently

in [58]. Authors in this publication followed several guiding principles in constructing the
basis, namely they removed as many terms as possible in favor of the terms with external
fields and in with higher number of mesons. They also kept terms with lower number
of flavor traces making the NC counting explicit. It makes the selection of the wanted
monomials trivial, we have to simply read off the single-trace terms from [58], with uµ or
∇αuβ only. Schematically these are:

F 4L8 =
3∑
i=1

C
(8)
i 〈h

4〉+
25∑
i=4

C
(8)
i 〈h

2u4〉+
42∑
i=26

C
(8)
i 〈u

8〉 , (2.13)

for a complete form see appendix A. In summary, there are three terms describing at least
four pions, 22 terms starting with six pions, and finally 17 terms starting with eight pions.
These numbers including also previous orders are summarized in table 1. Note that no new
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#mesons #terms
p2 4 1
p4 4 2
p6 4 2

6 5
p8 4 3

6 22
8 17

Table 1. Number of monomials that produce vertices starting at the given number of mesons.

symbol had to be introduced in (2.13). Similarly as at O(p2) and O(p4) we need only uµ
at O(p6) and O(p8) we need only uµ and the first covariant derivative of it (hµν). We can
thus conjecture that at O(p10) we will need a new symbol with two covariant derivatives

hµνρ = ∇µ∇νuρ + sym , (2.14)

where the symmetrization over all Lorentz indices is a consequence of (2.8).

2.2 Odd intrinsic-parity sector

The story of the low energy limit of QCD would not be complete without studying the chiral
anomaly. In fact, in the previous section, we have encountered an additional symmetry,
namely conservation of the operation φ ↔ −φ. This is a trivial consequence of our focus
only on the even number of fields. However, such a restriction is not dictated by QCD.
In fact, the best-known example is the decay π0 → γγ, or rather, as we are not interested
in external currents, K+K− → 3π. Now, we will thus turn our attention also on the odd
number of fields. The top-down solution to this problem is well known. One should start
with a careful analysis of the symmetry pattern in QCD. Using the Ward identities, i.e.
the consequence of the local transformation of external fields, one has to face the axial
anomaly [59]. Solution of the inhomogeneous Ward identities thus includes apart from the
general (we can refer to as chiral invariant) part also one particular solution corresponding
to the anomaly. The latter is usually denoted as WZW (due to Wess, Zumino and Witten),
where the part without the external fields (identified by Witten) can be written using the
five-dimensional integral, i.e. [60]

LA4 = − iNC

48π2

∫ 1

0
dzεµναβ〈ΣzΣµΣνΣαΣβ〉 , (2.15)

where Σi = U†∂iU with U describing coset on the five dimensional bulk. The easiest
parametrization is connected with the exponential one:

U = exp
(
iz
√

2Φ/F
)
. (2.16)

Of course, this is not the only possibility, and it would be instructive to study different
parametrizations similarly to the study of LO in the even sector [19, 20]. Even though
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our main focus here is the amplitudes, and we are not particularly interested in ‘classical’
calculation from the Lagrangian, we will perform the simplest non-trivial computation
in both ways. The calculations of the seven-pion scattering from Lagrangian and using
the amplitude methods were already performed in [37]. We will recalculate it in another
parametrization, so-called Cayley. There are two reasons. First, it is useful to perform
an independent check of the calculation, as the final physical results, in this case, the
striped seven-point amplitudes, have to agree in any parametrization (similarly to works
of leading logs [61, 62] where several parametrizations were introduced for this purpose).
The second reason is practical — we know the vertices of (2.15) in Cayley parametrization
for all multiplicities (for the proof, see appendix B).

Anomalous chiral Lagrangian at O(p6) was constructed independently some time ago
in [63] and [64]. There are in total 24 monomials, but in the massless limit and without
the external sources, there remains only one:

F 2LA6 = C̃
(6)
1 εµναβ〈hγµ[uγ , uνuαuβ ]〉 . (2.17)

And this is where the formal expansion in the odd-intrinsic sector ends in the literature.

2.3 The singlet part

As already mentioned, one of our tasks is to calculate the cyclically ordered amplitudes of
the SU(N) × SU(N)/SU(N) chiral theory. At this point, we have summarized all known
single trace monomials, and it seems straightforward gluing them together using the Feyn-
man rules to get any amplitude with wanted order and multiplicity. There is, however, one
catch. Gluing the vertices using the scalar propagators iδab/p2 effectively means employing
the completeness relations of SU(N):

N2−1∑
a=1
〈Xta〉〈taY 〉 = 〈XY 〉 − 1

N
〈X〉〈Y 〉 . (2.18)

We see that even using the single-trace ingredients, the resulting amplitude already at the
tree-level may include multiple traces. This is a complication for us because, as we will
see, we want to express our results using the stripped amplitudes, i.e., we want to separate
the flavor structure (using one single trace of generators) and the kinematical structure
(the stripped amplitude). There are several possible solutions, and their selection depends
on the application. The simplest solution is to ignore this problem. It merely means that
our stripped amplitude after dressing up with the single flavor trace will not correspond
to the full amplitude but rather its single-flavor-trace part. For our purposes, this will be
enough. In fact, for us the equivalent solution is to enlarge SU(N) to U(N), which means
using unitarized ΦU in (2.4):

Φ(φ) → ΦU (φ) = taφa, a = 0, . . . , N2 − 1 , (2.19)

with t0 = IN/
√
N . Now the completeness relation for U(N) has only the first term with

the single trace in (2.18). After all, physical motivation behind keeping the single trace
monomials is due to large NC limit. And exactly in this limit the singlet φ0 (e.g. called η′
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in N = 3) becomes massless and can be naturally included in our multiplet of Goldstone
particles.

On the other hand, if we are lucky, the second term in (2.18) cancels out for some
amplitudes. This happens, for example, for all amplitudes at O(p2) [20]. It means that
there is no difference between calculating at this order amplitudes using SU(N) or U(N)
— all amplitudes with at least one external φ0 are zero. It is interesting to find out that
the same also happens for the WZW Lagrangian (2.15). Working with the five-dimensional
integrand, we can notice that ΣU

i with unitarized ΦU (2.19) can be expressed as

(UU )†∂iUU = i

F

√
2
N
∂i(zφ0) + U†∂iU . (2.20)

Contracting such five terms with the five-dimensional εijklm, we can confirm that terms
with at least one φ0 cancel out after performing all permutations.

To summarize: in order to have at least one singlet in a vertex, one needs to go to
at least O(p4) order in the even sector and O(p6) in the odd. Concerning the amplitudes
with φ0 hidden in the internal lines — we would need at least two such vertices. So
our stripped amplitudes can be used for the full flavor-combination amplitudes up to and
including O(p4) and O(p6) for the even and odd sector, respectively. In order to obtain
a full multi-trace amplitude also beyond these orders, we refer to methods developed and
used in [28].

3 Bottom-up: basis

In the previous section, we have summarized Lagrangian as known in both sectors of ChPT.
We can now proceed to the textbook recipes and create off-shell vertices and then compose
Feynman diagrams. We can thus obtain the tree-level amplitudes. The way offered here
is different, though the objective is the same: the amplitudes. First, we will start with a
replacement for the off-shell vertices. A similar strategy was already taken in literature,
namely for the 4pt monomials up to O(p4) studied in [37].

3.1 Basis for kinematical variables

The lowest possible point amplitudes are the 4-pt vertices (no 3-pt due to p1 · p2 ∼ (p1 +
p2)2 = p2

3 = 0, etc.). Note also that due to the parity conservation all even-pt vertices will
be built of (pi · pj) products and the odd vertices must be proportional to one Levi-Civita
tensor εµναβ . Starting with the 4pt O(p2) we will summarize briefly the construction of all
n-pt O(pm) vertices up to O(p8), i.e. corresponding to monomials summarized in table 1.
Note that we will use mainly the following convention for the kinematical variables:

sij = (pi + pj)2 , (3.1)

which has a possible extension to sijk... = (pi + pj + pk + . . .)2.
The algorithm to construct the basis is quite simple. At the given order for the n-

pt vertex, say at O(p2) for 4pt, we create an appropriate monomial and sum it over the
cyclic momenta. For example s12 gives us: s12 + s23 + s34 + s41 = 2(s12 + s23). If it is
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linearly independent from the existing basis, it is added to the basis. We scan over all
possible combinations of monomials. What is, however, important is that we check the
independence using the on-shell 4-dim kinematics, which means for example that p2

i = 0.
The above-mentioned basis thus contains only one term. Another possible combination s13
is not linearly independent due to the on-shell relation s12 + s13 + s23 = 0. Note that our
restriction to D = 4 means that we automatically incorporate the non-linear constraints
due to Gram determinants for higher point amplitudes. If we were not constrained by
dimensions, we would have for the given n-point scattering 1

2(n − 3)n terms , while for
D = 4 there are 3n − 10 terms. A difference starts at 6pt and is due to the Gram
determinant relation

det sij |i,j=1...6 = 0 ,

which gives one constraint among nine otherwise independent sij , chosen for example as
s12, s13, s14, s15, s23, s24, s25, s34; s35. And similarly for higher-point kinematics.

The number of vertices is given in the following table 2. There we have summarized the
number of all possible terms unconstrained by on-shell relations (though we do not consider
parameters sii) and 4-dim kinematics. For example, in the first line, 3 stands for s12, s13, s23
schematically, in the second line 6 is s12s12, s12s13, s12s23, s13s13, s13s23, s23s23, and similarly
for other lines. Now we continue with the algorithm mentioned above: take the given term
and sum cyclically over momenta, as the form of the stripped vertices dictates this property
(see definition in (2.1)). Another important property is the dihedral reflection invariance or
equivalently the invariance under the reverse ordering. This follows from the Hermiticity of
Lagrangian and corresponding full vertices: conjugating them in (2.1) leads to the reverse
ordering of the stripped vertices (due to the trace of the Hermitian generators ta).1 So the
final step of the algorithm is adding the Hermitian conjugate (i.e., reverse ordering) and at
last checking the independence of the basis. The number of terms obtained is summarized
in the last column.

Here we will also cover the odd-intrinsic parity sector, see table 3. We have followed
exactly same steps as in the previous even case, with only one difference, the insertion of
the Levi-Civita tensor.

Of course we are still not done, those monomials represent only our “raw data”. We
will carve them out in the following text using the condition of the Adler zero.

3.2 Amplitudes: general discussion

Comparing the last columns of table 1 and table 2 we see that the basis constructed in the
previous section is an overdetermined system from the point of view of Goldstone boson
vertices. We will discuss here how to approach the goal of creating combinations of the
vertices that would comply with the dynamics of the Goldstone bosons. Note, however,
that the 4pt numbers agree already without doing anything. This is connected with the

1We have tacitly assumed that all constants are real. If some of them have an imaginary part, we would
have an extra minus sign for the conjugate in order to keep the Lagrangian Hermitian. Such terms would
violate a charge conjugation (n.b. ΦC → ΦT ), but they are still parity invariant by construction. We will
briefly return to this possibility in summarizing the number of terms in the following section and denote
those terms as CP-odd.
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n-point # all terms # independent
p2 4 3 1
p4 4 6 2
p6 4 10 2

6 220 22
p8 4 15 3

6 715 58
8 10626 621

Table 2. Number of possible monomials composed of products of sij . The all-terms column
summarizes all combinations of the products at the given order, whereas in the last column the
on-shellness, cyclicity, Hermiticity and the 4-dim restrictions are imposed.

n-point # all terms # independent
p4 5 1 1
p6 5 6 1
p8 5 21 3

7 1800 90

Table 3. Same as the previous table — now for monomials composed of cyclic sum of products of
a Levi-Civita tensor and sij for odd-number of pions.

fact that the 4pt kinematics is very restrictive. There are only two variables, conventionally
s = s12 and t = s13 and it seems that for any combination at any order sitj can be connected
(and this connection is one-to-one) with monomials in the Lagrangian of the form∑

all possible contractions
〈hµ...hν...hρ...hσ...〉 , (3.2)

where hµ with only one Lorentz index is simply uµ and hµ... with higher number of indices
is defined as in (2.14)

hµ...σρ = ∇µ . . .∇σuρ + sym . (3.3)

This is stated as a conjecture, but it can be understood also from the amplitude point of
view as we will discuss below.

This brings us to a crucial point of this article. We have to demand certain conditions
in order to comply with the chiral symmetry or, in other words, to limit the kinematical
terms represented by table 2 to terms coming from the chiral Lagrangian, as summarized in
table 1. We want to work directly with something “physical” using the on-shell data. To do
so, we will be gluing together the on-shell vertices (our raw data) and getting amplitudes
that would represent our physical data once they comply with certain conditions. It can
be shown [19, 20, 23, 28] that the demanded condition has to be the Adler zero [59]. For
the n-point amplitudes with n ≥ 6 we can generalize it. Instead of studying one single soft
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limit of one external leg, we will be studying simultaneously single-soft limits of all n-legs
at once. We will use the following trick, first introduced in [24]. For n > D+1 it is possible
to define a “rescaling shift” on all external lines:

pi → pi(1− zai) , (3.4)

with distinct ai. There are always n −D parameters we can set, and the rest is fixed by
the condition

n∑
i=1

aipi = 0 , (3.5)

which has to be valid in order to maintain the momentum conservation. As we want to
study a single soft limit we have to ensure that all ai are distinct. For D = 4 and a general
kinematic configuration this is always possible starting with the 6-point amplitudes. Then
the Adler zero can be formulated as a condition

An≥6(z) ∼ (1− zai) , with z → 1/ai , (3.6)

valid for all ai, i = 1, . . . , n. The amplitudes vanish in the first order in z which brings
us to study its analytical properties. As all pis are shifted and depend linearly on z, it is
trivial to state that shifted amplitudes behave at infinity as

An(z)→ zr , for z →∞ , (3.7)

where r stands for the order, i.e. it behaves as z2 for O(p2), as z4 for O(p4), etc. Now
we can apply the Cauchy’s theorem with an extra denominator factor to compensate the
“bad” high-energy behavior without introducing extra poles:∮

dz

z

An(z)
Fn(z) = 0 . (3.8)

The compensated factor is by construction given by

Fn(z) =
n∏
i=1

(1− aiz) . (3.9)

This can be further used in establishing the soft recursion using the soft behavior similar
to the BCFW recursion relations based on the collinear shifts [14]. One can always con-
tinue, though, using the direct evaluation of Feynman diagrams. However, it is important
methodologically — it can easily explain why in preparing table 2 we have stopped at
certain orders, without the necessity to discuss algebraic arguments in Lagrangian (i.e.,
using the form of hµ... symbols). The Cauchy integral formula tells us what input is and
what has to be fixed. Starting with an order O(p2) and 6pt amplitudes. Then A6 ∼ z2

and F6(z) ∼ z6, so the 6pt amplitudes (and all higher orders as well) must be fully re-
constructible from factorization channels only, i.e. from the O(p2) vertices/Lagrangian.
Similarly, the O(p4) order, all amplitudes with n ≥ 6 are reconstructible from O(p2) and
O(p4). For the order O(p6), the inputs are O(p2), O(p4), O(p6) vertices, but all amplitudes
with n ≥ 8 are fully reconstructible. This concludes our amplitude explication of why we
need to consider only those orders as summarized in table 2 and can be readily extended
to all orders.
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4 Amplitudes

We have summarized the basis of independent on-shell vertices based merely on the power-
counting and without any connection to Lagrangian. Apart from work done in [36], which
also studies the operator basis using the bottom-up approach, we are in D = 4 and are
thus automatically incorporating the relations given by the Gram (sub)determinants.

Now we will focus on the stripped amplitudes. The conventional full amplitude for a
given combination of flavors a1 . . . an at given order O(pr) is obtained by summing over all
permutations modulo a cyclic permutation:

A(r)a1...an
n (p1, . . . , pn) =

∑
σ∈Sn/Zn

A(r)
n (pσ(1), . . . , pσ(n))〈taσ(1) . . . taσ(n)〉 . (4.1)

First, we will start with the even sector and, for the moment, will completely ignore the
anomaly, which will be discussed later in two subsections.

4.1 Even sector

The simplest example is the 4pt amplitude at the LO O(p2). We can use the Cayley
parametrization (cf. (B.3)) or any other as the stripped amplitudes are “physical quanti-
ties” [20, 28] — meaning that they do not depend on parametrization:

A
(2)
4 = − 1

2F 2 s13 . (4.2)

Note that this is a reduced or stripped amplitude with cyclically ordered momenta and we
have to use (4.1) if we need the conventional 4pt amplitude with given flavors.

The simplest non-trivial example is the 6pt amplitude at O(p2). Using the standard
Feynman diagram techniques, one has to calculate diagrams depicted in figure 1. Note that
all vertices are governed by one constant F corresponding to definitions in (2.2) and (2.4).
The amplitude reads

4F 4A
(2)
6 = −s13s46

s123
− s26s35

s345
− s15s24

s234
+ 1

2(s13 + s15 + s24 + s26 + s35 + s46) . (4.3)

This result can be easily obtained using the standard Feynman rules or soft bootstrap (for
details, see the original work [24]). We can now continue to higher orders. However, the
purpose of this article is not to summarize the individual amplitudes (for the interested
reader, we refer to [28]), but to reduce the basis, so it guarantees the Adler zero. For the
lowest order, it was trivial, and the O(p4) is also trivial. We obtained two independent
terms, and so has also the final basis (see table 1). However, we can ask if we can verify
it independently. For this, we have employed the bonus relations. These relations can
be applied in situations when we can drop 1/z in the Cauchy’s theorem (3.8), and the
recursion leads to relations among amplitudes with the same multiplicity [24]. At this
order, it means to calculate O(p2)×O(p4) contribution at the 6pt level. We have checked
that the two parameters are indeed independent.

The first nontrivial order is the NNLO, the O(p6). Indeed, comparing tables 1 and 2 we
see that the first line to tame is the fourth line, i.e., the O(p6) order of the 6pt amplitude. To
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Figure 1. The Feynman diagrams for the 6pt O(p2) scattering.

Figure 2. Possible topologies of the Feynman diagrams for the 6pt O(p6) scattering. The numbers
indicate the order of corresponding vertices.

calculate this amplitude directly one has to evaluate the diagrams depicted schematically in
figure 2. Note, however, similarly to the previous O(p2) calculation, we are calculating the
stripped amplitudes, so we have to sum over all cyclic permutations. This means that the
first diagram is, in fact, the sum of six diagrams, while the second topology sums over three
diagrams only (with propagators (1+2+3), (6+1+2), (5+6+1)), because the two vertices
are the same. The individual contributions can also be written schematically as

F 8A
(6)
6 =

2∑
i=1

C
(6)
i X

(6)
i +

2∑
i,j=1

LiLjX
(6)
ij +

24∑
i=3

C
(6)
i , (4.4)

where every term corresponds precisely to the Feynman diagram topologies in figure 2.
The first two terms, factorization diagrams, are known, the last contact term contains 22
coefficients that must be fixed in order to comply with the Adler zero. We have 22 unknown
constants to fix and they are connected with linearly independent monomials. Although
we have put a momentum of one pion soft p → 0 and reduced the 6pt to 5pt kinematics,
it does not mean it corresponds now to terms described in table 3 (cf. 5 pt O(p6) order)
as the cyclic symmetry is not automatically restored. This makes, on the other hand, the
relation (4.4) so powerful. The easiest way how to solve it is to work numerically, i.e.,
generate at least 22 independent equations (similarly as done, e.g., in [25]). This system
of linear equations can then be easily reduced to the final set of independent C(6)

i s. Our
calculation reduced the number of 22 down to 5, and thus we have confirmed the ChPT
construction. Let us note that (4.4) represents the full 6pt O(p6) amplitude. However, for
our purpose — i.e. to reduce the base of the O(p6) order, we do not need the O(p4)-vertices
insertion as these are already in their minimal base form. In other words we can set Li = 0
in figure 2 or (4.4) without loss of generality. We can, and we will in the following, turn
off everything that is already in its minimal form. The only exception is the O(p2) order
(via the parameter F ), which must be kept as it also includes the kinetic term.

Another possibility of how to check the result or how to verify that this 5 is a final
number is via the bonus relations. Diagrammatically we have “left” and “right” amplitudes
depicted in figure 3. Note that squares in this figure represent the amplitudes at O(p2) or
O(p6) order, respectively (of course, the 4pt “right-hand sides” coincide with the vertices).

– 13 –



J
H
E
P
1
2
(
2
0
2
1
)
1
4
0

Figure 3. Schematic representation of AL × AR in the bonus relations for the 8pt amplitude at
O(p6) (with Li = 0). The box symbol indicates the corresponding full amplitude and the number
its order.

Figure 4. Feynman diagrams for the 6pt O(p8) scattering. The numbers indicate the order of
corresponding vertices.

We have verified that the connected bonus relations lead to no other supplement conditions
on the O(p6) constants and are automatically satisfied once the amplitude A(6)

6 in (4.4)
comply with the Adler zero. Let us also stress that the bonus relations are satisfied once
both topologies in figure 3 are combined, and the cyclic sum is performed. So it is another
nontrivial test of our calculation. The order O(p6) seems thus fairly verified and can be
trusted to give any amplitude also beyond the defining orders. The first such amplitude
entirely fixed by the lower vertices is the 8pt one A(6)

8 and can be obtained easily using
the soft bootstrap. We have performed this calculation and will briefly comment on it also
below in section 4.3.

Let us turn our attention to the last available order in the literature, NNNLO, i.e.,
O(p8). We will start with the full tree-level 6pt amplitude, depicted in figure 4. As above,
we can disregard the contributions with O(p4) and O(p6) vertices (the second diagram).
Demanding the Adler zero, we got constraints on the O(p8) constants C(8)

i . The 4pt vertex
parametrization stays as in the previous case without a change (i.e., parametrized by three
constants), whereas the 6pt is reduced from 58 to 22. Note that this number is obtained if
the Hermiticity was imposed. Explicitly, if the Hermiticity was not demanded, we would
have 89 terms instead of 58 in table 2 and now we would get 29 terms, with extra 7 CP-odd
terms. Interestingly, after demanding the Adler zero there are no CP-odd terms for lower
orders.

The 8pt Feynman diagrams to calculate are depicted schematically in figure 5. The
Adler zero condition leads to the considerable reduction from 621 to 17 monomials (from
1128 to 18, if the CP-odd terms allowed). Again as in the previous O(p6) case we can check
our result employing the bonus relations. Technically it means to go to 10pt amplitudes and
check the topologies schematically shown in figure 6. We performed this highly non-trivial
check and verified that the basis is stable without any supplement constraint.

We summarize the situation in the even sector up to NNNLO by comparing the num-
bers of minimal basis obtained using our direct amplitude oriented construction and the
existing ChPT Lagrangian in table 4.
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Figure 5. Possible topologies of the Feynman diagrams for the 8pt O(p8) scattering. The black
circle now represents the appropriate O(p2), O(p4), O(p6) or O(p8) vertex.

Figure 6. Schematic representation of AL × AR in the bonus relations for the 10pt amplitude at
O(p8). The numbers indicate the order of corresponding amplitudes.

#mesons
#terms

using amplitudes
#terms

using ChPT
p2 4 1 1
p4 4 2 2
p6 4 2 2

6 5 5
p8 4 3 3

6 22(7) 22
8 17(1) 17

Table 4. Number of monomials that produce vertices starting at the given number of mesons
based on the tree-level Adler zero. The numbers in parentheses summarize extra terms needed if
the Hermiticity condition was not applied. The last column is copied from table 1 summarizes the
situation obtained from ChPT literature as discussed in section 2.1.

O(p10) order. As we can see, our construction works perfectly up to O(p8) and also
agrees with a similar bottom-up approach in [36]. However, we can ask why we agree so
well if our procedure is unique in the sense that we work in D = 4, but both the ChPT-top-
down construction and the one in [36] is valid only for D ≥ n− 1. Shouldn’t we see some
discrepancy starting with multiplicity n = 6 already at O(p6) or at least at O(p8)? The
answer is apparently no. The reason is that the relations due to zeros of the Gram sub-
determinants (i.e., highly non-linear relations for the sij) cannot be directly applied to the
linear relations among monomials. Our procedure represents clear proof of this statement.
There is, however, one loophole in the previous argument: any Gram (sub)determinant
produces a linear relation for the products of sij and if this matches the studied order, we
have an extra condition on monomials owing to D = 4. As the lowest-order of relations due
to the Gram determinants is s5

ij , the lowest order to see some discrepancy is thus O(p10).
It is apparent that the O(p10) is in some sense important as it brings a new effect in the

basis construction. It is thus essential to see and verify how this works explicitly. It justifies
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#mesons
#terms for
D = 4

#terms for
D ≥ 5

p10 4 3 3
6 70 71
8 248 255
10 73 79

Table 5. Number of monomials that produce vertices starting at the given number of mesons based
on the tree-level Adler zero. Note the effect of the dimension. The D = 4 column summarizes the
results of our algorithm and the last column, representing monomials unconstrained by dimension,
is obtained from [36].

the need to push our algorithm and the use of the computer time for this order. It is also
enabled by an existing study in [36] which performed this analysis without dimensional
constraints. The numbers we have obtained are summarized in table 5. As expected, we
can see that the 4pt case is without a change (see next subsection for all orders). In the
6pt case, we can see finally a difference given by one term — exactly as expected due
to one linear O(p10) Gram relation. For higher multiplicities: we have a difference of 7
and 6 relations for n = 8 and n = 10, respectively. We have explicitly verified that these
relations are again due to the independent sets of the Gram subdeterminants. It would
be interesting to see the explicit construction of the sets as it reminds the terms obtained
using the techniques of the multi-Galileon theories (cf. for example [31]).

4pt to all orders. As the 4pt-order amplitude is the contact vertex, it seems simple
to try to prescribe the amplitude structure to all orders. Indeed, at the O(pr) order, the
cyclic amplitude is given by (it can be easily proved by expressing it using two independent
variables and employing the symmetry under cyclicity)

A
(r)
4 (s, t, u) =

br/4c∑
i=0

c
(r)
i+1
F r

(sr/2−i + ur/2−i)ti , (4.5)

where b. . . c represents the integer part. We have used a standard Mandelstam definition
for the 4pt scattering s = s12, u = s14 and t = s13. Of course s+ t+u = 0 and the cyclicity
interchanges (s, t, u) ↔ (u, t, s). We had to introduce a new symbol c(r)

i in order not to
mix up with already defined Lagrangians in section 2.1. However, it is easy to work out
the relations:

c
(2)
1 = 1/2, c(4)

1 = 2L3, c
(4)
2 = −4L0, c

(6)
1 = −16C(6)

2 , c
(6)
2 = −4C(6)

1 − 24C(6)
2 . (4.6)

Another interesting result hidden in the general formula is the number of terms:

O(pr) : # term = br/4c+ 1 , (4.7)

equal to 1, 2, 2, 3, 3, 4, 4, . . . in agreement with the direct calculation as summarized in
table 4 and table 5.
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4.1.1 Amplitudes in a special kinematical point

On the way to cut the parametric space of higher orders, we have calculated many ampli-
tudes but did not show them explicitly here. They can be obtained using the automatic
program2 introduced in [28]. Still, it might be helpful to see the structure of the amplitudes
more explicitly than given only schematically as e.g. for the 6pt in (4.4). For this, we will
introduce a special kinematical point at which we express our amplitudes. There are cer-
tainly many choices for this point. We found it useful to pick a so-called democratic point
where all relevant kinematical parameters are equal. In some sense, it should generalize
the center of the Dalitz plot for the 4pt amplitudes, however, the naive one s = t = u is
not very useful for us. Instead, we use a geometrical structure, a kinematic polytope where
the face is connected with a planar variable Xij [65]:

Xij ≡ si(i+1)...(j−1) = (pi + pi+1 + . . .+ pj−1)2 . (4.8)

Demanding a regular polytope, i.e. demanding that all non-zero Xij should be equal, we
can reduce the number of independent sij to one parameter. E.g. for n = 4 we get

s̄ ≡ s12 = −1
2s13 = s14 , (4.9)

while for n = 6:

s̄ ≡ s12 = −s13 = −s15 = s23 = −s24 = s34 = −s35 = s45, s14 = s25 = 0 . (4.10)

One can easily calculate the higher multiplicities. It is interesting that for n = 6, the
corresponding nonahedron stays regular also in D = 4 where we have to fulfill one extra
constrain due to the Gram determinant. However, for higher n this is not possible, and
the regular polytopes are always squeezed when moving to D = 4. The amplitudes are

for n = 4:

F 2A
(2)
4 = s̄

F 4A
(4)
4 = 4s̄2(4L0 + L3)

F 6A
(6)
4 = 16s̄3(C(6)

1 + 4C(6)
2 ) , (4.11)

for n = 6:

F 4A
(2)
6 = −3

2 s̄

F 6A
(4)
6 = −6s̄2(6L0 + L3)

F 8A
(6)
6 = −6s̄3(4C(6)

1 + 20C(6)
2 + C

(6)
3 + C

(6)
4 + 32L2

0) , (4.12)

and for n = 8:

F 6A
(2)
8 = 5

2 s̄

F 8A
(4)
8 = 10s̄2(8L0 + L3)

F 10A
(6)
8 = 4s̄3(12C(6)

1 + 64C(6)
2 + 3C(6)

3 + 4C(6)
4 + 192L2

0) . (4.13)
2They can also be obtained by contacting the author of this paper.
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A rule of thumb for actual values of the low-energy constants based on resonance saturation
and phenomenology is 10−3 and 10−5 for Lis and C(6)

i s, respectively. We can see that, for
example, the contribution of diagrams with two O(p4) insertions (∼ L2

0) is of the same
importance as contributions of diagrams with C

(6)
i and none of the contributions can be

easily omitted (without more precise knowledge of the individual values).

4.2 Odd sector

In the odd sector, we have to follow the same techniques to check amplitudes at the given
order and multiplicity, though there are small differences. First of all, the lowest valency
is now the 5pt vertex instead of the 4pt of the even sector. It seems it can be checked
nontrivially for the Adler zero and it can give us some constraints. However, we can easily
show that it is again trivial. The reason is that the 5pt vertex (= amplitude) is due to
parity conservation always “saturated” by one Levi-Civita and thus automatically zero for
any momenta going to zero. Its form can be written schematically as

A
(r)
5 (1, 2, 3, 4, 5) = ε1234∑

ijkl

c̃
(r)
ijkls

i
1s
j
2s
k
3s
l
4s
r/2−i−j−k−l−2
5 , (4.14)

where ε1234 ≡ εp1p2p3p4 ≡ εµναβp1µp2νp3αp4β and s1, . . . , s5 represent five independent scalar
products of the 5-pt scattering. Number of such terms is thus proportional to combina-
tions of sij products corresponding to the order r lower by four (due to four momenta
in the Levi-Civita epsilon). Moreover, we must ensure that the Hermiticity is correctly
incorporated — the amplitude must be invariant by the reverse permutation. It can be
easily calculated to any order and is given by (with the CP-odd terms in parentheses):
1, 1, 3, 5(2), 10(4), 16(10), 26(16), . . . .3 We see that the beginning agrees with the explicitly
calculated three lowest orders (cf. table 3).

As the anomalous sector is not yet well covered by literature, we will give more examples
of amplitudes for lower orders and multiplicities. The lowest order is fully determined by
the chiral anomaly (cf. appendix B)

A
(4)
5 = V5(p1, p2, p3, p4) = NC

6
√

2π2F 5 ε
1234 . (4.15)

Higher orders depend on the convention of constants c̃ in (4.14). For NLO this can be
rooted back to Lagrangian (2.17) and we can obtain

A
(6)
5 = −8

√
2 C̃

(6)
1
F 7 ε

1234(s12 + s23 + s34 + s45 + s15) . (4.16)

For higher orders the canonical Lagrangian is not yet set. From section 3.1 we know that
for O(p8) there are three constants, and we can for example take:

A
(8)
5 = ε1234(c̃(8)

1 s2
12 + c̃

(8)
2 s12s23 + c̃

(8)
3 s12s34 + cycl

)
(4.17)

and similarly for higher orders as already anticipated in (4.14).
3This series of numbers has a nice geometrical interpretation: combinations of the turnover necklaces

with 5 white stones and n− 1 black stones.
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Figure 7. Feynman diagrams for the 7pt O(p4) scattering. The numbers indicate the order
of corresponding vertices and different color of odd number vertices is to accent the anomalous
vertices.

Next interesting amplitude is naturally the O(p4) 7pt scattering. It can be obtained
easily calculating following Feynman diagrams (figure 7) using existing vertices, i.e. (B.3),
(B.9) and (B.10), we can thus write

A
(4)
7 =

[
− NC

6
√

2π2F 5 ε
1234 1

(p5 + p6 + p7)2
−1
2F 2 s57 + cycl

]
+ V7 . (4.18)

One can verify that this amplitude fulfils the Adler zero. We have also verified that it
can be obtained by the bottom-up approach, based only on the soft recursion, so it works
similarly as in the even sector.

Nevertheless, this brings us to another important difference from the even sector. It is
connected with shifted orders vs. multiplicities. There is one consequence that apart from
the soft recursion, the bonus relations cannot be used so simply as in the even sector. For
example for the NLO order O(p6), i.e. r = 6, we can use the BCFW to calculate n = 7
amplitude, but this multiplicity is not enough to get the bonus relation. For this, we would
have to study at least n = 9 (for order r = 6).

From the bottom-up perspective, which is our main task here, the first real non-trivial
order is thus NNLO, i.e. O(p8) — it can bring something new. There the simplest non-
trivial amplitude is the 7pt scattering, schematically expressed as:

F 11A
(8)
7 =

3∑
i=1

C̃
(8)
i X̃

(8)
i +

93∑
i=4

C̃
(8)
i +

∑
(LiC̃(6)

j + LiLjC̃
(4)
k + C

(4)
i C̃

(4)
j )X̃(8)

ij(k) . (4.19)

If we switch off the known orders (i.e. the last sum) we have to calculate only diagrams
depicted in figure 8. Demanding now the Adler zero, we obtain 75 non-trivial relations
among C̃(8)

i constants, meaning that there are 3+15 independent constants. It is possible
to calculate a 9pt O(p8) amplitude, however, it cannot give us any new constraints based
on the above discussion of the bonus relations here. We would have to calculate 11pt
scattering, which is for the moment beyond our possibilities. The present situation in the
odd sector is summarized in table 6.

4.3 Mixed sector

Of course, we can have only an even or odd number of external legs, so there cannot be a
real mixed sector in multiplicity. Nevertheless, starting at O(p6) and at 8pt, the anomaly
also enters the even sector. It means that to the result calculated using only even-sector
vertices (for example, using the soft bootstrap as partially indicated in figure 3), we have
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Figure 8. Feynman diagrams for the 7pt O(p8) scattering with C̃(8) insertion. The numbers
indicate the order of corresponding vertices.

#mesons
#terms

using amplitudes
#terms

using ChPT
p4 5 1 1
p6 5 1 1
p8 5 3 ?

7 15(8) ?

Table 6. Number of monomials that produce vertices starting at the given number of mesons based
on the tree-level Adler zero. The number in parentheses counts the non-Hermitian monomials. The
last column is copied from table 1 summarizes the present situation of the ChPT literature as
discussed in section 2.2.

Figure 9. Feynman diagrams for the 8pt O(p6) scattering with a double-insertion of the anomalous
vertex V5. The numbers indicate the order of this vertex.

to add one diagram depicted in figure 9. The amplitude is very simple and can be readily
written as

A
(6)A
8 = −V5(1, 2, 3, 4) 1

(p1 + p2 + p3 + p4)2V5(5, 6, 7, 8) + cycl , (4.20)

where the anomalous vertex is given in (4.15). The complete amplitude at O(p6) is thus
given as a sum of A(6)

8 and A
(6)A
8 . It would be instructive to compare the anomalous

contribution of the amplitude in comparison with the pure even sector. This is complicated
by the fact that we are talking about 8pt scattering with 14 independent scalars sij (if we
are in D = 4) or 20 (for general D). We will thus present this result only in one special
kinematical point as introduced in section 4.1.1. We get

A
(6)mix
8

∣∣
spec.=

s̄3

F 10

(
48C(6)

1 + 256C(6)
2 + 12C(6)

3 + 16C(6)
4 + 768L2

0 −
N2
C

9π4

)
. (4.21)

We see that the anomalous contribution is definitely not negligible, and using the rough
estimate (Li ∼ 10−3 and Ci ∼ 10−5), it seems dominant or at least of the same order.
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5 Further relations

So far, the cyclicity was the fundamental simplification to study a general stripped am-
plitude (a function of n momenta) as it enables to express n! possible combinations of
amplitudes from the (n− 1)! base. Schematically we can express relations between

An({p1, . . . , pn}) → An(p1, {p2 . . . , pn}) ,

where {p1, . . . , pn} and {p2, . . . , pn} represent n! and (n − 1)! permutations, respectively.
From the top-down perspective, this is motivated and allowed by the large-NC arguments
of QCD. At this point, it is just a coincidence that the same stripping down to the cyclically
ordered amplitudes is also possible in Yang-Mills. However, we turn this around and ask
if there are other relations valid in Yang-Mills or other theories that we can borrow and
apply on our ChPT stripped amplitudes.

5.1 Kleiss-Kuijf and BCJ relations

Indeed there exist relations well-known in other theories, worth applying also in ChPT.
We can formulate it as a three-step procedure in reducing the base of n! amplitudes
An(p1, . . . , pn). If we take the cyclicity as a first step, then there are Kleiss-Kuijf (KK)
relations [41] which take the base of amplitudes from (n− 1)! space down to (n− 2)! and
finally Bern-Carrasco-Johansson (BCJ) relations [42] down to (n− 3)! .

The KK relations read (for simplicity dropping p, i.e. pi → i)

An(1, {α}, n, {β}) = (−1)|β|
∑

OP {α}∪{βT }
An(1, {σ}, n) , (5.1)

where {α} and {β} are arbitrary sets of 2, . . . , n− 1 momenta and |β| represents length of
the β set. The ordered permutations (OP) of α and βT (reverse order of β elements) keep
ordering of α elements and independently of βT elements unchanged.

The BCJ relations are

s12An(1, 2, . . . , n) +
n−1∑
a=3

(s12 + s23 + . . .+ s2a)An(1, 3, . . . , a, 2, a+ 1, . . . , n) = 0 . (5.2)

4pt scattering. The 4pt scattering is of special status as we know it up to all orders. It
would be thus interesting to see how the parameter space changes in order to comply with
constraints given by KK and BCJ relations. Starting with the KK, we will demand

A
(r)
4 (1, 2, 3, 4) +A

(r)
4 (1, 2, 4, 3) +A

(r)
4 (1, 3, 2, 4) = 0 . (5.3)

All other KK relations are either trivial or equivalent to this one. First of all the O(p2)
order is automatically satisfied, proved for all multiplicity not only 4pt vertex. As we are
focusing mainly on amplitudes up to O(p8) let us summarize the results of these amplitudes

KK: F 4A
(4)
4 = c

(4)
2

2s2 + 2st− t2

2 (5.4)

F 6A
(6)
4 = c

(6)
2
t(s2 + st+ t2)

2 (5.5)

F 8A
(8)
4 = c

(8)
3 t2(s2 + u2) + c

(8)
2 t(s3 + u3) + (c(8)

2 − c
(8)
3 )s

4 + u4

2 . (5.6)
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However, there is no problem in calculating any order. The general form already visible at
O(p8) (5.6) repeats to all orders:

F rA
(r) KK
4 =

∑
i+j=r/2

kijt
i(sj + uj) . (5.7)

It would be interesting to work out general formula for kij coefficients to all orders and
discuss its status. The number of terms of such a theory is

KK: O(pr) : # term = b(r − 2)/6c+ 1 , (5.8)

or in a normal language: 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, . . . (the first four agree with the ampli-
tudes explicitly discussed above).

Let us proceed with the BCJ constraints. Again the O(p2) order is automatically
satisfied (and the same for higher n-pt amplitudes). The amplitudes up to NNNLO:

BCJ: F 4A
(4)
4 = 0 (5.9)

F 6A
(6)
4 = c

(6)
2
4 t(s2 + t2 + u2) (5.10)

F 8A
(8)
4 = c

(8)
3
3 t(s3 + t3 + u3) , (5.11)

or given by constraints on parameters c(4)
i (cf. also (4.6)):

c
(4)
i = 0 , 2c(6)

1 = c
(6)
2 = −16C(6)

1 , c
(8)
1 = 0, c(8)

2 = c
(8)
3 .

Notice the zero at the NLO order. It seems tempting to work out the higher orders as well
and see some pattern. What is interesting is already the number of parameters at every
order, given by the following (conjectured) formula

BCJ: O(pr) : # term = b(r + 2)/4c − b(r + 2)/6c , (5.12)

equal for few orders to 1, 0, 1, 1, 1, 1, 2, 1, 2, . . . . It is amusing that this formula coincides
with the number of independent parameters of 4pt amplitudes lower by one order for a
single scalar (with the full permutation). A quick check: the O(p4) order has 0 above. It
should correspond to O(p2) fully permuted scalar amplitude which is s+t+u, indeed again
zero. Our conjecture of its form is thus

F rA
(r) BCJ
4 =

b(r+2)/4c−b(r+2)/6c∑
i=1

k
(r)
i t T (r−2)(s, t, u)i , (5.13)

where T (r)(s, t, u)i represents the i-th monomial of the scalar 4pt amplitude. For curiosity:
the first order with at least two monomials is O(p12) and they read4

T (12)(s, t, u) = (s6 + t6 + u6 , s2t2u2) , (5.14)
4The first proof of the form and number of these monomials, author is aware of, is due to J.Bijnens [66].
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(another candidates, e.g. s3t3 + s3u3 + t3u3, are just linear combinations of the above two).
It is natural to define the first monomials as

T (r)(s, t, u)1 = sr/2 + tr/2 + ur/2 (5.15)

and easily get the corresponding coefficients

BCJ: k
(2)
1 = −1/3 c(2)

1 = −1/6, k
(4)
1 = undef., k

(6)
1 = 1/4 c(6)

2 ,

k
(8)
1 = 1/3 c(8)

3 , k
(10)
1 = −1/10 c(10)

3 , k
(12)
1 = −1/10 c(12)

4 ,

k
(14)
1 = −3/28 c(14)

3 + 2/7 c(14)
4 , k

(14)
2 = 5/4 c(14)

3 − 3 c(14)
4 , (5.16)

which fully define the amplitudes A(r) BCJ
4 for r ≤ 14 in parameters of (4.5). Of course

no problem to calculate higher order coefficients, once the definition for T (r−2)(s, t, u)i is
provided.

Higher multiplicities. As for the O(p2) both KK and BCJ are satisfied for any number
of multiplicities, we will study two higher orders: O(p4) and O(p6).

For the O(p4) we have already solutions of KK or BCJ constraints from the previous
subsection which we can express as

KK: C(4)
1 + C

(4)
2 = 0 (5.17)

and in the case of BCJ both constants has to be zero:

BCJ: C(4)
1 = C

(4)
2 = 0 . (5.18)

We may ask if a solution based on 4pt amplitudes is not violated for higher-pt amplitudes.
For stronger BCJ this is trivially satisfied, but we can check KK relations (5.1) for higher
n. We have indeed checked explicitly KK relations for n = 6, i.e. for example

A
(4)
6 (1, 2, 3, 4, 5, 6) +A

(4)
6 (1, 2, 3, 4, 6, 5) +A

(4)
6 (1, 2, 3, 5, 4, 6)

+A
(4)
6 (1, 2, 5, 3, 4, 6) +A

(4)
6 (1, 5, 2, 3, 4, 6) = 0 (5.19)

and also for n = 8 and they all confirmed (5.17).
The first non-trivial order for higher multiplicity will be thus O(p6). Again the 4pt

amplitude has been already discussed above, so let us turn to the 6pt case. We take the
amplitude (4.4) complying with the Adler zero, the KK O(p4) constraint (5.17) and the
KK 4pt O(p6) condition

KK: C(6)
1 − 2C(6)

2 = 0 , (5.20)

cf. also (5.5). The amplitude now depends on one 4pt O(p4) constant (e.g. square of C(4)
1 ),

one 4pt O(p6) constant (e.g. C(6)
1 ) and five 6pt constants C(6)

3...7. Plugging such amplitude
to 6pt KK relations (cf. (5.19)) we got following conditions on three 6pt constants

KK: C
(6)
5 = −C(6)

1 − 3C(6)
3 − C(6)

4 , C
(6)
6 = 2C(6)

1 + 6C(6)
3 + C

(6)
4 ,

C
(6)
7 = −C(6)

1 − 4C(6)
3 − C(6)

4 . (5.21)

We have verified that the 8pt O(p6) KK relations hold too.
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BCJ — we will start directly with the 6pt O(p6) amplitude. In order to fulfill the BCJ
relation (5.2) for n = 6 we have to add to above constraints the following one

C
(6)
3 = −2

3C
(6)
1 , C

(6)
4 = 0 (5.22)

and again verified also at the 8pt (cf. appendix C). We see that the amplitude at this order
depends only on one parameter. At the 6pt it reads

F 8A
(6)BCJ
6 = −4C(6)

1

(
s13(s2

12 + s12s13 + s2
13)s46

s123
+ s2

13s45 + s2
15s12 + s12s14s35

+1
2s12s14s45 − s12s15s34 −

1
2s12s25s45 − s13s14s35 −

1
3s13s15s35 + 2s13s24s25

− s14s23s24 − s14s23s25 − s15s23s24 + s15s24s25 + cycl
)
. (5.23)

Anomaly. We have so far completely ignored the amplitudes descended from the anoma-
lous sector. And for a good reason — it is impossible to fulfill any of the above relations
(either KK or BCJ) if the chiral anomaly is involved. This is even worse — there is not
even a trivial solution as the WZW Lagrangian (2.15) has no free parameter. Adding an
extra constant in front of the WZW vertex would result in demand that this constant and
all constants of the anomalous sector must be zero. This includes both the single anomaly
insertion and the anomaly in the even amplitudes (for example, the anomalous part of the
8pt amplitude (4.20)).

5.2 String theory constraints

We ended up with an explicit form of the 6-pt amplitude at the O(p6) order, which satisfies
the Adler zero condition and the BCJ constraints. That these constraints also hold for
higher orders was verified explicitly for the 8-pt amplitude, and its form can be found in
appendix C. Interestingly, the amplitudes depend only on one parameter (not counting the
scale F ). This is partly because the O(p4) order vanishes. Nevertheless, it is tempting to
ask if our “ChPT+BCJ” theory can be reduced even more. If up to O(p6) we have only
one dimensionful parameter F and eventually one dimensionless parameter C(6)

1 it means
to set the latter parameter to some value. It would leave only one parameter for the whole
theory. A similar situation is in the string theory, where there is only one dimensional
constant — the inverse of the string tension α′ which is proportional to mass2 or in our
language: α′ ∼ 1/F 2. The string theory in the low energy limit also describes scattering
amplitudes of various quantum field theories. Even though this was typically aimed to
describe gravity, recently in [48] it was also applied on obtaining (though indirectly) NLSM.
Their work focuses on the Z-function, which plays a crucial role in the double copy for the
open-string amplitudes [67]. They established a relation between the low energy limit of
the Z-function and the color-ordered NLSM. Including also the higher-order corrections, a
relevant amplitude for the given order and multiplicity is simply the coefficient in the α′
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expansion. We can summarize it by the following closed-form:5

A(r)string
n = −α′

r+n−4
2

1
(r/2 + n− 3)!Z

(r/2+n−3)
× (α′ = 0) , (5.24)

where Z(n)
× is the n-the derivative of the Z-function with respect to α′ evaluated in 0. The

Abelian disk integrals Z× are connected with the Z-functions via:

Z×(p1, . . . , pn) =
∑

σ∈Sn/Zn

Zσ1...σn(p1, . . . , pn) . (5.25)

The Z-functions are iterated integrals over the boundary of a disk worldsheet. The open-
superstring amplitudes can be related as a double-copy of color-stripped Yang-Mills am-
plitudes and these Z-functions.

For the 4pt it is possible to write down a closed formula for all orders in α′ using a
sum of the three beta functions. Factoring out the Veneziano amplitude it takes the form:

Z×(1, 2, 3, 4) =
(

1 + Γ(1 + α′u)Γ(−α′u)
Γ(1 + α′s)Γ(−α′s) + Γ(1 + α′u)Γ(−α′u)

Γ(1 + α′t)Γ(−α′t)

) 2
−s

Γ(1− α′s)Γ(1− α′t)
Γ(1 + α′u) .

(5.26)
After demanding that A(r)BCJ

4 in (5.13) is equal to A(r)string
4 obtained by plugging (5.26)

into (5.24), we have to fix the scales as:

α′ = 1
2π2F 2 . (5.27)

The 4-pt amplitude up to all orders is then given by (5.26) (with α′ replaced by F 2 us-
ing (5.27)):

Astring
4 =

∞∑
r=1

A
(2r)string
4 = −2π2F 2Z×

= − t

2F 2 −
t(s2 + t2 + u2)

192π2F 6 − ζ(3)t(s3 + t3 + u3)
48π6F 8 + . . . , (5.28)

where we have also explicitly showed the terms up to O(p8). It is trivial to read off the
4pt constants. In our notation, as we left it in (5.16), starting with the known k(2)

1 = −1/6
and irrelevant k(4)

1 (due to vanishing NLO), they are completely fixed by the Z-theory as:

string: k
(6)
1 = −1

2
ζ(2)
(2π)4 = −1

192π2 , k
(8)
1 = −4

3
ζ(3)
(2π)6 , k

(10)
1 = −3 ζ(4)

(2π)8 = −1
7680π4

k
(12)
1 = −8

5
ζ(2)ζ(3) + 2ζ(5)

(2π)10 = −π
2ζ(3) + 12ζ(5)

3840π10 ,

k
(14)
1 = −51

4
ζ(6)

(2π)12 = − 17
5 160 960π6 ,

k
(14)
2 = 13ζ(2)ζ(4)− 16ζ(3)2

(2π)12 = 13π6 − 8640ζ(3)2

2 211 840π12 . (5.29)

5Note the sign, which is there due to using the mostly minus sign convention, our definitions of sij , the
form of amplitudes and the high-energy behavior of Z× in the physical region.
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Of course, if needed any higher order can be readily obtained. We can also easily re-express
them in different parametrizations. For example the constants of Lagrangian (2.9) are

string: C
(6)
1 = 1

768π2 , C
(6)
2 = 1

1536π2 . (5.30)

This parametrization is important because we have expressed higher point amplitudes using
the C(6)

1 . We have explicitly verified that our NNLO amplitude (5.23) corresponds to the
Z-theory result (cf. (4.7) in [48]) with the above mentioned C(6)

1 value.
In the previous section, we have stopped at the O(p6) order for the form of the BCJ

amplitudes with higher multiplicities (for n > 4). We have, however, verified that the
known form of the O(p8) six-point amplitude obtained from the corresponding subleading
α′7 correction of Z× (cf. appendix B in [48]) has the Adler zero and must be thus expressible
by the “ChPT+BCJ” Lagrangian.

6 Summary and discussion

In the first part of this work, we have summarized the canonical forms of the ChPT
Lagrangian as constructed using the symmetric breaking pattern H×H → H with unitary
group H of degree Nf . We have focused only on single-trace operators without external
sources and chiral corrections, i.e., we work in the strict massless limit, in both even and odd
intrinsic-parity sectors. We have then studied the bottom-up construction of amplitudes
in the respective sectors using the modern on-shell methods. We pushed the results to
the following limits: for the 4pt scattering amplitudes to all orders, for multiplicity 6, 8,
and 10 up to order O(p10). In the odd sector, for the lowest multiplicity (5pt scatterings),
it was given schematically again to all orders. We have also presented Feynman rules for
the vertices of the Wess-Zumino-Witten Lagrangian (which is of the lowest O(p4) order)
for all multiplicities in the so-called Cayley parametrization. Concerning the amplitudes
in the odd sector, we got up to NNLO (O(p8)) and calculated the seven-point scattering.
For the first time, we presented and discussed the 8pt scattering with both — even sector
contributions and the anomalous one (i.e., with two insertions of the WZW vertices). In the
so-called symmetric-center point, we have discussed the relevance of individual terms and
concluded that the anomalous contribution is definitely non-negligible, at least without
a deeper knowledge of other low-energy constants. As a by-product of the amplitude
calculations, we have counted the number of independent monomials of relevant basis at
given orders. We got an agreement with existing literature [58] and [36] up to O(p8) order
in number of terms for multiplicity n = 6 and n = 8 even-though in their respective works
they considered a general dimension. We have used the bonus relations as a verification of
our results. We have then focused on the O(p10) order and discussed the difference from
results obtained in [36]. We have determined and verified that the difference is due to the
Gram determinant relations and the extra constraints among the monomials are thus of
the Galileon-like form.

The second part involved a completely different point of view. We put further con-
straints on the amplitudes obtained in the first part, namely the Kleiss-Kuijf and BCJ
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relations. We found out it is possible to comply with them but only in the even sector.
We have also verified that the KK relations are a subset of BCJ (i.e., whatever satisfies
BCJ would also agree with KK). It is worth pointing out that the odd sector does not
fit into this picture even if we add an arbitrary constant in front of the WZW vertex
and study the behavior of two insertions of such a vertex (i.e., the even amplitude). The
only immediate solution is to put such a constant equal to zero. It suggests that ChPT
does not belong to the class of theories satisfying KK or/and BCJ. Another possibility is
that we are missing some corrections to relations or some important contributions. For
example, these contributions can come from the loop expansion (suggested by the 1/π2 in
the WZW term). It would effectively mean that the anomaly is subleading and should be
disregarded at the first order. If this is taken seriously, our obtained simplified effective
theories, “ChPT+KK” or even more restrictive “ChPT+BCJ”, might still represent QCD
in some limit.

We can continue even further and try to interconnect the string theory, or more pre-
cisely the so-called Z-theory, with our “ChPT+BCJ” amplitudes. Such cultivated theory
is given only by one scale α′ or 1/F 2, and especially the 4pt scatterings are then known
up to all orders in a closed form. We have explicitly verified that the formula is in agree-
ment with existing calculations in the literature. We have also provided the expression
for the n = 8 amplitude within this theory, and it would be interesting to verify it from
the direct Z-theory calculation using the eight-point disk integrals. Another possible di-
rection is studying the status of our special amplitudes beyond the tree level; for example,
comparing them with recent studies of one-loop six-point calculations [68] or leading-logs
evaluations [61, 62].

In conclusion, let us stress that the studied simplifications in the parametric space,
and with these connected reduced theories, i.e. “ChPT+KK”, “ChPT+BCJ” or finally
“ChPT+string” should be taken with a grain of salt, especially if applied in the meson
phenomenology. On the other hand, it would be interesting to see how they work in some
suitable applications.
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A Complete set of single trace monomials at O(p8)

We merely copied the relevant monomials from [58], i.e. those with a single trace, without
the mass or external-field insertion. As explained in the main text, now effectively hµν $
2∇µuν , we prefer the symmetric hµν instead of ∇µuν , which is dominantly used in [58].
On top of that a trivial manipulations with symmetric hµν were performed. Namely, the
monomial

O
(8)
4 = 〈∇µuν∇νuρ∇ρuσ∇σuµ〉+ 〈∇µuν∇ρuµ∇σuρ∇νuσ〉 , (A.1)
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i monomials 〈h4〉
1 〈hµνhνρhρσhµσ〉
2 〈hµνhνρhµσhρσ〉
3 〈hµνhρσhµνhρσ〉

Table 7. Independent single trace monomials at O(p8) starting with four pions (corresponding to
O(8)

4 , O(8)
5 and O(8)

6 of [58]).

defined in [58] can be easily rewritten as

O
(8)
4 $

1
16〈hµνh

νρhρσh
σµ〉+ 1

16〈hµνh
ρµhσρh

νσ〉 = 1
8〈hµνh

νρhρσh
σµ〉 , (A.2)

which is the first term in table 7. Apart from the trivial manipulation and with this
connected 1/2n factors, the terms in tables 7, 8, 9 correspond exactly to those in [58].

B Cayley parametrization

It is known that the U(1) piece of u(φ) in LO (2.2) decouples [20]. It means that including
also a normalized identity matrix for a = 0 in (2.4) with t0 = IN/

√
N any amplitude with

at least one φ0 is zero. It is true only for the leading order Lagrangian (2.2) and not e.g. for
L4 or higher orders. However, it is interesting to notice that it is again true for the leading
odd-intrinsic L5 given in (2.15). We can thus use the advantages of the bigger symmetry
group U(N), and some results could then be particularly simpler.

We will define the Cayley parametrization of the U(N) non-linear sigma model as

U =
1 + i√

2F Φ
1− i√

2F Φ
. (B.1)

Note that our definition of Φ = taφa (cf. (2.4)). Within this parametrization the stripped
Feynman rule for the interaction vertices is remarkably simple [20]

V2n =
(
− 1

2F 2

)n−1
(
n−1∑
i=0

p2i+1

)2

, (B.2)

so for example the 4pt LO vertex is given by

V4 = − 1
2F 2 (p1 + p3)2 = − 1

2F 2 (p2 + p4)2 . (B.3)

Now we will derive a similar Feynman rule for the WZW Lagrangian (2.15). The coset
corresponding to the exponential parametrization (2.16) is simply

U =
1 + i√

2F zΦ
1− i√

2F zΦ
. (B.4)

– 28 –



J
H
E
P
1
2
(
2
0
2
1
)
1
4
0

i monomials 〈h2u4〉
4 〈{uµuµ, uν}hρσuνhρσ〉
5 〈uµuνuνuµhρσhρσ〉
6 〈uµuνuνuρhµσhρσ〉
7 〈uµuνuνuρhρσhµσ〉
8 〈uµuνhµνuρuσhρσ + uµuνhρσu

ρuσhµν〉
9 〈uµuνhνρuρuσhµσ〉
10 〈uµuνhνρuσuρhµσ〉
11 〈uµuνuρhµνuσhσρ + uµuνuρhµσu

σhνρ〉
12 〈uµuνuρhµρuσhνσ + uµuνuρhνσu

σhµρ〉
13 〈uµuνuρhνρuσhµσ + uµuνuρhρσu

σhµν〉
14 〈uµuνuρuσ{hµσ, hνρ}〉
15 〈uµuνuρuσhνσhµρ〉
16 〈uµuνuρuσhρσhµν〉
17 〈uµuνuρhµσuνhρσ〉
18 〈uµuνuρhµσuρhνσ + uµuνuρhνσuµh

ρσ〉
19 〈uµuνuρhνσuρhµσ + uµuνu

ρhρσuµh
νσ〉

20 〈uµuνuρhρσuνhµσ〉
21 〈uµuνhµρuνuσhρσ + uµuνhρσuνuσhµρ〉
22 〈uµuνhµρuσuνhρσ + uµuνhρσuµuσhνρ〉
23 〈uµuνhνρuµuσhρσ + uµuνhρσuσuνhµρ〉
24 〈uµuνhρσuµuνhρσ〉
25 〈uµuνhρσuνuµhρσ〉

Table 8. 22 independent single trace monomials at O(p8) starting with six pions (corresponding
to O(8)

45 −O
(8)
66 of [58]).

The five-dimensional quantity Σi is then given by

Σz = U†∂zU = i
√

2
F

Φ 1
1 + z2 Φ2

2F 2

Σµ = U†∂µU = i
√

2
F

z∂µΦ 1
1 + z2 Φ2

2F 2

. (B.5)

Plugging back into L5 given by (2.15) we can easily calculate a vertex for any given (odd)
number of pions by expanding several of 1/(1 + z2Φ2/2F 2) to the appropriate order. We
will now show how to obtain the closed-form for a given number of fields. First, we take
advantage of the integral in (2.15) and via a change of variable

z = iz̃
√

2F , (B.6)
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i monomials 〈u6〉
26 〈uµuµuνuνuρuρuσuσ〉
27 〈uµuµuνuνuρuσuρuσ〉
28 〈uµuµuνuνuρuσuσuρ〉
29 〈uµuµuνuρuνuσuρuσ〉
30 〈uµuµuνuρuνuσuσuρ〉
31 〈uµuµuνuρuσuνuρuσ〉
32 〈uµuµuνuρuσuνuσuρ + uµuµu

νuρuσuρuνuσ〉
33 〈uµuµuνuρuσuρuσuν〉
34 〈uµuµuνuρuσuσuνuρ〉
35 〈uµuµuνuρuσuσuρuν〉
36 〈uµuνuµuνuρuσuρuσ〉
37 〈uµuνuµuρuνuσuρuσ〉
38 〈uµuνuµuρuσuνuρuσ〉
39 〈uµuνuµuρuσuνuσuρ〉
40 〈uµuνuρuµuσuνuρuσ〉
41 〈uµuνuρuµuσuρuνuσ〉
42 〈uµuνuρuσuµuνuρuσ〉

Table 9. 17 independent single trace monomials at O(p8) starting with eight pions (equal to
O(8)

119 −O
(8)
135 of [58]).

we get a correct sign for the geometrical series of the denominator expansion. The La-
grangian becomes

L5 = i
2NC

3π2

∫ 1/i
√

2F

0
dzz4εµναβ

〈
∂µΦ 1

1− z2Φ2∂νΦ 1
1− z2Φ2∂αΦ 1

1− z2Φ2∂βΦ Φ
(1− z2Φ2)2

〉
(B.7)

The integration of z is trivial — it effectively brings zn/n for the n-pion interaction. The
geometrical expansion of 1/(1 − z2Φ2) is as well trivial and the only non-trivial (but still
very simple) factor can come from the last term in the trace. The reduced Feynman rule
can be thus directly read off from (B.7) to take the following form

V WZW
n = in−1

n

2NC

3π2(
√

2F )n

n−5
2∑
i=0

n−5
2∑
j=i

n−5
2∑

k=j
εp1 p2+2i p3+2j p4+2k

(
n− 3

2 − k
)

+ cycl , (B.8)

for all odd n ≥ 5, where we sum over all cyclic permutations in momenta. We have verified
this expression up to n = 9 using the direct calculation. In the main text we will need the
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explicit form of the following 5- and 7-point vertices:

V5 = NC

6
√

2π2F 5 ε
p1 p2 p3 p4 (B.9)

V7 = −NC

12
√

2π2F 7 (εp1 p2 p3 p4 + εp1 p2 p3 p6 + εp1 p2 p5 p6 + εp1 p4 p5 p6 + εp3 p4 p5 p6) . (B.10)

C 8-pt BCJ amplitudes

The tree-level 8pt amplitudes up to O(p6), which satisfy both the Adler zero and BCJ
conditions, will be summarized here. For the following results, we have used the so-called
minimal parametrization discussed in [20] and variables Xij defined in (4.8).

We start with the LO. As we know, any O(p2) amplitude in NLSM automatically
satisfies also BCJ. The minimal parametrization seems to lead to the most economical
form at O(p2), and our amplitude is indeed relatively short:

F 6A
(2)
8 = (X13 +X24)(X15 +X48)(X57 +X68)

16X14X58
+ (X13 +X24)(X15 +X46)(X17 +X68)

8X14X16

+ (X13 +X24)(X15 +X17 +X46 +X48 +X57 +X68)
8X14

+ 1
4X13 + 1

16X15 + cycl . (C.1)

The NLO amplitude is zero, so we continue with the O(p6) order. It is a quite lengthy
expression but similar in structure to the O(p2): with parts with double propagators, single
propagators and contact terms. It would be interesting to try to find the shortest possible
form, similar to the 6pt amplitude given in (5.23). The double and single factorization
terms are explicitly given by:

F 10A
(6)BCJ
8 = 2C(6)

1
X14X16

(X13 +X24)(X15 +X46)(X17 +X68)(X2
13 +X2

15 +X2
17

+X2
24 +X2

46 +X2
68 +X13X24 +X15X46 +X17X68)

+ C
(6)
1

X14X58
(X13 +X24)(X15 +X48)(X57 +X68)(X2

13 +X2
15 +X2

24

+X2
48 +X2

57 +X2
68 +X13X24 +X15X48 +X57X68)

− 2C(6)
1 (X13 +X24)

X14

(
X3

15 +X3
17 +X3

46 +X3
48 +X3

57 +X3
68

+X2
13X15 +X2

13X17 +X2
13X46 +X2

13X48 +X2
13X57 +X2

13X68 +X15X
2
24

− 2X15X
2
47 + 2X15X

2
68 + 2X2

15X47 + 2X2
15X68 + 2X16X

2
47 + 2X16X

2
48 + 2X16X

2
57

+ 2X16X
2
58 + 2X2

16X47 − 2X2
16X48 − 2X2

16X57 + 2X2
16X58 +X17X

2
24 + 2X17X

2
46

− 2X17X
2
58 + 2X2

17X46 + 2X2
17X58 +X2

24X46 +X2
24X48 +X2

24X57 +X2
24X68

− 2X46X
2
58 + 2X2

46X58 + 2X47X
2
58 + 2X47X

2
68 + 2X2

47X58 − 2X2
47X68 + 2X48X

2
57

+ 2X2
48X57 +X15X16X17 +X13X24X17 + 2X15X46X17 −X16X46X17
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+ 2X15X47X17 − 2X16X47X17 −X46X47X17 − 4X15X48X17 + 4X16X48X17

+ 2X46X48X17 +X15X57X17 + 2X16X57X17 + 2X46X57X17 +X47X57X17

+ 2X48X57X17 + 2X15X58X17 − 4X16X58X17 − 4X47X58X17 + 4X48X58X17

+ 2X57X58X17 + 2X15X68X17 + 2X46X68X17 + 4X47X68X17 − 4X48X68X17

− 4X57X68X17 + 4X58X68X17 +X13X15X24 +X13X24X46 − 4X15X16X47

+ 4X15X46X47 − 2X16X46X47 + 4X15X16X48 +X13X24X48 − 4X15X46X48

+ 2X16X46X48 + 4X15X47X48 − 4X16X47X48 +X46X47X48 + 2X15X16X57

+X13X24X57 − 4X15X46X57 + 4X16X46X57 + 2X15X47X57 − 4X16X47X57

+ 2X15X48X57 + 2X46X48X57 −X47X48X57 − 2X15X16X58 + 4X15X46X58

− 4X16X46X58 − 4X15X47X58 + 8X16X47X58 − 4X46X47X58 − 4X16X48X58

+ 2X46X48X58 − 2X47X48X58 +X15X57X58 − 4X16X57X58 + 4X46X57X58

− 2X47X57X58 −X48X57X58 −X15X16X68 +X13X24X68 + 2X15X46X68

+X16X46X68 − 4X16X47X68 + 2X46X47X68 + 2X15X48X68 + 2X16X48X68

+X46X48X68 + 2X47X48X68 + 2X15X57X68 + 4X16X57X68 − 4X46X57X68

+ 4X47X57X68 + 2X48X57X68 −X15X58X68 − 2X16X58X68 + 2X46X58X68

− 4X47X58X68 +X48X58X68
)

+ cycl + cont. . (C.2)

The Adler zero condition can unambiguously set the contact terms as the 8pt amplitude
at the O(p6) order is completely reconstructible using its factorizations.

Both amplitudes depend only on F and at O(p6) on one additional dimensionless
constant. We can make them to correspond to the Z-theory (more precisely to the relevant
term in the expansion in α′) by setting F 2 = (2π2α′)−1 and C(6)

1 = 1/768π2 (cf. section 5.2).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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