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1 Introduction

A foundational problem in cosmology is to characterize de Sitter solutions of string the-
ory. Tremendous efforts have been expended in the study of flux compactifications of
weakly-coupled type II string theories on orientifolds (see e.g. the reviews [2–10]). Non-
supersymmetric vacua necessarily remain more difficult to analyze than supersymmetric
ones, if only because fewer theoretical tools can be applied there. However, we can take
heart by recalling that the entirety of real-world physics is strictly non-supersymmetric,
and progress has nonetheless been possible in a few areas, beginning with the work of the
non-supersymmetric theorists of antiquity.

A paradigm for exhibiting realistic compactifications of string theory is to derive directly
the properties of a four-dimensional effective theory in parametrically controlled limits,
such as weak coupling, large volume, and small supersymmetry breaking, and then carefully
argue for the form of corrections to the effective theory away from such limits. When the
corrections are parametrically small, one expects the vacuum structure computed in the
effective theory to be robust.

The couplings in such an effective theory can sometimes be computed in more than
one way, e.g. on the string worldsheet and in ten-dimensional supergravity. When dual
perspectives are available, they provide a cross-check that lends a degree of further support
to the computation of the effective theory. However, it is rarely the case that everything
that can be computed in one duality frame can also be computed in the other frame: instead,
certain effects are manifest in one frame, and other effects are manifest in the other frame,
as is familiar from famous strong-weak dualities in quantum field theory and holography.

The study of de Sitter vacua of type IIB string theory compactified on orientifolds of
Calabi-Yau threefolds, as in [1], has relied heavily on computations of vacuum structure in
the four-dimensional effective theory. However, certain questions about these theories are
intrinsically ten-dimensional, and answering them requires a quantitative description of the
de Sitter vacua in terms of configurations of ten-dimensional fields. For example, integrating
the ten-dimensional equations of motion over the compact space reveals constraints on
possible solutions (see e.g. [11–14]), and it would be instructive to expose all such constraints.
Similarly, the couplings between distinct sectors of the effective theory are often most readily
computed by finding solutions for the massless fields in ten dimensions.

At the same time, it is not generally possible even in principle to derive all four-
dimensional couplings through a purely ten-dimensional computation. Consider, for example,
the infrared dynamics of a pure N = 1 super-Yang-Mills theory arising on a collection of
D7-branes that wrap a four-cycle Σ in the compact space. The eight-dimensional gauge
theory is not even asymptotically free, but at energies far below the Kaluza-Klein scale,
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the four-dimensional theory confines and generates a gaugino condensate. Attempting
to compute the gaugino condensate from the ten-dimensional equations of motion, and
rejecting the simplifications of the four-dimensional description, would be quixotically
self-limiting.

A practical approach, then, is to compute the configuration of ten-dimensional fields that
corresponds to a four-dimensional de Sitter vacuum, while taking specific expectation values
— such as those of gaugino bilinears — to be those determined by the four-dimensional
equations of motion. We refer to the result of this analysis as a ten-dimensional description
of a de Sitter vacuum.

In this work we provide a ten-dimensional description of the de Sitter scenario of [1].
This problem has been examined in [14–20] (see also the earlier works [21–23]). As we will
explain below, our analysis aligns with some aspects of these works, but also resolves certain
puzzles that were implicit in the literature.

Our approach is a computation from an elementary starting point. Beginning with the
ten-dimensional action of type I string theory, we derive the two-gaugino and four-gaugino
couplings on D7-branes, and then compute the ten-dimensional stress-energy sourced by a
gaugino bilinear expectation value 〈λλ〉. Then, taking 〈λλ〉 to have the value predicted by
the four-dimensional super-Yang-Mills theory — and we stress that this step is the only point
at which information from four dimensions is injected — we compute the four-dimensional
scalar curvature determined by the ten-dimensional equations of motion.

In order to evaluate the contribution of the D7-brane gaugino-flux coupling, we use the
Killing spinor equations for compactification on a generalized complex geometry, with which
we establish that in a supersymmetric configuration the generalized complex geometry
superpotential equals the full superpotential of the four-dimensional theory. We then
compare the scalar curvature resulting from the ten-dimensional configuration to the
scalar curvature determined by the four-dimensional Einstein equations equipped with the
scalar potential of [1]. We prove that the match is exact in the supersymmetric vacuum.
Furthermore, provided that the generalized complex geometry superpotential continues
to equal the full superpotential in off-shell configurations — which we find very plausible
but do not prove here — our ten-dimensional computation of the scalar potential for the
Kähler modulus continues to precisely match the four-dimensional theory, in the presence
of anti-D3-branes as well as off-shell.

The organization of this paper is as follows. In section 2 we assemble the equations
of motion of type IIB supergravity. In section 3 we consider the effects of an expectation
value for the gaugino bilinear on a stack of D7-branes. We show that couplings of the
D7-brane gauginos, including the couplings to flux derived by Dymarsky and Martucci
in [23] following [24], source a contribution T 〈λλ〉µν to the stress-energy tensor. Including this
stress-energy in the ten-dimensional equations of motion, we compute the four-dimensional
scalar curvature, and find perfect agreement with that determined by the F-term potential
in the four-dimensional N = 1 supersymmetric effective theory of [1]. In section 4 we
consider the combined effects of an anti-D3-brane and a D7-brane gaugino bilinear. We
examine the ten-dimensional supergravity solution with these sources and show that T 〈λλ〉µν

continues to match the four-dimensional potential derived in [1]. Our conclusions appear in
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section 5. In appendix A we first dimensionally reduce and T-dualize the type I action to
obtain the couplings of D7-brane gauginos. We then analyze the ten-dimensional Killing
spinor equations, correcting an inconsistency in the literature, and use them to demonstrate
explicitly that the superpotential for compactification on a generalized complex geometry
captures both the classical flux superpotential and the gaugino condensate superpotential.
Appendix B shows, based on the spectroscopy of T 1,1, that the interactions of an anti-
D3-brane and a gaugino condensate mediated by Kaluza-Klein excitations of a Klebanov-
Strassler throat can be neglected compared to the interaction mediated by the Kähler
modulus. In appendix C we consider the singular contributions to the four-dimensional
equations of motion, which originate in the fact that the D7-brane stack is localized to a
divisor. We show that these divergent terms cancel each other, and the finite remainder is the
four-dimensional scalar potential. We then repeat this computation for a compactification
containing a D3-brane, with analogous results.

2 Ten-dimensional equations of motion

In this section, we set our notation and collect useful forms of the ten-dimensional Einstein
equations and five-form Bianchi identity. We then express the stress-energy tensor of the
four-dimensional effective theory in terms of the ten-dimensional field configuration.

We consider type IIB string theory on X×M , where X is a four-dimensional spacetime
and M is a six-dimensional compact manifold that in the leading approximation is an
O3/O7 orientifold of a Calabi-Yau threefold. We take the metric ansatz

ds2 = GABdX
AdXB = e−6u(x)+2A(y)gµνdx

µdxν + e2u(x)−2A(y)gabdy
adyb , (2.1)

with x denoting coordinates in X and y denoting coordinates in M . Greek indices take
values in {0, . . . , 3}, and Latin indices take values in {1, . . . , 6}. We use the abbreviations
g6 = det gab and g4 = det gµν , and note that

√
−G = √−ge−6u−2A = √−g4g6e

−6u−2A.
The ten-dimensional type IIB supergravity action is

S = 1
2κ2

10

∫
d10X

√
−G

(
R10−

∂Aτ∂
Aτ

2 (Im τ)2 −
G3 ·G3
2 Im τ

− F̃
2
5

4

)
+ 1

8iκ2
10

∫
C4 ∧G3 ∧G3

Im τ
+Slocal ,

(2.2)
where R10 is the Ricci scalar computed from G, τ = C0 + i e−φ is the axiodilaton, G3 :=
F3 − τH3 ≡ dC2 − τdB2, and F̃5 = F5 − 1

2C2 ∧H3 + 1
2B2 ∧ F3, with F5 = dC4. The local

term Slocal encodes the contributions of D-branes and orientifold planes. We work in units
where (2π)2α′ = 1.

For the five-form F̃5 we take the ansatz

F̃5 = (1 + ?10)e−12u√−g4 dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (2.3)

with ?10 the ten-dimensional Hodge star, and define the scalars

Φ± := e4A ± α . (2.4)
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We also define the imaginary self-dual and imaginary anti-self-dual fluxes

G± := (?6 ± i)
2 G3 , (2.5)

with ?6 the six-dimensional Hodge star. We abbreviate (2.2) as

S = 1
2κ2

10

∫
d10X

√
−GR10 +

∫
d10XL ≡ SEH +

∫
d10XL , (2.6)

with L encoding everything except for the Einstein-Hilbert term.
From (2.1) one computes the Ricci tensors

R4,µν = R4,µν [g]− e−8u+4Agµν∇2A+ 3gµν �u− 24∂µu∂νu, (2.7)
R6,ab = R6,ab[g] +∇2Agab − e8u−4A gab�u− 8∂aA∂bA , (2.8)

where R4,µν [g] and R6,ab[g] are the Ricci tensors of gµν and gab, respectively. Expanding
the Einstein-Hilbert part of (2.2) using (2.7) and (2.8), we find

SEH = 1
2κ2

10

∫
d4x d6y

√
−g4g6

(
e−4AR4[g] + e−8uR6[g]− 24e−4A∂µu∂

µu− 8e−8u∂aA∂
aA
)
,

where indices are raised using gµν or gab as appropriate. The Planck mass is given by

M2
pl = V

κ2
10
, (2.9)

where V is the warped volume of M , defined as

V =
∫
M
d6y
√
g6e
−4A . (2.10)

The equation of motion for the breathing mode u obtained from (2.6) is

24�u = 4e4A−8u
(
R6[g]− 8∂aA∂aA

)
− κ2

10e
4A δL
δu

. (2.11)

We next turn to the Einstein equations, in conventions where the stress-energy tensor is
defined as

TAB = − 2√
−G

δL
δGAB

. (2.12)

The four-dimensional components of the ten-dimensional Einstein equations are

R4,µν = κ2
10

(
Tµν −

1
8GµνT

)
. (2.13)

Reversing the trace using the ten-dimensional metric Gµν , we have

R4,µνG
µν = −κ2

10TµνG
µν − κ2

10
2
(
TabG

ab − 3TµνGµν
)
. (2.14)

Integrating (2.14) over M and using (2.7) leads to

M2
pl

(
R4[g] + 12�u− 24∂µu∂µu

)
=
∫
M

√
g6e
−6u−2A

[
−TµνGµν −

1
2
(
TabG

ab − 3TµνGµν
)]

.

(2.15)
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Similarly, the six-dimensional components of the ten-dimensional Einstein equations are

R6,ab = κ2
10

(
Tab −

1
8GabT

)
, (2.16)

with trace-reversed form

R6,abG
ab = κ2

10
4
(
TabG

ab − 3TµνGµν
)
. (2.17)

Integrating (2.17) over M and using (2.8) gives

−6M2
pl�u+ 1

κ2
10

∫
M

√
g6e
−8u

(
R6[g]−8∂aA∂aA

)
= 1

4

∫
M

√
g6e
−6u−2A

[
TabG

ab − 3TµνGµν
]
.

(2.18)
Finally, we examine the Bianchi identity

dF̃5 = 2µ3κ
2
10ρD3 dVolM = H ∧ F + 2µ3κ

2
10ρ

loc
D3 dVolM . (2.19)

Here dVolM = √g6dy
1 ∧ · · · ∧ dy6, ρD3 is the net D3-brane charge density, and ρloc

D3 is the
net D3-brane charge density of localized objects such as D3-branes and anti-D3-branes.
(We use ρD3 to denote the contributions of anti-D3-branes specifically.) From (2.19) we
derive the useful integrated form

0 =
∫
M

√
g6
(
e−8u−8A∂ae

4A∂aα+ 2µ3κ
2
10e
−12ue4AρD3

)
. (2.20)

Combining (2.15), (2.18), and (2.20) we obtain

M2
plR4[g] = 24M2

pl∂µu∂
µu−

∫
M

√
g6
(
e−4AT̂µνg

µν + 4µ3e
−12u+4AρD3

)
− 2e−8u

κ2
10

∫
M

√
g6R6[g] + e−8u

κ2
10

∫
M

√
g6e
−8A∂aΦ−∂aΦ− ,

(2.21)

where T̂µν denotes the stress-energy tensor excluding the contribution from F̃5.
Substituting the type IIB supergravity action (2.2) into (2.21), and taking Slocal in (2.2)

to include D3-branes and D7-branes, we find

M2
plR4[g] = 24M2

pl∂µu∂
µu+ ∂µτ∂

µτ

( Im τ)2 + 8µ3

∫
M

√
g6e
−12u+4AρD3 −

∫
M

√
g6e
−4ATD7

µν g
µν

− 2e−8u

κ2
10

∫
M

√
g6R6[g] + e−8u

κ2
10

∫
M

√
g6e
−8A∂aΦ−∂aΦ− .

(2.22)
To interpret (2.22), we consider a general four-dimensional action

S4 =
M2

pl
2

∫
X

√
−g4R4[g] +

∫
X

√
−g4 L4 . (2.23)

The four-dimensional Einstein equations imply

M2
plR4[g] = −T , (2.24)
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where Tµν is the four-dimensional stress-energy tensor, i.e. the stress-energy tensor com-
puted from L4. The four-dimensional stress-energy tensor Tµν and the four-dimensional
components Tµν of the ten-dimensional stress-energy tensor TAB are related by

Tµν =
∫
M

√
g6

[
e−4AT̂µν + µ3e

4A−12ugµνρD3 + e−8u

2κ2
10
gµνR6[g]− e−8A−8u

4κ2
10

gµν∂aΦ−∂aΦ−
]

+M2
pl
(
24∂µu∂νu− 12gµν∂ρu∂ρu

)
. (2.25)

Comparing (2.22) and (2.24), the right-hand side of (2.22) can be identified with −T ,
i.e. with minus the trace of the stress-energy tensor of the effective theory.

The master equation (2.22) thus encodes the relationship between the curvature R4[g]
of the four-dimensional Einstein frame metric gµν on the one hand, and the contributions of
the ten-dimensional field configuration to the effective four-dimensional stress-energy tensor
Tµν on the other hand. This relation will be crucial in our analysis. We note that (2.22)
matches the effective potential derived from the ten-dimensional Einstein equations in [25],
see e.g. equation (5.30) of [25].

An equivalent route to deriving (2.22) is to first follow the steps leading to the Einstein-
minus-Bianchi equation (2.30) of [12], which in our conventions reads

∇2Φ− = e−4A∂aΦ−∂aΦ−+ 1
2κ

2
10e

2A+2u(T̂abGab−T̂µνGµν)−2κ2
10µ3e

8A−4uρD3+e8uRRef. [12]
4 .

(2.26)
Because we have made explicit the breathing mode u, which was instead implicit in the
metric ansatz of [12], the scalar curvatures there and here are related by

RRef. [12]
4 = R4[g] + 12�u− 24∂µu∂µu . (2.27)

Substituting (2.27) in (2.26) and using the Einstein equations and Bianchi identity, one
arrives at (2.22). The point we would like to stress is that equation (2.30) of [12] — which
has been the basis of a number of constraints on compact solutions — and the master
equation (2.22) contain equivalent information, provided that one correctly accounts for the
breathing mode as in (2.27).

3 Stress-energy of gaugino condensate

Our goal is to examine the de Sitter scenario of [1] using the ten-dimensional equations of
motion. In the four-dimensional effective theory, the scalar potential has two components:
an F-term potential for the moduli of an N = 1 supersymmetric compactification, and a
supersymmetry-breaking contribution from one or more anti-D3-branes. We will examine
these in turn: in this section we consider the ten-dimensional configuration without anti-
D3-branes, and then in section 4 we incorporate the effects of anti-D3-branes.

The relevant moduli at low energies are the Kähler moduli of the Calabi-Yau orientifold
M , because the complex structure moduli and axiodilaton acquire mass from G3 flux at
a higher scale.1 For simplicity of presentation we will consider a single Kähler modulus,
which we denote by T , but our method applies more generally.

1If D3-branes are present, their position moduli have masses parametrically comparable to those of the
Kähler moduli, and the corresponding potential can be computed in ten dimensions [22]: see appendix C.
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The four-dimensional analysis of [1] established that in the presence of a suitably
small2 classical flux superpotential, combined with a nonperturbative superpotential from
Euclidean D3-branes or from gaugino condensation on D7-branes, the Kähler modulus
T is stabilized in an N = 1 supersymmetric AdS4 vacuum. To recover this result from
ten dimensions, we need to understand how these two superpotential terms correspond to
ten-dimensional field configurations.

First of all, the Gukov-Vafa-Witten flux superpotential [29]

Wflux = π

∫
G ∧ Ω (3.1)

encodes in the four-dimensional effective theory the interaction corresponding to the term

Sflux = − 1
2κ2

10

∫
d10X

√
−G G3 ·G3

2 Im τ
(3.2)

in the ten-dimensional action (2.2). In particular, the ten-dimensional stress-energy associ-
ated to Wflux is that computed from (3.2).

In the remainder of this section, we will describe the gaugino condensate superpotential
in similarly ten-dimensional terms, and compute the contribution T

〈λλ〉
µν of gaugino con-

densation on D7-branes to the ten-dimensional stress-energy tensor. We will see that the
stress energy T 〈λλ〉µν arises from gaugino-flux couplings generalizing those derived by Cámara,
Ibáñez, and Uranga in [24], and also from associated nonsingular four-gaugino terms. We
will then show that this stress-energy3 leads to a potential for the Kähler modulus that
exactly matches the F-term potential of [1].

Because the gaugino condensate relies on the dynamics of the D7-brane gauge theory
below the Kaluza-Klein scale, it is not entirely obvious that a ten-dimensional description
of gaugino condensation should exist at all. However, as explained in [22], one can consider
D7-branes wrapping a divisor that is very small compared to the entire compact space.
A localized ‘observer’ far from the D7-branes, such as a distant D3-brane, should then
be able to treat them as a fuzzy source. This approach turns out to be fruitful: we will
exhibit below a precise correspondence between the ten-dimensional and four-dimensional
computations of the potential for the Kähler modulus, just as the four-dimensional result
for the potential of a D3-brane probe was obtained from ten dimensions in [22].4

3.1 Four-dimensional effective theory

We begin by recalling results from the four-dimensional effective theory that we aim to
recover from ten dimensions. Dimensional reduction of the theory on a stack of D7-branes

2The statistical approach of Denef and Douglas [26] gives strong evidence that (in the spirit of [27])
one can fine-tune the classical flux superpotential W0 = 〈Wflux〉 to be small. This conclusion is supported
by [28], which explicitly demonstrates that values of W0 small enough for control of the instanton expansion
are achievable even with few complex structure moduli.

3In appendix C we account for the terms other than TD7
µν in (2.22), and demonstrate that our conclusions

remain unchanged.
4See appendix C for a computation of the D3-brane potential that extends the result of [22].
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wrapping a divisor D leads at low energies, and in the limit that gravity decouples, to the
N = 1 supersymmetric Yang-Mills Lagrangian density

1
16πi

∫
d2θf(T )WαW

α + c.c. , (3.3)

where we have adopted the conventions of [30], but suppress Lie algebra indices. We will
denote the dual Coxeter number of the gauge group by Nc.

Classically, the N = 1 supergravity theory associated to (3.3), for D7-branes in a
background whose moduli potential is described by a classical flux superpotential Wflux,
includes the couplings (see e.g. [31])

L ⊃− 1
4Ref(T )FµνFµν − iλ̄σ̄µ∂µλRef(T )− 1

4λλ e
κ2

4K(T,T )/2KTT∂T f(T )KTW flux + c.c.

+ 3κ2
4

64
(
λ̄σ̄µλRef(T )

)2
− 1

16λλλ̄λ̄K
TT∂T f(T )∂T f̄(T ) , (3.4)

which reduces to (3.3) in the limit κ4 → 0. We take the divisor D to be rigid, so that the
Yang-Mills theory has no charged matter. Here, the D7-brane gauge coupling is given by
the holomorphic expression5

f(T ) = T

4π with T :=
∫
D

√
g6e
−4A+4u + i

∫
D
C4 . (3.5)

However, as explained by [32], in a quantum mechanical effective field theory treatment of
supergravity (as opposed to classical supergravity) the gauge coupling function receives a
non-holomorphic contribution from the Kähler potential:

f(T, T̄ ) = T

4π −
Nc

16π2κ
2
4K(T, T̄ ) . (3.6)

This term is present thanks to an anomaly in the Weyl rescaling that transforms fields
from the normalization which has linearly realized supersymmetry (when one restores the
auxiliary fields) and a holomorphic f(T ) to the physical normalization employed in (3.4).
Because of this, the usual expression for the gaugino bilinear expectation value in terms of
the gauge coupling function depends non-holomorphically on T [32]:

〈λλ〉 = −32π2

Nc
A e−

8π2
Nc

f(T,T̄ ) . (3.7)

Similarly, the classical Lagrangian (3.4) requires a number of modifications to account for
the fact that f is not holomorphic.

After integrating out the vector multiplet, one obtains an effective field theory valid
below the confinement scale that involves only the chiral superfield containing the Kähler
modulus and the supergravity multiplet. This has the superpotential

W = Wflux +Wnp , (3.8)
5The normalization f(T ) = T/(2π) was used in the study of gaugino-flux couplings in [14, 23], but we

take instead f(T ) = T/(4π) for ease of comparison to the supergravity literature.
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where [32]
Wnp = A e−

2πT
Nc . (3.9)

This leads to the relation
〈λλ〉 = −32π2

Nc
eκ

2
4K/2Wnp . (3.10)

The Pfaffian prefactor A depends on the complex structure moduli and the positions of any
D3-branes: see [33, 34]. Finally, the Kähler potential is6

K = −3 log
(
T + T

)
− log

(
−i(τ − τ)

)
− log

(
i

∫
M
e−4AΩ ∧ Ω

)
+ log

(
27V3

)
. (3.11)

In terms of these functions, the F-term potential in this effective field theory is

V = −eκ2
4K
(
KTTDTWDTW − 3κ2

4WW
)
. (3.12)

Our goal is now to show that the F-term potential (3.12), which we have just recalled
as a result in four-dimensional supergravity, can also be derived from the ten-dimensional
equations of motion, upon assigning the vev (3.7) and examining the ten-dimensional
stress-energy.

3.2 D7-brane gaugino couplings

Now we turn to ten dimensions. To describe the backreaction of the gaugino condensate on
the bulk fields, we must relax the Calabi-Yau condition and employ generalized complex
geometry, as in [21, 37–39]. In particular, as reviewed in appendix A, the single covariantly
constant spinor is replaced by two internal Killing spinors η1 and η2. We can combine these
to form a bispinor Φ1, defined as

Φ1 := − 8i
|η|2

η1 ⊗ η†2 , (3.13)

and we also define
t := Re

(
e−φ+(φ/4−A)p̂Φ1

)
, (3.14)

where the operator p̂ is defined by
p̂ Cp := pCp (3.15)

for a p-form Cp [40]. In type IIB string theory compactified on an orientifold of a Calabi-
Yau threefold, and in the absence of nonperturbative effects, the two-form component
of t vanishes. However, upon including the effects of gaugino condensation, t develops a
nonvanishing two-form component [23], cf. (A.29), that will be important for our analysis.

We now study the action of D7-branes on such a generalized complex geometry. The
eight-dimensional action describing a stack of D7-branes is derived in appendix A via
dimensional reduction and T-dualization of the type I action. We will highlight the
important changes that occur when, instead of dimensionally reducing these D7-branes on
a divisor in a Calabi-Yau orientifold, one wraps a divisor in a generalized complex geometry.
Our findings reproduce results of [21].

6Although the complex structure moduli and dilaton receive supersymmetric masses from the flux
background, we retain the associated terms in (3.11) because their expectation values matter for the overall
normalization. The Kähler potential (3.11) is consistent with that of [21, 35, 36] — see appendix A for
details of our conventions.
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3.2.1 Gaugino-flux couplings

To write the flux superpotential and the gaugino-flux couplings on D7-branes in a generalized
complex geometry, we first define

G := G3 + idt , (3.16)

and
G[2] := G3 + id2t , (3.17)

where d2 is a differential operator defined in terms of coordinates along the D7-brane, and
is given in appendix A.2.3.

The gaugino-flux couplings on D7-branes are determined by the supersymmetric Born-
Infeld action. In the conventions of [23, 41], with the metric ansatz (2.1), and recalling that
we have set (2π)2α′ = 1, these couplings — on a divisor in a Calabi-Yau orientifold, not a
generalized complex geometry — are

SGλλ = i

32π

∫ √
−g4 g6e

φ/2e−2uG3 · Ω λ̄λ̄ δ(0) + c.c. (3.18)

We re-derive this interaction via dimensional reduction of the eight-dimensional D7-brane
action in appendix A.

In similar fashion, we find the action that one obtains from wrapping a divisor in a
generalized complex geometry. The details are relegated to appendix A; the result, in
agreement with [21, 38], is that one should promote7

G3 → G3 + id2t ≡ G[2] . (3.19)

Thus, (3.18) becomes (cf. [23])

SGλλ = i

32π

∫ √
−g4 g6e

φ/2e−2uG[2] · Ω λ̄λ̄ δ(0) + c.c. (3.20)

One can likewise generalize the familiar flux superpotential (3.1). The superpotential
in a generalized complex geometry has been studied in e.g. [21, 38, 41, 43, 44] from several
angles, for example by computing the mass and supersymmetry transformation of the
gravitino. In our class of solutions this superpotential takes the form

WGCG = π

∫
M

G ∧ Ω , (3.21)

as we show in appendix A.3.
To relate WGCG to the superpotential W = Wflux + Wnp given in (3.8), we impose

the ten-dimensional Killing spinor equations that govern supersymmetric solutions. In
appendix A.3 we show that

〈WGCG〉 = Wflux +Wnp , (3.22)

where the brackets indicate evaluation in the supersymmetric configuration. The generalized
complex geometry thus elegantly encodes the effects of the nonperturbative superpotential.

7Discussions of (3.19) in this context include [42] and the recent work [20].
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Evaluating the gaugino-flux coupling (3.20), one finds (see appendix A.4 for details of
the computation)

SGλλ = −κ2
4

∫
X

√
−g4e

κ2
4KKTT∂TWKTW + c.c.+ Ssing

λλ , (3.23)

where Ssing
λλ is a singular contribution, given in (A.93), that is treated in appendix C.

3.2.2 Four-gaugino coupling

We similarly demonstrate in appendix A, by dimensional reduction and T-dualization of the
ten-dimensional type I action, that there is a four-gaugino coupling8 on D7-branes given by

Sλλλλ = − 1
6144π3

∫ √
−g4 g6e

−4A+8uν Ω · Ω |λλ|2 δ(0), (3.24)

where ν ≡ V−1
⊥ = V−1 ∫

D

√
g6e
−4A is the inverse of the volume V⊥ transverse to the

D7-branes. Upon assigning the gaugino bilinear vev (3.7), the four-gaugino term (3.24)
dimensionally reduces to

Sλλλλ = −
∫
X

√
−g4e

κ2
4KKTT∂TW∂TW. (3.25)

See appendix A for details of the computation.

3.3 Ten-dimensional stress-energy

We can now obtain the F-term potential for the Kähler modulus T from the ten-dimensional
field configuration. Upon assigning the gaugino bilinear vev (3.7) and using (3.23), the
properly-holomorphic gaugino-flux coupling (3.20) evaluates to

LGλλ = −κ2
4e
κ2

4KKTT
(
∂TWKTW + c.c.

)
+ Lsing

λλ . (3.26)

The associated ten-dimensional stress-energy is

T λλµν := − 2√
G

δLGλλ
δGµν

= i

32πe
4A+φ/2−2uG[2] · Ω λ̄λ̄ δ(0)gµν + c.c. , (3.27)

which integrates to

−
∫
M

√
g6e
−4AT λλµν g

µν = 4κ2
4e
κ2

4KKTT∂TWKTW + c.c.− 4Ssing
λλ . (3.28)

Setting aside Ssing
λλ for the moment, we see from (3.28) that the gaugino-flux coupling

contributes a finite term in the F-term potential for the Kähler modulus T ,

Vλλ = κ2
4e
κ2

4KKTT∂TWKTW + c.c. (3.29)

We now follow the same steps for the four-gaugino coupling. From (3.24), T λλλλµν is

T λλλλµν := − 2√
G

δLλλλλ
δGµν

= −e8u ν Ω · Ω
6144π3 |λλ|

2 δ(0)gµν , (3.30)

8The importance of four-gaugino couplings in this context was stressed in [15].
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which integrates to

−
∫
M

√
g6e
−4AT λλλλµν gµν = 4eκ2

4KKTT∂TW∂TW. (3.31)

The four-gaugino coupling (3.24) therefore contributes the term

Vλλλλ = eκ
2
4KKTT∂TW∂TW . (3.32)

The total ten-dimensional stress-energy is then

T 〈λλ〉µν := T λλµν + T λλλλµν , (3.33)

with T λλµν given by (3.27) and with T λλλλµν given by (3.30). Combining (3.29) and (3.32)
to evaluate the integral of T 〈λλ〉µν over the internal space, and continuing to set aside the
singular term Ssing

λλ , we conclude that the ten-dimensional field configuration sourced by
gaugino condensation on D7-branes gives rise to the four-dimensional scalar potential,

V = eκ
2
4K
(
KTTDTWDTW − 3κ2

4WW
)
, (3.34)

and so precisely recovers the potential (3.12) computed in four-dimensional supergravity. In
summary, we have shown that the ten-dimensional equation of motion (2.22), incorporating
the stress-energy T 〈λλ〉µν in (3.33), requires that the Einstein-frame scalar curvature R4[g]
takes exactly the value demanded by the four-dimensional Einstein equation (2.24) with
the scalar potential (3.12), i.e. the value computed in the four-dimensional effective theory
in [1]. This is one of our main results.

Before proceeding, we will comment briefly on the singularities in our solution, including
Ssing
λλ , deferring a complete treatment to appendix C. The ten-dimensional configuration

corresponding to gaugino condensation on D7-branes contains specific singular field profiles,
because the D7-branes are localized to a complex hypersurface in the internal space. In
particular, as shown in [22], the G− flux sourced by gaugino condensation is

(G−)ac̄d̄ = −ie−4A−φ/2+8u λλ

32π2∂a∂bG(2)(z; zD7)gbb̄Ωb̄c̄d̄ , (3.35)

where G(2) is the Green’s function on the internal space transverse to the D7-branes, with
complex coordinate z. Similarly, it was shown in [23] that gaugino condensation sources G+
flux that is localized on the D7-branes:

G+ = −ie
−4A

64π2 e
−φ/2 λλΩ δ(0). (3.36)

Upon evaluating the D7-brane action and the bulk supergravity action in the presence of
these flux configurations, one finds divergent contributions to the stress-energy, and in turn
to the six-dimensional curvature R6 in (2.22). However, we show explicitly in appendix C
that a highly nontrivial cancellation occurs: all the divergences appearing in (2.22) cancel,
and the finite piece that remains gives exactly (3.34).
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4 Anti-D3-branes and gaugino condensation

Thus far we have shown that the F-term potential in and around the N = 1 supersymmetric
AdS4 vacuum of [1] can be obtained in two ways. The first is four-dimensional supergravity,
as originally argued in [1]. The second derivation, as shown above, is from ten-dimensional
supergravity, supplemented with the gaugino bilinear vev (3.7) substituted into the two-
gaugino and four-gaugino terms in the D7-brane action.

We now turn to the effects of anti-D3-branes, and to the study of four-dimensional de
Sitter vacua from ten dimensions.

4.1 Decompactification from anti-D3-branes

We first consider the effects of an anti-D3-brane in a no-scale flux compactification, without
a nonperturbative superpotential for the Kähler moduli.

The Dirac-Born-Infeld action of a spacetime-filling anti-D3-brane at position yD3 in
the internal space leads to the stress-energy tensor

TD3
µν = −µ3e

8A−12ugµνδ(y − yD3) . (4.1)

Inserting (4.1) in (2.21), we learn that including a single anti-D3-brane in a no-scale
background leads to a shift in the effective potential,9

1
4M

2
plδR4[g] = 2µ3e

−12ue4A(yD3) . (4.2)

The potential energy captured by (4.2) is minimized in the infinite volume limit u→∞, so
in the absence of any other effects an anti-D3-brane will cause runaway decompactification.
The expression (4.2) agrees with the four-dimensional analysis of [1].

4.2 Interactions of anti-D3-branes and gaugino condensation

To examine the ten-dimensional stress-energy, we write the ten-dimensional field configura-
tion in the schematic form

φ = φbg + δφ , (4.3)

with
δφ = δφ|〈λλ〉 + δφ|D3 . (4.4)

Here φ is any of the ten-dimensional fields, φbg is the field configuration when neither
gaugino condensation nor anti-D3-branes are included as sources, δφ|〈λλ〉 is the change in
the field configuration when gaugino condensation is included as a source, and δφ|D3 is the
change in the field configuration when p anti-D3-branes are included as a source.

The changes δφ|〈λλ〉 and δφ|D3 are each parametrically small away from their cor-
responding sources: 〈λλ〉 is exponentially small by dimensional transmutation, and the
anti-D3-brane is in a warped region. Because the anti-D3-branes and the D7-brane stack are
widely-separated, we can safely neglect the nonlinear corrections to the field configuration

9As explained in [45], if the anti-D3-brane is in a strongly warped region, the dependence on the breathing
mode becomes e−8u rather than e−12u.
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resulting from simultaneously including both gaugino condensation and anti-D3-branes
as sources.10

Separating the ten-dimensional Lagrange density as

L = LSUSY + pLD3
loc , (4.5)

with LSUSY = Lbulk + LD7
loc , the total ten-dimensional stress-energy can be written

Tµν = − 2√
−G

δLSUSY
δGµν

− 2√
−G

δLD3
loc

δGµν
≡ T 〈λλ〉µν

∣∣∣
φ

+ TD3
µν

∣∣∣
φ
, (4.6)

which we write as
Tµν = T 〈λλ〉µν

∣∣∣
φbg+δφ|〈λλ〉

+ p TD3
µν

∣∣∣
φbg

+ T int
µν . (4.7)

The first term on the right in (4.7) is the stress-energy (3.33) of gaugino condensation on
D7-branes, computed in the field configuration φ = φbg + δφ|〈λλ〉, i.e. without including
the backreaction of any anti-D3-branes, as in section 3. The second term is the stress-
energy (4.1) due to the Dirac-Born-Infeld action of p anti-D3-branes, computed as probes
of the background φ = φbg, as in section 4.1.

The interaction term T int
µν is defined by (4.7), and captures the stress-energy due to

the interactions of the anti-D3-branes and the condensate: specifically, the correction to
T
〈λλ〉
µν from the shift δφ|D3, and the correction to TD3

µν from the shift δφ|〈λλ〉.11 We will
now explain why T int

µν can be neglected, so that Tµν is well-approximated by the first two
terms on the right in (4.7). Since we have already shown in section 3 and section 4.1 that
these two terms together precisely reproduce the four-dimensional effective potential of [1],
establishing that T int

µν is negligible will complete our demonstration that the ten-dimensional
equations of motion recover the result of [1].

To show that the interaction T int
µν is negligible, one can consider the leading effects of p

anti-D3-branes on the ten-dimensional fields at the location of the D7-branes, and evaluate
the resulting correction to the ten-dimensional stress-energy T 〈λλ〉µν .

As a cross-check, one can reverse the roles of source and probe, estimate the leading
effects of the D7-brane gaugino condensate on the ten-dimensional fields at the location
of the anti-D3-branes, and evaluate the resulting correction to the stress-energy p TD3

µν

computed from the probe action of p anti-D3-branes.
The methodology for the computation is parallel in the two cases, and builds on

investigations of supergravity solutions sourced by antibranes [47–57], and of D3-brane
potentials in warped throats [22, 34, 45, 46, 58, 59]. One can approximate the Klebanov-
Strassler throat as a region in AdS5 × T 1,1, and use the Green’s functions for the conifold
(see e.g. [60]) to compute the influence of a localized source — i.e., the anti-D3-branes or the
D7-brane gaugino condensate — on distant fields. Far away from the source, the dominant
effects appear as certain leading multipoles, corresponding to the lowest-dimension operators

10See [46] and appendix B for further details and references on nonlinear interactions.
11Corrections to TD3

µν from the shift δφ|
D3 are subleading.
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to which the source couples. Schematically (see appendix B for details),

δφ =
∑
∆
α∆
( r

rUV

)−∆
+ β∆

( r

rUV

)∆−4
, (4.8)

where ∆ is the dimension of an operator O∆ in the dual field theory, r is the radial
coordinate of the throat, and rUV is the location of the ultraviolet end of the throat. The
coefficients α∆ and β∆ correspond to expectation values and sources, respectively, for the
dual operator.

The spectrum of operators of the Klebanov-Witten theory [61] dual to AdS5 × T 1,1 is
well-understood, due to the pioneering work of Gubser [62] and of Ceresole et al. [63, 64]
(see also [22, 46, 65, 66]), and moreover there are many quantitative cross-checks of the
long-distance solutions created by anti-D3-branes [22, 48, 50, 51, 53, 54, 59, 67, 68] and by
gaugino condensates [14, 22, 23, 40, 59]. In appendix B we assemble key results from this
literature, and then apply them to compute the leading interactions of anti-D3-branes with
a gaugino condensate. A brief summary is as follows.

In the linearized supergravity solution sourced by anti-D3-brane backreaction, as in [50–
53], the leading effects of anti-D3-branes in the infrared on the D7-brane gaugino condensate
are mediated by expectation values for operators of dimension ∆ ≥ 8, cf. (B.4), (B.5), and
so can be neglected when the hierarchy of scales in the throat is large. Nonlinear effects are
likewise negligible [46, 69].

Similarly, in the supergravity solution sourced by gaugino condensate backreaction,
the leading effects of the D7-brane gaugino condensate on the anti-D3-branes are negli-
gible compared to the probe anti-D3-brane action in the Klebanov-Strassler background,
cf. (B.30), (B.31) [46, 66], both at the linear and the nonlinear level.

In sum, the dominant influence of the anti-D3-branes on the gaugino condensate is via
the breathing mode eu. All other interactions are suppressed by further powers of the warp
factor. We have therefore established that

Tµν ≈ T 〈λλ〉µν + p TD3
µν + . . . , (4.9)

where T 〈λλ〉µν is given by (3.33), TD3
µν is given by (4.1), and the ellipses denote terms suppressed

by powers of eA.
It follows that the ten-dimensional equation of motion (2.22), incorporating the total

stress-energy T 〈λλ〉µν + p TD3
µν in (4.9), requires the Einstein-frame scalar curvature R4[g] to

take exactly the value computed in the de Sitter vacuum of the four-dimensional theory
in [1]. In other words, the precise quantitative match between ten-dimensional and four-
dimensional computations that we established for the N = 1 supersymmetric theory in
section 3 continues to hold in the presence of anti-D3-branes.

5 Conclusions

We have derived the four-dimensional scalar potential in the de Sitter and anti-de Sitter
constructions of [1] directly from type IIB string theory in ten dimensions, supplemented
with the expectation value 〈λλ〉 of the D7-brane gaugino bilinear.
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We first computed the two-gaugino and four-gaugino couplings on D7-branes, by
dimensionally reducing and T-dualizing the ten-dimensional type I supergravity action. From
these terms we computed the ten-dimensional stress-energy sourced by gaugino condensation
on a stack of D7-branes, carefully accounting for the fact that the ten-dimensional solution
in the presence of the condensate is a generalized complex geometry. As a key step in
this computation, we used the ten-dimensional Killing spinor equations to prove that in a
supersymmetric configuration, the generalized complex geometry superpotential (3.21) is
equal to the full superpotential, i.e. we established the relation (3.22). Upon dimensional
reduction, the ten-dimensional stress-energy of the supersymmetric configuration then gives
rise to the scalar potential of the N = 1 supersymmetric theory of [1], evaluated in its
supersymmetric AdS4 vacuum. The match is exact, at the level of the approximations
made in [1]. Furthermore, provided that (3.22) continues to hold off-shell — which we find
plausible but have not established here — we recovered the complete scalar potential of the
four-dimensional theory, even away from the supersymmetric minimum of the potential for
the Kähler modulus.

To combine the stress-energy of the gaugino condensate with that of anti-D3-branes
at the tip of a Klebanov-Strassler throat, we examined the Kaluza-Klein spectrum of T 1,1,
and found the operators of the dual field theory that mediate the leading interactions
between a condensate in the ultraviolet and anti-D3-branes in the infrared. We found that
all such couplings via Kaluza-Klein excitations are suppressed by powers of the warp factor
compared to the probe anti-D3-brane action. This left the interaction via the breathing
mode, as in [1], as the only important one. We thus concluded that the ten-dimensional
stress-energy of the gaugino condensate and the anti-D3-branes together lead to the scalar
potential of the non-supersymmetric theory of [1]. The match is again exact, even away
from the de Sitter minimum, in the same sense as above.

This work has not altered the evidence, which we judge to be robust [4], for the existence
in string theory of the separate components of the scenario [1], namely a small classical flux
superpotential, a gaugino condensate on a stack of D7-branes, and a metastable configuration
of anti-D3-branes in a Klebanov-Strassler throat. Instead, we showed that provided these
components exist in an explicit string compactification, their effects can be computed either
in ten dimensions or in the four-dimensional effective theory, with perfect agreement.

Progress in understanding the physics of de Sitter space in string theory continues. Our
findings may aid in pursuing de Sitter solutions in ten dimensions.
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A Dimensional reduction

In this appendix we first obtain, in section A.1 and section A.2, the couplings of D7-brane
gauginos that are required for our analysis. Then, in section A.3 and section A.5 we give
details of the superpotential and Kähler potential, respectively, in the four-dimensional
theory. Our conventions are as in [70], augmented by (2π)2α′ = 1.

A.1 D7-brane gaugino action

We first compactify type I superstring theory on T 2 and T-dualize to find the action on
type IIB D7-branes. As the ten-dimensional N = 1 supergravity action with a vector
multiplet, including the four-gaugino action, is well known, we can determine with precision
the D7-brane gaugino action including four-gaugino terms.

One minor complication is that some fields, such as the NS-NS two-form B, are
projected out in type I superstring theory. We will therefore first arrive at a D7-brane
action containing all terms that do not involve such fields, but this will not yet be the
full D7-brane action. To obtain the proper gaugino-flux coupling, one can then SL(2,Z)
covariantize the gaugino-flux coupling, following [23, 71].

The type I supergravity action in ten-dimensional Einstein frame is [31, 72, 73]

S = 1
2κ2

10

∫ √
−G

[
R10 −

1
2∂Aφ∂

Aφ− eφ

12

(
FABC −

1
4e
−φ/2 tr χ̄ΓABCχ

)2

− eφ/2

16
√

2π2 trFABFAB − tr χ̄ΓADAχ

]
, (A.1)

where χ is a 32-component Majorana-Weyl spinor. Traces here are taken in the vector
representation of SO(32). In order to simplify T-duality, we first rescale to string frame,
using G 7→ e−φ/2G. Compactifying on a T 2 with volume 1/2t, we find

S = 1/2t
2κ2

10

∫ √
−G8

[
e−2φR8 + . . .

]
. (A.2)

Next, we T-dualize; since we are in type I string theory, this replaces the T 2 by a T 2/Z2
with volume t, and re-defines e−2φ 7→ 2t2e−2φ, yielding the eight-dimensional action

S = t

2κ2
10

∫ √
−G8

[
e−2φR8 + . . .

]
. (A.3)

Finally, we rescale back to ten-dimensional Einstein frame, using G 7→ eφ/2G.
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This procedure yields the new Yang-Mills term
1

2κ2
10
· 1

8π2

∫ √
−G8

[
−1

4 trFabF ab
]
. (A.4)

Here a, b ∈ {0, . . . , 7}, and we will later use i, j ∈ {8, 9}. The action (A.4) is consistent with
the Einstein-frame D7-brane Dirac-Born-Infeld action

− µ7
2

∫
tr
{
eφ
√
− det(G+ e−φ/2F/2π)

}
. (A.5)

The factor of 1/2 is due to the fact that the gauge group is SO(2n); Higgsing to U(n) by
moving away from an O7-plane eliminates this factor (cf. [70]).

It is now convenient to take the T 2 in the type I frame to have the coordinate range
[0, 1]2, and to use the same coordinates for the double cover of the type IIB T 2/Z2. For
simplicity, we also take the type I torus to be a square torus with string frame metric
gij = 1

2tδij . This means that the string frame metric transforms via G2 7→ G2/(2t)2.
We can now study the fermionic action of the D7-brane in Einstein frame. Since we

are interested in studying D7-branes on a holomorphic divisor, we will eventually take
tr χ̄ΓABCχ to be a linear combination of the (pullback of the) holomorphic three-form
and its complex conjugate, and we can therefore retain only functions of tr χ̄Γabiχ. Other
contractions do not contribute to the terms of interest.

With that restriction, after T-dualizing we find the string-frame D7-brane gaugino
action

Sferm = µ7

∫ √
−G8

[
−e−φ tr χ̄ΓaDaχ+ 1

8Fabi tr χ̄Γabiχ− 1
64t

(
tr χ̄Γabiχ

)2]
, (A.6)

and the corresponding Einstein-frame D7-brane gaugino action

Sferm = µ7

∫ √
−G8

[
− tr χ̄ΓaDaχ+ 1

8e
φ/2Fabi tr χ̄Γabiχ− 1

64tE
(
tr χ̄Γabiχ

)2]
, (A.7)

where we have introduced the Einstein frame volume tE := te−φ/2.
We remark in passing that the gaugino quartic term has a prefactor 1/t that depends not

just on fields localized to the D7-brane, but also on the volume t of the space transverse to
the D7-branes. One could wonder how such a coupling arises in a local action (we thank the
referee for comments on this point). To understand this, we consider the T-dual configuration
of a stack of D3-branes transverse to T 6/Z2. The four-dimensional supergravity resulting
upon compactification contains a quartic gaugino term whose coefficient is proportional
to M−2

pl , or in ten-dimensional terms is proportional to 1/VolT 6/Z2 . Upon T-dualizing
four times, 1/VolT 6/Z2 is replaced by 1/t. Thus, the D7-brane gaugino quartic term is a
Planck-suppressed interaction that is T-dual to a local coupling required by four-dimensional
N = 1 supergravity coupled to vector multiplets.

Leaving implicit henceforth that ABC is a permutation of abi, the D7-brane gaugino
action can be written in the more symmetric form

Sferm = −µ7

∫ √
−G8

[
tr χ̄ΓADAχ−

eφ/2

24 FABC tr χ̄ΓABCχ+ 1
192tE

(
tr χ̄ΓABCχ

)2
]
.

(A.8)
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In (A.8) we have obtained the part of the action that survived the type I projections.
The full D7-brane action is then given by SL(2,Z)-covariantizing. As doing so would
involve studying the transformation properties of the D7-brane fields under SL(2,Z), which
would take us too far from our main aims, and the full set of two-gaugino terms in the
κ-symmetric D7-brane action was found in [23, 71], we simply SL(2,Z)-covariantize the
action by including the missing terms found by [23, 71], leading to

Sferm = µ7

∫ √
−G8

[
− tr χ̄ΓADAχ−

eφ/2

24 tr χ̄ΓABC
(
iF̃ABCσ1 − ie−φHABCσ3

)
χ

− 1
192tE

(
tr χ̄ΓABCσ1χ

)2
]
, (A.9)

where the σ matrix notation will be explained below.

A.2 Reduction of the D7-brane action on a divisor

Equipped with the gaugino action (A.9), we now consider wrapping D7-branes on a divisor
D in an orientifold M of a Calabi-Yau threefold. We assume that there is a single Kähler
modulus T , with the Kähler form written as

J = tω , (A.10)

and the volume
Ve6u = 1

3! t
3 , (A.11)

where we have normalized ω ∈ H2
+(M,Z) such that

∫
M ω∧ω∧ω = 1, and we have normalized

e−4A such that
∫
M e−4Aω ∧ ω ∧ ω = 1. We take the volume of D to be∫

D

√
ge−4A+4u = Re(T ) = t2/2 , (A.12)

while the volume of the curve dual to D is t, and corresponds to tE in (A.9). The divisor
D is assumed to be rigid, and so the D7-branes will not explore the transverse space, and
therefore the geometry of the latter is unimportant. However, for later use we record that
the volume of the transverse space is

V⊥e2u = 1
3 t . (A.13)

We note that wrapping on D topologically twists the D-brane worldvolume theory, so
that scalars become sections of the normal bundle N of D and fermions become spinors on
the total space of this normal bundle [74]. For notational convenience, we implement the
topological twist via a background U(1) R-symmetry gauge field, rather than by re-defining
the local Lorentz group. Since, locally, the Calabi-Yau manifold looks like the total space
of the normal bundle, there is no topological obstruction to relating these fermions to the
covariantly constant spinor on the Calabi-Yau.
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A.2.1 Internal spinors

As our ansatz for the geometry of the internal space M , we take M to have an SU(2)
structure. This can be encoded in terms of two globally-defined orthonormal spinors, η+
and χ+, and an invariant one-form vady

a, that are related by

χ+ = 1
2v

aγaη
∗
+ , (A.14)

where |v|2 = 2. Using χ+ and η+ one can construct invariant forms with the components

va = ηT+γ
aχ+ , Jmn2 = iη†+γ

mnη+ − iχ†+γmnχ+ , Ωmn
2 = −iχ†+γmnη+ , (A.15)

Jmn = iη†+γ
mnη+ , Ωmnp = −iηT+γmnpη+ . (A.16)

The invariant forms satisfy

J2 ∧ Ω2 = Ω2 ∧ Ω2 = 0 , vaΩab
2 = vaJ

ab
2 = 0 , J2 ∧ J2 = 1

2Ω ∧ Ω2 , (A.17)

J = J2 + i

2v ∧ v , Ω = Ω2 ∧ v . (A.18)

We now construct the linear combinations

η1 := ieA/2+iϑ/2
(

cos ϕ2 η+ + sin ϕ2χ+

)
, (A.19)

η2 := eA/2−iϑ/2
(

cos ϕ2 η+ − sin ϕ2χ+

)
, (A.20)

which are normalized as
η†1η1 = η†2η2 = eA. (A.21)

The parameters ϕ and ϑ represent the angles between η1 and η2: from (A.19) and (A.20)
one has

η†2η1 = ieiϑ+A cosϕ . (A.22)

The spinors η1 and η2 can be repackaged into a pair of bispinors:

Φ1 := −8ie−Aη1 ⊗ η†2 , (A.23)
Φ2 := −8ie−Aη1 ⊗ ηT2 . (A.24)

Using the Clifford map, Φ1 and Φ2 are polyforms: specifically, they can be written in terms
of invariant forms as

Φ1 = eiϑe
1
2v∧v

[
cosϕ

(
1− 1

2J2 ∧ J2

)
− iJ2 + sinϕ Im Ω2

]
, (A.25)

Φ2 = v ∧
[
iRe Ω2 − cosϕ Im Ω2 + sinϕ

(
1− 1

2J2 ∧ J2

)]
. (A.26)

The ansatz we have just described corresponds to a generic SU(2) structure. If M is a
Calabi-Yau orientifold then in fact eiϑ = 1 and ϕ = 0. However, once gaugino condensation
is incorporated and M becomes a generalized complex geometry, ϕ will vary non-trivially
along M ; the SU(2) structure is then said to be dynamic.
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We now expand to first order in the small quantity 〈λλ〉, using the fact that ϕ = O(〈λλ〉).
We find

Φ1 = e−iJ
(
1 + ϕ Im Ω2

)
+O

(
〈λλ〉2

)
, (A.27)

Φ2 = iΩ + ϕ v ∧
(

1− 1
2J2 ∧ J2

)
+O

(
〈λλ〉2

)
, (A.28)

while the two-form component of t is

t = +e−φ/2−2Aϕ Im Ω2 +O
(
〈λλ〉2

)
. (A.29)

On neglecting the terms of order 〈λλ〉2, Φ1 and Φ2 reduce to the β-deformed pure spinors
found in [23].

A.2.2 Ten-dimensional spinor ansatz

Equipped with the six-dimensional spinors η1 and η2, we can now give our ansatz for the
ten-dimensional spinors. The SL(2,Z)-covariant κ-symmetric D7-brane action is usefully
written in a redundant notation, involving two copies of the ten-dimensional fermion [40, 41],
which we now adopt. We consider a doublet χ = (χ1, χ2) of 32-component ten-dimensional
Majorana-Weyl spinors, and decompose these spinors under Spin(10)→ Spin(4)× Spin(6).
The ten-dimensional gamma matrices decompose as

Γµ = e−A+3uγµ ⊗ 1 , Γi = eA−uγ5 ⊗ γi . (A.30)

For gamma matrices and spinor manipulations, we use the conventions of [75],

γ0 =
(

0 i

i 0

)
, γi =

(
0 −iσi
iσi 0

)
, γ5 =

(
1 0
0 −1

)
, C =

(
ε 0
0 −ε

)
, ε =

(
0 1
−1 0

)
. (A.31)

Under this decomposition, a ten-dimensional Weyl spinor decomposes as 16+ 7→ (2+ ⊗
4+)⊕ (2− ⊗ 4−), where subscripts denote chirality. We can thus write the ten-dimensional
Majorana-Weyl spinors as

χ1 = 1
4πe

−2A+9u/2 λD ⊗ η1 + c.c. (A.32)

and
χ2 = − 1

4πe
−2A+9u/2 λD ⊗ η2 + c.c. (A.33)

where c.c. refers to charge conjugation, and λD is the embedding of a four-dimensional
Weyl spinor λ into a Dirac spinor via

λD =
(

0
λ̄α̇

)
. (A.34)
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A.2.3 Decomposition of D7-brane action

We can now expand the D7-brane action (A.9) in terms of the spinors in (A.32) and (A.33).
We will henceforth leave traces implicit, writing

trχχ = 1
2χ

aχa = 1
2χχ, (A.35)

with the normalization

trT aT b = 1
2δ

ab (A.36)

for Lie algebra generators. We likewise leave implicit pullbacks to the divisor D.
The gaugino kinetic term can be decomposed as

Skin = −µ7

∫
X×D

√
−G tr χ̄ΓADAχ =

∫
X×D

√
−G

(
Lkin,X + Lkin,D

)
, (A.37)

with

∫
X×D

√
−GLkin,X = −2π

∫
X×D

√
−G tr χ̄ΓµDµχ

= − i

4π

∫
X×D

√
−ge−4A+4uλ̄σ̄µDµλ

= − i

4π

∫
X

√
−gRe(T )λ̄σ̄µDµλ , (A.38)

and

Lkin,D = −2π tr χ̄ΓaDaχ

= 1
16π λ̄

c
DλD

(
ηT1 Da(e−3Aγaη1) + ηT2 Da(e−3Aγaη2)

)
+ c.c.

= − 1
16π λ̄λ̄

(
ηT1 Da(e−3Aγaη1) + ηT2 Da(e−3Aγaη2)

)
+ c.c.

= − 1
128π λ̄λ̄

(
(e−AηT1 γ123η2)η†2γ123Da(e−3Aγaη1) + (η1 ↔ η2)

)
+ c.c.

= i

32πe
−2u+φ/2λ̄λ̄ id2t · Ω + c.c. (A.39)

where we have defined d2t = ∂atdz
a + ∂ātdz̄

ā. Here a ∈ {1, 2}, where z1 and z2 are complex
coordinates along the D7-brane divisor D, and we stress that t in (A.39) must be understood
as the pullback onto D of the form t defined in M .

In (A.39) we have omitted terms that are higher order in 〈λλ〉, in particular the terms
of order 〈λλ〉2 in (A.27), (A.28), and (A.29). We make the same approximation in the
computations below.
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For the gaugino-flux couplings, we find

LFλλ = i
eφ/2−2u−A

384π
(
λ̄D⊗η†1+λ̄cD⊗ηT1

)
F̃ABCγ

ABCγ5 (λD⊗η2+λcD⊗η∗2)+(η1↔ η2)

=−ie
φ/2−2u−A

384π (λ̄cDλDηT1 γABCη2+c.c.)F̃ABC+(η1↔ η2)

= ieφ/2−2u

32π λ̄λ̄ F̃ ·Ω+c.c. (A.40)

LHλλ = i
e−φ/2−2u−A

384π
(
λ̄D⊗η†1+λ̄cD⊗ηT1

)
HABCγ

ABCγ5 (λD⊗η1+λcD⊗η∗1)+(η1↔ η2),

=−ie
−φ/2−2u−A

384π
(
λ̄cDλDη

T
1 γ

ABCη1+c.c.
)
HABC+(η1↔ η2)

= e−φ/2−2u

32π λ̄λ̄H ·Ω+c.c. (A.41)

We should point out that in (A.40) and (A.41) only the three-form fluxes appear, in
contrast to the democratic formulation of generalized complex geometry in which three-
forms and seven-forms enter on equal footing. One might then worry that the deformation
of the background due to gaugino condensation could introduce corrections to the action of
the Hodge star on internal forms, and in turn to the effective action. (We thank the referee
for raising this issue.) However, from (A.28) one finds that the three-form component of
Φ2 is not corrected at order O(〈λλ〉). Thus, the Hodge star acting on internal three-forms
is not corrected at order O(〈λλ〉), and the resulting corrections to the effective action are
smaller than order O(〈λλ〉2), and can therefore be neglected in our analysis.

Combining (A.40) and (A.41), we obtain the coupling

SGλλ = i

32π

∫
X×D

√
−ge−2u+φ/2λ̄λ̄ G · Ω + c.c. (A.42)

Thus, combining (A.42) and (A.39), the total gaugino-flux coupling is

SGλλ = i

32π

∫
X×D

√
−ge−2u+φ/2λ̄λ̄G[2] · Ω + c.c. (A.43)

The result (A.43) precisely agrees with that of [23] once one accounts for the difference in
normalization of the gaugino kinetic term there and here.

Similarly, we find the four-gaugino couplings

Lλλλλ =− e10u−6A

3 · 215π3 t

[
(λ̄D ⊗ η†1 + c.c.)γabc(λD ⊗ η2 + c.c.) + (η1 ↔ η2)

]2
=− e10u−6A

3 · 215π3 t

[
λ̄cDλDη

T
1 γ

abcη2 + c.c.+ (η1 ↔ η2)
]2

=− e10u−4A

3 · 215π3 t

[
2iλ̄λ̄Ωabc − 2iλλΩabc

]2
=− νe8u−4A

6144π3 Ω · Ωλλλ̄λ̄ , (A.44)

where ν was defined below (3.24).
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We have thus obtained the Lagrangian density for D7-brane gauginos, up to and
including |λλ|2 terms:

Lgaugino =− i

4πe
−4A+4uλ̄σ̄µ∂µλ+ i

32πe
−2u+φ/2G[2] ·Ω λ̄λ̄+c.c.− ν

6144π3 e
8u−4AΩ ·Ω |λλ|2

(A.45)

A.3 Killing spinor equations and the superpotential

The overall goal of this work has been to determine whether the ten-dimensional field
configuration that results when gaugino condensation is taken as a source in the ten-
dimensional equations of motion ultimately leads to a four-dimensional scalar potential
that exactly matches that computed in the four-dimensional supergravity theory of [1].
In order to perform this comparison, we must translate the data of the ten-dimensional
fields into four-dimensional expressions. Specifically, we need to express the gaugino-flux
coupling (3.20) in terms of the superpotential W , by relating the generalized flux G to
W . In this section we carefully explain the correspondence between ten-dimensional and
four-dimensional data.

A.3.1 Outline

As a guide through the computations ahead, we first outline our logic. First, building
on [20, 21], we write down the ten-dimensional Killing spinor equations whose solutions are
supersymmetric configurations. The classical Killing spinor equations are well-known, and
the difficulty lies in modifying them to account for the effect of gaugino condensation. To
determine the correct modification, we demand the following consistency conditions:

1. The three-form fluxes G0,3, G3,0, and G1,2 obtained from the Killing spinor equations
must be compatible with the solution of the Bianchi identities.

2. The IASD three-form flux G3,0 obtained from the Killing spinor equations must vanish
in the vacuum configuration: nonvanishing G3,0 would give mass to the gaugino on a
probe D3-brane, and so is incompatible with supersymmetry.12

We write down a very general modification of the classical Killing spinor equations, in-
volving three a priori independent terms proportional to 〈λλ〉, with initially undetermined
coefficients, and show that the above conditions uniquely determine the values of all three co-
efficients. As we explain in detail below, the resulting Killing spinor equations (A.79)–(A.81)
are not exactly those of [21], which contain only a single term proportional to 〈λλ〉. We
believe that the consistency conditions above are compulsory, independent of any attempt to
argue for or against a ten-dimensional description of the de Sitter vacua of [1], and so we claim
that our modified Killing spinor equations (A.79)–(A.81) are the correct ones in this setting.

We then turn to the superpotential WGCG (A.82) that has been argued to govern a
general type IIB string compactification on a generalized complex geometry [21, 38, 41,
43, 44]. Computing the expectation value 〈WGCG〉 on the solution of the Killing spinor

12We thank Jakob Moritz for suggesting this condition.

– 24 –



J
H
E
P
1
2
(
2
0
2
1
)
1
1
1

equations, we find that 〈WGCG〉 equals the full superpotential W when the Killing spinor
equations are the corrected ones that we justified above, but that 〈WGCG〉 6= W when the
Killing spinor equations are those given in [20, 21]. Correspondingly, we demonstrate that
using the corrected Killing spinor equations (A.79)–(A.81) we exactly recover the scalar
potential of [1] from ten dimensions.

A.3.2 Gaugino condensation and the Killing spinor equations

We begin with a rather general form of the Killing spinor equations,

dH
(
e(φ/4−A)p̂e3A−φ/4Φ2

)
= 2iµe(φ/4−A)p̂e2A−φ/2 Im Φ1 + 2α〈S〉δ(2), (A.46)

dH
(
e(φ/4−A)p̂e2A−φ/2 Im Φ1

)
= 0, (A.47)

dH
(
e(φ/4−A)p̂e4A Re Φ1

)
= 3e(φ/4−A)p̂e3A−φ/4 Re (µΦ2) + e(2A−φ/2)(3−p̂)e4A+φF̃

+ eφ/2

2 Re (〈S〉Ω)
(
βδ(0) + ξ

V⊥

)
. (A.48)

We define dH := d − H∧ and F̃ = (−1)p̂(p̂−1)/2 ?6 F . We have written (A.46)–(A.48) in
Einstein frame, and with the notational simplification 〈S〉 ≡ 〈λλ〉/32π2. The parameter
µ = −ieφ/2κ2

4W is determined by the full superpotential W ,13 and so is related to the
cosmological constant Λ at the supersymmetric minimum by eκ2

4K/2e−φ/2|µ| =
√
−Λ/3.

In the Killing spinor equations given in [20, 21], the constants β and ξ are zero, and
α = 1. We will demonstrate below that consistency actually requires α = 1, β = 2,
and ξ = 0.14

A.3.3 Fluxes and the Bianchi identities

We now compute various fields from the Killing spinor equations. To obtain the three-
form flux, we compute

〈
(A.48), e(φ/4−A)p̂e3A−φ/4Φ2

〉
. We first examine the left-hand side

of (A.48) and use (A.46) to obtain

〈
dH(e(φ/4−A)p̂e4A Re Φ1), e(φ/4−A)p̂e3A−φ/4Φ2

〉
= µeφ〈Φ2,Φ2〉+ i

αeφ

4 〈S〉〈Φ2,Φ2〉δ(0) ,

(A.49)
where 〈, 〉 denotes the Mukai pairing, and we have used the relations 〈Re Φ1, Im Φ1〉 =
i〈Φ1,Φ1〉/2 = −i〈Φ2,Φ2〉/2 and 〈Re Φ1, δ

(2)〉 = i
8〈Φ2,Φ2〉δ(0). We have taken the normal-

ization
〈Φ1,Φ1〉 = 〈Φ2,Φ2〉 = 8iJ3/3! +O(λλ) , (A.50)

13Throughout this work, W always denotes the full superpotential, as opposed to a single term in the
superpotential, such as the flux superpotential term Wflux.

14We could also have added a nonsingular term 2γ〈S〉/V⊥ to the right-hand side of (A.46), but from the
analysis below it will be easily seen that in fact γ must vanish. To reduce the complexity of the expressions
that follow, we set γ = 0 at the outset.
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cf. (A.27) and section A.5. Using the right-hand side of (A.48), we find〈
dH(e(φ/4−A)p̂e4AReΦ1),e(φ/4−A)p̂e3A−φ/4Φ2

〉
= 3

2µe
φ〈Φ2,Φ2〉+e4A+3φ/2〈F̃ ,Φ2〉

+ 1
4e

φ〈S〉〈Ω,Φ2〉
(
βδ(0)+ ξ

V⊥

)
. (A.51)

We therefore compute:

F̃ |(0,3) = i

2µe
−4A−φ/2Ω + 1

4e
−4A−φ/2〈S〉Ω

(
(α− β)δ(0) − ξ

V⊥

)
, (A.52)

G|(0,3) = i
(
F̃ + e−4A−φdH

(
eφ/2+2A Re Φ(2)

1

))∣∣∣
(0,3)

= 1
2e
−4A−φ/2µΩ + i

4e
−4A−φ/2〈S〉Ω

(
(2α− β)δ(0) − ξ

V⊥

)
, (A.53)

G|(0,3) = −3
2µe

−4A−φ/2Ω− i

4〈S〉e
−4A−φ/2Ω

(
βδ(0) + ξ

V⊥

)
, (A.54)

idt := ie−4A−φd
(
eφ/2+2A Re Φ(2)

1

)
, (A.55)

idt(0,3) = + iα

2 e
−4A−φ/2〈S〉Ω

(
δ(0) − 1

V⊥

)
, (A.56)

G(1,2) = −idt(1,2) = −2iαe−4A−φ/2〈S〉∂2
zG(2)(z; zD7)v ∧ Ω2 , (A.57)

G(0,3) = 1
2e
−4A−φ/2µΩ− i

4e
−4A−φ/2〈S〉

(
βδ(0) + ξ − 2α

V⊥

)
, (A.58)

G(3,0) = −3
2e
−4A−φ/2µ̄Ω− i

4e
−4A−φ/2〈S̄〉Ω

(
(2α− β)δ(0) − ξ + 2α

V⊥

)
. (A.59)

Next we find the solutions of the Bianchi identities. To simplify the problem, we will
assume that dτ = 0. The Bianchi identities are

dG+ = dG− , (A.60)

and
dΛ = dX , (A.61)

with
Λ = e4A ?6 G3 − iαG3 , (A.62)

and, as we shall show,

X = e−φ/2

32π2 λλΩδ(0) . (A.63)

Let us first establish (A.63). Starting from the action

SGλλ = 1
32π

∫
X×D

√
−geφ/2λ̄λ̄G ∧ Ω + c.c. , (A.64)

we compute
∂LGλλ
∂dC2

= eφ/2

32π d
4x ∧

(
λ̄λ̄Ω + λλΩ

)
δ(0) , (A.65)
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and
∂LGλλ
∂dB2

= eφ/2

32π d
4x ∧

(
−τ λ̄λ̄Ω− τ̄λλΩ

)
δ(0) , (A.66)

so that

τd

(
∂LGλλ
∂dC2

)
+ d

(
∂LGλλ
∂dB2

)
= ie−φ/2

16π d4x ∧ d
(
λλΩδ(0)

)
, (A.67)

confirming (A.63).
At lowest order in O(λλ), Λ = 2e4AG−, and so

G− = −e
−4A−φ/2

32π2 λλ∂a∂bG(2)(z; zD7)gbb̄Ωb̄c̄d̄ , (A.68)

and

G+ = e−4A

2 X = e−4A−φ/2

64π2 λλΩδ(0) , (A.69)

so that the singular terms in the flux are

G(1,2) = iG−|(1,2) = −ie
−4A−φ/2

32π2 λλ∂a∂bG(2)(z; zD7)gbb̄Ωb̄c̄d̄ , (A.70)

and

G(0,3) = −iG+|(0,3) = −ie
−4A−φ/2

64π2 λλΩδ(0) , (A.71)

whereas
G(3,0) = nonsingular . (A.72)

A.3.4 Consistency conditions

As explained above, we must enforce that the Killing spinor equations are compatible with
the Bianchi identities:

1. The three-form flux G1,2 obtained from the Killing spinor equations must be compatible
with the solution of the Bianchi identities. Comparing (A.57) and (A.70), this implies
that α = 1.

2. The three-form flux G0,3 obtained from the Killing spinor equations must be compatible
with the solution of the Bianchi identities. Comparing (A.58) and (A.71), this implies
that β = 2.

3. The three-form flux G3,0 obtained from the Killing spinor equations must be compatible
with the solution of the Bianchi identities. Comparing (A.59) and (A.72), this implies
that β = 2α.

We conclude that α = 1 and β = 2. The normalization α = 1 agrees with [20, 21]. However,
β = 0 in [20, 21], so we find that consistency with the Bianchi identities requires that we
include a new term in the Killing spinor equations.
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The coefficient ξ has not yet been fixed, but we have another consistency condition to
impose:

4. The IASD three-form flux G3,0 obtained from the Killing spinor equations must vanish
in a supersymmetric vacuum. Using α = 1 and β = 2 in (A.59) gives

e4A+φ/2G(3,0) = −3
2 µ̄Ω + i (ξ + 2α)

4V⊥
〈S̄〉Ω . (A.73)

Using the relations µ = −ieφ/2W/(4πV), 〈S〉 = 1
2πe

κ2
4K/2∂TWnp, and V = V⊥ReT ,

we find
− 4πiV⊥e4A+φ/2G(3,0) =

{(2α+ξ
2
)
∂TW +KTW

}
Ω . (A.74)

The D3-brane gaugino mass is15

mλλ ∝
∫
e4AG ∧ Ω δ(0)(z − zD3) . (A.75)

Comparing (A.74) and (A.75), we see that the D3-brane gaugino mass can vanish in
a supersymmetric vacuum, where FT = 0, only if 2α+ ξ = 2. We found above that
α = 1, so we conclude that ξ = 0.

In sum, we obtain
α = 1, β = 2, and ξ = 0 . (A.76)

There are two other conditions that we have not used, but that serve as further consistency
checks of the above system of equations:

5. We will show below in (A.86) that 〈WGCG〉 = W − 1
π ReT∂TWnp(2α− β − ξ). Hence,

if we were to require 〈WGCG〉 = W , as explained in section A.3.5, then we would
obtain the condition 2α− β − ξ = 0, which is fulfilled by (A.76).

6. The integrability condition obtained from (A.46) is16

− 6iµV⊥ + 2α〈S〉 = 0 , (A.77)

where we used t = 3V⊥. We use the relation µ = −ieφ/2W/(4πV) to rewrite the
integrability condition as

α∂TWnp + κ2
4KTW = 0. (A.78)

Hence, we obtain α = 1, which accords with the above.
15We have omitted a term proportional to dt in the D3-brane gaugino mass, because t only varies along

the coordinates of the internal manifold, and so dt has no components parallel to the D3-brane worldvolume.
16In the interest of complete generality, one could have added a smeared correction 2γ〈S〉/V⊥ to the

right-hand side of (A.46). However, the integrability condition then requires α + γ = 1, whereas the
consistency condition from G(1,2) requires α = 1, and so γ = 0. We have therefore not included such a term
in (A.46).
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In summary, we find that the Killing spinor equations that consistently incorporate the
effects of gaugino condensation are:

dH
(
e(φ/4−A)p̂e3A−φ/4Φ2

)
= 2iµe(φ/4−A)p̂e2A−φ/2 Im Φ1 + 2〈S〉δ(2) , (A.79)

dH
(
e(φ/4−A)p̂e2A−φ/2 Im Φ1

)
= 0 , (A.80)

dH
(
e(φ/4−A)p̂e4A Re Φ1

)
= 3e(φ/4−A)p̂e3A−φ/4 Re (µΦ2) + e(2A−φ/2)(3−p̂)e4A+φF̃

+ eφ/2 Re (〈S〉Ω) δ(0) . (A.81)

These equations, which differ from those of [20, 21]17 by the presence of the final term18

in (A.81), constitute one of the main results of this appendix.

A.3.5 The superpotential

In a general type IIB string compactification on a generalized complex geometry, the
superpotential is [21, 38, 41, 43, 44]

WGCG = π

∫ 〈
Φ2, F̃ + e−4A−φdH

(
e4A+(φ/4−A)p̂ReΦ1

)〉
. (A.82)

We will now explain how to evaluate (A.82) in our solution.
In the dynamic SU(2) structure background sourced by gaugino condensation, the

one-form and five-form components of e4A+φF̃ + dH(e−φ+(φ/4−A)p̂ReΦ1) and Φ2, and the
(0, 3) component of e4A+φF̃ + dH(e−φ+(φ/4−A)p̂ReΦ1), are O(〈λλ〉). However, the three-
form component of Φ2 is Ω +O(〈λλ〉2). Hence, collecting the terms in (A.82) up to order
O(〈λλ〉), we obtain the generalized Gukov-Vafa-Witten flux superpotential,

WGCG = π

∫
G ∧ Ω , (A.83)

with
G := G3 + idt . (A.84)

For the computations of section 3 — in particular, to arrive at (3.23) — we need to
compute G0,3. Let us temporarily work with expressions that follow from the general Killing
spinor equations (A.46)–(A.48) rather than from the particular form (A.79)–(A.81) that
results from imposing (A.76). One can then write (A.53) as

G0,3 = − e−4AΩ
π
∫
M e−4AΩ ∧ Ω

W + i
e−4A−φ/2

4 〈S〉Ω
(

(2α− β)δ(0) − ξ

V⊥

)
. (A.85)

17The findings in section 6 of [21] were arrived at using (A.48) rather than (A.81), but in many (though not
all) respects appear consistent with ours, even though we have used (A.81). The reason for the near-match
is that in [21] a nonperturbative superpotential term was added to the generalized complex geometry
superpotential. According to our analysis, (A.81) should be used, and then no addition is needed, nor indeed
would one be consistent.

18This term can also be derived from the results of [23]. The fluxes we find from (A.81), but not those
following from the unmodified (A.48), agree with the fluxes obtained in [23], after accounting for a difference
in normalization.
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Thus, the vev of the generalized complex geometry superpotential WGCG on the solution of
the ten-dimensional Killing spinor equations is given by

〈WGCG〉 = W − 1
π

ReT∂TWnp(2α− β − ξ) , (A.86)

so that 〈WGCG〉 = W if and only if 2α− β − ξ = 0. On imposing (A.76) we conclude that

〈WGCG〉 = W . (A.87)

Using (A.84), we can now combine (A.85) and (A.56) to compute G(0,3):

G(0,3) = − e−4AΩ
π
∫
M e−4AΩ ∧ Ω

W︸ ︷︷ ︸
=:GW

− i

64π2 e
−4A−φ/2〈λλ〉Ω

(
δ(0) − 1

V⊥

)
︸ ︷︷ ︸

=:Gλλ

. (A.88)

Our result accords with [14], where it was shown that in the presence of gaugino
condensation (and upon converting to our normalizations), one has

G(0,3) = − i

64π2 e
−4A−φ/2〈λλ〉Ωδ(0) +G0 , (A.89)

for some G0 with dG0 = 0. Thus we find agreement between [14] and the singular term
in (A.88), and moreover we learn that G0 is given by the nonsingular terms in (A.88).

A.4 Dimensional reduction and translation to four-dimensional terms

We will now use the results of section A.3 to compute the four-dimensional potential
terms that result from dimensional reduction of the gaugino-flux coupling (A.43) and the
four-gaugino term (A.44), upon assigning the gaugino bilinear vev (3.7).

In our specific setup, t is sourced only by gaugino condensation on D, and is given
by (A.29). Writing Re Ω2 = 1

2

(
Ω12dz

1 ∧ dz2 + Ω1̄2̄dz̄
1̄ ∧ dz̄2̄

)
, we have

d2t = −1
2∂a(e

φ/2−2AϕΩ1̄2̄)dz̄1̄ ∧ dz̄2̄ ∧ dza − 1
2∂ā(e

φ/2−2AϕΩ12)dz1 ∧ dz2 ∧ dz̄ā. (A.90)

It follows from the index structure of (A.90) that d2t · Ω = 0. Thus we arrive at∫
X×D

√
−g d2t · Ω = 0 . (A.91)

Assigning the gaugino bilinear vev (3.7) and using (A.91) and (A.88), the coupling (A.43)
dimensionally reduces to

SGλλ = −
∫
X×M

√
−geφ/2−6u ie−4A+4uΩ · Ω

π
∫
M e−4AΩ ∧ Ω

〈λ̄λ̄〉
32π Wδ(0) + c.c.+ Ssing

λλ ,

=
∫
X

√
−g4e

φ/2−6u+κ2
4K/2

Re(T )
2πV ∂TWW + c.c.+ Ssing

λλ ,

= −κ2
4

∫
X

√
−g4e

κ2
4KKTT∂TWKTW + c.c.+ Ssing

λλ , (A.92)
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where the singular term

Ssing
λλ = i

32π

∫ √
−geφ/2−2uGλλ · Ωλ̄λ̄δ(0) + c.c. , (A.93)

with Gλλ given in (A.88), is analyzed in appendix C. We used the identity κ2
4K

TTKT =
−Re(T )/(2πV), which follows from (3.11) and (A.11).

Similarly, assigning the gaugino bilinear vev (3.7), the integral of the four-gaugino
term (A.44) dimensionally reduces to

Sλλλλ = −
∫
X

∫
M

√
−geκ2

4K+4u e
−4A+4uΩ · Ω

24πV⊥
∂TWnp∂T̄W npδ

(0)

= −
∫
X

√
−g4e

κ2
4K

Re(T )2

3πV ∂TW∂T̄W

= −
∫
X

√
−g4e

κ2
4KKT T̄∂TW∂T̄W. (A.94)

We used the identity KTT = Re(T )2/(3πV).
The modified Killing spinor equations (A.79)–(A.81) were crucial in the above: if

instead of (A.87) one had 〈WGCG〉
!?= Wflux then in (A.92) the factor KTW would instead

read KTWflux, and the scalar potential obtained from ten dimensions would disagree with
that obtained in four-dimensional supergravity. However, we reiterate that the form (A.79)–
(A.81) of the Killing spinor equations was not derived by requiring that they should lead
to (A.87); instead, the logically independent consistency conditions of section A.3.1 were
imposed to derive (A.79)–(A.81), and (A.87) was then a consequence.19

A.5 Normalization of the Kähler potential

We temporarily normalize the flux superpotential as

Wflux = a

∫
M
G ∧ Ω, (A.95)

and the Kähler potential as

κ2
4K = −3 log

(
T + T

)
− log

(
i

∫
M
e−4AΩ ∧ Ω

)
− log

(
−i(τ − τ)

)
− log b. (A.96)

Given a complex structure, we normalize

i

∫
M
e−4AΩ ∧ Ω = c. (A.97)

We now fix a, b, and c by dimensional reduction of the ten-dimensional supergravity action.
19Although (A.87) is essential to our derivation of the correct finite four-dimensional potential (3.34)

from a ten-dimensional configuration, the cancellation of divergences exhibited in appendix C does not rely
on (A.87).
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The first constraint is given by matching the F-term potential for the complex structure
moduli and axiodilaton. Matching the gravitino mass does not provide an additional
constraint. The potential

Vτ = 1
2κ2

10

∫
M

√
g6e

4A−12u+φ|G3,0|2

= 1
2κ2

10

∫
M
e4A−12u+φ

( ∫
M G ∧ Ω∫

M e−4AΩ ∧ Ω
e−4AΩ

)
∧ ?6

(
−

∫
M G ∧ Ω∫

M e−4AΩ ∧ Ω
e−4AΩ

)

= 1
2κ2

10
e−12u+φ

∫
M G ∧ Ω

∫
M G ∧ Ω

i
∫
M e−4AΩ ∧ Ω

(A.98)

must match

Vτ = eκ
2
4KKττDτWDτW = κ2

4e
κ2

4Ka2
∫
M
G ∧ Ω

∫
M
G ∧ Ω , (A.99)

which requires
a2

b
= 27π2V3. (A.100)

Another constraint is given by matching the F-term potential for D3-brane moduli.
Matching the F-term potential for the Kähler modulus does not provide an additional
constraint. From (C.35) with the undetermined coefficient c we have

Φ− = c
eκ

2
4K

8µ3V
Kab̄DaWDb̄W. (A.101)

Hence we fix
i

∫
M
e−4AΩ ∧ Ω = 8V. (A.102)

There remains the freedom to choose a and b, corresponding to Kähler invariance.
All such choices are physically equivalent; for the sake of simplicity we normalize the
superpotential as

π

∫
M
G ∧ Ω, (A.103)

and the Kähler potential as

κ2
4K = −3 log

(
T + T

)
− log

(
i

∫
M
e−4AΩ ∧ Ω

)
− log

(
−i(τ − τ)

)
+ log

(
27V3). (A.104)

B Spectroscopy of interactions

In this appendix we show that the interactions of anti-D3-branes with a gaugino condensate
that are mediated by Kaluza-Klein excitations of a Klebanov-Strassler throat can be safely
neglected, in the sense defined in section 4.
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B.1 Kaluza-Klein modes on T 1,1

We will use the conventions of [22] for denoting fields on the conifold and operators in the
Klebanov-Witten theory. We use labels L ≡ (j1, j2, R) and M ≡ (m1,m2) for the quantum
numbers under the SU(2)× SU(2)×U(1)R isometries of T 1,1, and write a solution to the
Laplace equation on the conifold, ∇2f = 0, as

f(r,Ψ) =
∑
L,M

fLM

(
r

rUV

)∆s(L)
YLM (Ψ) , (B.1)

with the eigenvalues20

∆s(L) = −2 +
√

6
[
j1(j1 + 1) + j2(j2 + 1)−R2/8

]
+ 4 . (B.2)

The singlet j1 = j2 = R = 0 has ∆s = 0, and the next-lowest eigenvalue, for j1 = j2 =
1/2, R = 1, is ∆s = 3/2.

B.1.1 Perturbations sourced by D3-branes and anti-D3-branes

We now consider in turn the perturbations sourced by D3-branes or anti-D3-branes in the
infrared or ultraviolet regions of a Klebanov-Strassler throat. Recall that the Dirac-Born-
Infeld + Chern-Simons action of a probe D3-brane is SD3 = µ3Φ−, and a D3-brane is a
localized source for the scalar Φ+, whereas the Dirac-Born-Infeld + Chern-Simons action
of a probe anti-D3-brane is SD3 = µ3Φ+, and an anti-D3-brane is a localized source for the
scalar Φ−. As explained in [59], see also [46], it is useful to define the fields ϕ+ := r4Φ−1

+ and
ϕ− := r−4Φ−, which have canonical kinetic terms and so have solutions of the usual form

ϕ± = α r−∆± + β r∆±−4 , (B.3)

with α, β independent of r.

• Anti-D3-brane in the infrared.
The leading perturbation of Φ− is a normalizable profile,

δ
(
r−4Φ−

)
∼ r−8−∆s(L) . (B.4)

The leading (singlet) mode scales as r−8, and corresponds in the dual field theory to
an expectation value for the dimension-eight operator [53, 59, 67]

O8 =
∫
d2θd2θ̄Tr

[
W 2

+W
2
+

]
. (B.5)

Higher multipoles in the linear solution result from operators such as (but not limited
to, cf. [22, 59])

O8+3k/2 =
∫
d2θd2θ̄Tr

[
W 2

+W
2
+
(
AB)k

]
, (B.6)

for k ∈ Z+. The first non-singlet mode is O19/2, and scales as r−19/2. See [22, 46, 59]
for extensive analysis of this system.

20The eigenvalues ∆s(L) were denoted by ∆(L) in [59], by ∆f (L) in [22], and by ∆(Is)− 4 in [46].
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• D3-brane in the infrared.
The leading perturbation of Φ+ is a normalizable profile,

δ
(
r4Φ−1

+

)
∼ r−∆s(L) . (B.7)

The singlet is a constant, while higher multipoles correspond to expectation values
for operators such as (but not limited to, cf. [59])

O3k/2 = Tr
[
(AB)k

]∣∣
b
, (B.8)

for k ∈ Z+, with |b denoting the bottom (θ = θ̄ = 0) component of a supermultiplet,
as in [22]. The leading non-singlet mode scales as r−3/2 [22, 34, 46, 59], and is dual
to an expectation value for

O3/2 = Tr
[
AB

]∣∣
b
. (B.9)

Higher multipoles can be found in [22, 46, 59].

• D3-brane in the ultraviolet.
The leading perturbation of Φ+ is a non-normalizable profile [59]

δ
(
r4Φ−1

+

)
∼ r∆s(L)+4 . (B.10)

The singlet mode scales as r4, and is dual to a source for the operator O8 in (B.5)
whose expectation value arose in the anti-D3-brane solution (B.4). Higher multipoles
are dual to sources for operators such as O8+3k/2 in (B.6). The leading non-singlet
mode scales as r11/2, and is dual to O19/2 [22, 46, 59].

B.2 Effect of anti-D3-branes on gaugino condensate

We would like to examine the long-distance solution sourced by p anti-D3-branes smeared21

around the tip of a Klebanov-Strassler throat. To start out, we will linearize in the strength
of the anti-D3-brane backreaction, and then discuss nonlinear effects.

B.2.1 Coulomb interaction with a D3-brane

The SU(2) × SU(2) invariant part of the linearized long-distance solution sourced by p

anti-D3-branes at the tip of a noncompact Klebanov-Strassler throat has been studied
in [48, 50–54]. The leading perturbation of Φ− corresponds to the normalizable profile (B.4),
up to logarithmic corrections.

A strong consistency check of this solution comes from considering a D3-brane in
the ultraviolet region of the throat. The potential for motion of such a D3-brane can be

21At different stages of the evolution of a collection of anti-D3-branes interacting with flux, as described
in [47], the anti-D3-branes may be localized at a point on the S3 at the tip, or puffed up into a nontrivial
configuration, and in such a case the supergravity equations of motion become difficult partial differential
equations. Fortunately (cf. [53]), in any of these cases the leading long-distance solution linearized around
AdS5 × T 1,1 can be obtained from the SU(2)× SU(2) invariant part of the linearized solution, i.e. from the
linearized solution obtained from considering anti-D3-branes smeared around the S3. This latter problem
requires solving only ordinary differential equations.
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computed either by treating the D3-brane as a probe in the solution (B.4) sourced by the
anti-D3-branes, or by treating the anti-D3-branes as probes in the solution sourced by the
backreaction of a D3-brane in a Klebanov-Strassler throat. The former approach amounts
to evaluating the action of a probe D3-brane in the solution of [50–54].

The latter approach, which was used to compute the D3-brane Coulomb potential
in [45], is even simpler, because the D3-brane and the Klebanov-Strassler background
preserve the same supersymmetry, and so the perturbation due to the D3-brane enjoys
harmonic superposition. One finds [59] that the leading perturbation of Φ+ sourced by
D3-brane in the ultraviolet is the non-normalizable profile (B.10).

The Coulomb potential between an anti-D3-brane in the infrared and a D3-brane in
the ultraviolet can be computed either from (B.4) [51, 59] or from (B.10) [45], with exact
agreement.

We can understand this match in the language of the dual field theory (see section 3.3
of [59]). A D3-brane in the ultraviolet creates a potential by sourcing a non-normalizable22

profile δΦ+, corresponding to a source (in the field theory Lagrangian) for operators such
as O8. An anti-D3-brane in the infrared creates a potential by sourcing a normalizable
profile δΦ−, corresponding to an expectation value for operators such as O8. Either way,
the mediation occurs by a high-dimension operator, and leads to a very feeble interaction
at long distances.

The above arguments give several conceptually different — but precisely compatible —
perspectives on a single fact, which is that the Coulomb interaction of a D3-brane with an
anti-D3-brane in a warped region is suppressed by eight powers of the warp factor, and so
is extremely weak [45].

B.2.2 D3-brane perturbation to gauge coupling

Thus far, as a first step, we have used a D3-brane in the ultraviolet as a probe of the
solution generated by anti-D3-branes in the infrared. Our actual interest is in the effect of
anti-D3-branes in the infrared on D7-branes in the ultraviolet.

Now, as a further warm-up, we recall the effect of D3-branes (not yet anti-D3-branes)
in the infrared on gaugino condensation on D7-branes in the ultraviolet.23 The effect of the
perturbation (B.7) on a gaugino condensate was computed in [34]. Upon summing over
all the chiral and non-chiral operators of the Klebanov-Witten theory [61], and applying
highly nontrivial identities to collapse the sum, the result for δT took the form of a
logarithm of the embedding function of the D7-branes, expressed in local coordinates [34].
The perturbation (B.7) is thus the effect responsible for the dependence of the gaugino
condensate on the D3-brane position [33, 34], which is of central importance in D3-brane
inflation [45].

This result was exactly reproduced by an entirely different computation in [22], as
reviewed in appendix C below: the G− flux sourced by the gaugino-flux couplings on the

22In the sense of footnote 8 of [59].
23Corrections to gaugino condensation on D7-branes due to interactions with distant branes have been

extensively studied in the context of D3-brane inflation, both from the open string worldsheet [33, 76] and
in supergravity [34]: see [9] for a review.

– 35 –



J
H
E
P
1
2
(
2
0
2
1
)
1
1
1

D7-branes leads to a solution for Φ−, and a D3-brane probing this solution experiences the
potential implied by the perturbation δT computed in [34].

For completeness, we now explain an asymmetry between the effects of D3-branes and
of anti-D3-branes. As will be explained in section B.2.3 below, one finds from (B.4) that an
anti-D3-brane in the infrared has only extremely small effects on D3-branes or D7-branes
in the ultraviolet (except through couplings via the zero-mode eu). In contrast, a D3-brane
in the infrared does have a detectable effect at long distances. Adding a D3-brane increases
the total D3-brane charge of the throat by one unit, N → N +1, and this change is reflected
in the solution by a non-normalizable correction relative to the throat with N units of flux
and no D3-brane.

Simply adding an anti-D3-brane would likewise change the net tadpole and the flux, and
so have a detectable effect at long distances. However, this is not the relevant comparison for
our purposes. The anti-D3-brane configuration of [47] is a metastable state in a throat with
less flux and some wandering D3-branes, but the same total tadpole. The anti-D3-branes
thus source small normalizable corrections to the solution that is dual to the supersymmetric
ground state.

B.2.3 Anti-D3-brane perturbation to gauge coupling

To compute the effect on the gaugino condensate of the perturbation (B.4) due to anti-D3-
branes in the infrared, we follow the same logic used in [34] and reviewed in section B.2.2.
We evaluate the D7-brane gauge coupling function (3.6),

T = e4u
∫
D

√
g6e
−4A + i

∫
D
C4 , (B.11)

in the perturbed solution, and use (3.9). Examining (B.11), we see that it suffices to know
the breathing mode eu, as well as the leading perturbations to Φ± and to the metric gab at
the location of the D7-brane. Because eu is a six-dimensional zero-mode, we will treat it
separately: at this stage we seek to check that any influences of the anti-D3-branes on the
condensate, except via the breathing mode, can be neglected.

Because Φ− = 0 in the Klebanov-Strassler background, we write (see appendix D
of [69])

δReT ≈ e4u
∫
D

√
g(0)

(
−2
(
Φ(0)

+
)−2(

δΦ+ + δΦ−
)

+
(
Φ(0)

+
)−1

gab(0)δgab

)
, (B.12)

where for a field φ, the background profile in the Klebanov-Strassler solution is denoted φ(0).
Our consideration above of a D3-brane probe in the ultraviolet showed that δΦ− is

mediated by O8 (with subleading corrections from operators of even higher dimension)
and is negligible at the D7-brane location. Perturbations δΦ+ (or more usefully, δϕ+) are
mediated by operators such as O3/2, and can be sizable if strongly sourced, e.g. by the
presence of a D3-brane. However, in [46] it was shown that the leading profile δϕ+ that
arises in the full nonlinear solution due to an anti-D3-brane scales as δϕ+ ∼ r−8, just
like the profile δϕ− in (B.4) that is directly sourced by the anti-D3-brane: see section 5
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of [46]. Likewise, in appendix D of [69] it was shown that the leading non-singlet metric
perturbation scales as r−19/2 (see [46, 69] for definitions of the associated tensor harmonics
on T 1,1).

In summary, in the linearized background (B.4) sourced by anti-D3-branes in the
infrared, the leading corrections to ReT are mediated by operators of dimension ∆ ≥ 8,
resulting in extremely small corrections to the D7-brane gaugino condensate when the
hierarchy of scales in the Klebanov-Strassler throat is large. Thus, the only influence of the
anti-D3-branes on the gaugino condensate that is non-negligible for our purposes occurs via
the breathing mode eu, and was already included in the four-dimensional analysis of [1].
We have therefore established (4.9).

B.3 Effect of gaugino condensate on anti-D3-branes

For the avoidance of doubt, we now reverse the roles of source and probe relative to
section B.2, and examine the influence of gaugino condensation in the ultraviolet on
anti-D3-branes in the infrared. As in section B.2, we treat the breathing mode separately.

B.3.1 Leading effect of flux

The anti-D3-brane probe action is SD3 = µ3Φ+, so we seek the leading perturbations of Φ+
in the infrared. Gaugino condensation on D7-branes directly sources flux perturbations δG−
and δG+ via the gaugino-flux coupling (3.18), as shown in [22] and reviewed in section 3.
Expanding in Kaluza-Klein modes on T 1,1, the lowest mode of δG+ is dual to the operator

O5/2 =
∫
d2θTr

[
AB

]
, (B.13)

of dimension ∆ = 5/2 [22]. The coefficient c5/2 of this mode in the ultraviolet is at most of
order 〈λλ〉, because it is incompatible with the no-scale symmetry of the Klebanov-Strassler
background, and so is present only once it is sourced by the gaugino condensate [22, 46]. We
stress, however, that c5/2 might well be parametrically smaller than 〈λλ〉: the operator O5/2
is easily forbidden by (approximate) symmetries, corresponding in the bulk to symmetries
of the D7-brane configuration.24 Our estimates of the anti-D3-brane potential will therefore
be upper bounds.

The equation of motion for the scalar Φ+ is

∇2Φ+ = e8A

Im τ
|G+|2 + . . . (B.14)

where the omitted terms (cf. section 2) can be neglected for the present purpose. In the
Klebanov-Strassler background, the three-form flux has a nonvanishing profile G(0)

+ [78].
With one insertion of the background flux and one insertion of the perturbation δG+,
we have

∇2Φ+ = e8A

Im τ

(
G

(0)
+ · δG+ + c.c.

)
, (B.15)

from which one finds
δΦ+ ∼ e

5
2Atip × 〈λλ〉 , (B.16)

24See e.g. [77] for related work.
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with eAtip the warp factor at the tip. Since

〈λλ〉 ∼ O(e2Atip) , (B.17)

we conclude that
δVD3 . µ3e

9
2Atip , (B.18)

which is smaller, by a power e 1
2Atip , than the anti-D3-brane potential (4.1) in the Klebanov-

Strassler background. Thus, the influence of the gaugino condensate on the anti-D3-brane,
via the linearized perturbation δG+, is a parametrically small correction.

B.3.2 Spurion analysis

Thus far we have considered only the linearized perturbation δG+ dual to O5/2, leading to the
small correction (B.18) to the anti-D3-brane potential. If the D7-brane configuration enjoys
no additional symmetries that enforce c5/2 � 〈λλ〉, then (B.18) is indeed the parametrically
dominant correction to the anti-D3-brane potential from gaugino condensation [66]. However,
establishing this requires extending the treatment of section B.3.1 to incorporate more
general perturbations, such as perturbations of the metric, and also requires working at
nonlinear order in these perturbations. A complete analysis of this system is carried out
in [66]; here we review the strategy and summarize the main findings.

To find the general form of the infrared solution created by a partially-known ultraviolet
source, one can perform a spurion analysis, in which the parametric size of the ultraviolet
coefficient c∆ of a given mode δφ∆ dual to a source for an operator O∆ is determined by
the symmetries preserved by O∆.

Specifically, perturbations allowed in a no-scale compactification of the Klebanov-
Strassler throat, as in [12], have c∆ ∼ O(1). Perturbations that are allowed only after
(a single) insertion of the gaugino condensate expectation value 〈λλ〉 have c∆ ∼ O(〈λλ〉),
while perturbations that are allowed only after inserting |〈λλ〉|2 have c∆ ∼ O(〈λλ〉2).

To determine the spurion assignment for a given operator, we examine couplings of the
field theory dual to the throat to the D7-brane field theory. Consider, for example,∫

d2θTr
[
AB

]
Tr
[
WαW

α]
D7 , (B.19)

where25 〈
Tr
[
WαW

α]
D7

〉∣∣∣
b

= 1
2〈λλ〉 . (B.20)

From (B.19) we find the coupling

δW = 1
2〈λλ〉

∫
d2θTr

[
AB

]
, (B.21)

which can be interpreted as a perturbation to the superpotential of the Klebanov-Witten
theory, with the exponentially small spurion coefficient 〈λλ〉.

25The D7-brane gauge field strength superfield Wα|D7 should not be confused with W+ appearing in (B.5),
which is the gauge field strength superfield of the D3-brane fields of the Klebanov-Witten theory.
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Evidently, to carry out such a spurion analysis one needs to know which perturbations
of the supergravity fields are allowed in the background, versus requiring either one or two
factors of 〈λλ〉 as spurion coefficients. This information can be read off from an assignment
of the operators of the dual field theory to supermultiplets, as in [63, 64]. A systematic
treatment along these lines appears in [22, 46, 66].

Examining (B.14), one sees that the leading linearized perturbations to the anti-D3-
brane potential are modes of the flux G+, the axiodilaton τ , and the metric g. At this
stage we need to know, from Kaluza-Klein spectroscopy and from spurion analysis, the
dimensions ∆min of the lowest-dimension non-singlet modes of G+, τ , and g, as well as their
spurion coefficients c∆. For the flux, one finds [66]

∆min(G+) = 5/2 with c5/2 ∼ 〈λλ〉 , (B.22)

corresponding to O5/2 in (B.13), as explained above. Another mode of flux gives a slightly
smaller contribution:

∆(G+) = 3 with c3 ∼ 〈λλ〉 , (B.23)

corresponding to the operator O3,+ = Tr
[
W 2

+
]∣∣
b
. For the dilaton, one finds [66]

∆min(τ) = 11/2 with c11/2 ∼ O(1) , (B.24)

corresponding to
O11/2 =

∫
d2θTr

[
W 2

+ (AB)
]
, (B.25)

which is allowed in the background of [12]. (There is also a ∆ = 4 mode of τ , but we can
absorb this into the background value of the dilaton.) For the metric, one finds the leading
contribution [14, 66]

∆min(g) = 3 with c3 ∼ 〈λλ〉 , (B.26)

corresponding to
O3,− = Tr

[
W 2
−
]∣∣
b
. (B.27)

The first subleading correction from a metric mode has

∆(g) =
√

28 ≈ 5.29 with c√28 ∼ O(1) , (B.28)

corresponding to
O√28 =

∫
d2θ d2θ̄Tr

[
f(A,B, Ā, B̄)

]
, (B.29)

where f is a harmonic, but not holomorphic, function of the chiral superfields A and B.
The perturbation dual to O√28 is allowed in the background of [12].

Using (B.17), we find from the linearized perturbations (B.22), (B.23), (B.24), (B.26),
(B.28) that the anti-D3-brane potential receives corrections of the parametric form

δVD3 . µ3e
4Atip

(
e

1
2Atip + eAtip + e(

√
28−4)Atip + e

3
2Atip + . . .

)
. (B.30)
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For completeness, we remark that upon applying the methods of [46] to study the nonlinear
solution, one finds [66] that a specific nonlinear perturbation, corresponding to two insertions
of (B.22), gives a correction to the potential of the form

δVD3 . µ3e
4Atip × eAtip , (B.31)

which can be more important than some of the modes in (B.30), but less important than
the linearized flux perturbation (B.22).

Let us summarize. To compute the influence of a gaugino condensate in the ultraviolet
on anti-D3-branes in the infrared, one can allow perturbations of all of the supergravity
fields, grading these modes via a spurion analysis, and examine the resulting solution for
Φ+ in the infrared. We have collected here, in (B.30), the leading contributions of the fields
that appear in (B.14), at linear order in perturbations. Results for all fields, to all orders,
appear in [46, 66], and the only nonlinear correction competitive with any of the terms
in (B.30) is the quadratic flux perturbation (B.31).

The final result is that the largest correction to the anti-D3-brane potential mediated
by excitations of the throat solution is suppressed by at least a factor e 1

2Atip � 1 compared
to the anti-D3-brane potential in the background solution, and so can be neglected. This
finding is compatible with that of section B.2, and constitutes strong evidence for (4.9).

C Cancellation of divergences, and the D3-brane potential

In this appendix we give details of the computation of the four-dimensional curvature
R4. First, in section C.1 we show that the singular terms contributing to the master
equation (2.22) cancel each other, and the finite remainder is the scalar potential (3.34) for
the Kähler modulus T , in exact agreement with the four-dimensional analysis: see (C.2).

Then, in section C.2 we repeat this calculation for a compactification containing a
D3-brane. In this case the result expected from the four-dimensional theory is the F-term
potential (C.31) for the D3-brane moduli and the Kähler modulus. We recover this result
as well from ten dimensions in (C.35).

In summary, the ten-dimensional computations of this appendix yield finite answers
for the four-dimensional curvature, in compactifications with or without D3-branes. These
results precisely agree with the corresponding expressions obtained in the associated four-
dimensional effective theories.

C.1 Cancellation of divergences

We begin by adapting the master equation (2.22). The term in (2.22) involving ∂aΦ−∂aΦ−
is smaller than O

(
〈λλ〉2

)
, and can be neglected for present purposes. We likewise omit the ki-

netic terms for the moduli u and τ . Following (3.33), the trace of the stress-energy tensor TD7
µν

of the D7-brane can be written TD7
µν g

µν = T λλµν g
µν +T λλλλµν gµν ≡ T λλ+T λλλλ. We thus have

M2
plR4[g] = −

∫
M

√
g6e
−4AT λλ −

∫
M

√
g6e
−4AT λλλλ

+ 16π
∫
M

√
g6e
−12u+4AρD3 − 8πe−8u

∫
M

√
g6R6[g] ,

(C.1)

where we have applied our convention that (2π)2α′ = 1.
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Three of the four contributions on the right-hand side of (C.1) include singular terms.
In the presence of the localized ISD flux (A.89) sourced by the gaugino condensate, the soft
mass term (3.20) has a singular stress-energy that enters T λλµν . In the presence of the IASD
flux (3.35) sourced by the gaugino condensate, the IASD flux kinetic term, proportional to
|G−|2, is likewise singular, and contributes to ρD3 via (C.3). Finally, the internal curvature
R6 is singular in the presence of singular sources.26 Our goal is now to show that these
three singularities cancel, and the finite remainder is the F-term potential (3.34): that is,

1
4

∫
M

√
g6
(
−e−4AT λλ − e−4AT λλλλ + 16πe4AρD3 − 8πR6[g]

)
= V , (C.2)

up to corrections smaller than O
(
〈λλ〉2

)
.

Let us first set our notation. We will expand in powers of 〈λλ〉, with superscripts (i)
denoting quantities of order O(〈λλ〉i). We take G(0,3) to be of order O(〈λλ〉). Capital
indicesM,N run from 1 to 6, while indices a, b run from 1 to 3, and we adopt the convention
gMNvMvN = 2gab̄vav̄b̄. To simplify our expressions, we denote g(1)

MN as hMN , g(0)MNg
(1)
MN

as h, det(g(0)) as ḡ, G(0)
+abc̄ as χabc̄, and G

(1)
−ab̄c̄ by ηab̄c̄. We have R(0)

6 = 0, and we fix the
gauge ∂MhMN = 0. The D3-brane and anti-D3-brane charge densities are

ρD3 = 1
2 Im τ

|G+|2 + ρloc
D3 , ρD3 = 1

2 Im τ
|G−|2 + ρloc

D3 , (C.3)

where ρloc
D3 and ρloc

D3 are the charge densities due to localized D3-branes and anti-D3-branes,
respectively. For now (in contrast to section C.2) we are assuming that there are no localized
D3-branes or anti-D3-branes, and so we have ρD3 = 1

4 Im τ χabc̄χ̄
abc̄ and ρD3 = 1

4 Im τ ηab̄c̄η̄
ab̄c̄.

In a local coordinate patch, we fix the gauge Ωabc = εabc and χ c
ab = ξ

√
ρD3εab, for

c ∈ {1, 2, 3}, and with ξ a constant. The equations of motion for this system are well-known,
and can be found in, for example, section 3.1 of [79].

Discarding total derivatives and retaining terms up to O(〈λλ〉2), we have∫
M

√
g6R6[g] = −1

4

∫
M

√
ḡ
(
∂Mh∂

Mh− ∂MhNP∂MhNP
)
. (C.4)

The equation of motion for hMN is

∇2hMN +∇M∇Nh = e4A

2 Im τ

(
χ PQ

(M η̄N)PQ + c.c.
)
, (C.5)

where [22]

ηab̄c̄ = −ie
−4A−φ/2λλ

32π2 ∂a∂
d̄G(2)(z; zD7)Ωb̄c̄d̄ . (C.6)

Because χabc̄ is a (2,1) form and ηab̄c̄ is a (1,2) form, (C.5) implies that ∇2h = 0. We will
thus take h = 0, so that (C.5) takes the form

∇2hab = e4A

Im τ
χ c̄d

(a η̄b)c̄d , ∇2hāb̄ = e4A

Im τ
χ̄ cd̄

(ā ηb̄)cd̄ . (C.7)

26We thank the referee for useful remarks about these contributions.
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Solving in terms of the six-dimensional and two-dimensional Green’s functions G(6) and
G(2), we find

hab = ζ

∫
M
d6x′G(6)(x;x′)χacd̄∂

c∂eG(2)(x′;xD7)Ω d̄
be + (a↔ b) , (C.8)

and hāb̄ = hab, where

ζ = −i e
φ/2

26π2 〈λλ〉 . (C.9)

We thus find that to O(〈λλ〉)2,

2
∫
M

√
g6R6[g] =

∫
M

√
ḡ
(
−hab∇2hab

)
. (C.10)

We now use an identity that is applicable in the local coordinate chart,

∂z∂z̄G(2)(z; 0) = 1
2gzz̄

(
δ(2)(z)− k

V⊥

)
, (C.11)

where z is the complex coordinate for the space transverse to the D7-brane stack. We can
then simplify −hab∇2hab as follows:

−hab∇2hab =−ζhab(x)
(
χacd̄∂

c∂eG(2)(z;zD7)Ω d̄
be +(a↔ b)

)
(C.12)

= |ζ|
2

2
(
χ̄acd̄

′
∂e′G(2)(z;zD7)Ωbe′

d̄′+(a↔ b)
)(
χacd̄∂

eG(2)(z;zD7)Ω d̄
be +(a↔ b)

)
(C.13)

= 25|ζ|2e−φρD3∂eG(2)∂
eG(2) . (C.14)

To arrive at the sign in (C.13) we used ∂x′G(6)(x;x′) = −∂xG(6)(x;x′).
We next compute

∫
M

√
g6e

4AρD3:∫
M

√
ḡe4AρD3 =

∫
M

√
ḡ
e4A

Im τ

1
4ηab̄c̄η̄

ab̄c̄

= |ζ|2
∫
M

√
ḡe−4Ae−φ∂a∂

d̄G(2)εb̄c̄d̄∂
a∂dG(2)εbcdg

bb̄gcc̄

= 24|ζ|2
∫
M

√
ḡe−4Ae−φ∂a∂dG(2)∂

a∂dG(2)

= −23|ζ|2
∫
M

√
ḡρD3e

−φ∂aG(2)∂
aG(2), (C.15)

where we used 2∂a∂ae−4A = −ρD3, which holds to lowest order.
The final singular contribution comes from the D7-brane action. From (3.27) and (A.92)

we have

− 1
4

∫
M

√
g6e
−4AT λλ = κ2

4

∫
X

√
−g4e

κ2
4KKTT∂TWKTW + c.c.− Ssing

λλ , (C.16)

with
− Ssing

λλ = −2πζ̄
∫
M
Gλλ · Ωδ(0) + c.c. , (C.17)

where Gλλ is given in (A.88).
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To manipulate Ssing
λλ , we derive an identity involving the two-dimensional Green’s

function. Taking the internal space transverse to the D7-branes to be compact, with volume
V⊥, Green’s equation takes the form

2gab̄∂a∂b̄G(2)(z; 0) = δ(2)(z)− 1
V⊥

. (C.18)

It follows that∫
M
e−4A

(
δ(0) − 1

V⊥

)2
=
(∫

M
e−4Aδ(0)2

)
− 2e4u Re (T )

V⊥
+ V
V2
⊥

=
(∫

M
e−4Aδ(0)2

)
− e4u Re (T )

V⊥

=
∫
M
e−4A

(
δ(0) − 1

V⊥

)
δ(0), (C.19)

which implies that∫
M
e−4A∂a∂

aG(2)(z; zD7)δ(0) =
∫
M

2e−4A∂a∂
aG(2)(z; zD7)∂b∂bG(2)(z; zD7). (C.20)

Using (A.88) in (A.93) and using (C.20), we find

−Ssing
λλ = −

∫
M

27π|ζ|2e−4Ae−φ∂a∂
aG(2)(z; zD7)∂b∂bG(2)(z; zD7)

=
∫
M

26π|ζ|2e−φρD3∂aG(2)(z; zD7)∂aG(2)(z; zD7). (C.21)

Combining (C.14), (C.15), and (C.21), we find that

1
4

∫
M

√
g6
(
−e−4AT λλ + 16πe4AρD3 − 8πR6[g]

)
= Vλλ , (C.22)

where the finite term Vλλ was given in (3.29). Including also the finite term resulting from
T λλλλµν , see (3.31), we arrive at (C.2), completing the proof.

C.2 D3-brane potential from flux

We now turn to the case in which a spacetime-filling D3-brane is present. The potential
for motion of a D3-brane in a nonperturbatively-stabilized flux compactification, such
as [1], is well understood from the perspective of the four-dimensional effective supergravity
theory [34, 45, 80, 81], with the Kähler potential obtained in [35] (see also [82–84]) and
with the nonperturbative superpotential computed in [33, 34]. Showing that this potential
is reproduced by the Dirac-Born-Infeld + Chern-Simons action of a probe D3-brane in a
candidate ten-dimensional solution sourced by gaugino condensation serves as a quantitative
check of the ten-dimensional configuration [21–23]. An exact match was demonstrated
in [22] in the limit that four-dimensional gravity decouples.

In this appendix we compute the potential of such a D3-brane probe. Through a
consistent treatment of the Green’s functions on the compact space, we extend the match
found in [22] to include terms proportional to κ2

4.
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Within this appendix we take the Kähler potential (3.11) to include D3-brane moduli,

κ2
4K = −3 log

(
T +T − γk

)
− log

(
−i(τ − τ)

)
− log

(
i

∫
M
e−4AΩ ∧ Ω

)
+ log

(
27V3

)
, (C.23)

with (cf. [35, 81, 83])27

γ = 2
3µ3κ

2
4 Re(T )e−4u = 1

3V⊥
. (C.24)

Here k is the Kähler potential of M , obeying kab̄ = gab̄, where a and b̄ are holomorphic and
anti-holomorphic indices for D3-brane moduli. We use the convention ds2 = 2gab̄dzadz̄b̄ for
the line element.

The G− flux sourced by gaugino condensation [22] is given by (3.35), where G(2) is the
Green’s function on the internal space transverse to the D7-branes. If this space is taken to
be noncompact, we have

G(2)(z; 0) = 1
2π log |z| , (C.25)

in terms of a local coordinate z.
The flux (3.35) is a source for the scalar Φ−, leading to a potential for D3-brane motion.

The equation of motion for Φ− is

∇2Φ− = e8A

Im τ
|G−|2 + . . . (C.26)

where the omitted terms are not important for the present computation. Solving (C.26)
and taking the D7-brane location to be given by an equation h(z) = 0 in local coordinates,
one finds28

Φ− =
∫
M
d6y G(6)(z; z′) e

8A

Im τ
|G−|2

= eκ
2
4Ke16u

4π2N2
c

gab̄
∂ah∂b̄h̄

hh̄
|Wnp|2 , (C.27)

so that
µ3Φ− = e12ueκ

2
4KKab̄∂aW∂b̄W . (C.28)

Thus, the flux (3.35) sourced by gaugino condensation gives rise to a profile for Φ− that
matches the rigid part of the F-term potential.

At this point, the Kähler connection terms in the F-term potential are not evident in
the ten-dimensional computation. The result of this appendix, which we will now establish,
is that the Kähler connection terms arise once one consistently incorporates finite volume
effects in the Green’s function.

27As explained in [81], the relation (C.24) should be understood to hold exactly at a reference location in
field space. Deviations from (C.24) at other locations lead to corrections of order γk

T+T
in (C.33) and (C.34)

below, which we will neglect.
28Throughout this appendix, we write only the contribution to Φ− sourced by G− flux via (C.26). Further

contributions are present in general [22].
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If the space transverse to the D7-branes is compact, with volume V⊥, then the Green’s
function reads

G(2)(z; 0) = 1
2π log |z| − k

6V⊥
. (C.29)

Using (C.29) to solve (C.26), one finds

Φ− =
∫
M
G(6)(z; z′)∂a∂bG(2)(z′; zD7)∂ā∂b̄G(2)(z′; zD7)gaāgbb̄e16u

∣∣∣∣ λλ32π2

∣∣∣∣2 Ω · Ω

= 1
2

∫
M
δ(6)(z; z′)∂aG(2)(z′; zD7)∂b̄G(2)(z′; zD7)gab̄e16u

∣∣∣∣ λλ32π2

∣∣∣∣2 Ω · Ω

= 24|ζ|2e−φ∂aG(2)(z; zD7)∂aG(2)(z; zD7)

= 1
4N2

c π
2

(
∂ah(z)
h(z) −

2πka
3V⊥

)(
∂b̄h̄(z̄)
h̄(z̄)

− 2πkb̄
3V⊥

)
gab̄eκ

2
4Ke16u|Wnp|2 . (C.30)

The F-term potential that we wish to compare to (C.30) is given by

VF = eκ
2
4K
(
K∆ΓD∆WDΓW − 3κ2

4WW
)
, (C.31)

where K∆Γ is the inverse Kähler metric derived from the DeWolfe-Giddings Kähler poten-
tial [35, 85],

K∆Γ = κ2
4(T + T − γk)

3γ

(
γ(T + T − γk) + γ2kak

ab̄kb̄ γkak
ab̄

γkab̄kb̄ kab̄

)
, (C.32)

and the index ∆ runs over T and the D3-brane moduli ya. Using (C.24), we can rewrite (C.30)
as

Φ− = eκ
2
4Ke16u

4π2 gab̄ (DaW + γkaDTW )
(
Db̄W + γkb̄DTW

)
+ . . . (C.33)

= eκ
2
4Ke12uκ

2
4Re(T )
3πγ

(
DTW DaW

)( γ2kak
ab̄kb̄ γkak

ab̄

γkab̄kb̄ kab̄

)(
DTW

Db̄W

)
+ . . . , (C.34)

where the omitted terms are of higher order in γk

T+T .
Combining (3.34) and (C.34), we conclude that in a compact space, the flux (3.35)

sourced by gaugino condensation leads to a Φ− profile that agrees with the F-term poten-
tial (C.31):

µ3e
−12uΦ−(z) + Vλλ + Vλλλλ = eκ

2
4K
(
K∆ΓD∆WDΓW − 3κ2

4WW
)

+ . . . , (C.35)

where again the omitted terms are subleading in γk

T+T .
Finally, we will show that (C.35) also follows from (2.22) upon adapting the calculation

of section C.1 to account for the presence of localized D3-branes. From (C.5) we see that
the metric at order O(〈λλ〉) is only sourced by the fluxes χ and η, and so (C.14) is altered to

2
∫
M

√
g6R6[g] =

∫
M

25|ζ|2e−φ
(
ρD3 − ρloc

D3
)
∂eG(2)∂

eG(2) . (C.36)
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On the other hand, the warp factor e−4A is sourced by the full D3-brane charge density
ρD3, i.e. by both localized and distributed sources, and obeys 2∂a∂ae−4A = −ρD3. As a
result, equations (C.15) and (C.21) continue to hold.

Combining (C.36), (C.15), and (C.21) we find

1
4

∫
M

√
g6
(
−e−4AT λλ + 16πe4AρD3 − 8πR6[g]

)
= Vλλ + 2π

∫
M

√
g6ρ

loc
D3Φ− . (C.37)

When −1
4
∫
M

√
g6e
−4AT λλλλ is added to (C.37), we recover the full F-term potential (C.35).
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