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1 Introduction

The collinear evolution of hadronic parton densities is accounted for using the equations
of Dokshitzer, Gribov, Lipatov, Altarelli & Parisi (DGLAP) [1–3]. Inspired by the classic
factorisation proofs in [4, 5], it is tempting to assume that, as a result of QCD coherence,
this collinear evolution can always be factorised from any wide-angle, soft-gluon emissions.
However, Coulomb/Glauber exchanges can destroy coherence and invalidate the factorisa-
tion [6, 7] with potentially important phenomenological consequences [8]. In this paper,
we explore the circumstances under which this happens.

1.1 Case study: gaps between jets

Oderda & Sterman (OS) [9–11] presented the first calculations of the rate for the produc-
tion of two or more jets subject to the restriction that there should be no additional jets
located in the rapidity interval between the two highest pT jets (the dijets) with trans-
verse momentum (or energy) bigger than some value, Q0. This observable is sensitive to
logarithmically enhanced, wide-angle, soft-gluon emissions. According to OS, the leading
logarithmic (LL) contribution to the gaps-between-jets cross-section at a hadron collider is

dσOS
dxadxb dB = fA(xa, Q)fB(xb, Q)Tr(VQ0,QHV†Q0,Q

), (1.1)

where H = |M0〉〈M0| is the QCD hard scattering matrix (|M0〉 is the lowest-order, QCD
hard-process amplitude for dijet production), dB ≡ dy d2p⊥/16π2ŝ is the measure for the
on-shell (Born) kinematics of the final state dijets, fA/B are parton distribution functions
for the incoming hadrons A and B, Q is the jet transverse momentum and

VQ0,Q ≈ exp
(
−αs
π

ln Q

Q0
(YT2

t + iπT2
s)
)
. (1.2)

The rapidity separation between the dijets is Y , T2
t is the colour-space operator correspond-

ing to the colour exchanged in the t-channel and T2
s corresponds to the colour exchanged
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in the s-channel. For example, if the hard process is ab → cd then T2
s = (Ta + Tb)2 =

(Tc + Td)2 and T2
t = (Ta + Tc)2 = (Tb + Td)2. The Sudakov operator VQ0,Q corresponds

to no soft-gluon emission directly into the region between the dijets with transverse mo-
mentum greater than Q0. Eq. (1.2) is a good approximation for Y � 1 (the terms we have
neglected are proportional to the unit matrix in colour space, which means their neglect
does not affect what follows).

Following the discovery of non-global logarithms by Dasgupta & Salam [12], it became
clear that the OS analysis was incomplete because it did not account for the Sudakov sup-
pression associated with partons originally radiated into the out-of-gap region. Including
this physics makes the problem considerably more complicated/interesting. Notwithstand-
ing the role of this non-global radiation, our focus here is on the collinear evolution of the
incoming partons and for that we will continue to neglect the non-global corrections. We
do so for pedagogical reasons, fully aware that non-global corrections are important. That
said, let us return to eq. (1.1) and notice that it is still not quite right.

To see what is wrong, let us consider only the order αs correction to the collinear
evolution of the parton densities above the veto scale Q0 [13, 14]. For simplicity, we only
consider quark evolution from hadron A. The result is

dσ1
dxadxb dB = αs

π

∫ Q

Q0

dkT
kT

∫ 1− kT
Q
eY/2

0

dz
z
Pqq(z) fB(xb, Q)

×
[
Θ(z − xa) fA(xa/z,Q0) 1

T2
a

Tr(VQ0,kTTaVkT ,QHV†kT ,QT†aV
†
Q0,kT

)

− zfA(xa, Q0)Tr(VQ0,QHV†Q0,Q
)
]
. (1.3)

Here T2
a = CF since we are supposing that parton a is a quark and we are following

convention in writing

Pqq = CF
1 + z2

1− z . (1.4)

In the case of no jet veto we have the familiar result for the dijet cross-section including the
evolution of the parton distribution functions in terms of the plus prescription [1–3, 15]:

dσ1
dxadxb dB = αs

π

∫ Q

Q0

dkT
kT

∫ 1− kT
Q

0

dz
z
Pqq(z)

[
Θ(z − xa) fA(xa/z,Q0)

− zfA(xa, Q0)
]
Tr(H)fB(xb, Q),

= αs
π

∫ Q

Q0

dkT
kT

∫ 1

xa

dz
z
CF

(
1 + z2

1− z

)
+
fA(xa/z,Q0)fB(xb, Q)Tr(H) . (1.5)

In the first line, it is safe to set the upper limit of the z integral to unity since the integrand
vanishes in that limit. This allows us to write the second equality in terms of the plus
prescription.

The problem in eq. (1.3) is the non-commutativity of the colour emission opera-
tor Ta with the Sudakov operator, which can be traced to the Coulomb/Glauber iπ
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term in eq. (1.2). In the case of the gaps-between-jets observable, expanding eq. (1.3)
order-by-order in αs reveals an unexpected double logarithmic enhancement starting at
∼ π2N2

c Y α
4
s log5(Q/Q0) relative to the inclusive dijet cross section. These are the super-

leading logarithms first reported in [13]. Notice that the iπ terms do not cancel or factorise
because [T2

t ,T2
s] 6= 0 and [Ta,T2

s] 6= 0. This is what spoils our ability to factorise the
collinear evolution into the parton distribution functions since, in the absence of any iπ

terms, we would recover eq. (1.1) due to the fact that [Ta,T2
t ] = 0. The problem concerns

only emissions collinear to one of the two incoming partons since emissions collinear to the
outgoing partons occur long after the hard scattering and cannot therefore influence the
colour dynamics. As a result of this causal structure, [Tc,d,T2

s] = 0 and [Tc,d,T2
t ] = 0 and

final-state collinear emissions do factorise.

2 General considerations

We now consider more general pure QCD processes in hadron-hadron collisions (we will
consider electroweak processes later) and begin with a generalisation of eq. (1.3):

dσ1
dxadxb dB = αs

π

∫ Q

µF

dk⊥
k⊥

∫ 1−k⊥/Q

0

dz
z
Pqq(z) u1(k) fB(xb, Q)

×
[
Θ(z − xa) fA(xa/z, µF) 1

T2
a

Tr(VµF,k⊥TaVk⊥,QHV†k⊥,QT†aV
†
µF,k⊥

)

− zfA(xa, µF)Tr(VµF,QHV†µF,Q
)
]
, (2.1)

where Q is the hard scale and

Vα,β ≈ Pexp
(
αs
π

[∑
i 6=j

Ti ·Tj

∫ β

α

dq(ij)
⊥

q
(ij)
⊥

∫ lnQ/q(ij)
⊥

− lnQ/q(ij)
⊥

dy(ij)
∫ 2π

0

dφ(ij)

4π
(
1− un(q, {k}n−1)

)
− iπT2

s ln b

a

])
. (2.2)

Here the limits on z and y(ij) are purely kinematic. The function un is related to the
measurement function u, such that

σ =
∑
n

∫
dσn u(k1, . . . , kn), (2.3)

where σ is the observable cross-section, n is the number of emissions with respect to the
Born process and momenta are written with the largest k⊥ to the left. We define un so that

u(k1, . . . , kn) ≡ un(kn, {k}n−1)u(k1, . . . , kn−1),

where {k}n = {k1, . . . , kn}. In eq. (2.1) we only need u(q) ≡ u1(q) and u(k, q) ≡
u2(q, k)u1(k). In eq. (2.2), (

q
(ij)
⊥
)2 = 2ki · q kj · q

ki · kj
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is the transverse momentum defined in the zero momentum frame of partons i and j; y(ij)

and φ(ij) are the rapidity and azimuth in the same frame. The sum over i and j in eq. (2.2)
is over all prior real emissions and as such it is context dependent.

Eq. (2.1) will generate coherence violating terms at some perturbative order if the
Coulomb terms do not entirely cancel. For this cancellation to occur we require

[Re(ln VµF,k⊥),T2
s] = 0. (2.4)

This is because if eq. (2.4) is satisfied we can write VµF,k⊥ = VRe
µF,k⊥

VIm
µF,k⊥

where VIm
µF,k⊥

=
eIm(ln VµF,k⊥ ) and (VIm

µF,k⊥
)† = (VIm

µF,k⊥
)−1. This permits the cancellation of the outermost

Coulomb terms and then, since

[Re(ln VµF,k⊥),Ta] = 0, (2.5)

a cascade effect leads to the cancellation of all other Coulomb terms [4, 5, 14].
Eq. (2.4) can be generalized to a statement that there be no coherence violation in σn,

i.e. for any number of collinear emissions, thereby allowing all-orders DGLAP evolution up
to the hard scale Q. For this to be so, it is necessary that

[Re(ln Vα,β),T2
s]
∣∣∣M(n)

0

〉
= 0, (2.6)

where
∣∣∣M(n)

0

〉
is the Born amplitude dressed with n soft or collinear partons. Eq. (2.6)

means that[∑
i 6=j

Ti ·TjΩij ,T2
s

]
=
[( ∑

i=a,b
+
∑
i 6=a,b

)( ∑
j=a,b

+
∑
j 6=a,b

)
Ti ·TjΩij ,T2

s

]

= 2
[ ∑
i=a,b

∑
j 6=a,b

Ti ·TjΩij ,T2
s

]
= 0, (2.7)

where Re(ln Vα,β) ∝ ∑
i 6=j Ti · TjΩij and it is understood that the commutators are to

act on
∣∣∣M(n)

0

〉
. In other words, we only need to check the commutativity of a Coulomb

exchange with any soft interference term between an initial and a final state parton in
order to check for coherence violation.

For processes with fewer than two coloured, incoming particles or when the incoming
particles form a colour singlet eq. (2.7) is automatically satisfied since T2

s is a Casimir. For
all other processes, the commutator in eq. (2.7) only vanishes if Ωaj = Ωbj .1 This is the
case for double logarithmic terms in Ωaj however it is not the case for single logarithmic,
wide-angle, terms.2 Quite generally,

Ωaj =
∫ dq(ab)

⊥

q
(ab)
⊥

∫
dy(ab)dφ(ab)(q(ab)

⊥
)2 ka · kj
ka · q kj · q

× (1− un(q, {k}n−1))

×Θ
(
α <

√
ka · kj
kj · q

kb · q
ka · kb

q
(ab)
⊥ < β

)
, (2.8)

1The commutator also vanishes if Ωij = Ωij′ for all j, j′ 6∈ {a, b} and i ∈ {a, b}. However this is
kinematically impossible when j is hard and j′ is soft.

2This is because in the double logarithmic approximation q
(aj)
⊥ ≈ q(bj)

⊥ .
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where j labels a final-state particle. Written this way, we see that Ωaj 6= Ωbj for all j.
This means that all observables at hadron-hadron colliders that have any sensitivity to soft
gluon emission will violate coherence to some degree. As pointed out in [8], this includes
Drell-Yan and gg → H hard-processes, since their colour can become sufficiently involved
after emitting two or more gluons into the final state (i.e. coherence violation will first
appear in dσ2

dxadxb ).

3 The logarithmic order of coherence violation

For the majority of pure QCD observables, coherence violation will emerge for the first
time at O(α4

s ) in the fixed order expansion (relative to the order of the Born process).
That’s because one needs at least one soft gluon, one collinear emission and two Coulomb
exchanges.

The logarithmic order at which coherence violation will occur is process dependent.
We consider a general measurement function which produces logarithms ln v−1 ≡ L:

u({k}) =
∑
j

Fj({k})Θ(v − Vj({k})). (3.1)

Observables for which Fj = 1 are known as event-shape observables [16–18] and observables
for which Fj 6= 1 are weighted cross-sections [18–22]. We will give specific examples of the
functions Fj and Vj below. To get the leading coherence-violating logarithm we must take
the z → 1 limit of eq. (2.1). As anticipated, the first potentially non-vanishing term occurs
at O(α4

s ) relative to the Born result:

dσ1
dxadxbdB

≈
∑
i=a,b
j 6=a,b

A
(1234)
ij

∫ Q

µF

dk4⊥
k4⊥

[∫ Q

k4⊥

dk(ab)
3⊥

k
(ab)
3⊥

∫ dy3dφ3
2π wij

](∫ Q

k
(ab)
3⊥

dk2⊥
k2⊥

∫ 1

k2⊥/Q

dθ2
θ2

)

×
∫ Q

k2⊥

dk1⊥
k1⊥

u1(k2)(1−u2(k3,k2))+(1243)+(2134)+(2143)+(2314). (3.2)

The collinear parton is parton 2, parton 3 is a soft wide-angle gluon and partons 1 and 4
are Coulomb exchanges, wij = (k(ab)

3⊥ /k
(ij)
3⊥ )2 and

A
(1234)
ij =

(
αs
π

)4
C

(1234)
ij (iπ)2 fA(xa, µF)fB(xb, Q),

where
C

(1234)
ij = Tr

([
T2
s,Ti ·Tj

]
(Ta[T2

s,H]T†a −T2
a[T2

s,H])
)
.

The four additional terms indicated on the second line correspond to different ways of
ordering the parton transverse momenta: the main term corresponds to (1234) and, for
example, (2134) corresponds to the collinear parton having the largest k⊥ etc. The colour
factors for the other orderings are

C
(1243)
ij = C

(1234)
ij ,
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and

C
(2134)
ij = C

(2143)
ij = C

(2314)
ij = −Tr

([
T2
s,
[
T2
s,Ti ·Tj

]]
(TaHT†a −T2

aH)
)
.

As parton 3 is a wide-angle gluon its angular integrals generate observable-dependent, finite
but not-logarithmically enhanced terms when restricted by the two parton measurement
function, 1− u2(k3, k2). Though these terms may not factorise from eq. (3.2), they can be
ignored in the subsequent discussion as they do not effect the logarithmic power counting.
In eq. (3.2) we have used that in the soft-collinear limit k2⊥/Ea ≈ (1 − z)θ2 where z is
the momentum fraction used in eq. (2.1). µF is the factorisation scale, below which proton
evolution is completely DGLAP. It is chosen to have the largest value such that u2(k3, k2) ≈
1 given k3⊥ < µF, e.g. in gaps-between-jets µF = Q0. This factorisation scale choice
naturally extends to all orders where we require that µF has the largest value such that
u(. . . , ki, ks, kj , . . . ) ≈ u(. . . , ki, kj , . . . ) when k(ab)

s⊥ < µF for all wide-angle soft momenta ks.
We are interested in determining the logarithmic behaviour of eq. (3.2). This is de-

termined by u1(k2)(1 − u2(k3, k2)). There are three scenarios that we must study when
evaluating eq. (3.2). Firstly we can consider when max(k2⊥)� µF, where max(k2⊥) is the
smallest value of k2⊥ such that for k2⊥ > max(k2⊥) both u1(k2) ≈ 0 and u2(k3, k2) ≈ 0. In
this situation, each of the 5 nested integrals generates a logarithm (the infra-red safety of
the functions Fi means they do not alter the logarithmic counting in this limit). As a result,

dσ1
dxadxb ∼ α4

sL
5. Secondly we have the case max(k2⊥) ≈ wµF, where w & 1. This means

that the observable restricts the phase-space in the collinear region such that upper limit on
k2⊥ in eq. (3.2) can be exchanged with wµF. Consequently integrals over dk4⊥dk(ab)

3⊥ dk2⊥
generate a term proportional to (lnw)3 ∼ O(1). Logarithms are still produced since either
the dk(ab)

1⊥ integral generates a single logarithm or both the dk(ab)
1⊥ and the dθ2 integrals

generate logarithms. As a result, dσ1
dxadxb ∼ α4

sL or dσ1
dxadxb ∼ α4

sL
2 respectively. Examples

of both α4
sL and α4

sL
2 observables are given in the following paragraph. Note that in this

case, the (2jkl) terms (where j, k, l ∈ {1, 3, 4}) are sub-leading and thus the logarithms
have smaller numerical prefactors, since fewer topologies contribute. Finally, there is the
case µF = max(k2⊥). This can only occur if u1(k2)(1− u2(k3, k2)) = 0 for all k(ab)

3⊥ ∼ k2⊥,
which means the observable is completely insensitive to wide-angle radiation and so the
hadron evolution can be completely described using DGLAP evolution without soft resum-
mation. In other words, the observable is trivially without coherence violating logarithms.
Observables of this form include the modified massdrop tagger [23] and N -point energy
correlators [22].

To illustrate matters, we will review coherence violation in continuously-global observ-
ables. For these, the measurement function can be written u = F ({p})Θ(v − V ({p})),
where V ({p}) and F ({p}) are defined to have the following properties [24]:

• For a single, soft emission, k, that is collinear to hard parton i,

V ({p}) = di

(
k

(in)
⊥
Q

)h
e−liykgi(φk),

where di, h, li are constants, and gi(φk) can be any function of the azimuth for which
the integral

∫
d lnφk gi(φk) exists. k

(in)
⊥ is the transverse momentum relative to
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parton i and any other arbitrary direction given by the unit vector ~n. In the limit
that k is both soft and collinear to i, the choice of ~n is sub-leading. To be global, all
of the di 6= 0.

• For a single, soft emission, k, that is not collinear to any hard parton,

V ({p}) ∼
(
k

(ab)
⊥

)h
,

where h has the same value as in the collinear case above. This ensures the ob-
servable’s scaling in transverse momentum is continuous across all logarithmically
enhanced regions of phase-space.

• F ∼ 1 +A(k(ab)
⊥ /Q)h′ where h′ > 0 and A are constant over the entire phase space of

a soft parton with momentum k.

The effects of coherence violation on continuously-global observables were first evaluated
for event shape observables in [25]. The continuous scaling in transverse momentum of
these observables allows us to set µF ≈ Qe−

L
h and u2(k3, k2) → 0. If the collinear parton

is soft and collinear to parton a and V (k2) ∼ kh2⊥θ
la
2 , we can replace

u(k2)→ Θ(k2⊥θ
la
h

2 . Qe−
L
h ).

Thus eq. (3.2) gives dσ1
dxadxb ∼ α4

sL for la/h < 0, and dσ1
dxadxb ∼ α4

sL
2 for la/h = 0. When

la/h > 0 every term contributes and dσ1
dxadxb ∼ α

4
sL

5. In [25] it was identified that la/h ≤ 0
is the case for ‘standard’ rIRC observables (such as transverse-thrust, for which la,b = 0),
whereas la/h > 0 typically occurs in ‘exponentially-suppressed’ rIRC observables.

For example, we can compute the cumulative pT distributions for pp → W±, Z,H

processes by treating them as continuously global event shape distributions. Here, the
measurement function is determined by momentum conservation [26]:

u(k1, . . . , kn) = Θ

( n∑
i=1

~ki⊥

)2

− ~p 2
⊥

 (3.3)

where ~p 2
⊥ is a lower limit on the squared pT of the vector or Higgs boson. To leading order,

the measurement function has the form studied in the previous paragraph with la/h = 0 and
L = lnM2

W±,Z,H/~p
2
⊥. As the Born final state is a colour singlet, a second collinear emission

must be inserted into the strongly ordered cascade in order for the T2
s colour commutators

in Cij to not vanish. The leading CVL is given by the (2jkl) terms in eq. (3.2), where
j, k, l ∈ {1, 3, 4}, with the second collinear emission inserted either immediately before or
after parton 2.3 Consequently, the lowest order coherence violating logarithm will be of
the form dσ2

dxadxb ∼ α
5
sL

2.
3For this CVL

Cij = −
∑
a′

Tr
([

T2
s,
[
T2
s,Ti ·Tj

]]
(Ta′ hT†a′ −T2

a′ h)
)

where h = TaHT†a−T2
aH and where the sum over a′ includes parton a and the collinear radiation emitted

from parton a.
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Finally, we consider not continuously-global observables. For these h, is not constant
over the entire phase space and F need not go like ∼ 1 + A(kab⊥ /Q)h′ . This means that
the phase-space of an emission can be divided into at least two regions, c and s, between
which the scaling of the observable differs. For example, the gaps-between-jets observable
is such that, in the jet regions, h = 0 but in the gap region h ≈ 1. Infra-red safety dictates
that each region, c or s, has an inclusivity scale, µc or µs, such that the observable is
insensitive to radiation emitted into that region with kt . µc,s. Let c contain the region
collinear to parton a and s be the complimentary region. Therefore in eq. (3.2) u(k2) ≈ u()
for k2⊥ < µc whilst u(k2, k3) ≈ u(k2) for k(ab)

3⊥ < min(µc, µs), since a soft emission can be
emitted into either of the regions c and s. Hence µF = min(µc, µs), e.g. for gaps-between-
jets µc = Q, µs = Q0, u() = 1 and therefore µF = Q0 as per eq. (1.3). The inclusivity
scales are functions of the parameters defining the observable. As the observable is not
continuously-global, µc and µs do not scale proportionally to each other under variation
of those parameters. Again consider gaps-between-jets where the parameters Q0 and Y

are used to define the observable: µs is linear under the variation of Q0 whilst µc is a
constant.4 Necessarily, as a consequence of unitarity in the collinear region around parton
a, max(k2⊥) ≈ µc. Therefore, in the resummation limit of a not continuously-global
observable, either max(k2⊥)� µF = µs or max(k2⊥) ≈ µF = µc � µs. When max(k2⊥)�
µF, dσ1

dxadxb ∼ α
4
sL

5 and so the observable suffers coherence violating logarithms. As before,
when max(k2⊥) = µF the observable is trivially insensitive to soft radiation.

4 Conclusions

Our analysis shows that in hadron colliders all observables with sensitivity to wide-angle
soft radiation dressing the initial state hadrons will suffer coherence violation. In the previ-
ous section, we computed the logarithmic order of this violation at fixed order in αs. We see
no arguments for why our analysis cannot be extrapolated to nth order in perturbation the-
ory.5 Provided the observable under consideration has leading logarithms of the form αns L

2n

and the Born hard process is real, we expect coherence violating logarithms of the form:

• αns L
2n−6 or αns L2n−7 for n ≥ 4 in standard continuously-global observables [16, 24]

where the Born hard process has a coloured final state. These contribute at the same
accuracy as those in an N3LL or N4LL exponentiation. Consequently, we do not
find conflict with the N2LL resummations of global observables in pp collisions [28–
36] including those which were derived in SCET without the inclusion of Glauber
modes [30–32, 34, 36]. When the Born hard process has a colour singlet final state,
standard continuously-global observables generate either αns L2n−8 or αns L2n−10 terms
for n ≥ 5.

• αns L
2n−3 for n ≥ 4 in ‘forward suppressed’ continuously-global observables (with

la/h > 0 as defined in the previous section or a1,2/b1,2 > 0 in the notation of [25]).
4Both µc and µs are constant under the variation of Y which only determines the angular extent of the

regions c and s.
5Higher order calculations have been performed in [8, 27], see also [14].
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Though, as these logarithms first emerge at O(α4
s ) they will contribute at the same

accuracy as those in a LL exponentiation. For colour singlet final states CVL are
only present for n ≥ 5.

• αns L
2n−3 for n ≥ 4 for not continuously-global observables. When a not continuously-

global observable has leading logarithms of the form αns L
n, coherence violating loga-

rithms will become superleading. This case has recently been resummed for the first
time [8]. For colour singlet final states CVL are only present for n ≥ 5.

A remark on the role of electroweak hard processes. In [6, 7] it was noted that two
Coulomb exchanges are not needed to ensure real coherence-violating terms emerge in
resummations dressing electroweak hard-processes (for instance the hard process is the sum
of s and t channel amplitudes for qq′ → qq′ hard processes mediated by W or Z bosons).
This is because the hard process itself can supply a complex phase, which allows terms with
a single Coulomb exchange to contain a real piece that can contribute to the cross-section.
Thus for such hard-processes there is a possibility for O(α3

s ) coherence-violating logs to
emerge as well as the O(α4

s ) upwards which we have studied. By repeating the analysis of
the previous section, we see that in this case coherence violation could contribute logarithms
of the form αns L

2n−2 for n ≥ 3. For continuously global observables this would give CVLs
of the form αns L

2n−5 or αns L2n−6 for n ≥ 3. As before, when the Born hard process has
a colour singlet final state, an additional factor of αs is required, leading to CVLs of the
form αns L

2n−7 or αns L2n−9 for n ≥ 4.
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