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1 Introduction

The ever-increasing precision of experimental data from the Large Hadron Collider, to-
gether with the clear lack of any signatures of new physics, necessitate continual improve-
ments of our understanding of the Standard Model. The dominance of the strong force in
collider environments makes it especially important that the theory of Quantum Chromo-
dynamics (QCD) is better understood. For a given observable computed in perturbative
QCD, progress can be made either by including subleading fixed orders in the strong cou-
pling constant, or by including certain kinematically enhanced contributions at all orders in
perturbation theory, a process known as resummation. In this paper, we will be concerned
with color-neutral scattering processes containing a heavy (or off-shell) finale-state particle
produced near threshold (i.e. qq̄ → γ∗/Z or gg → h). In all such processes, one may define a
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threshold variable ξ which vanishes at the threshold itself. As is well-known, the differential
partonic cross section with respect to this variable has the following generic form:

dσ

dξ
∼ σ0

∞∑
n=0

(
αs
π

)n [2n−1∑
m=0

[
c(−1)
nm

( lnm ξ
ξ

)
+

+ c(0)
nm lnm ξ + . . .

]
+ c(δ)

n δ(ξ)
]
. (1.1)

Here, an overall normalisation constant σ0 originating from the leading-order (LO) cross
section is dressed by higher-order contributions, involving a series of terms in the threshold
variable ξ that diverge as ξ → 0, albeit integrably so. The first set of terms in the second
sum (with variable m) and the δ(ξ) contribution are associated with leading power (LP)
in a systematic expansion in the threshold variable. The logarithmic counting is such that
those logarithms with m = 2n− 1 at O(αns ) are called the leading-logarithmic (LL) terms,
with m = 2n − 2 the next-to-leading logarithmic (NLL) terms, and so on. The LP terms
are well known to originate from the emission of soft and collinear radiation. Following
the pioneering work of refs. [1–8] based on diagrammatic arguments, several approaches
have been developed for LP resummation, including using Wilson lines [9, 10], renormali-
sation group arguments [11], and Soft Collinear Effective Theory (SCET) [12–15]. Recent
pedagogical reviews of different approaches may be found in e.g. refs. [16–18].

Until relatively recently, much less has been known about the second set of logarithmic
terms in eq. (1.1), which constitute next-to-leading power (NLP) in the threshold variable
ξ. Their precise origin remains unknown to this date, but it has already been shown that
their numerical contribution cannot be neglected [19–26], therefore constituting a necessity
to understand and resum them. Following previous work in Quantum Electrodynamics [27–
30], refs. [31, 32] used a mixture of diagrammatic and path-integral methods to argue that
certain NLP terms should indeed be resummable. References [33–37] reached a similar
(and indeed more general) conclusion, using results in fixed-order perturbation theory to
conjecture some all-order forms for NLP terms in processes including deep-inelastic scat-
tering (DIS), Drell-Yan (DY) production of an off-shell vector boson, and Higgs boson
production. Following more formal work showing that next-to-soft physics can be related
to asymptotic properties of scattering amplitudes at null infinity in both gauge theories and
gravity [38, 39] (itself related [40] to the earlier work of refs. [41, 42]), there has been more
widespread interest in exploring the properties of NLP terms, which could not be more
timely given the numerical motivation mentioned above. Examples using direct QCD ar-
guments include developing factorisation theorems for NLP contributions that extend their
LP counterparts [43–49]; carrying out fixed-order studies that aim to motivate such formu-
lae [50–56]; resumming NLP contributions by combining factorisation and renormalisation
group arguments [26, 57–61]; and resumming specific contributions [62]. There is also an
ever-growing body of work examining NLP effects in SCET, including identifying relevant
operators contributing at NLP order and/or their mixing under renormalisation [63–70]; de-
velopment of factorisation formulae [71–74]; and explicit studies for particular observables,
either at fixed-order or resummed [75–86]. This has proceeded in tandem with direct QCD
approaches, with a highly useful exchange of ideas and results between what are often cast
as opposing formalisms. Indeed, it is always useful to have complementary viewpoints on
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the same underlying physics, such that a more varied toolbox can be employed in extending
the frontier of QCD perturbation theory yet further.

With this spirit in mind, we turn our attention in this paper to a particular class of
NLP contributions present DIS and the production of a colourless off-shell or heavy boson,
such as DY and Higgs production. Much of the above-mentioned work has focused on the
study of NLP corrections to partonic cross sections which have the same initial state as the
Born contribution. Indeed, these partonic channels are the only ones relevant at LP, and it
has been explicitly demonstrated that one can resum their LL NLP contributions in both
DY and Higgs production, using SCET [79, 81] or direct QCD [62], and in agreement with
previous conjectures [34]. However, it is also the case that new partonic channels can open
up at next-to-leading order (NLO) and beyond that contribute LL NLP logarithms, and
must be counted alongside their counterparts in the kinematically leading partonic channel.
Naïvely, one expects that one should indeed be able to resum such contributions: once a
subleading partonic channel has been turned on, the cross section is already at next-to-
leading power, and thus any further emissions must be maximally soft and collinear. The
known resummation properties of the latter should then guarantee NLP resummation for
these terms, an expectation that turns out to be ultimately correct. Nevertheless, turning
this observation into a practical resummation formula is not as easy as it might seem. A
perusal of the QCD literature shows that the NLP coefficients c(0)

nm appearing in eq. (1.1)
for various processes of interest do not have an obvious exponential form, even for the
highest power of the logarithm at each order of αs. This is in stark contrast to the LL
terms at LP, and also the LL NLP terms in the leading partonic channel.

For DIS, important progress was made in ref. [87], which considered the kinematically
subleading gluon initial state, and presented an all-order conjecture for the LL NLP terms
in the off-diagonal DGLAP splitting function Pqg(x), as well as the coefficients appear-
ing in the partonic structure function. Similar conjectures could be made for the related
splitting function Pgq, using a Higgs-induced DIS process, where an incoming gluon fuses
with a Higgs boson at Born level; furthermore, Reference [37] provided conjectures also for
the LL NLP terms arising from subleading partonic channels in DY and Higgs production.
Recently, ref. [86] confirmed these results for DIS, within the framework of SCET, using the
assumption that the one-loop virtual corrections to the new partonic channel at NLO ex-
ponentiate, and showing how such exponentiation can be obtained through re-factorisation
(see also [73, 74]). The same technique has been used [88] to prove also the conjecture
in [37], concerning the qg channel in DY and Higgs.

In this paper, we will demonstrate the validity of the conjectures made in refs. [37,
87] using well-established direct QCD arguments (see e.g. refs. [89–91], and refs. [92, 93]
for pedagogical reviews). We will calculate all-order forms for subleading partonic cross
sections in the LL approximation at LP and NLP, using diagrammatic arguments that
enable us to straightforwardly obtain the form of the fully real radiative contribution at
each order in the coupling, before fixing the form of the virtual corrections using known
constraints. We will then be able to obtain closed forms for the various splitting and
coefficient functions presented in refs. [37, 87], finding full agreement. Our results overlap
with the SCET approach of refs. [86, 88] (which connects to the work done in ref. [82]
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Figure 1. LO squared amplitudes for: (a) DIS; (b) Higgs-induced DIS, where the Higgs boson
couples to the gluon via an effective coupling.

on the NLP thrust distribution), but our approach is entirely complementary: where that
paper examines purely virtual corrections to subleading partonic channels at each order,
we consider the opposite extreme of the fully real contribution. Further, we derive the
all-order structure of the qg partonic cross sections by direct computation, rather than via
the renormalization-group evolution arguments as discussed in section 4 of ref. [86].

The structure of our paper is as follows. In section 2, we derive the all-order LL
NLP terms in the off-diagonal splitting functions in (Higgs-induced) DIS, together with
the appropriate coefficient functions. In sections 3 and 4, we extend our arguments to both
DY and Higgs boson production, showing how one can obtain all-order LL forms for the
coefficient functions for quark-gluon initial states. We discuss our results and conclude in
section 5. Certain technical details are contained in appendices A and B.

2 Splitting functions and coefficient functions in DIS

In this section, we consider the deep-inelastic scattering of a virtual photon with a proton.
At LO, the photon couples to a valence quark, leading to the process

q(p) + γ∗(q)→ q(pH) , (2.1)

whose squared matrix element is depicted in figure 1a. We will also have reason to consider
the alternative process of Higgs-induced DIS, in which the virtual photon is replaced by a
Higgs boson, and the valence quark by a gluon:

g(p) + h(q)→ g(pH) . (2.2)

It is assumed that the Higgs couples to gluons via a suitable effective coupling (e.g. a top-
quark loop with the top mass taken to infinity), but the precise details need not concern
us here. The squared LO Feynman diagram for eq. (2.2) is shown in figure 1b.

In both of the above processes, we can define the conventional Björken variable

x = Q2

2p · q , Q2 = −q2. (2.3)
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Figure 2. (a) NLO correction to DIS, where a gluon couples indirectly to the photon; (b) the
analogous channel in Higgs-induced DIS.

In the DIS case, we can then define the structure function

F2
(
x,Q2

)
=
∫

dΦTαβ2 |MDIS|2αβ , (2.4)

where the integral denotes a sum over all possible radiative final states, |MDIS|2αβ is the
squared amplitude averaged (summed) over initial (final) state partonic colours and spins,
and we have labelled photon Lorentz indices as in figure 1a. Here the open Lorentz indices
α and β belong to the initial-state photon on either side of the final-state cut, and we have
introduced the projector

Tαβ2 = − 1
4π

1
1− ε

(
ηαβ + (3− 2ε) q2

(p · q)2 p
αpβ

)
, (2.5)

where we work in d = 4− 2ε spacetime dimensions. For the Higgs process of figure 1b, we
may similarly define the structure function

Fφ
(
x,Q2

)
=
∫

dΦ |MDIS|2 , (2.6)

where |MDIS|2 is the summed/squared amplitude in this case, and no projection is needed
to get a scalar quantity, due to the scalar nature of the virtual Higgs boson.

Dressing the LO processes of figure 1 with additional radiation will open up different
partonic initial states at NLO and beyond. For normal DIS, there is the process of figure 2a,
in which a gluon rather than a quark is present in the initial state. There is also a crossed
box diagram for this channel, where the connection of the quark legs is interchanged in the
complex conjugate amplitude (not shown in figure 2). We will argue that, due to various
choices to be described later, this diagram will not contribute at LL NLP. The equivalent
process for Higgs-induced DIS is that of figure 2b in which the initial state contains a
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quark. Once the new partonic channels have opened up at NLO, one may emit further
radiation, which becomes complicated very quickly as the perturbative order increases due
to the multitude of possible Feynman diagrams. However, we are after the LL behaviour at
threshold, which necessarily corresponds to all additional radiation being maximally soft
and/or collinear. We will see that it is then possible to arrange things so that only a small
set of Feynman diagrams contribute.

A first restriction that allows us to eliminate contributing diagrams stems from the fact
that the processes of figure 2 are already suppressed by a power of the threshold variable.
They involve an emission of a quark with the soft momentum kq which, after summing
over spins, leads to a factor ∑

spins
u(kq)ū(kq) = 6kq

in the squared matrix element. For a soft gluon emission with momentum k, the sum
over polarisation states is O(k0), which indeed has one less power of soft momentum than
the quark case shown above. The emission of the fermion puts the diagram at NLP, and
after this first emission one only needs to consider further (maximally soft and collinear)
gluon radiation (i.e. the same radiation as one would need to consider at LP for diagonal
channels). Let us write the momentum of each additional parton (including that present
at NLO) using a Sudakov decomposition

kµ = αpµ + βq′µ + k⊥µ, k⊥ · p = k⊥ · q′ = 0 , (2.7)

where we have introduced the vector

q′ = q + xp , (2.8)

which is null from eq. (2.3). For future use, we also note the relations

p+ q = (1− x)p+ q′, p · q′ = p · q 6= 0 . (2.9)

In eq. (2.7), the d-dimensional vector

k⊥ = (0,k⊥, 0) , (2.10)

containing the (d − 2)-vector k⊥, constitutes the momentum transverse to the incom-
ing beams.

A second restriction on the number of Feynman diagrams that contribute arises as
follows. As argued in detail in refs. [89–91], leading logarithms only arise from the kine-
matic region in which the transverse momenta of the emitted partons are strongly ordered.
Furthermore, one may reduce the set of relevant Feynman diagrams for the squared matrix
element to those having a pure ladder form, as shown in figure 3a. Crossed ladders, such
as the graph in figure 3b, do not contribute at LL. In non-abelian theories such as QCD,
this property is not guaranteed in general gauges, but can be made manifest by choosing
to define the polarisation states of the emitted gluons in a particular way. Upon choos-
ing a reference vector cµ, one may define physical gluon polarisation vectors εµ(k) via the
simultaneous requirements
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Figure 3. (a) A ladder graph contributing to the gluon channel in DIS at NLP LL; (b) a crossed-
ladder graph.

k · ε(k) = c · ε(k) = 0 . (2.11)

If in addition c is a null vector (c2 = 0), the sum over physical gluon polarisation states
has the form ∑

pols.
ε†µ(k)εν(k) = −ηµν + kµcν + kνcµ

c · k
. (2.12)

As explained in detail in refs. [92, 93], the kinematic dominance of uncrossed gluon ladders
occurs for the explicit choice

c = q′ , (2.13)

i.e. the same vector that occurs in the Sudakov decomposition of eq. (2.7). Although we
will explicitly check whether the same holds at NLP, the choice of eq. (2.13) will allow
us to straightforwardly obtain the purely real corrections to the processes of figure 2, at
arbitrary order in the coupling, in the LL approximation.

Summarising, we have established that to compute the NLP LL contribution of normal
or Higgs-induced DIS, we need to consider the NLO diagrams of figure 2 dressed with n

ordered soft-gluon emissions, after choosing a particularly beneficial form of the reference
vector used in the sum over physical polarisations of the n gluons. If n additional gluons
are emitted, we will have to integrate over an (n+ 2)-body phase space, whose treatment
will now be discussed.

2.1 Phase space for multiparton final states

Focusing on the case of conventional DIS process for concreteness, we will need to consider
integrating the squared matrix element for the following process:

g(p) + γ∗(q)→ q(pH) + q(kq) +
n∑
i=1

g(ki) , (2.14)

– 7 –
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where we label the soft-quark momentum present in the NLO matrix element by kq, and
any additional gluon momenta by {ki}. The phase space for this process is

∫
dΦ(n+2) = (2π)d

∫ ddpH
(2π)d−1 δ+(p2

H)
∫ ddkq

(2π)d−1 δ+(k2
q )
[
n∏
i=1

∫ ddki
(2π)d−1 δ+(k2

i )
]

×δ(d)
(
p+q−pH−kq−

n∑
i=1

ki

)

= (2π)(n+2)(1−d)+d
∫

ddkq δ+(k2
q )
[
n∏
i=1

∫
ddkiδ+(k2

i )
]
δ+

(p+q−kq−
n∑
i=1

ki

)2
 ,

(2.15)

where we use the conventional notation

δ+
(
k2
)
≡ θ

(
k0
)
δ
(
k2
)
, (2.16)

and we have used the d-dimension delta function to carry out the integral over pH in the
second line of eq. (2.15). Each emitted gluon momentum may be expanded using the
Sudakov decomposition of eq. (2.7), giving

ki = ᾱip+ β̄iq
′ + ki⊥. (2.17)

One may find the variables ᾱi and β̄i by contracting on both sides with p and q′:

ᾱi = q′ · k
p · q

, β̄i = p · k
p · q

, (2.18)

where we use that p · q′ = p · q. Furthermore, one may rewrite the measure in an integral
over k as follows:

ddki = p · q dᾱi dβ̄i dd−2ki,⊥ = p · q
2 dᾱi dβ̄i dk2

i,⊥

(
k2
i,⊥

) d−4
2 dΩ(i)

d−2 , (2.19)

where we have used the notation of eq. (2.10), and also introduced the differential solid angle
in the transverse directions of the gluon with momentum ki, dΩ(i)

d−2. To derive eq. (2.19),
one may first pick the following parametrisation for p and q (see e.g. ref. [51]):

p = s+Q2

2
√
s

(1, 0, . . . , 0, 1) , q =
(
s−Q2

2
√
s
, 0, . . . , 0,−

(
s+Q2)

2
√
s

)
, (2.20)

where we have introduced the partonic squared centre-of-mass energy

s = (p+ q)2 = 2p · q(1− x) . (2.21)

Then eq. (2.20) together with eq. (2.3) implies

p = Q2

2
√
s

1
x

(1, 0, . . . , 0, 1) , q′ = Q2

2
√
s

1− x
x

(1, 0, . . . , 0,−1) , (2.22)
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so that eqs. (2.7), (2.18) yield the explicit variable transformation

ᾱi = (1− x)√
s

(
k0
i + kzi

)
, β̄i = 1√

s

(
k0
i − kzi

)
, (2.23)

from which eq. (2.19) follows as required.
Using eqs. (2.9), (2.18) and writing a similar decomposition for quark momentum kq

with variables αq (βq) along the direction of p (q′), the argument of the delta function in
eq. (2.15) can be written as(

(1− x)p+ q′ − kq −
n∑
i=1

ki

)2

= 2p · q
[
(1− x)

(
1− βq −

n∑
i=1

β̄i

)
− αq −

n∑
i=1

ᾱi

]
+ . . . ,

(2.24)
where we have neglected terms which are quadratic in kq and/or {ki}, which correspond
to correlations between different emitted partons. As discussed above, the emitted parton
momenta are required to be soft in the LL limit. Therefore, these quadratic terms will be
power-suppressed with respect to the terms included in eq. (2.24). Given that our matrix-
element will already be at NLP, we do not need to keep the phase-space correlations.1 The
phase space of eq. (2.15) then becomes∫

dΦ(n+2) = (2π)−(n+1)dπn+2 (p·q)n
∫

dαqdβqdp2
q,⊥dΩ(1)

d−2(p2
q,⊥)

d−4
2 δ+

(
2p·qαq βq−p2

q,⊥

)
×
[
n∏
i=1

∫
dᾱidβ̄idk2

i,⊥(k2
i,⊥)

d−4
2 dΩ(i)

d−2 δ+
(
2p·q ᾱi β̄i−k2

i,⊥

)]

×δ
[
(1−x)

(
1−βq−

n∑
i=1

β̄i

)
−αq−

n∑
i=1

ᾱi

]
, (2.25)

where we have used eq. (2.19) in squaring the emitted parton momenta inside the on-shell
delta functions for kq and {ki}. We may use these delta functions to carry out the integrals
over p2

q,⊥ and {k2
i,⊥}, and can simplify the result further by assuming that the matrix

elements we are going to integrate will not depend on any of the transverse solid angles,
which will indeed turn out to be the case. We get∫

dΦ(n+2) = 2−
1
2 (n+1)(d+4) πn+2−(n+1)d (p · q)n+(n+1) (d−4)

2 Ωn+1
d−2

×
∫

dαq dβq (αq βq)
d−4

2

[
n∏
i=1

∫
dᾱi dβ̄i

(
ᾱi β̄i

) d−4
2

]

× δ

[
(1− x)

(
1− βq −

n∑
i=1

β̄i

)
− αq −

n∑
i=1

ᾱi

]
. (2.26)

Next, we may use the standard result

Ωd−2 = 2π
d−2

2

Γ
(
d−2

2

) , (2.27)

1Note that such terms were considered for kinematically leading channels in DY and Higgs production
in ref. [62], where they could be neglected at NLP LL, but not at NLP NLL order. Here, however, the
phase space correlations will only contribute at NNLP, due to there being no LP contribution to the squared
matrix element.
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as well as rescaling

βq →
βq

(1− x) , β̄i →
β̄i

(1− x) , (2.28)

to obtain∫
dΦ(n+2)

= 2π

(4π)
(n+1)d

2

(Q2)n+(n+1) (d−4)
2

x−(n+1) (d−4)
2 −n (1− x)−(n+1) d−2

2

Γ
(
d−2

2

)n+1

×
∫

dαq dβq (αq βq)
d−4

2

[
n∏
i=1

∫
dᾱi dβ̄i(ᾱi β̄i)

d−4
2

]
δ

[
1− x− αq − βq −

n∑
i=1

(ᾱi + β̄i)
]
.

(2.29)

Notice that the final delta function links all of the Sudakov variables together. We can
decouple this dependence by using the identity

δ(u) =
∫ i∞

−i∞

dT
2πi e

Tu, (2.30)

such that eq. (2.29) becomes∫
dΦ(n+2)

= 2π

(4π)
(n+1)d

2

(
Q2
)n+(n+1) (d−4)

2 x−(n+1) (d−4)
2 −n (1− x)−(n+1) d−2

2

Γ
(
d−2

2

)n+1

∫ i∞

−i∞

dT
2πi e

T (1−x)

×
∫

dαq dβq (αq βq)
d−4

2 e−T (αq+βq)
[
n∏
i=1

∫
dᾱi dβ̄i

(
ᾱi β̄i

) d−4
2 e−T (ᾱi+β̄i)

]
. (2.31)

Provided all of the α and β integrals can be carried out, the final integral over T has the
form of an inverse Laplace transform.

In this section, we have derived a convenient form for the (n+ 2)-body phase space in
the LL approximation. Although we considered the process of eq. (2.14), we can also apply
this result to Higgs-induced DIS, given that the phase space is insensitive to the identity of
the emitted partons in the final state, and that the definition of the Björken x variable is the
same. Before moving on, we note that is more convenient at NLO (the case n = 0 above)
to use an alternative form of eq. (2.31), in which the dependence on (1− x) has not been
scaled out of β1, and the delta function is left intact. From eqs. (2.26), (2.27), one finds

dΦ(2) = 2π
(4π)

d
2

(
Q2) (d−4)

2

Γ
(
d−2

2

) x− d−4
2 dαq dβq (αqβq)

d−4
2 δ [(1− x) (1− βq)− αq] . (2.32)

Let us now proceed to calculate all-order forms for the kinematically subleading partonic
structure functions in (Higgs-induced) DIS, where we will first examine the relevant struc-
ture functions at NLO.
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2.2 The quark structure function in Higgs-induced DIS

We start our discussion by computing the NLO structure of the Higgs-induced DIS process.
One reason to consider this process is that it allows for a straightforward calculation of the
off-diagonal splitting function Pgq, as argued in refs. [86, 87]. As shown in figure 2b, the
quark initial state turns on at NLO. To normalise our results, we first need the result for
the LO process of figure 1b, whose squared matrix element (summed/averaged over colours
and spins) is

|Mgh→g|2 = |λ|2

d− 2

(
−ηαβ +

q′αpβ + q′βpα

q′ · p

)(
−ηαβ + q′αpβ2 + q′βpα2

q′ · p2

)
, (2.33)

where we have used the gluon polarisation choice of eq. (2.13) for the incoming and outgoing
gluons, and denoted the Higgs effective coupling to gluons by

ληµν ,

where µ, ν are the Lorentz indices of the gluon entering the effective vertex. Contracting
indices and combining with the phase space, one finds the following LO contribution to the
structure function of eq. (2.6):

Fφ(x,Q2)
∣∣∣
LO

= 2π|λ|2

2p · q δ(1− x) . (2.34)

For this and subsequent structure functions, we will divide all higher-order contributions
by the prefactor σ0 of the delta-function appearing at LO, thus introducing the normalised
quantity

Wi(x,Q2) ≡ 1
σ0
Fi(x,Q2). (2.35)

Now let us calculate the LO contribution to the quark structure function, given by the
diagram of figure 2b. One finds a squared matrix element (summed/averaged over spins
and colours)

|Mqh→qg|2 = CF
2 g2

sµ
4−d|λ|2 Tr[ 6pγβ 6kqγα]

(2p · kq)2

(
−ηαβ +

q′αpH,β + q′βpH,α

q′ · pH

)

= CF
8
g2
sµ

4−d|λ|2

(p · kq)2

[
(d− 2)Tr[ 6p 6kq] + 1

q′ · p2

(
Tr[ 6p 6pH 6kq 6q′] + Tr[ 6p 6q′ 6kq 6pH ]

)]
,

(2.36)

where CF = (N2
c − 1)/(2Nc) = 4/3 is the Casimir of the fundamental representation, Nc

is the number of colours, g2
s = 4παs denotes the (dimensionless) coupling of QCD, and µ

the dimensional regularization scale. Evaluating the trace terms and using the momentum
conservation condition

pH = (1− x)p+ q′ − kq , (2.37)

the trace contribution appearing in eq. (2.36) simplifies as follows:

Tr[ 6p 6pH 6kq 6q′] + Tr[ 6p 6q′ 6kq 6pH ] = 16 p · q kq · q′. (2.38)
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Converting to Sudakov variables, eq. (2.36) then becomes

|Mqh→qg|2 = CF g
2
sµ

4−d|λ|2

2p · q

[
d− 2
βq

+ 4αq
β2
q [1− x− αq]

]
, (2.39)

where the first (second) term come from the first (second) term in the gluon polarisation
sum of eq. (2.12). Combining with the phase space of eq. (2.32), one finds

∫
dΦ(2)|Mqh→qg|2 = 2π

(4π)
d
2

1
Γ
(
d−2

2

)(Q2)
d−4

2

(1− x
x

) d−4
2 CF g

2
sµ

4−d|λ|2

2p · q

×
∫ 1

0
dβq[βq(1− βq)]

d−4
2

[
d− 2
βq

+ 4(1− βq)
β3
q

]
. (2.40)

The integral on the second line is given by

∫ 1

0
dβq[βq(1− βq)]

d−4
2

[
d− 2
βq

+ 4(1− βq)
β3
q

]
=

Γ
(
d−4

2

)
Γ
(
d−2

2

)
Γ(d− 3) +

2Γ
(
d−8

2

)
Γ
(
d
2

)
Γ(d− 8)

= −2
ε

+ . . . . (2.41)

Note that the second term on the first line is O(ε), and therefore does not contribute to
LL behaviour. This suggests that we do not need to include the second term in the gluon
polarisation tensor for pH , and we will return to this point when discussing the higher-
order corrections. Combining eq. (2.41) with the remaining matrix element and phase
space factors, one finds∫

dΦ(2)|Mqh→qg|2 = αs
4π

(
4πµ2

Q2

)ε
xε

Γ(1− ε)

(
2π|λ|2

2 p · q

)[
−2CF (1− x)−ε

ε
+O(ε)

]
.

(2.42)
Throughout, we will follow refs. [37, 87] by defining perturbative coefficients of all quanti-
ties X by

X =
∑
n

ansX
(n) , as = αs

4π . (2.43)

Collecting only the single pole in the limit that x → 1, setting the renormalisation scale
equal to the hard scale of the process (µ = Q),2 and recognising the LO normalisation
factor from eq. (2.34), we find that

W
(1)
φ,q (x) = −2CF

ε
(1− x)−ε . (2.44)

That this is indeed NLP in the threshold expansion can be seen by comparing with eq. (1.1),
where the threshold variable in this case is ξ = (1−x). For later use, it is convenient to ex-
press this result in Mellin space, where the Mellin transform of a function f(x) is defined by

f(N) =
∫ 1

0
dxxN−1 f(x) , (2.45)

2This is allowed at LL, since scale-dependence only contributes at NLL.
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where it is clear from the arguments of the function whether we are in N -space or x-space.
In Mellin space eq. (2.44) becomes

W
(1)
φ,q (N) = −2CF

ε

N ε

N
, (2.46)

where we have taken the N → ∞ limit, and we keep only the dependence on LL terms.3

Having calculated the first non-zero contribution to the subleading partonic channel in
Higgs-induced DIS, we now proceed to calculate its all-order structure function.

2.2.1 All-order structure function in Higgs-induced DIS

To derive all-order forms for the relevant splitting and coefficient functions, we now need
to dress these processes with arbitrary numbers of additional soft gluons. As discussed at
the beginning of section 2, we can calculate W (n)

φ,q by considering general uncrossed ‘ladder
graphs’ such as that of figure 4a, which has m gluon ‘rungs’ connecting the quark legs in
the lower part, and n−m gluons connecting the gluons in the upper part of the diagram.
Furthermore, as we have argued that only maximally soft gluons will contribute at NLP,
one may apply the well-known eikonal Feynman rule

V µ = ±gsµ
4−d

2 Ti
pµi
pi · k

, (2.47)

for emission of a soft gluon of momentum k from a hard leg of momentum pi, where Ti is
a colour generator in the appropriate representation, and the sign + for an outgoing or −
for an incoming hard particle. The summed and averaged squared matrix element for the
diagram of figure 4a is then found to be

|Mqh→qg1...gn |2

= |λ|2Cm+1
F Cn−mA g

2(n+1)
s

8µ(d−4)(n+1)

(
n∏
i=1

2q · p p · ki
q′ · ki

)
Tr[ 6pγβ 6kqγα]

(
−ηαβ +

q′αpH,β + q′βpH,α

q′ · pH

)

× 1
(p · k1)2[p · (k1 + k2)]2 . . . [p · (k1 + . . .+ km + kq)]2 . . . [p · (k1 + . . .+ kn + kq)]2

.

(2.48)

At NLO, we found that the second term in the remaining gluon polarisation tensor did not
contribute at LL order. Let us assume the same thing will happen here (we will explicitly
check this later). Then eq. (2.48) simplifies to

|Mqh→qg1...gn |2 = d− 2
2 |λ|2Cm+1

F Cn−mA

2ng2(n+1)
s

(p · q)n+1µ(d−4)(n+1) βq

(
n∏
i=1

β̄i
ᾱi

)

× 1
β̄2

1(β̄1 + β̄2)2 . . . (β̄1 + . . .+ β̄m + βq)2 . . . (β̄1 + . . .+ β̄n + βq)2 ,

(2.49)
3Note that LL is defined to mean the maximum power of ln(N) at each power of αs and ε. Thus, the

factor N ε in eq. (2.79) generates LL terms at each power of ε when expanded.
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kq

k1

km

pH

q

. . .

km+1

. . .
kn

p

(a)

km+1

kn

p
k1

. . .
km

kq

. . .

pH

q

(b)

Figure 4. (a) Ladder graph contributing to T (n)
φ,q , where all possible values ofmmust be considered;

(b) similar but for T (n)
2,g .

where we have introduced the Sudakov variables from eq. (2.17). To make things look a
little more symmetric, let us introduce the variables

(1− x)bi =


β̄i, 1 ≤ i ≤ m;
βq, i = m+ 1;
β̄i−1, m+ 2 ≤ i ≤ n+ 1.

(2.50)

Upon combining with the phase space of eq. (2.31) (suitably relabelled), we will end up
with the integral∫ i∞

−i∞

dT
2πie

T (1−x) 1
T (n+1)d−4n−3

∫
dαq α

d−4
2

q e−αq

(
n∏
i=1

∫
dᾱi ᾱ

d−6
2

i e−ᾱi

)

×
(
n+1∏
i=1

∫
dbi b

d−2
2

i

)
e−
∑n+1

i=1 bi

b21(b1 + b2)2 . . . (b1 + b2 + . . .+ bn+1)2

= Γn
(
d− 4

2

)
Γ
(
d− 2

2

) (1− x)(n+1)(d−4)

Γ[(n+ 1)d− 4n− 3]

×
(
n+1∏
i=1

∫
dbi b

d−2
2

i

)
e−
∑n+1

i=1 bi

b21(b1 + b2)2 . . . (b1 + b2 + . . .+ bn+1)2 , (2.51)

where we have already scaled out the T dependence from the Sudakov variables in the first
line, and carried out the (αq, ᾱi) integrals in the second line, as well as the inverse Laplace
transform in T using ∫ i∞

−i∞

dT
2πie

T (1−x)T−α = (1− x)α−1

Γ(α) . (2.52)
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To carry out the remaining integrals, we may recall the above remarks that crossed-ladder
contributions are kinematically subleading. This means that we may add those contribu-
tions, ignoring the colour factor, such that one may replace the factor

1
b1(b1 + b2) . . . (b1 + b2 + . . .+ bn+1)

with a sum over all permutations π (see appendix A for the justification of this replace-
ment). This means we can write[ 1

b1(b1 + b2) . . . (b1 + b2 + . . .+ bn+1)

]2

→ 1
(n+ 1)!

[∑
π

1
bπ1(bπ1 + bπ2) . . . (bπ1 + bπ2 + . . .+ bπn+1)

]2

. (2.53)

To explain the combinatorial factor on the right-hand side, note that expanding the brackets
gives [(n+ 1)!]2 terms in total (including identical contributions). The diagonal terms are
simply relabellings of the original term on the left-hand side of eq. (2.53), in which each
denominator is explicitly squared. There are (n+ 1)! such terms, and we must correct for
this overcounting. We do not have to worry about the cross-terms: these correspond to
the kinematic parts of crossed-ladder graphs, and thus are kinematically subleading. The
right-hand side of eq. (2.53) is now written in a form that allows us to apply the eikonal
identity, i.e. ∑

π

1
bπ1(bπ1 + bπ2) . . . (bπ1 + bπ2 + . . .+ bπn+1) =

n+1∏
i=1

1
bi
, (2.54)

in each bracket, so that the {bi} integrals simply become(
n+1∏
i=1

∫
dbi b

d−2
2

i

)
e−
∑n+1

i=1 bi

b21(b1 + b2)2 . . . (b1 + b2 + . . .+ bn+1)2

→ 1
(n+ 1)!

n+1∏
i=1

∫
dbi b

d−6
2

i e−bi =
Γn+1

(
d−4

2

)
(n+ 1)! = 1

(n+ 1)!

(
−1
ε

)n+1
+ . . . . (2.55)

For the reader who is not convinced by this argument, we provide a direct computation of
the integrals in eq. (2.51) in appendix A, finding the same result. Indeed, this also justifies
the statement that crossed ladders are kinematically subleading and would only contribute
beyond NLP LL, i.e. at NLP NLL.

We may now substitute our result for the {bi} integrals from eq. (2.55) into eq. (2.51),
and then combine with the remaining factors from the phase space and matrix element.
Dividing by the LO normalisation and keeping only the leading ε behaviour, one finds

W
(n+1)
φ,q (x) =

(
n∑

m=0
Cm+1
F Cn−mA

)
22n+1

(n+ 1)!

(
µ2

Q2(1− x)

)(n+1)ε (
−1
ε

)2n+1
+ . . . , (2.56)

where we have used the fact that the kinematic part of each ladder diagram is the same to
immediately sum over all possible colour structures. In N space one then finds up to LL

W
(n+1)
φ,q = −

(
n∑

m=0
Cm+1
F Cn−mA

)
2
ε

N ε

N

(4N ε

ε2

)n 1
(n+ 1)! . (2.57)
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We can resum the tower of higher-order contributions into a closed form:

Wφ,q

∣∣∣
LL

=
∞∑
n=1

ansW
(n)
φ,q

= −2asCF
ε

N ε

N

1
CF − CA

(4asN ε

ε2

)−1 {
exp

[4asCFN ε

ε2

]
− exp

[4asCAN ε

ε2

]}
.

(2.58)

In understanding this result, it is useful to take note of the identity

Cn+1
F − Cn+1

A

CF − CA
=

n∑
m=0

CmF C
n−m
A , (2.59)

which demonstrates that the inverse factor of (CF −CA) in eq. (2.58) simply combines with
the colour factors arising from expanding the exponentials, to reproduce the democratic
sum of factors of the form CpFC

q
A in eq. (2.57).

We now come back to verify an assumption we made above, namely that the second
term in the gluon polarisation tensor of eq. (2.48) gives a subleading contribution and can
therefore be neglected. The relevant contribution to the squared matrix element is

|λ|2

8 Cm+1
F Cn−mA g2(n+1)

s µ(4−d)(n+1)
(

n∏
i=1

2q · p p · ki
q′ · ki

)
Tr[ 6pγβ 6kqγα]

(
q′αpH,β + q′βpH,α

q′ · pH

)

× 1
(p · k1)2[p · (k1 + k2)]2 . . . [p · (k1 + . . .+ km + kq)]2 . . . [p · (k1 + . . .+ kn + kq)]2

.

(2.60)

The trace combination appearing on the first line is(
q′αpH,β + q′βpH,α

)
Tr
[
6pγβ 6kqγα

]
= 8

(
p · pH kq · q′ − p · kq pH · q′ + p · q′ kq · pH

)
= 16 kq · q′ p · q + . . . , (2.61)

where we have used eq. (2.37) to eliminate pH , and neglected terms which are quadratic in
soft momenta {pq, ki}, which is consistent with neglecting such quadratic terms in the phase
space. Substituting this back into eq. (2.60) and transforming to Sudakov variables gives

2|λ|2Cm+1
F Cn−mA g2(n+1)

s µ(4−d)(n+1)2n(p · q)−n−1 αq
1− x− αq −

∑n
i=1 ᾱi

[
n∏
i=1

β̄i
ᾱi

]

× (1− x)n+2

β̄2
1(β̄1 + β̄2)2 . . . (β̄1 + . . .+ β̄m + βq)2 . . . (β̄1 + . . .+ β̄n + βq)2 , (2.62)

where we have rescaled the β̄i and βq variables by 1/(1− x). We now notice that the delta
function in the phase space of eq. (2.29) allows one to make the replacement

1− x− αq −
n∑
i=1

ᾱi → βq +
n∑
i=1

β̄i , (2.63)
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so that eq. (2.64) becomes

2|λ|2Cm+1
F Cn−mA g2(n+1)

s µ(4−d)(n+1)2n (p·q)−n−1 (1−x)n+2 αq

[
n∏
i=1

β̄i
ᾱi

]

× 1

β̄2
1

(
β̄1+β̄2

)2
. . .
(
β̄1+. . .+β̄m+βq

)2
. . .
(
β̄1+. . .+β̄n−1+βq

)2
(β̄1+. . .+β̄n+βq)3

. (2.64)

Note the difference with eq. (2.49); here we have an additional factor of αq in the numer-
ator and

[∑
i β̄i + βq

]−1
in the denominator, whereas we are missing the factor of βq with

respect to eq. (2.49). Upon combining with the phase space of eq. (2.31) and scaling the T
dependence out of the Sudakov variables, the afore-mentioned difference will result in an
additional factor of T such that the overall T integral becomes

∫ i∞

−i∞

dT
2πi e

T (1−x) 1
T (n+1)(d−4) = 1

1− x
(1− x)(n+1)(d−4)

Γ[(n+ 1)(d− 4)]

= −2(n+ 1)ε
1− x (1− x)−2(n+1)ε + . . . . (2.65)

There are 2(n + 1) remaining integrals over the rescaled Sudakov parameters ᾱi, β̄i, βq
and αq, each of which may potentially contribute at most one singularity in ε. However,
contrary to eq. (2.51), the αq integral is now not singular due to the additional factor of
αq in eq. (2.64). Together, the total contribution to the structure function from the second
term in the gluon polarisation tensor must be O(ε−2n) or higher. This is indeed subleading
compared to the contributions we have already considered, and thus we were justified in
neglecting it.4

2.2.2 Adding the virtual corrections

By construction, eq. (2.58) only includes the pure real emission contributions at each order
in perturbation theory. There are also virtual corrections, and in a direct calculation of the
structure function one must include all possible channels, with different numbers of real
and virtual gluons, combined with appropriate phase spaces. As is well-known, however, it
is not necessary to do this at LL order: all of our additional gluon emissions are associated
with the emission of soft gluons. These lead to infrared singularities, which must largely
cancel between real and virtual graphs (after phase space integration) [94–96], leaving only
collinear poles that can be absorbed into the parton distribution functions. To be more
specific, the purely real result of eq. (2.58) is O(ε−2n+1) at O(αns ), which must reduce to
O(ε−n) upon combination with the virtual corrections. We may then fix the latter by the
argument made below, which is a variant of the soft gluon unitarity requirement that has
previously been adopted at LP [4].

The effect of the virtual corrections is to modify the real emission contributions at
each order, removing singularities which are simultaneously soft and collinear. Thus, they

4Note also that the factor of 1/(1 − x) in eq. (2.65) gets cancelled against a factor of (1 − x)2 in the
matrix element squared contribution, eq. (2.64).
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will modify the double poles in eq. (2.58) as follows:

N ε

ε2
→ N ε + λ

ε2
, (2.66)

for some constant λ, where the second term on the right-hand side is down a power of N ε

due to having swapped a phase space integral for a real gluon with an integral over a virtual
momentum. Making this modification everywhere in eq. (2.58), one obtains the ansatz5

Wφ,q

∣∣∣
LL

= −2asCF
ε

N ε

N

1
CF − CA

(4as (N ε + λ1)
ε2

)−1
exp

[4as (λ2CF + λ3CA)
ε2

]
×
{

exp
[4asCF (N ε + λ4)

ε2

]
− exp

[4asCA (N ε + λ5)
ε2

]}
. (2.67)

We have been extra general in allowing for the possibility of an overall prefactor, consisting
of exponentiated virtual corrections that modify both terms in the bracket equally. As a
result, there is some redundancy in this parametrisation, as we will see. At O(as) no poles
will get removed by the virtual corrections (as indeed, no virtual correction exists at that
order for the qg channel), and W

(1)
φ,q

∣∣∣
LL

obtained from eq. (2.67) should be equal to the
purely real correction obtained by expanding eq. (2.58) up to O(as). Upon doing so we
find the condition

W
(1)
φ,q

∣∣∣
LL

= − 2CF
N(CF − CA)

CF (λ4 + 1)− CA(λ5 + 1)
ε(λ1 + 1) ≡ −2CF

N

1
ε
, (2.68)

which we use as a constraint on λ1. Starting from O(a2
s), we may impose that all poles

ε−m with n+ 1 ≤ m ≤ 2n− 1 vanish due to the virtual corrections, leading to the solution

λ5 = −CAλ3 + CFλ2 + CA
CA

, λ4 = −CAλ3 + CFλ2 + CF
CF

, λ1 = −1 . (2.69)

Upon using this in eq. (2.58), we see that the λ2 and λ3 coefficients cancel, and we find
the solution

Wφ,q

∣∣∣
LL

= −2asCF
ε

N ε

N

1
CF − CA

(4as(N ε − 1)
ε2

)−1

×
{

exp
[4asCF (N ε − 1)

ε2

]
− exp

[4asCA(N ε − 1)
ε2

]}
, (2.70)

which is our final result for the all-order structure function in Higgs induced DIS. Under-
standably, the effect of the virtual corrections has been to simply remove the double pole
wherever it appears, and one may question the pedantic nature of our above procedure in
this case. Later on when discussing the DY and Higgs production channels, however, we
will see a case that is not so simple a priori, and thus we have trodden carefully here.

5Using this form we have implicitly assumed that the virtual corrections exponentiate. However, we do
not have to make this assumption, and we come back to this point in section 3.3.
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2.2.3 Discussion of the result

Eq. (2.70) is the all-order LL form for the quark component of the structure function of
eq. (2.6). As such, we may check it against ref. [87], which conjectures an all-order form
for the CF terms, again at LL order only:

W
(n)
φ,q

∣∣∣
CnF

= 1
n!W

(1)
φ,q

(
W

(1)
2,q

)n−1
. (2.71)

Here W (1)
φ,q has been given in N -space in eq. (2.46), and we have also introduced the LP

NLO contribution to the conventional DIS structure function of eq. (2.4):

W
(1)
2,q = 4CF

(N ε − 1)
ε2

+ . . . . (2.72)

It is straightforward to check that upon setting CA → 0 in eq. (2.70) and expanding in
as, one verifies eq. (2.71). Reference [87] further conjectured that all remaining colour
structures would be obtained by replacing

Cn+1
F →

n∑
m=0

Cm+1
F Cn−mA

at O(ans ). Again, this agrees precisely with our result in eq. (2.70).
Equation (2.70) also reproduces the result found in eq. (3.50) of ref. [86]. Therefore,

it may be useful to explicitly mention the differences between the methods used here and
in [86], which, taken together, gives us a more comprehensive understanding of the qg DIS
cross section. In eq. (2.58) we obtain by direct computation the all-order contribution to
the total cross section, due to the real emission diagrams in figure 4, calculated in the limit
in which the radiated particles are soft. Instead, in [86] one obtains the all-order contribu-
tion after calculating the virtual hard diagrams (see eq. (2.23) there). There, the result is
obtained first by assuming the exponentiation of the one-loop virtual contribution; subse-
quently, the exponentiation is justified within a re-factorisation approach in SCET, which
allows one to write down a two-step renormalisation group evolution for the short-distance
coefficient responsible for the virtual-diagram contributions to the total cross section. The
two towers of contributions (all-real soft-emission and all-virtual hard diagrams) contain
equivalent information, which is sufficient to reconstruct the full DIS cross section. This
is possible because of the existence of consistency conditions, related to pole cancellations.
In [86] such conditions have been obtained by requiring the finiteness of the hadronic cross
section, while here we require that the partonic cross section has at most poles ε−n at order
n, after real and virtual contributions to the partonic cross section have been summed. The
application of these conditions leads to the characteristic pattern N ε − 1 appearing in the
exponents of eq. (2.70), also pointed out in eq. (3.53) of [86].

2.3 The gluon structure function in DIS at NLO

After having discussed the quark structure function in Higgs-induced DIS, we now consider
the case of conventional DIS to extract the gluon structure function. Following ref. [87],
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we may define W2,g to be the gluon contribution to the structure function of eq. (2.4),
with the LO normalisation divided out. To be more precise, the LO structure function is
straightforwardly found to be

F2(x,Q2)
∣∣∣
LO

= σ0 δ(1− x) +O(ε), σ0 = e2
q , (2.73)

such that one defines
W2,g = 1

σ0

∫
dΦTαβ2 |Mgγ∗→qq̄|2αβ . (2.74)

The gluon channel first occurs at NLO, and the squared amplitude is given by the diagram
of figure 2a, where in line with the comments above, and refs. [92, 93], we can ignore the
crossed box diagram as it is kinematically subleading. Averaging (summing) over initial
(final) state colours and spins, one finds a squared matrix element

|Mgγ∗→qq̄|2αβ = TR
e2
qg

2
sµ

4−d

(d− 2)
Tr[ 6kqγν( 6p− 6kq)γβ 6pHγα( 6p− 6kq)γµ]

(p− kq)2

(
−ηµν +

q′µpν + q′νpµ

p · q′

)
,

(2.75)

where we have used the gluon polarisation choice of eq. (2.13), and introduced the normal-
isation factor of the QCD colour generators in the fundamental representation, TR = 1/2.
At LL level, all propagators must be maximally soft and/or collinear, so that we may take
the 4-momentum of the emitted quark kq → 0 in the numerator. Introducing the Sudakov
variables from eq. (2.17) and projecting onto Tαβ2 defined in eq. (2.5), one finds

Tαβ2 |Mgγ∗→qq̄|2αβ = TR
(d− 2)e2

qg
2
sµ

4−d

2π
(1− βq)
βq

. (2.76)

Combining this with the phase space of eq. (2.32), one may carry out the αq integral using
the delta function, yielding∫

dΦ(2)Tαβ2 |Mgγ∗→qq̄|2αβ =
(
αs
4π

)
2TR (1− x)−ε

(
µ2

Q2

)ε ∫
dβq β

d−6
2

q (1− βq)
d−2

2 + . . .

=
(
αs
4π

)
2TR (1− x)−ε

(
µ2

Q2

)ε Γ(d−4
2 )Γ(d2)

Γ(d− 2) + . . .

=
(
αs
4π

)[
−2TR(1− x)−ε

ε

]
+ . . . , (2.77)

where the ellipsis denotes terms that are suppressed by powers of ε, and thus do not
contribute at LL order. The contents of the square brackets constitute the first non-zero
contribution to the gluon channel for DIS. Note, however, that we have only included a
single quark in the diagram of figure 2a. We must instead include all possible massless
(anti)-quark flavours, which amounts to simply multiplying eq. (2.77) by a factor of 2nf .
From eq. (2.77), we find the O(αs) gluon structure function

W
(1)
2,g (x) = −2nf

ε
(1− x)−ε , (2.78)
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which in Mellin space becomes.

W
(1)
2,g (N) = −2nf

ε

N ε

N
+ . . . , (2.79)

in the N →∞ limit. Note that one may obtain eq. (2.79) directly from the Higgs-induced
DIS NLO result of eq. (2.46) by the simple colour replacement

CF → nf , (2.80)

as remarked in ref. [87].

2.3.1 All order structure function in DIS

Similarly to the Higgs-induced DIS case, we can also calculate an all-order LL form for the
structure function W2,g in conventional DIS. This will be given by the ladder diagram of
figure 4b, where again all emitted partons are soft. Dressing eq. (2.75) with the requisite
eikonal Feynman rules and taking kq → 0 where possible, one obtains the (summed and
averaged) squared matrix element

|Mgγ∗→qq̄g1...gn |2

=
TR C

m
A Cn−mF e2

qg
2(n+1)
s µ(4−d)(n+1)

4(d− 2)

(
n∏
i=1

2p · q p · ki
q′ · ki

)

× Tr[ 6kqγµ 6pγα 6pHγβ 6pγν ]
(
−ηµν +

q′µpν + q′νpµ

p · q′

)

× Tαβ2
(p · k1)2[p · (k1 + k2)]2 . . . [p · (k1 + . . .+ km + kq)]2 . . . [p · (k1 + . . .+ kn + kq)]2

.

(2.81)

Substituting the projector of eq. (2.5), contracting indices and carrying out the trace gives

|Mgγ∗→qq̄g1...gn |2 =
TRC

m
A C

n−m
F e2

qg
2(n+1)
s

2πµ(d−4)(n+1) (p·q)−n
(

n∏
i=1

β̄i
ᾱi

)
βq
(
1−βq−

∑
i β̄i
)

β̄2
1

(
β̄1+β̄2

)2
. . .
(
β̄1+. . . β̄n+βq

)2 ,

(2.82)
where we have used momentum conservation to replace pH , and introduced the usual
Sudakov variables. To make the βq and β̄i integrals easier, we can borrow the trick from
the previous section of symmetrising over all crossed ladders. One may also use the delta
function that appears in eq. (2.25) to replace

1− βq −
∑
i

β̄i →
1

1− x

(
αq +

∑
i

ᾱi

)
. (2.83)

We then get

|Mgγ∗→qq̄g1...gn |2 =
TRC

m
A C

n−m
F e2

qg
2(n+1)
s µ(4−d)(n+1)

2π
(p·q)−n

(n+1)!
2n(d−2)

1−x

(
n∏
i=1

1
ᾱiβ̄i

)
αq+

∑
i ᾱi

βq
.

(2.84)
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After rescaling the β̄i and βq variables by a factor of 1/(1 − x) and combining with the
phase space, all integrals may be carried out similarly to the previous case, and one ulti-
mately finds ∫

dΦ(n+2) |Mgγ∗→qq̄g1...gn |2 = −2TRasN ε

ε

(4asN ε

ε2

)n CmA Cn−mF

(n+ 1)! , (2.85)

which is valid at NLP LL order. As in the Higgs-induced case, we must sum over all
values of m to include all ladder diagrams, where m gluons couple to the gluon leg (lower
part of the diagram), and n −m to the quark leg (upper part of the diagram). We must
also multiply by 2nf to take account of all (anti-)quark species that could be coupling to
the gluon. The result is that the pure real emission contribution to W (n+1)

2,g can be easily
obtained from eq. (2.57) by replacing a single power of CF with nf , and interchanging
CF ↔ CA elsewhere, as in fact was already noted as part of the conjectures in ref. [87].

Given the above replacements, it is not necessary to repeat the soft gluon unitarity
argument in order to furnish eq. (2.85) with virtual corrections. We can simply take the final
result of eq. (2.70) for the Higgs case, and make the necessary colour factor replacements
to obtain

W2,g
∣∣∣
LL

= −2asnf
ε

N ε

N

1
CA − CF

(4as (N ε − 1)
ε2

)−1

×
{

exp
[4asCA (N ε − 1)

ε2

]
− exp

[4asCF (N ε − 1)
ε2

]}
. (2.86)

2.4 Resummed form for splitting and coefficient functions

We have now derived all-order forms for the partonic structure functions for subleading
channels in (Higgs-induced) DIS. As a consequence, we can derive resummed forms for the
off-diagonal splitting functions Pqg and Pgq, and also for the coefficient functions which con-
trol the finite parts of the structure functions.6 To define things more precisely, let us recall
the mass factorisation procedure, by which those infrared poles remaining in the structure
functions after combining real and virtual contributions can be factorised as follows:

Wa,k = C̃a,iZik , (2.87)

or, in matrix form, (
Wa,q

Wa,g

)
=
(
C̃a,q C̃a,g

)(Zqq Zqg
Zgq Zgg

)
. (2.88)

Here, C̃a,i is an infrared finite coefficient function, and the transition function matrix
Z ≡ {Zik} collects all the infrared divergences. The latter is related to the DGLAP split-
ting functions, contained in the matrix

P =
(
Pqq Pqg
Pgq Pgg

)
. (2.89)

6This can be done following the steps described in section 3.2.3 of ref. [86]. Nevertheless, we find it
pedagogical to provide an independent derivation in what follows.
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By definition, this satisfies
P = dZ

d lnQ2 Z−1, (2.90)

where Q2 is the hard scale of the process, which has been taken to be equal to both the
factorisation and renormalisation scales. Note that the ordering of the matrix and its in-
verse in eq. (2.90) are important, given the matrix-valued nature of Z. In Mellin space, it
is also conventional to define the anomalous dimension matrix

γ ≡
(
γqq γqg
γgq γgg

)
= −P(N) . (2.91)

Let us focus explicitly on the function Pgq, which can be obtained from the Higgs-induced
DIS process, as discussed in refs. [86, 87]. Once we have extracted Pgq we may use the
colour replacements to straightforwardly get Pqg. One can obtain Pgq from the transition
function Zgq using the relation7

Z(n)
gq = 1

n!

n−1∑
m=0

γ
(m)
gq

εn−m

n−m−1∑
k=0

(m+ k)!
k!

(
γ(0)
qq

)k (
γ(0)
gg

)n−m−1−k
. (2.92)

This equation was stated without proof in ref. [87], but we prove it in appendix B. We are
after obtaining γ(n−1)

gq , which can be found directly from Z
(n)
gq by extracting the O(ε−1) term

of eq. (2.92). This can be seen by requiring that k = 0 and n−m− 1− k = n−m− 1 = 0
in eq. (2.92), resulting in

Z(n)
gq

∣∣∣
k=0,m=n−1

= 1
ε

γ
(n−1)
gq

n
, (2.93)

from which we see we indeed only need the O(ε−1) part of Z(n)
gq to obtain γ

(n−1)
qg . The

explicit form of the mass factorisation formula for Wφ,q is

Wφ,q = C̃φ,qZqq + C̃φ,gZgq , (2.94)

where our aim is now to find both the quantities C̃φ,q and Zgq on the right-hand side. That
we only have a single equation for two unknowns corresponds to the fact that the splitting
and coefficient functions are not unique but defined only up to a choice of factorisation
scheme. However, imposing the MS scheme such that the transition functions contain
only poles (and some particular numerical constants that need not explicitly concern us) is
sufficient for us to find the above quantities, as we will see. Given that Zgq and C̃φ,q already
start at NLP, we will need the remaining elements on the right-hand side of eq. (2.94) at LP,
where they are fixed by standard resummation arguments. Quoting from ref. [87], we have

Zqq = exp
[4asCF lnN

ε

]
, C̃φ,g = exp

[4asCA (N ε − 1− ε lnN)
ε2

]
. (2.95)

That is, the LL transition function Zqq can be obtained by simply exponentiating the pole
in the NLO result. Likewise, for the gluon coefficient function in Higgs-induced DIS, one
removes the pole terms from the NLP result and exponentiates what is left.

7As usual, we normalise perturbative coefficients in terms of as = αs/(4π). However, following conven-
tion, γ(n)

ij is defined to be the coefficient of an+1
s .
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As the coefficient function C̃φ,q is necessarily finite, one may rearrange eq. (2.94) to
obtain the constraint

C̃φ,q = Wφ,q

Zqq
− ZgqC̃φ,g

Zqq
∼ O

(
ε0
)
. (2.96)

This equation implies that all ε poles must cancel between the first and second terms on
the right-hand side. In particular, this must be true for the O(ε−1) contribution, which
we will need to consider to get the single ε pole term of Zgq en route to the anomalous
dimension γgq, as dictated by eq. (2.93). For the first term in eq. (2.96), we may substitute
the results of eqs. (2.70), (2.95), and rearrange to get

Wφ,q

Zqq
= − CF

CF − CA
1

2N lnN f(−ε lnN)
{

exp
[4asCF (N ε − 1− ε lnN)

ε2

]
− exp

[4asCA(N ε − 1− ε lnN)
ε2

− 4as(CF − CA) lnN
ε

]}
, (2.97)

where we have isolated the function

f(x) = x

ex − 1 =
∞∑
m=0

Bm
m! x

m, (2.98)

which acts as the exponential generating function for the Bernoulli numbers {Bm}. We
want to find the O(ε−1) part of eq. (2.97), for which we can note that the entire first
line is finite as ε → 0. In the second line, we can recognise the coefficient function C̃φ,g
from eq. (2.95), such that the second term of eq. (2.97) together with the prefactor can be
written as

Wφ,q

Zqq

∣∣∣∣∣
poles

∼ C̃φ,g
2N lnN

CF
CF − CA

∞∑
n=1

ans
[4(CA − CF )]n lnnN

n!εn
∞∑
m=0

Bm(−ε lnN)m

m! . (2.99)

By defining

Zgq =
∞∑
n=1

−1∑
m=−n

ans ε
mZ(n,m)

gq , (2.100)

where m labels the power of ε, we can write eq. (2.96) as

C̃φ,q ≡ O
(
ε0
)

= C̃φ,g

∞∑
n=1

ans

[
1

2N lnN
CF

CF − CA
[4(CA − CF )]n lnnN

n!εn
∞∑
m=0

Bm(−ε lnN)m

m!

− 1
Zqq

−1∑
m=−n

εmZ(n,m)
gq

]
, (2.101)

where we have extracted a common factor of C̃φ,g. The above equation implies that the pole
cancellation must apply within the square brackets. We remind the reader that we are in
particular interested in the cancellation that happens for the O(ε−1) part of this equation.
For this reason, we can neglect the inverse factor of Zqq, as it will only contribute further
poles in ε. In the first term, the O(ε−1) contribution can only arise from the term in
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the second sum with m = n − 1. In the second term, we need the term with m = −1.
Demanding that these contributions cancel each other leads to the following result:

Z(n,−1)
gq = −2asCF

N

[
4as (CF − CA) ln2N

]n−1 Bn−1
n!(n− 1)! . (2.102)

Combining this with eqs. (2.93), (2.91) yields

Pgq (N)
∣∣∣
LL

= 2asCF
N
B0
[
4as(CF − CA) ln2N

]
, (2.103)

where
B0(x) =

∞∑
n=0

Bn
(n!)2x

n . (2.104)

Equation (2.103) is precisely the result conjectured in ref. [87], including the full colour de-
pendence. This result has also been obtained in section 3.2.3 of ref. [86], following an equiv-
alent derivation, that leads from the expression given in eq. (2.70) to eqs. (2.101), (2.103),
exploiting eq. (2.94).

Using the all-order form of Pgq, and as in ref. [86], we can go further and derive the
all-order LL form of the coefficient function C̃gq. Indeed, this is straightforward given the
results of eqs. (2.96), (2.97). We have seen in eq. (2.99) that the pole contributions from the
first term in eq. (2.96) have an explicit factor of C̃φ,g in them. Thus, all the second term in
eq. (2.96) does is to remove the poles in the first term, and any other terms in which higher-
order in ε contributions in C̃φ,g interact with the poles. We can thus find the coefficient
function C̃φ,q by simply taking the O(ε0) piece of eq. (2.97), ignoring the higher-order ε
terms in C̃φ,g as we do so. The first term in eq. (2.97) is finite, and taking ε→ 0 gives

− CF
CF − CA

1
2N lnN exp

[
4asCF ln2N

]
. (2.105)

In the second term of eq. (2.97), we can expand to get

CF
CF − CA

e2asCA ln2 N

2N lnN

∞∑
n=0

[−4as(CF − CA) lnN ]n

n!

∞∑
m=0

εm−n
Bm
m! (− lnN)m, (2.106)

such that the O(ε0) piece has m = n in the second sum, yielding

CF
CF − CA

e2asCA ln2 N

2N lnN

∞∑
n=0

[
−4as (CF − CA) ln2N

]n Bn

(n!)2

= CF
CF − CA

e2asCA ln2 N

2N lnN B0
[
4as (CF − CA) ln2N

]
. (2.107)

Putting things together, we get

C̃φ,q
∣∣∣
LL

= 1
2 lnN

CF
CF − CA

[
B0[4as(CF − CA) ln2N ]e2asCA ln2 N − e2asCF ln2 N

]
, (2.108)

which matches the result in refs. [86, 87].
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p1

p2

q1

q2

(a)

kq

p2

p1

(b)

Figure 5. (a) LO squared amplitude for the DY production of an off-shell photon, with decay to
a lepton pair; (b) the gq̄ channel at NLO.

Given the colour replacements in going from eq. (2.70) to eq. (2.86), we can easily
recycle our results to provide the counterparts of eqs. (2.103), (2.108) in conventional DIS:

Pqg
∣∣∣
LL

= 2asnf
N
B0
[
4as (CA − CF ) ln2N

]
;

C̃2,g
∣∣∣
LL

= 1
2 lnN

nf
CA − CF

[
B0
[
4as (CA − CF ) ln2N

]
e2asCF ln2 N − e2asCA ln2 N

]
. (2.109)

To summarise, in this section we have derived all-order LL forms for the kinematically
subleading structure functions in (Higgs-induced) DIS. We used them to derive resummed
results for the off-diagonal DGLAP splitting functions and the infrared-finite coefficient
functions. Our results are in agreement with refs. [86, 87], but our complementary approach
— constructing the structure functions using real emission contributions plus soft gluon
unitarity — means we do not have to make any assumptions about the exponentiation or
otherwise of the virtual corrections. Furthermore, it seems clear that our arguments should
generalise to other processes. Indeed they do, as we discuss in the following sections.

3 Resummation of the gq̄ channel in Drell-Yan production

DY production of a vector boson is a canonical testbed for new resummation ideas, as
well as being of phenomenological importance in its own right. Production of SM vector
bosons is a key background to many new physics processes, and the production of new
heavy bosons via an s-channel resonance is an important potential discovery mode of new
physics that is actively being probed. For our purposes, we will consider the original DY
process of production of an off-shell photon, where the latter decays to a lepton pair, which
at LO corresponds to:

q (p1) q̄ (p2) → γ∗ (q)→ e+(q1) e−(q2) . (3.1)

We quickly review the ingredients for the LO computation of this process, as their defini-
tions will be needed in what follows. The squared amplitude for this process is shown in
figure 5a. The virtuality of the off-shell photon is conventionally written as

Q2 = q2 , q = q1 + q2 , (3.2)
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and we also define the variable
z = Q2

s
, (3.3)

where s = (p1+p2)2 is the partonic centre-of-mass energy. Thus, z represents the fraction of
the centre-of-mass energy that is carried by the vector boson, such that z → 1 corresponds
to threshold production.

The squared matrix element from figure 5a summed (averaged) over final (initial) state
colours and spins evaluates to

|Mqq̄→γ∗ |2 = 1
2CA

e4e2
q (cos(2θ) + 3) , (3.4)

where e =
√

4παEM is the electromagnetic coupling, eq the charge of the quark in units of
e, and θ the angle between the z-axis and the e+ lepton. We may write the 2-body phase
space of the LO final state in d = 4 dimensions as∫

dΦ(2)(p1 + p2; q1, q2) = 1
16π

∫ π

0
d cos θ , (3.5)

leading to the LO cross section:

σqq̄→γ∗ = 1
2s

∫
dΦ(2)(p1 + p2, q1, q2)|Mqq̄→γ∗ |2 (3.6)

= 1
Q2

4πα2
EMe

2
q

3CA
,

where we have used the fact that z = 1 at LO in the second line. In calculating higher-order
corrections in what follows, we will normalise to this LO cross section. In particular, the
following expression will be useful:∫

dΦ(2)(p1 + p2, q1, q2)|Mqq̄→γ∗ |2 = 8Q2CA σqq̄→γ∗ , (3.7)

where the left-hand side contains the squared amplitude before spin and colour averaging.
Note that this squared amplitude can be written as a contraction between a hadronic and
leptonic tensor, defined as follows

|Mqq̄→γ∗ |2 = Hµν
treeLµν , (3.8)

where
Hµν

tree = e2e2
qTr [ 6p2γ

µ 6p1γ
ν ] , (3.9)

and
Lµν = e2

Q4 Tr [ 6q1γµ 6q2γν ] . (3.10)

We aim to show how LL logarithms can be resummed in the kinematically subleading gq̄
channel for DY, which starts at NLP. We now proceed in the same way as before: we first
compute the all-order phase space in the NLP approximation, then we examine the NLO
qg channel before moving to the all-order results.
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3.1 All-order phase space for DY production

In considering higher-order corrections to DY production, we will need to integrate over
the multiparton phase space for a given number of real emissions. As we discussed for DIS
in section 2.1, we must then find suitable variables such that this phase space is tractable.
The solution is again to use a Sudakov decomposition for the emitted parton momenta,
and the analysis proceeds similarly to section 2.1, albeit with minor changes due to having
a different threshold variable.

Consider the emission of one additional soft quark with momentum kq and n additional
gluons with momenta {ki} dressing the LO process, which includes already the two leptons
in the final state. As is well-known, the (n+ 2)-body phase space can then be decomposed
as follows:∫

dΦ(n+3) = 1
2π

∫
dQ2

∫
dΦ(n+2)(p1 + p2; q, k1 . . . kn, kq)

∫
dΦ(2)(q; q1, q2) , (3.11)

which has a straightforward physical interpretation. The second integral on the right-hand
side is over the intermediate phase space of the off-shell photon (with fixed virtuality)
and additional partons; the third integral corresponds to the decay of the photon into the
lepton pair. Finally, one must integrate over all virtualities for the photon, and include an
appropriate normalisation factor. Considering the second integral, we may evaluate this
further as (suppressing the arguments for brevity)

∫
dΦ(n+2) = (2π)d

∫ ddq
(2π)d−1 δ+

(
q2 −Q2

) [ n∏
i=1

∫ ddki
(2π)d−1 δ+

(
k2
i

)]

×
∫ ddkq

(2π)d−1 δ+
(
k2
q

)
δ(d)

(
p1 + p2 − q − kq −

n∑
i=1

ki

)
. (3.12)

We may then take p1 and p2 as the null vectors in our Sudakov decomposition, writing
each parton momentum (including the quark momentum) as

ki = ᾱip1 + β̄ip2 + ki,⊥, ki,⊥ · p1 = ki,⊥ · p2 = 0 . (3.13)

The δ(d)-function can be removed using the ddq integral. The overall δ+ function then
becomes

δ+

(p1 + p2 −
n∑
i=1

ki

)2

−Q2

 = 1
s
δ

(
1− z −

n∑
i=1

ᾱi −
n∑
i=1

β̄i

)
, (3.14)

where, similarly to eq. (2.24), we have neglected terms that are quadratic in the soft parton
momenta. Transforming from the usual momentum components to the Sudakov variables,
one finds

ddki = s

4dᾱidβ̄i
(
k2
i,⊥

) d−4
2 dk2

i,⊥dΩ(i)
d−2 . (3.15)

As in the DIS analysis, all matrix elements we encounter will not depend on transverse
angles, so that we can simply replace the differential solid angles with their integrated
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results of eq. (2.27). We find∫
dΦ(n+2) = 2π

s
sn+1+(n+1) d−4

2
1

(4π)(n+1) d2

1
Γn+1

(
d−2

2

) [ n∏
i=1

∫
dᾱidβ̄i

(
ᾱiβ̄i

) d−4
2

]

×
∫

dαqdβq (αqβq)
d−4

2 δ+
(

1− z − αq − βq −
n∑
i=1

(
ᾱi + β̄i

))
. (3.16)

This may be used in eq. (3.11) together with eq. (3.5).

3.2 The qg channel at NLO

To show how LL logarithms can be resummed in the gq̄ channel for DY, we will use similar
arguments to those used in the DIS analysis of section 2. There, we heavily made use of the
results of refs. [89–91] (reviewed in refs. [92, 93]) to greatly streamline the effort involved
in calculating all-order matrix elements. The key idea was to make a particular reference
vector choice for the gluon polarisation sum, which in turn led to only pure ladder graphs
being relevant for the real emission contributions at arbitrary order. As discussed in detail
in refs. [92, 93], this idea readily generalises to DY production, and we will choose p2 as our
reference vector.8 With this choice, the squared matrix element of figure 5b evaluates to

|Mgq̄→γ∗q̄|2 = 1
2(d− 2)

e2e2
qg

2
sµ

4−dCF

C2
A − 1

Lµν
1

(2p1 · kq)2

× Tr [ 6p2γ
µ 6p1γ

σ 6kqγρ 6p1γ
ν ]
(
−gσρ + p1,σp2,ρ + p2,σp1,ρ

p1 · p2

)
= TR

2CA
g2
sµ

4−d

2p1 · kq
|Mqq̄→γ∗ |2 . (3.17)

Defining Sudakov variables for the emitted quark momentum via

kq = αqp1 + βqp2 + kq,⊥ , (3.18)

we obtain

|Mgq̄→γ∗q̄|2 = 4παsµ4−d TR
2CA

1
s

1
βq
|Mqq̄→γ∗ |2.

We may integrate this over the phase space using eq. (3.11) for the case n = 0. Including
also the flux factor and the integral representation of the δ function (eq. (2.30)), one finds
a cross section

σgq̄→γ∗q̄ = 1
2s

∫ dQ2

s

1
16π

∫
d cos θ|Mqq̄→γ∗ |2s

d−4
2

4παs
(4π)

d
2

µ4−d

Γ
(
d−2

2

) TR
2CA

×
∫ +i∞

−i∞

dT
2πie

T (1−z)
∫

dαq e−Tαq (αq)
d−4

2

∫
dβq e−Tβq (βq)

d−6
2 . (3.19)

8In fact, refs. [92, 93] advocate the use of a more general reference vector, involving a superposition of
p1 and p2. Whilst this leads to a more physical interpretation of the resulting Feynman diagrams, it makes
the phase space integrals more difficult, hence we will not adopt this here.
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The required integrals are straightforward using the methods of section 2. After normalising
to the LO cross section using eq. (3.7) one finds

1
σqq̄→γ∗

dσgq̄→γ∗q̄

dz =
(
αs
4π

)[
−2TR

ε
(1− z)−2ε

]
+ . . . , (3.20)

where we have kept only the LL dependence at NLP. Following ref. [37], we will expand
the cross section normalised to the LO result as in eq. (2.43), writing

1
σqq̄→γ∗

dσDY,gq̄
dz ≡WDY,gq̄ =

∞∑
n=1

ansW
(n)
DY,gq̄ , (3.21)

where we have shortened the notation σgq̄→γ∗q̄g1...gn to σDY,gq̄. From eq. (3.20), we then
find the Mellin space result

W
(1)
DY,gq̄(N) = −2TR

ε

N2ε

N
. (3.22)

3.3 All-order form for the gq̄ cross section

Having calculated the NLO result for the gq̄ channel using the choice of p2 as the reference
vector, let us now generalise the calculation to higher orders. As for the DIS case, the
emission of a soft quark at NLO has already placed us at next-to-leading power in the
threshold variable, so that we need only include further emission of soft gluons at higher
orders. As discussed above, only ladder graphs will be relevant. Furthermore, our choice
of p2 as a reference vector means that only gluons emitted from the upper half of the
squared amplitude in figure 5b will contribute.9 Indeed, applying eikonal Feynman rules
to emissions in the lower part of the diagram results in a vanishing factor

pµ2p
ν
2

(
−ηµν + p2,µkν + p2,νkν

p2 · k

)
= 0 . (3.23)

The most general ladder diagram we have to consider is shown in figure 6a, and contributes
to the summed-and-averaged matrix element

|MDY,gq̄|2 = e2
q

CmA C
n−m+1
F

C2
A−1

g
2(n+1)
s µ(4−d)(n+1)

2(d−2)

× Lµν

(2(p1 ·(k1+. . .km+kq))2 Tr[ 6p2γ
µ 6p1γ

ρ 6kqγσ 6p1γ
ν ]

× pµ1
1

p1 ·k1
. . .

pµm1
p1 ·(k1+. . .km)

p
µm+1
1

p1 ·(k1+. . .km+1+kq)
. . .

pµn1
p1 ·(k1+. . .kn+kq)

× pν1
1

p1 ·k1
. . .

pνm1
p1 ·(k1+. . .km)

p
νm+1
1

p1 ·(k1+. . .km+1+kq)
. . .

pνn1
p1 ·(k1+. . .kn+kq)

×
(
−gρσ+ p2,ρp1,σ+p2,σp1,ρ

p2 ·p1

) n∏
i=1

(
−gµiνi+

p2,µiki,νi+p2,νiki,µi
p2 ·ki

)
. (3.24)

9It is for this reason that refs. [92, 93] advocated using a more general reference vector, that interpolates
between axial gauges in the upper and lower halves of the amplitudes, making each half of the DY amplitude
look more DIS-like.
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k1

k2
. . .

km

km+1

. . .

kn

kq

p1

p2

(a)

kq

k1

k2
. . .

km

km+1

. . .

kn

p1

p2

(b)

Figure 6. (a) Ladder diagram contributing to the gq̄ channel in DY production; (b) similar but
for the qg channel in Higgs production.

This can be simplified enormously by realizing that in the −gµiνi contributions vanish as
p2

1 = 0, and that the trace times the polarization sum for the incoming gluon evaluate to

Tr [ 6p2γ
µ 6p1γ

ρ 6kqγσ 6p1γ
ν ]
(
−gρσ + p2,ρp1,σ + p2,σp1,ρ

p2 · p1

)
= (d− 2)2p1 · kq

Hµν

e2
q

. (3.25)

Introducing again the Sudakov variables, we find

|MDY,gq̄|2 =TRC
m−1
A Cn−mF g2(n+1)

s µ(4−d)(n+1) 22(n+1)

8sn+1 |Mqq̄→γ∗ |2βq

[
n∏
i=1

β̄i
ᾱi

]

× 1(
β̄1
)2
. . .
(
β̄1+· · ·+β̄m

)2(
β̄1+· · ·+β̄m+βq

)2
. . .
(
β̄1+· · ·+β̄n+βq

)2 .

(3.26)

To efficiently carry out the phase space integral, we can apply a similar trick to the DIS
case of section 2, and symmetrise over crossed-ladder contributions, given that genuinely
crossed ladders will be kinematically subleading.10 The result is

|MDY,gq̄|2 = TRC
m−1
A Cn−mF g2(n+1)

s µ(4−d)(n+1) 22(n+1)

8sn+1
1

(n+ 1)! |Mqq̄→γ∗ |2 1
βq

n∏
i=1

1
ᾱiβ̄i

.

(3.27)

10This statement has been checked explicitly at NNLO. Moreover, if one computes the phase-space
integrals without the symmetrisation over crossed-ladder contributions, one arrives at the same answer as
demonstrated in appendix A.2.
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We must combine this with the phase space of eq. (3.16). Upon rewriting the delta function
according to eq. (2.30), one obtains

∫
dΦ(n+2)|MDY,gq̄|2 =TRC

m−1
A Cn−mF

(
αs
4π

)n+1
2π 22(n+1)

8s
1

(n+1)!

(
µ2

s

) (4−d)(n+1)
2

|Mqq̄→γ∗ |2

×
Γ2n+1

(
d−4

2

)
Γ
(
d−2

2

)
Γ(n(d−4)+d−3) (1−z)−(n+1)(d−4) . (3.28)

Combining this with the remaining integrals in eq. (3.11) and using eq. (3.7), one finds
that the normalised contribution to eq. (3.21) at O(αn+1

s ) is

W
(n+1)
DY,gq̄ (z) = −

(
n∑

m=0
CmA C

n−m
F

)
1

(n+ 1)!
2TR
ε2n+1 4n(1− z)−2ε(n+1) + . . . , (3.29)

where we have summed over all possible ladders, and kept LL terms only. In Mellin space,
this result may be written as

W
(n+1)
DY,gq̄ (N) = −

(
n∑

m=0
CmA C

n−m
F

)
1

(n+ 1)!
1
N

2TRN2ε

ε

(
4N2ε

ε2

)n
+ . . . , (3.30)

which may be resummed via eq. (2.59) into the closed form

WDY,gq̄
∣∣∣
LL

=−2asTRN2ε

ε

1
N

(
4asN2ε

ε2

)−1 1
CF−CA

{
exp

[
4asCFN2ε

ε2

]
−exp

[
4asCAN2ε

ε2

]}
.

(3.31)
This is the pure real emission contribution, and must be complemented by virtual correc-
tions. As in section 2, we may fix these using soft gluon unitarity, i.e. the requirement that
sufficiently divergent infrared contributions must cancel when real and virtual corrections
are combined, leaving only those collinear poles which can be absorbed into the parton
distribution functions. The argument here is necessarily more complicated than that of
section 2, however, as each double pole in ε appearing in eq. (3.31) is accompanied by a
factor of N2ε rather than N ε as a result of the different phase space in DY as opposed to
DIS. We may modify each such pole according to

N2ε

ε2
→ N2ε + λiN

ε + λj
ε2

(3.32)

for some constants λi and λj . Furthermore, we may again allow for an overall multiplicative
factor involving both CA and CF , which motivates the following ansatz:

WDY,gq̄
∣∣∣
LL

= −2asTRN2ε

ε

1
N

exp
[4as [CF (λ1N

ε + λ2) + CA (λ3N
ε + λ4)]

ε2

]

×
(

4as
(
N2ε + λ5N

ε + λ6
)

ε2

)−1 1
CF − CA

×
{

exp
[

4asCF
(
N2ε + λ7N

ε + λ8
)

ε2

]
− exp

[
4asCA

(
N2ε + λ9N

ε + λ10
)

ε2

]}
.

(3.33)
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One can directly simplify this expression by looking at the possible colour structures at
each order. At the first order in as, there are no virtual corrections needed. At this
order, the only possible colour structure (after factoring out the Born one) is proportional
to TR, which can only be created by eq. (3.33) by setting λ9 + λ10 = λ7 + λ8, whereas
λ9 +λ10 = λ7 +λ8 = λ5 +λ6 is needed to have the correct normalisation of the real emission
contribution. Expanding to O(a2

s) furthermore requires that λ7 = λ9 (and therefore that
λ10 = λ8), whereas at O(a3

s) we find the constraint λ7 = λ5 (and therefore λ8 = λ6). We
then arrive at the reduced ansatz

WDY,gq̄
∣∣∣
LL

=−2asTRN2ε

ε

1
N

exp
[4as[CF (λ1N

ε+λ2)+CA(λ3N
ε+λ4)]

ε2

]

×
(

4as(N2ε+λ5N
ε+λ6)

ε2

)−1

× 1
CF−CA

{
exp

[
4asCF (N2ε+λ5N

ε+λ6)
ε2

]
−exp

[
4asCA(N2ε+λ5N

ε+λ6)
ε2

]}
.

(3.34)

Contrary to the DIS case, here we find that expanding eq. (3.34) and requiring that higher-
order poles vanish is not quite sufficient to fix all of the coefficients. However, there is
more information that we can use. Mass factorisation implies that, at NLP order, the
unfactorised cross section can be written as

WDY,gq̄ = C̃DY,gq̄ZqqZgg + C̃DY,qq̄ZqgZqq , (3.35)

where we have introduced the relevant infrared finite coefficient functions C̃DY,ij , and the
transition functions Zij , which are already known from the DIS analysis in section 2. Given
that both C̃DY,gq̄ and Zqg(= Zq̄g) start at NLP, it is sufficient to know C̃DY,qq̄ at LP, which
is given by standard resummation as

C̃DY,qq̄ = exp
[

4asCF (N2ε − 1− 2ε lnN)
ε2

]
. (3.36)

Rearranging eq. (3.35), we obtain the constraint

C̃DY,gq̄ = WDY,gq̄
ZqqZgg

− C̃DY,qq̄Zqg
Zgg

≡ O
(
ε0
)
. (3.37)

We have quoted the all-order LL form for Zqq(= Zq̄q̄) in eq. (2.95), and its counterpart for
the gluon is

Zgg = exp
[4asCA lnN

ε

]
. (3.38)

The ratio Zgq/Zqq may be obtained directly from eq. (2.101): since the C̃φ,q coefficient is
necessarily of O(ε0) and the transition functions capture all the poles in ε, we find that

Zgq
Zqq

=
∞∑
n=1

ans
2N lnN

CF
CF − CA

[4(CA − CF )]n lnnN
n!εn f(−ε lnN)

∣∣∣∣
poles

. (3.39)
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The explicit amplitude results of section 2 imply that we can find a similar equation for
the combination appearing in eq. (3.37) by relabelling q ↔ g, replacing CF by TR in the
numerator of the prefactor in eq. (3.39), and replacing CA ↔ CF elsewhere:

Zqg
Zgg

=
∞∑
n=1

ans
2N lnN

TR
CA − CF

[4(CF − CA)]n lnnN
n!εn f(−ε lnN)

∣∣∣∣
poles

. (3.40)

We may now substitute eqs. ((2.95), (3.33), (3.36), (3.38), (3.40)) into eq. (3.37), and
expand eq. (3.37) to fixed order to constrain the coefficients λi by requiring that C̃DY,qq̄ is
of O(ε0). At O(a2

s) we constrain λ1 and λ2 to be

λ1 = −CA(2λ3 + λ5 + 1) + CF (λ5 − 1)
2CF

, λ2 = −CA(2λ4 + λ6) + CF (λ6 + 2)
2CF

.

(3.41)
At O(a3

s) we find the additional constraints

λ5 = λ6 − 1 , λ6 = 0 . (3.42)

After this order we do not find any new constraints, as the λ3 and λ4 coefficients are
cancelled from WDY,gq̄. We may therefore write the full LL form of the unfactorised gq̄

cross section as

WDY,gq̄
∣∣∣
LL

= − TR
2(CF − CA)

1
N

ε(N ε−1)
N ε − 1 exp

[4asCF (N ε − 1)
ε2

]
×
{

exp
[4asCFN ε(N ε − 1)

ε2

]
− exp

[4asCAN ε(N ε − 1)
ε2

]}
. (3.43)

We now come back to a point raised already in section 2.2.2 concerning our implicit as-
sumption on the exponentiation of the virtual contributions. Some readers may therefore
be concerned that our ansatz of eq. (3.33) is not general enough. An alternative procedure
would be to expand each order of the partonic cross section as follows:

W
(n)
DY,gq̄ = 1

Nε2n−1

2n∑
l=2

N lεA
(n,l)
DY,gq̄, (3.44)

where the right-hand side includes all permissible powers of N ε. The coefficient A(n,2n)
DY,gq̄ is

fixed from eq. (3.31), and reads

A
(n,2n)
DY,gq̄ = − 1

n!
TR4n

2

n−1∑
m=0

CmA C
n−m−1
F = −2TR

n!

n−1∑
m=0

(4CA)m(4CF )n−m−1 . (3.45)

The remaining coefficients at each order can be fixed using the constraint from eq. (3.37).
Upon carrying out this exercise, we obtain precisely the coefficients {A(n,l)

DY,gq̄} conjectured in
ref. [37], based on exact calculations of the fixed-order cross section. These coefficients agree
with the terms we find from expanding eq. (3.43), which is obtained using the exponentiated
ansatz for the virtual corrections. This shows that indeed we do not need to assume the
exponentiated nature of the virtual corrections, although the procedure of obtainingWDY,gq̄
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is simplified if we do. Note a similar procedure may be employed for the DIS results of
section 2 as well.

We may now proceed to also find the NLP LL resummed form for the coefficient
function C̃DY,gq̄. From eqs. ((3.43), (2.95), (3.38), (3.36)), one finds for the first factor
appearing on the right-hand side of eq. (3.37)

WDY,gq̄
ZqqZgg

= − TR
CF − CA

f(−ε lnN)
2N lnN exp

[
4asCF (N2ε − 1− 2ε lnN)

ε2

]

×
{

exp
[4as(CF − CA) lnN

ε

]
− exp

[4as(CA − CF )[N ε(N ε − 1)− ε lnN ]
ε2

]}
.

(3.46)

Recognising that C̃DY,qq̄ multiplies the entire result, we see that the only effect of the second
term in eq. (3.37) is to remove the poles of the first term, and also any contributions from
these poles hitting higher-order terms in C̃DY,qq̄. We can thus find the coefficient C̃DY,gq̄
by taking the O(ε0) piece of eq. (3.46), ignoring any higher order terms in C̃DY,qq̄ as we do
so (n.b. this argument is similar to finding the coefficient C̃φ,q in eq. (2.108)). The result is

C̃DY,gq̄
∣∣∣
LL

= TR
CA−CF

1
2N lnN

[
e8CF as ln2NB0

[
4as (CA−CF ) ln2N

]
−e(2CF+6CA)as ln2N

]
,

(3.47)
which precisely matches the conjecture in ref. [37], and further agrees with the derivation
in ref. [88], obtained using the methods of [86].

Given that the resummation of LL NLP terms in the kinematically leading channels
in DY production has already been established previously, see refs. [62, 79], this analysis
completes the resummation of the DY process at NLP LL order. We examine the closely
related Higgs production process in the following section.

4 Resummation of the qg channel in Higgs boson production

The final process we will consider in this paper is that of Higgs boson production via gluon-
gluon fusion, which is closely related to the DY process from the resummation point of view.
The LO squared amplitude is shown in figure 7a, where we assume the same effective
coupling as in figure 1b. The summed and averaged LO squared amplitude corresponding
to figure 7a is

|Mgg→h|2 = |λ|2

(d− 2)2
1

N2
c − 1

(
−ηµν + cµp1,ν + cνp1,µ

p1 · c

)(
−ηµν + cµpν2 + cνpµ2

p2 · c

)
, (4.1)

where cµ is the reference vector entering the gluon polarisation sum. In contrast to the
DY case of the previous section, we now face the complication that we cannot simply
choose c = p2, as the second gluon polarisation sum is then ill-defined. However, it would
be desirable to keep this choice for any final-state gluons, given that it means that we
only have to consider ladder graphs associated with the upper part of the amplitude. A
simple calculational fix is to choose different reference vectors for initial state and final
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p1

p2

q

(a)

q

p2

p1
kq

(b)

Figure 7. (a) LO squared amplitude for Higgs boson production via gluon-gluon fusion; (b) the
quark-gluon channel at NLO.

state gluons, which amounts to defining polarisations differently for incoming or outgoing
gluons. There is nothing to forbid this, although Bose symmetry demands that we treat
all initial (or all final) gluons on an equal footing. For the initial-state gluons, let us leave
cµ general, but satisfying the conditions

c2 = 0, c · p1 = c · p2 = 0 . (4.2)

For final state gluons, we will continue to use p2 as the reference vector.
With the above general cµ, eq. (4.1) can be simplified to

|Mgg→h|2 = |λ|2

(d− 2)
1

N2
c − 1 , (4.3)

such that the LO cross section is found to be

σgg→h = 1
2s

∫
dΦ(1) |Mgg→h|2 = π

s2
|λ|2

(d− 2)
1

N2
c − 1δ(1− z) , (4.4)

where we have defined
z = q2

s
≡ m2

H

s
. (4.5)

As for DY, the threshold variable is simply given by ξ = (1 − z). Thus, we may reuse
the same phase space for n soft-gluon and 1 soft-quark emissions, provided we ignore the
additional two-body phase-space due to the decay of the virtual photon into the lepton
pair. The relevant phase space is then given by eq. (3.16).

The prefactor in eq. (4.4) is needed to normalise higher-order contributions. Keeping
with the theme of the paper, we will be concerned with the qg channel that opens up for
the first time at NLO, as shown in figure 7b. How to resum NLP contributions at LL in the
gluon-gluon channel has already been discussed in refs. [62, 81]. Analogous to the DY case,
the LL contribution to the qg channel at arbitrary order will originate from general ladder
diagrams such as that shown in figure 6b, which gives a summed and averaged squared
matrix element

|Mh,qg|2 = g
2(n+1)
s µ(4−d)(n+1)|λ|2

8 (d− 2)
Cm+1
F Cn−mA

N2
c − 1 Tr

[
6kqγα 6p1γ

β
] (
−ηαβ + cαp2,β + cβp2,α

p2 · c

)
×
(

n∏
i=1

2p1 · p2 p1 · ki
p2 · ki

)
1

[p · k1]2 . . . [p · (k1 + . . .+ kn + kq)]2
. (4.6)
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The second term in the gluon polarisation tensor will not contribute. To see this, note that
contracting it with the trace and using the conditions of eq. (4.2) yields

Tr [ 6kq 6c 6p1 6p2] + Tr [ 6kq 6p2 6p1 6c] = 8kq · c p1 · p2 . (4.7)

This projects out the transverse components of kq which, occurring linearly in the phase-
space integral, will vanish. Simplifying the remainder of eq. (4.6), we may convert to Su-
dakov variables and symmetrise over crossed-ladder contributions as in the DY case, finding

|Mh,qg|2 = g
2(n+1)
s µ(4−d)(n+1)|λ|2Cm+1

F Cn−mA

N2
c − 1

4ns−n−1

(n+ 1)!
1
βq

n∏
i=1

1
ᾱiβ̄i

. (4.8)

We must combine this with the phase space of eq. (3.16) and the flux factor to obtain
the cross section. The integrals may all be carried out similarly to in section 3, and after
dividing by the LO normalisation in eq. (4.4) we find the NLP LL contribution

W
(n+1)
h,qg (z) = − 1

(n+ 1)!
2CF
ε

( 4
ε2

)n
(1− z)−2ε(n+1)

n∑
m=0

CmF C
n−m
A + . . . , (4.9)

which in Mellin space becomes

W
(n+1)
h,qg (N) = − 1

(n+ 1)!
2CFN2ε−1

ε

(
4N2ε

ε2

)n n∑
m=0

CmF C
n−m
A + . . . . (4.10)

Perhaps unsurprisingly, this is exactly what one would obtain from the DY formula of
eq. (3.30), upon making the colour replacements we have already seen, namely TR → CF in
the prefactor and CF → CA elsewhere. The reason for these replacements should hopefully
be clear: the replacement in the prefactor reflects the difference in colour structure (but
similar kinematics) of the NLO processes. The second replacement follows from having
interchanged the gluon and quark backbones of the ladders, and the fact that eikonal
Feynman rules depend on the colour representation of the emitting particle, but not its spin.

The above replacements allow us to immediately recycle eqs. (3.43), (3.47) to get the
all-order LL form of the qg cross section

Wh,qg
∣∣∣
LL

= − CF
2(CA − CF )

ε(N ε−1)
N ε − 1 exp

[4asCA(N ε − 1)
ε2

]
×
{

exp
[4asCAN ε(N ε − 1)

ε2

]
− exp

[4asCFN ε(N ε − 1)
ε2

]}
, (4.11)

as well as the resummed coefficient function

C̃h,qg
∣∣∣
LL

= CF
CF − CA

1
2N lnN

[
e8CAas ln2 NB0

[
4as (CF − CA) ln2N

]
− e(2CA+6CF )as ln2 N

]
,

(4.12)
Again, these results match the conjectures of ref. [37].
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5 Discussion

In this paper, we have investigated the resummation of logarithmically enhanced contribu-
tions affecting the threshold production of heavy particles, specifically those contributions
which are LL at NLP in the threshold variable. Previous studies have established that
such terms can be resummed in those partonic channels which contribute already at LP in
the threshold expansion. Here, we have completed the set of LL NLP terms by examining
those partonic channels that start at NLP, due to the emission of a soft quark at NLO. In
some sense, one expects these contributions to be straightforward to resum, in that they
originate from an underlying NLO process which is dressed by purely soft gluon radiation.
However, the combinatorics of the resummation is rather intricate, as has been previously
discussed in refs. [37, 86, 87].

Our resummation approach uses well-established diagrammatic arguments [89–91] to
efficiently calculate all-order forms for the purely real emission contributions to partonic
structure functions and cross sections at LL order. We then fix the virtual corrections using
a variant of the soft gluon unitarity procedure that has been applied at leading power [4],
namely by requiring that virtual corrections cancel appropriate higher-order poles in the
dimensional regularisation parameter ε, leaving only those collinear singularities that can
be absorbed into the parton distributions. Our all-order forms for the structure functions
and cross sections lead straightforwardly to resummed splitting and coefficient functions,
once mass factorisation is carried out.

As specific examples, we consider DIS induced by both a virtual photon and a Higgs
boson, and also DY and Higgs production. We confirm the conjectures for splitting and
coefficient functions that were first given in refs. [37, 87]. They were also obtained in
refs. [86, 88] under the assumption that the one-loop virtual corrections to the underlying
NLO processes exponentiate, motivated by a re-factorisation and renormalisation-group
evolution in SCET. Our approach is complementary to this, in that we focus primarily
on an explicit calculation of the real emission contributions, with the virtual corrections
uniquely determined by consistency requirements.

It would be very interesting to see if our methods can be applied to other scattering
processes of immediate phenomenological interest, where the results could supplement ex-
isting LP resummation formulae at NLP LL. We hope that our study might be useful for
those working on a variety of approaches to NLP resummation, including regarding how
to relate these different methods.
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A Direct calculation of ladder integrals

A.1 DIS

In this appendix, we show how to directly calculate the multiple integral appearing in
eq. (2.51). One may start by transforming from the {bi} variables to the set {ξi}, given by

ξ1 = b1 , ξ2 = b1 + b2 , ξn = b1 + b2 + . . . bn , (A.1)

or, in matrix form, 
ξ1
ξ2
...
ξn

 =


1 0 0 · · · 0
1 1 0 · · · 0
...
...
...

...
...

1 1 1 · · · 1



b1
b2
...
bn

 . (A.2)

This allows us to quickly work out the Jacobian which, given the triangular form of the
matrix, is simply equal to 1. The inverse transformation is

b1 = ξ1 , b2 = ξ2 − ξ1 , . . . bi = ξi − ξi−1 , (A.3)

so that the {bi} integrals become(
n+1∏
i=1

∫
dξi

)
ξ
d−2

2
1 (ξ2 − ξ1)

d−2
2 (ξ3 − ξ2)

d−2
2 . . . (ξn+1 − ξn)

d−2
2

ξ2
1 ξ

2
2 . . . ξ

2
n+1

. (A.4)

Given that the singularities are associated with all bi → 0, and thus ξi → 0, we are free
to set the upper limits of the {ξi} integrals to arbitrary values. We may now evaluate the
integrals in sequence, starting with the ξ1 integral, which is∫

dξ1 ξ
d−6

2
1 (ξ2 − ξ1)

d−2
2 = ξd−3

2

∫
dξ1 ξ

d−6
2

1 (1− ξ1)
d−2

2

= ξd−3
2

Γ
(
d−4

2

)
Γ
(
d
2

)
Γ(d− 2) , (A.5)

where we have scaled ξ1 → ξ1ξ2, and then set the upper limit of the ξ1 integral to 1. Next,
we have the ξ2 integral which, including the additional factor of ξ2 from rescaling ξ1, is∫

dξ2 ξ
d−5
2 (ξ3 − ξ2)

d−2
2 = ξ

3d
2 −5

3
Γ(d− 4)Γ

(
d
2

)
Γ
(

3d
2 − 4

) . (A.6)

If we carry on in this fashion then it is not too difficult to spot the pattern: the product
of the first n {ξi} integrals gives

n∏
i=1

∫
dξi ξ

id
2 −(2i+1)
i (1− ξi)

d
2−1 =

n∏
i=1

Γ
[
i
(
d
2 − 2

)]
Γ
(
d
2

)
Γ
[

(i+1)d
2 − 2i

]
= 1
n!

(
−1
ε

)n
+ . . . . (A.7)
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There remains the final integral over ξn+1, which is∫
dξn+1 ξ

(n+1)d
2 −2(n+1)−1

n+1 e−ξn+1 = Γ
[
(n+ 1)

(
d− 4

2

)]
= − 1

ε(n+ 1) + . . . , (A.8)

so that the full {ξi} integrals evaluate to

1
(n+ 1)!

(
−1
ε

)n+1
. (A.9)

This is exactly the same result as found in eq. (2.55), as claimed.

A.2 DY

Like in the DIS case, we may also prove eq. (3.27) for DY without the symmetrisation of
crossed-ladder contributions. We start with eq. (3.26) and integrate over the phase space
appearing in eq. (3.16). Introducing the Laplace transformation of the δ function we find
for the cross section and making the replacement of eq. (2.50) we find

σDY,gq̄ = 1
2s

∫ dQ2

s

1
16π

∫
d cos θ|Mqq̄→γ∗ |2 TRCmA Cn−mF g2(n+1)

s µ(4−d)(n+1)

×
∫ +i∞

−i∞

dT
2πie

T (1−z)s(n+1) d−4
2

22(n+1)

8(4π)(n+1) d2

1
Γn+1

(
d−2

2

)
×
[
n∏
i=1

∫
dᾱie−T ᾱi (ᾱi)

d−6
2

] ∫
dαqe−Tαq (αq)

d−4
2

×
[
n+1∏
i=1

∫
dbie−Tbi (bi)

d−2
2

]
1

(b1)2 . . . (b1 + · · ·+ bn+1)2 . (A.10)

Now we scale out the T dependence from the Sudakov variables by making the replacement
ᾱi → 1

T ᾱi (and similary for αq, bi). We find that the T -dependence becomes

∫ +i∞

−i∞

dT
2πie

T (1−z)T−n
d−6

2 T−
d−4

2 T−(n+1) d−2
2 = (1− z)(n+1)(d−4)

Γ (d(n+ 1)− 4n− 3) . (A.11)

The ᾱi and αq integrals may computed easily, whereas we transform the bi variables to ξi as
in eq. (A.1). As above, we may do the set of ξi integrals in sequence to find the final result

1
σqq̄→γ∗

dσDY,gq̄
dz = (1− z)−2ε(n+1) TRC

m
A C

n−m
F

(
αs
4π

)n+1 22n+1

(n+ 1)!

(
−1
ε

)2n+1
, (A.12)

where we have neglected terms that come with a higher power of ε. Summing over all
possible ladder orderings and using (3.21) to extract W (n+1)

DY,gq̄ we indeed match the result
of eq. (3.29). The fact that we may symmetrise over crossed-ladder contributions and find
the same answer indeed proves that these crossed-ladder contributions are kinematically
subleading.
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B LL form of the Zgq transition function

In this appendix, we prove eq. (2.92), which is needed to relate the transition function Zgq
to the splitting function Pgq. Whilst this result may or may not be standard, we were
unable to find an alternative proof in the literature, which is our reason for providing one
here. We begin by noting that eqs. (2.90), (2.91) imply

dZ
d lnQ2 = −γZ . (B.1)

We may rewrite the left-hand side using the expression for the running coupling in d = 4−2ε
dimensions:

das
d lnQ2 = −εas + β(as) . (B.2)

Using standard arguments, we may ignore the β function at LL level, since including it
would introduce logarithms of the renormalisation scale, which replace ln(N) at a given or-
der in αs, and thus result in subleading logarithmic contributions. Then eq. (B.1) becomes

d
das

(
Zqq Zqg
Zgq Zgg

)
= as

ε

(
γqq γqg
γgq γgg

)(
Zqq Zqg
Zgq Zgg

)
, (B.3)

so that Zgq satisfies
dZgq
das

− as
ε
γggZgq = as

ε
γgqZqq . (B.4)

This is a first-order ordinary differential equation (ODE), and can be solved using the
method of integrating factors. That is, given a first-order ODE in the form

dy(x)
dx + P (x)y(x) = Q(x) , (B.5)

one may define the integrating factor

I (x) = exp
[∫ x

dx′P
(
x′
)]
. (B.6)

Multiplying this factor with eq. (B.5) yields

I(x)dy(x)
dx

+ P (x)I(x)y(x) = d

dx
[I(x)y(x)] = I(x)Q(x) , (B.7)

which may be straightforwardly integrated to get

y (x) = I−1 (x)
∫ x

dx′I
(
x′
)
Q
(
x′
)
, (B.8)

where the lower limit of integration on the right-hand side will be determined by the bound-
ary conditions. Comparing with eq. (B.4), we can immediately write down the solution:

Zgq(as) = I−1(as)
1
ε

∫ as

0

da′s
a′s

I(a′s) γgq(a′s)Zqq(a′s) , (B.9)
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where we have implemented the boundary condition Zgq(0) = 0. The integrating factor
I(as) is given by

I(as) = exp
[
−1
ε

∫ as

0

da′s
a′s

γgg
(
a′s
)]
. (B.10)

Note that the lower limit of integration is arbitrary, as it will cancel out on the right-hand
side of eq. (B.9). We may thus choose it to be zero for convenience.

Thus far, all of our statements have been exact. However, we can simplify things by
restricting ourselves to LL order, in addition to noting (as above) that we may ignore NLP
contributions in the diagonal anomalous dimensions and/or transition functions. Further-
more, the higher-order diagonal anomalous dimensions have the large N behaviour11

γ(n−1)
qq,gg (N) ∼ ln(N) + . . . , (B.11)

where the ellipsis denotes non-logarithmic or power-suppressed terms. That is, γqq and
γgg only have a single logarithmic enhancement at all orders in as. Hence, as noted al-
ready in ref. [87], leading logarithms in Zgq can only come from keeping the first-order
terms in γgg and γqq:

γgg,qq(as) ∼= asγ
(0)
gg,qq(N) , γ(0)

qq = 4CF ln(N) , γ(0)
gg = 4CA ln(N) . (B.12)

Using this result, the integrating factor of eq. (B.10) simplifies to

I(as) = exp
[
−as
ε
γ(0)
gg

]
, (B.13)

which is now a simple function of as, without an additional integration. Next, we can use
the known all-order LL form for the diagonal transition function Zqq given in eq. (2.95).
Substituting this equation along with eq. (B.13) into eq. (B.9), the LL solution for Zgq
takes the form

Zgq (as) = 1
ε

exp
[
as
ε
γ(0)
gg

] ∫ as

0

da′s
a′s

exp
[
−a
′
s

ε
γ(0)
gg

]
γgq

(
a′s
)

exp
[
a′s
ε
γ(0)
qq

]

=
∞∑
m=0

γ
(m)
gq (N)
ε

exp
[
as
ε
γ(0)
gg

] ∫ as

0
da′s

(
a′s
)m exp

[
−a
′
s

ε

(
γ(0)
gg − γ(0)

qq

)]
, (B.14)

where in the second line we have substituted the perturbation series

γgq (as) =
∞∑
m=0

am+1
s γ(m)

gq (N). (B.15)

Let us now focus on a given value of m on the right-hand side. We may first transform to
the integration variable

x′ =
a′s

(
γ

(0)
gg − γ(0)

qq

)
ε

(B.16)

11Following ref. [87], we adopt the MS factorisation scheme throughout. The large N behaviour of
higher-order anomalous dimensions might be different in other factorisation schemes.
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such that eq. (B.14) can be integrated to give

Zgq
∣∣∣
γ

(m)
gq

= εmγ
(m)
gq

(γ(0)
gg − γ(0)

qq )m+1
exp

[
as
ε
γ(0)
gg

]
γ

(
m+ 1, as(γ

(0)
gg − γ(0)

qq )
ε

)
. (B.17)

where we have introduced the lower incomplete gamma function

γ(α, z) =
∫ z

0
dt tα−1e−t , (B.18)

not to be confused with an anomalous dimension. It has the series expansion

γ(α, z) = zαe−zα!
∞∑
k=0

zk

(α+ k + 1)! . (B.19)

Implementing this in eq. (B.17) leads to

Zgq
∣∣∣
γ

(m)
gq

= am+1
s γ

(m)
gq

ε
m! exp

[
asγ

(0)
qq

ε

] ∞∑
k=0

aks
εk

(
γ

(0)
gg − γ(0)

qq

)k
(m+ k + 1)!

= γ(m)
gq m!

∞∑
k=0

∞∑
l=0

ak+l+m+1
s

εl+k+1

(
γ

(0)
qq

)l (
γ

(0)
gg − γ(0)

qq

)k
l! (m+ k + 1)! , (B.20)

where in the second line we have also expanded the overall exponential factor. We are
currently still working at all orders in as. But let us now isolate a particular coefficient,
say of ans , so that one may set k = n− l −m− 1 on the right-hand side:

Z(n)
gq

∣∣∣
γ

(m)
gq

= γ
(m)
gq m!
εn−m

n−m−1∑
l=0

(γ(0)
qq )l(γ(0)

gg − γ(0)
qq )n−l−m−1

l!(n− l)! . (B.21)

To connect to eq. (2.92), we want to write the summand in terms of pure powers of γ(0)
qq

and γ(0)
gg . To do so, we may use the binomial theorem

(x+ y)n =
n∑
p=0

(
n

p

)
xpyn−p , (B.22)

to arrive at

Z(n)
gq

∣∣∣
γ

(m)
gq

= γ
(m)
gq m!
εn−m

n−m−1∑
l=0

n−l−m−1∑
k=0

(−1)n−l−m−k−1

l!(n−l)!

(
n−l−m−1

k

)(
γ(0)
qq

)n−m−1−k (
γ(0)
gg

)k
.

(B.23)
The last step consists of removing the double sum. First, we interchange the order of
summation in k and l, and then relabel l→ n−m− 1− k − l, to rewrite eq. (B.23) as

Z(n)
gq

∣∣∣
γ

(m)
gq

= γ
(m)
gq m!
εn−m

n−m−1∑
k=0

k∑
l=0

(−1)k−l

l!(n− l)!

(
n− l −m− 1
n− k −m− 1

)(
γ(0)
qq

)k (
γ(0)
gg

)n−m−1−k
.

(B.24)
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The sum over l has the form
k∑
l=0

(−1)−l

l!(n− l)!

(
n− l −m− 1
n− k −m− 1

)
= 1
n!

k∑
l=0

(−1)−l
(
n

l

)(
n− l −m− 1
n− k −m− 1

)

= (−1)k

n!

k∑
l=0

(
n

l

)(
k +m− n
k − l

)
, (B.25)

where in the second line we have used [97](
n

k

)
= (−1)n−k

(
−k − 1
n− k

)
. (B.26)

We can then use the Chu-Vandermonde identity

k∑
j=0

(
m

j

)(
n−m
k − j

)
=
(
n

k

)
(B.27)

to get
k∑
l=0

(
n

l

)(
k +m− n
k − l

)
=
(
k +m

k

)
. (B.28)

Substituting our results back into eqs. (B.24), we find eq. (2.92) as required, upon reintro-
ducing the sum over m. Recall that γ(m)

gq contributes at O(am+1
s ), so that the upper limit

of the m sum must be n− 1 rather than n.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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