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1 Introduction

Non-Abelian T-duality (NATD) is an extension of Abelian T-duality, which works well
as a solution generating mechanism for string backgrounds with non-Abelian isometries.
Although the rules for NATD for the metric, the B-field and the dilaton field has been
known for almost thirty years [1, 2], those for the RR fields has been understood relatively
recently [3]. Since then, NATD has been widely used to generate new supergravity solutions
with interesting holographic duals, see for example [4]–[13].

Recently, NATD has been described as a coordinate dependent O(d, d) transforma-
tion, [14–19]. The transformation under NATD of the metric, the B-field and the dilaton
field is determined by a coordinate dependent O(d, d) matrix, which we will be calling
TNATD, and the RR fields transform under the corresponding Pin(d, d) transformation
generated by SNATD. Here ρ(SNATD) = TNATD, and ρ is the usual double covering homo-
morphism from Pin(d, d) to O(d, d). This approach makes it possible to view NATD as
a solution generating transformation for Double Field Theory (DFT), a framework which
provides an O(d, d) covariant formulation for effective string actions [20–23] by introducing
dual, winding type coordinates. Since TNATD is not constant, it is not immediate that
NATD should be a solution generating transformation for DFT. However, it is a special
O(d, d) matrix, determined by the structure constants C k

ij of the isometry algebra of the
original background, and viewed as a twist matrix within the framework of Gauged Double
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Field Theory, it gives rise to geometric flux f k
ij = C k

ij . This is the key point in showing
that NATD is a solution generating transformation in DFT, which then provides a unified
framework to prove that it is a solution generating transformation for Type II (generalised)
supergravity. For details, see [17]. For a similar approach, also see [18].

An important question is whether supersymmetry is preserved under NATD. This
problem is addressed in various papers, notably in [11–13, 24–27]. In [11], the transforma-
tion under NATD of the gravitino and dilatino supersymmetry variations were shown to
be the same provided that the Killing spinors did not depend on the isometry directions
along which NATD was applied. Equivalently, supersymmetry was shown to be preserved
(at least for a large class of backgrounds with SU(2) isometry) if the Killing spinors had
vanishing Kossmann-Lie derivative with respect to the Killing vector fields generating the
isometry. In the papers [24–27] NATD is applied to backgrounds with N = 1 supersym-
metry. For such backgrounds, conditions for supersymmetry can be described by using
tools from generalised geometry [28–30], as was first shown in [31]. In this case, equations
coming from supersymmetry variations can be shown to be equivalent to a set of differen-
tial equations to be obeyed by two globally defined pure spinors. This will be discussed in
detail in section 3. It is possible to apply NATD directly on these pure spinors and check
whether the transformed pure spinors still satisfy the differential equations coming from
supersymmetry. This was the approach taken in [24–27, 32], where various backgrounds
with interesting holographic duals were examined. In each case, the geometry supports an
SU(3) structure with associated pure spinors, and it was checked by direct computation
that the NAT dual of these pure spinors indeed satisfied the supersymmetry equations
proving that NAT dual background also preserved at least N = 1 supersymmetry. For a
similar approach where one works with backgrounds supporting a G2 structure, see [33].
It should be noted that the Kossmann derivative of the Killing spinors along the isometry
directions vanish if and only if the Lie derivative of the pure spinors (constructed as bilin-
ears of these Killing spinors) along these directions vanish. This condition was met by all
the examples considered in the papers mentioned above.

In this paper, we describe the transformation of pure spinors under NATD viewed as a
Pin(d, d) transformation by utilizing the tools developed in [17]. This enables us to prove
that NAT dual of pure spinors of N = 1 vacua still satisfy these differential equations
(and hence, the dual background will also preserve at least N = 1 supersymmetry since
Bianchi identities are also satisfied as shown in [17]), provided that they have vanishing
Lie derivative along the isometry directions. To this end, we will first prove that the
pure spinor equations for preserved N = 1 supersymmetry are Pin(d, d) covariant, by
embedding them in DFT. Among other things, using the framework of DFT makes it easier
to show that the action of the exterior derivative operator and the Pin(d, d) transformation
must (anti-)commute, which is the trickiest part in the proof. This is when the Pin(d, d)
matrix is constant. When it is not constant, as is the case with NATD, the pure spinor
equations will not be left invariant. However, NATD is generated by a very special Pin(d, d)
transformation yielding geometric flux, as we discussed above and again, this becomes
the key point in showing that solutions of pure spinor equations are still solutions after
NATD, provided that the pure spinors have vanishing Lie derivative along the isometry
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directions. Compared to the methods already present in the literature our method has
various advantages. First of all, describing the dualisation of pure spinors as a Pin(d, d)
transformation makes the computations rather direct, as it is not needed to specify an
ansatz for the seed background, as long as the isometry is respected by the whole geometry,
the fields and the pure spinors. In particular, our proof is valid for any isometry group,
not just SU(2). We should also note that our method makes the determination of the G
structure of the NAT dual background rather straightforward. In the particular examples
we will study in section 4, the seed background will be assumed to support SU(3) structure,
and we will see directly how the associated pure spinors are transformed to pure spinors
associated with an SU(2) structure. More generally, starting with a pure spinor associated
with a generic SU(3) × SU(3) structure, it is possible to work out the G-structure of the
NAT dual background, as is done in [34] for Abelian T-duality. In this paper, we will focus
on the invariance of the N = 1 supersymmetry equations on pure spinors under NATD
and will leave the discussion of the transformation of a generic SU(3)× SU(3) structure to
future study.

The plan of this paper is as follows: in section 2, we review the methods developed
in [17]. In section 3, we focus on the pure spinor equations, which were shown in [31, 35, 36]
to be equivalent to the supersymmetry equations to be satisfied by Type II vacua with at
least N = 1 supersymmetry. We embed these equations in the framework of Double Field
Theory, so that the covariance under a general constant Pin(d, d) transformation becomes
manifest. Then, in a separate subsection we discuss the case when the Pin(d, d) trans-
formation is coordinate dependent (as it happens for NATD), and show that whether the
transformed pure spinors satisfy the differential equations or not is completely determined
by the fluxes generated by the Pin(d, d) transformation. Section 4 is devoted to explicit
examples. This is the section where we consider the ansatz for Type IIB supergravity stud-
ied in [25]. This ansatz is general enough to cover many examples that are important in
the context of AdS/CFT duality. We transform the pure spinors associated with the SU(3)
structure supported by the geometry by applying the Pin(d, d) transformation generating
the NATD and show that the resulting pure spinors (as well as the resulting metric, B field
and the RR fields) are in agreement with the ones found in [25]. We end with a discussion
of results and future directions in section 5.

2 Non-Abelian T-duality as an O(d, d) transformation

The purpose of this preliminary section is to review the methods developed in [17], where
it was shown that NATD of a given d dimensional Type II background with isometry G
can be obtained through the action of a coordinate dependent O(d, d) matrix (also called
TNATD) obtained by embedding the following O(n, n) matrix:

TNATD =
(

0 1n
1n θij

)
, θij = νkC

k
ij . (2.1)

in O(d, d) in the standard way (see 4.2.28–4.2.29 of [37]). Here, νk are coordinates of
the NAT dual background, and C k

ij are the structure constants of the n dimensional Lie
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algebra of the isometry group G, so i, j, k = 1, . . . , n. To keep things simpler, we will always
assume that the isometry group acts without isotropy and d ≥ n.1

The presence of the Lie group O(d, d), which is the global symmetry group of DFT,
makes it possible to describe the transformation under NATD of the Type II supergravity
fields as a transformation in DFT. More precisely, one rewrites the supergravity fields in
terms of the DFT fields H, d, χ, where H is the generalized metric that encodes the metric
and the B-field, d is the generalized dilaton field and χ is the spinor field that packages the
modified RR fields of Type II supergravity in the democratic formulation. These fields,
being solutions of Type II supergravity also solve the DFT equations in the supergravity
frame.2 As it is assumed that the isometry is respected by all the fields in the background,
it is possible to go to a non-holonomic frame so that the DFT fields, when written with
respect to such a frame, are independent of the isometry coordinates. In [17] we refer to
such fields as untwisted fields. Plugging the initial DFT fields in the field equations of
DFT (of both the NS-NS sector and RR sector of Type II supergravity), one sees that the
untwisted DFT fields satisfy the field equations of Gauged Double Field Theory (GDFT),3

with geometric fluxes associated with isometry. It was shown in [17] that the NAT dual
DFT fields H′, d′, χ′ are found by acting on the untwisted fields H(x), d(x), χ(x),4 by the
O(d, d) matrix (2.1) as below:

H′(x, ν) = TNATD(ν)H(x)(TNATD)t(ν) (2.2)
K′(x, ν) = SNATD(ν)K(x)(SNATD)−1(ν) (2.3)
F ′(x, ν) = e−σ(ν)e−B

′(x,ν)SNATD(ν)eB(x)F (x) (2.4)
d′(x, ν) = d(x) + σ(ν). (2.5)

1When the action of the isometry group G is not free, n might be bigger than d, in fact it may even
exceed ten. However, the methods that are discussed here can be generalized as described in [59], where
they assume that the action is not free but that there is a local symmetry group H ⊂ G. This is the case
when the target space includes a coset space G/H. They show in [59] that NATD can be applied without
fixing the local H invariance and that the dual action still inherits the H invariance. This can then be used
to gauge away the n−d redundant degrees of freedom after dualisation. Specifically, the background matrix
E = g+B in (3.7) is taken to be n dimensional but in such a way that only the part that projects onto the
coset G/H is non-trivial. For example, if the background is S3 and the isometry group used for dualisation
is SO(4) then the metric g is taken as the diagonal 6× 6 matrix diag(1, 1, 1, 0, 0, 0), see appendix B of [59].
After transforming under (2.1), which is in O(6, 6), one ends up with a six dimensional background. As
demonstrated in [59], 3 of the 6 dual coordinates ν1, · · · , ν6 of the dual background can be removed by
using the local SO(3) invariance that survives dualisation so that NAT dual of S3 is also 3 dimensional,
as it has to be. Although [59] does not describe NATD as an O(d, d) transformation as we do here, their
formulas can be easily converted to formulas involving O(d, d)/Pin(d, d) transformations, as discussed in
detail in [17].

2DFT is consistent only when one imposes the so called strong constraint, that effectively eliminates half
of the doubled coordinates. This constraint is trivially satisfied when the DFT fields and gauge parameters
are independent of the winding type coordinates. In this case, the DFT fields are said to belong to the
supergravity frame, since the DFT action and field equations reduce to those of Type II supergravity in the
democratic formulation.

3GDFT is a deformation of DFT, obtained from a Scherk-Schwarz reduction and the deformation is
determined entirely by the fluxes associated with the Scherk-Schwarz twist matrix [38–41].

4Here, we call the spectator coordinates excluding the isometry directions collectively x and the doubled
coordinates of the NAT dual background collectively ν.
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Here, K = C−1
d S, and Cd is given in (C.7) in appendix C. S is the element in Spin−(d, d)

that projects onto H under the double covering homomorphism ρ between Pin(d, d) and
O(d, d), that is ρ(S) = H. Similarly, ρ(SNATD) = TNATD and up to a sign it is given as [17]

SNATD = CnSθ = SβCn. (2.6)

The factors Sθ and Sβ in SNATD are the Spin+(10, 10) elements that projects onto the
SO+(10, 10) matrix that generates the B-transformations and β-shifts with θij = νkC

k
ij

and βij = νkC
k

ij , respectively. B′(x, ν) that appears in (2.4) is read off from H′(x, ν)
in (2.2). The field σ(ν) in (2.5) and (2.4) is non-vanishing only when the isometry group
is non-unimodular. For the purposes of this paper, it can be taken to be zero. The fact
that the NAT dual fields can be written in terms of DFT fields as in (2.2)–(2.5) makes
it straightforward to prove that NATD is a solution generating transformation for the
field equations of Type II supergravity. In fact, all one has to do is to show that the
fields in (2.2)–(2.5) solve the DFT equations, since the coordinates (x, ν) can be identified
with the physical space-time coordinates, putting all the fields in the supergravity frame.
Due to the special form of the fields, this amounts to showing that the untwisted fields
H(x), d(x), F (x) appearing on the right hand side of (2.2)–(2.5) solve the field equations
of GDFT, with fluxes generated by TNATD. Now, the key point is that this is exactly
the same as the geometric flux associated with the isometry group, that is, f k

ij = C k
ij ,

and we already know that the untwisted fields satisfy the GDFT equations with geometric
flux. As a result, one concludes that NATD is a solution generating transformation for
Type II supergravity, both in the NS-NS and the RR sector, simply owing to the fact that
fluxes are preserved. The idea that preservation of flux should be a guiding principle in
determining whether an O(d, d) transformation is a solution generating transformation for
supergravity has also been used in [42–45] and very recently in [46]. A similar approach was
applied in [47] to find solution generating U-duality transformations within the framework
of exceptional field theory. In the next section, we will see that the same principle also
plays a key role in examining preservation of supersymmetry under NATD.

3 Covariance of pure spinor equations under Pin(d, d)

As was first shown in the seminal paper [35], the conditions to be obeyed by the internal
space in a supersymmetric compactification of Type II supergravity can be neatly described
within the framework of generalized complex geometry [28–30]. Demanding that the four
dimensional solution preserves at least N = 1 supersymmetry implies that the structure
group of the generalized tangent bundle TM ⊕ T ∗M of the six dimensional internal man-
ifold M is reduced from SO(6, 6) to SU(3) × SU(3). This topological condition on the
internal manifold implies the existence of two globally defined compatible pure spinors
Φ1 and Φ2 of non-vanishing norm. These Cliff(6, 6) spinors can be constructed from
the internal spinors arising from the 10 dimensonal Killing spinors generating the super-
symmetry transformations in 10 dimensions. A Cliff(6, 6) spinor can be mapped to a
non-homogenous differential form (a polyform) through the Clifford map. It was shown
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in [31, 35, 36] (also see [48]) that the Killing spinor equations coming from supersymmetry
variations is equivalent to the following differential equations for the two pure spinors:

d(e2A−φeB ∧ Φ1) = 0, (3.1)

d(e2A−φeB ∧ Φ2) = e2A−φdA ∧ eB ∧ Φ̄2 + i

8e
3AeB ∧ λ(∗6F ). (3.2)

For computational details on derivation of these equations, see appendix A of [36] and
appendix B of [48]. For the corresponding equations for general ten dimensional super-
symmetric solutions which do not necessarily involve a four dimensional Minkowski space
factor, see [49] (the equations above are discussed as a special case in their section 4.1).
Note that for our purposes, we have presented the equations in a form where the B field ap-
pears explicitly, rather than writing them in terms of the differential operator dH = d+H∧
as was originally done in [31, 35, 36].5

In the equations above, A is the warp factor that appears in the compactification
ansatz

ds2 = e2A(y)dx2
3,1 + gmndy

mdyn, m, n = 1, · · · , 6. (3.3)

φ is the dilaton field and ∗6 is the Hodge duality on the six dimensional internal manifold.
F is related to the polyform F (10) that encodes the RR fields in the democratic formulation
of supergravity [50] in the following way

F (10) = F + vol4 ∧ ∗6(λF ). (3.4)

Here, F = F0 + F2 + F4 + F6 for Type IIA and F = F1 + F3 + F5 for Type IIB, and they
are internal forms having components only along the six dimensional internal space. Also,

λ(An) ≡ (−1)Int[n/2]An = (−1)n(n−1)/2An (3.5)

for an n-form An. As a Spin(d, d) spinor F has positive chirality for Type IIA and is of
negative chirality for Type IIB. The chirality of the pure spinor Φ1 is the same as that of
the RR fluxes and the pure spinor Φ2 has opposite chirality.

In the next two subsections, we will show that these equations are covariant under
Pin(d, d) transformations.

3.1 Constant Pin(d, d) transformation

Although (2.1) is non-constant, we start by considering the transformation of the pure
spinor equations under a constant O(d, d) matrix T and the corresponding Pin(d, d) matrix
P with ρ(P ) = T , where ρ is the double covering homomorphism

ρ : Pin(d, d)→ O(d, d).
5In fact, it is more common in the literature to express these equation in terms of the operator dH =

d −H∧. This involves a field redefinition H → −H for Type IIA with respect to the conventions of [50].
In section 4 we will be looking at a IIA background with non-trivial B-field, so we prefer to agree with the
conventions of [50] for Type IIA (since the conventions adopted in [17] agree with those of [50]), and this
means we need the above field redefinition for Type IIB. This also means that our convention for the B-field
is the opposite of that of [25]. Indeed, the B-field we find in (4.8) in section 4 has opposite sign compared
to the B-field found in [25].
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The transformation of the RR fluxes F under P ∈ Pin(d, d) is [51]

F → F ′ = P.F = e−B
′
PeBF. (3.6)

Here, the transformation of the B-field is read off from the antisymmetric part of the
transformed background matrix E ≡ g +B:

E → E′(g′, B′) = T.E(g,B) = (aE + b)(cE + d)−1 (3.7)

when the O(d, d) matrix T is of the form

T =
(
a b

c d

)
. (3.8)

Note that this is equivalent to the aforementioned transformation of the generalized met-
ric [52]

H′(g′, B′) = TH(g,B)T t. (3.9)

It is known that the pure spinors transform under Pin(d, d) in basically the same way
as the RR fields transform. However, there is a slight change which makes sure that the
norms of the pure spinors are kept invariant (up to a sign). The norm ‖ Φ ‖ of a pure
spinor Φ is defined [31, 35, 36] via the Mukai pairing <,>, which is an invariant bilinear
form on spinors (see appendix C):

< Φ, Φ̄ >= −i ‖ Φ ‖2 vol (3.10)

where vol is the volume form determined by the metric. As discussed in detail in ap-
pendix C, the Mukai pairing has the following transformation property under the action
of certain elements P of Pin(d, d):

< PΦ1, PΦ2 >= ± < Φ1,Φ2 >, (3.11)

where either P ∈ Spin(d, d) or is of the form P = CnS or P = SCn with S ∈ Spin(d, d)
and Cn is as in (C.7) (Recall that the NATD matrix (2.6) is of this form). On the other
hand the volume form vol = ?d1 transforms as

?d1 =
√

det gdy1 ∧ · · · dyd → ?′d1 =
√

det g′dy1 ∧ · · · dyd = G
√

det gdy1 ∧ · · · dyd = G ?d 1,

where
G ≡

√
det g′√
det g

= det(cE + d)−1. (3.12)

This follows immediately from the transformation of the metric g which can be read off
from the symmetric part of E′ in (3.7). Hence, the transformation of the pure spinors
under Spin(d, d) must be accompanied by a scale transformation with a factor of

√
G:6

Φ→ Φ′ =
√
G P.Φ =

√
G e−B

′
PeBΦ (3.13)

6In the framework of generalized geometry, the pure spinors Φ and
√
GΦ correspond to the same gener-

alized complex structure, as they belong to the same pure spinor line sub-bundle of
∧•

T ∗.
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so that the norm (3.10) remains invariant up to a sign. Note that this extra factor of
√
G

also ensures that
e2A′−φ′eB

′ ∧ Φ′1,2 = P
(
e2A−φeB ∧ Φ1,2

)
(3.14)

since A is invariant and the dilaton field φ transforms exactly with the same
√
G factor:

eφ
′ =
√
Geφ. (3.15)

The transformation rule (3.15) follows from the fact that the generalized dilaton field
e−2d =

√
det g e−2φ is invariant under O(d, d) (consider the equation (2.5) with σ = 0),

that is e−2d′ = e−2d so that:

e−2φ′√det g′ = e−2φ√det g. (3.16)

Now all we have to do is to figure out the transformation of the term involving Hodge
duality on the right hand side of equation (3.2) and also to show that the action of P and
the exterior derivative operator d on the Clif(d, d) spinors Φ1,2 and F commutes.

For both purposes, we find it useful to embed these equations in Double Field Theory.
Towards this we extend the exterior derivative operator d = 1

2Γi∂i to

d+ d̃ ≡ 1
2ΓM∂M = 1

2(Γi∂i + Γi∂̃i) = ψi∂i + ψi∂̃
i. (3.17)

Here, the gamma matrices ΓM = (Γi,Γi) are the Clifford algebra elements satisfying the
following Clifford product relations:

{Γi,Γj} = 2δij , {Γi,Γj} = 0 , {Γi,Γj} = 0 , (3.18)

For future reference we also defined in (3.17)

ψM ≡ 1√
2

ΓM . (3.19)

Also, we write ?λ(F ) as [21, 41]

? λ(F ) = −C−1
d S−1

g F, (3.20)

where S−1
g = Sg−1 is the Spin(d, d) element that projects onto the SO(d, d) element

hg−1 ≡
(
g−1 0
0 g

)
(3.21)

under the double covering homomorphism ρ that is, ρ(Sg−1) = hg−1 . Note that the equa-
tion (3.20) is valid in all even dimensions,7 in particular for ∗6 with d = 6.

It is useful to write CdSg−1 as e−BKdeB where Kd = C−1
d S and S ≡ S†BSg−1SB is the

Spin(d, d) element that projects onto the generalized metric H. Indeed,

e−BKdeB = e−BC−1
d SeB = e−BC−1

d S†BSg−1SBe
B (3.22)

= e−BC−1
d Cde

BC−1
d Sg−1e−BeB = C−1

d Sg−1 . (3.23)
7In odd dimensions, the definition of K involves (ψi +ψi), rather than the (ψi−ψi) in (C.11) and (C.12).

See [21] for more details.
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where we have used that SB = e−B and S†B = CdS−BC
−1
d = Cde

BC−1
d . Rewriting (3.20)

for d = 6 and in terms of Kd, we have

∗6 λ(F ) = −e−BK6e
BF. (3.24)

Rewriting the equations (3.1) and (3.2) we get

ΓM∂M (e2A−φeB ∧ Φ1) = 0, (3.25)

ΓM∂M (e2A−φeB ∧ Φ2) = e2A−φΓM∂MA ∧ eB ∧ Φ̄2 ∓
i

8e
3AK6e

BF. (3.26)

These equations reduce to equations (3.1) and (3.2) in the supergravity frame where fields
do not depend on the winding type coordinates so that ∂̃i = 0. The upper sign in the last
term of (3.26) is for Type IIB and the lower sign is for Type IIA. This is because in six
dimensions ∗6λ = λ∗6 for odd degree forms, whereas ∗6λ = −λ∗6 for even degree forms.

We know that F (10) in (3.4) transforms as in (3.6). Let us discuss what this implies
for the transformation of the internal forms F . We have

F (10)′ = e−B
′
PeB(F − vol4 ∧ e−BK6e

BF )
= e−B

′
PeBF − vol4 ∧ e−B

′
PK6e

BF. (3.27)

where we have used (3.24) and the fact that vol4, being an even form, commutes with all
elements of Pin(d, d). To rewrite (3.27) in the form (3.4) we first define

F ′ ≡ e−B′PeBF, (3.28)

which is again an internal form, as all the Pin(d, d) operators on the left hand side have
actions only on the internal space and then use the fact that under P ∈ Pin(d, d) the field
Kd transforms as

Kd → P.Kd = K′d = PKdP−1. (3.29)

Inserting a P−1P after K in the second term of the right hand side of (3.27) and using (3.24)
and (3.28), we obtain

F (10)′ = F ′ − vol4 ∧ e−B
′K′6eB

′
F ′

= F ′ + vol4 ∧ ∗̃6λ(F ′). (3.30)

Note that F ′ has components only along the six dimensional deformed space and the Hodge
duality is taken with respect to the metric after the O(d, d) transformation. This shows us
that not only the polyform F (10) that encodes the RR fields in the democratic formulation,
but also the internal polyform F that appears in the pure spinor equations (3.1), (3.2)
transform in the expected way as given in (3.28).

Using the transformation properties (3.29) and (3.28), (3.13), (3.15) and the fact that
A is invariant under Pin(d, d) we also see that

e3A′K′deB
′
F ′ = P

(
e3AKdeBF

)
. (3.31)
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In order to prove the covariance of the pure spinor equations under Pin(d, d) we next
discuss whether or not the generalized exterior derivative operator ΓM∂M commutes with
the action of Pin(d, d). We first start with Spin(d, d) and show

ΓM∂M (S χ) = S(ΓM∂Mχ), S ∈ Spin(d, d) (3.32)

for any spinor field χ. Using the relations

(h−1)MAΓA = S−1ΓMS, (3.33)

where h is the SO(d, d) element that satisfies ρ(S−1) = h, we see that for constant S ∈
Spin(d, d):

ΓM∂M (S χ) = ΓMS ∂Mχ = SΓA(h−1)MA∂Mχ. (3.34)

Then, the commutation relation (3.32) holds, if we have

(h−1)MA∂Mχ = ∂Aχ (3.35)

Note that we would have in DFT,

(h−1)MA∂Mχ(hX) = ∂′Aχ(X ′). (3.36)

since one also transforms X → X ′ = hX. However in all the examples we will be looking
at, the transformation generated by P will act only along the coordinates on which the
pure spinors will not depend, so that we will always have X ′ = X and hence ∂′Aχ = ∂Aχ.
For example, if the background possesses d commuting isometries, it is possible to choose
coordinates such that the fields depend on only 10 − d of the 10 coordinates. Associated
with the d isometries, there is an O(d, d) Abelian T-duality group acting on the back-
ground along these d coordinates. Since the coordinates have been chosen in such a way
that none of the fields (including the global spinor fields) do not depend on these di-
rections, we have ∂′Aϕ(X) = ∂Aϕ(X), where ϕ denotes any field or gauge parameter in
the theory and A runs through the 10 − d coordinates. To summarize, equation (3.32)
holds as desired, as long as the condition (3.35) is satisfied. This immediately implies
(using (3.13), (3.15), (3.29), (3.28) and the invariance of A) that the pure spinor equa-
tions (3.25), (3.26) are covariant under Spin(d, d) transformations. Note that there is no
sign flip in front of the last term on the right hand side of (3.26), since Spin(d, d) trans-
formations takes a solution of Type IIA/IIB to a solution also of Type IIA/IIB. However,
a Pin(d, d) transformation which involves odd number of reflections maps a solution of
Type IIA to a solution of Type IIB and vice versa, and hence the sign of the aforemen-
tioned term in (3.26) flips after the transformation. Despite this, the pure spinor equa-
tions (3.25), (3.26) are still covariant, since for such P , the differential operator d = ΓM∂M
and P anti-commutes, as we will now discuss.
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Consider the Pin(d, d) elements Λi given in (C.8). From the Clifford commutation
relations (3.18) one can easily compute8

Λi.ΓM .(Λi)−1 =


−Γi if ΓM = Γi

−Γi if ΓM = Γi .
−ΓM otherwise

(3.38)

In this paper, we will be looking at the Pin(d, d) elements that can be written as a
product of Spin(d, d) elements and Λi, simply because the NATDmatrix is of this form. Our
discussions here can be straightforwardly extended so as to include the Pin(d, d) elements
which also involve the elements Λ+

i given in (C.11), but we refrain from doing that in order
to avoid equations cluttered with pluses and minuses.

Due to the relations (3.38), we see that

d(Λiχ) = ΓM∂M (Λiχ) = −ΛiΓM∂Mχ = −Λidχ, (3.39)

provided that M 6= i or M 6= i, which then implies that the differential d = ΓM∂M
and P commutes if P involves an even number of Λis and they anti-commute otherwise.
As discussed above, this condition is automatically satisfied for Abelian T-duality, due
to the existence of d commuting isometries. This makes it possible to choose a coor-
dinate system such that none of the fields depend on the coordinates along which the
(constant) O(d, d)/Pin(d, d) transformation acts, and hence the desired commutation or
anti-commutation relations hold. Therefore, we conclude that the pure spinor equations
are covariant under Abelian T-duality. As for NATD, (3.35) is also satisfied with a con-
venient choice of coordinates (again due to existence of isometries), but we still need to
discuss the situation with non-constant P , since the NATD matrix (2.1) is not constant as
has been assumed above. This discussion will be carried out in the next section.

Note that the covariance of the equations (3.1), (3.2) for certain cases has been dis-
cussed before, albeit in a different language. For example, in [34] the covariance of the
pure spinor equations for backgrounds with U(1) isometry was shown.9 Another exam-
ple is the Lunin-Maldacena (LM) transformation (also called TsT transformation) which
can be described as on O(2, 2) transformation [53–55]. In [56] the transformation of the
pure spinors corresponding to an SU(3) structure under this O(2, 2) transformation was
discussed within the framework of generalized complex geometry, as we do here. That
the transformed pure spinors (now corresponding to an SU(2) structure) still satisfy the
supersymmetry equations was also checked for this particular O(2, 2) transformation.

8Note that (3.38) implies that ρ(Λi) = hi, where

hi = −
(

1− Ei Ei

Ei 1− Ei

)
, (Ei)jk = δijδik. (3.37)

9More precisely, they studied the factorized duality for d = 1. See [37] for the discussion of how factorized
duality, B-shifts and GL(d) transformations are embedded in the T-duality group O(d, d) for flat and curved
backgrounds with d commuting isometries.
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3.2 Non-constant Pin(d, d) transformation

In this subsection, we extend the discussion in the previous subsection to the case where
the Pin(d, d) transformation (and hence the corresponding O(d, d) transformation) depends
on some of the internal coordinates. This is important, as the NATD transformation and
the Yang-Baxter transformation are known to be generated by such coordinate dependent
Pin(d, d) transformations. The transformation properties summarized in (3.14), (3.31) are
obviously still valid, even when P ∈ Pin(d, d) is coordinate dependent. However, one has
to be more careful in discussing the commutation of the exterior derivative operator d and
the action of P , as now d also acts on P .

Let us first discuss the case when the Pin(d, d) matrix does in fact lie in the subgroup
Spin+(d, d), P = S ∈ Spin+(d, d) (so that we can use the useful identity (3.41)):

ΓM∂M (S χ(X)) =
{

ΓMS ∂M + ΓMS(S−1∂MS)
}
χ(X) (3.40)

= S ΓA (h−1)MA
(
∂M + S−1∂MS

)
χ(X),

where ρ(S−1) = h and in passing to the second line, we have used (3.33). To calculate the
second term in (3.40) we use an important identity that follows from the fact that the Lie
algebras of SO(d, d) and Spin(d, d) are isomorphic:

ΓA (h−1)MAS−1∂M S = 1
4ΩABCΓA ΓB ΓC

= 1
12fABCΓA ΓB ΓC χ(X)− 1

2fBΓB χ(X). (3.41)

Here, fABC are the fluxes associated with the matrix S (see [17, 41] for the definition).
Now, we again assume that the transformation matrix S is such that (3.35) is obeyed.

We emphasize again that this condition is trivially satisfied if the field χ does not depend
on the coordinates along which S and hence h acts nontrivially. This is indeed the case
for NATD and is guaranteed by the fact that NATD acts along isometry directions. Then,
under this assumption, we have

ΓM∂M (Sχ) = S(ΓA∇Aχ), (3.42)

where
∇A = ∂A + 1

12fABCΓB ΓC − 1
2fA. (3.43)

Let us now discuss what happens when P involves odd number of Λi factors, so that
P does not lie in the Spin(d, d) subgroup (if the number of Λi factors is even, then S is still
in Spin(d, d), albeit not in the subgroup Spin+(d, d) connected to identity). For simplicity,
we assume that P is of the form P = CnS, where S ∈ Spin+(d, d) and Cn is as in (C.7)
with n odd. Equation (3.33) is valid for all Pin(d, d) elements, so we have

(h1 · · ·hnU)MAΓA = P−1ΓMP, (3.44)

where U is the SO+(d, d) element that satisfies ρ(S) = U , and hi satisfy ρ(hi) = Λi and
are given in (3.37). When n is odd, it can be easily seen that h1 · · ·hn = −Jdn, where Jdn is
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the O(d, d) matrix obtained by embedding the O(n, n) matrix

Jn =
(

0 1n
1n 0

)
, (3.45)

in O(d, d) in the usual way (see 4.2.28–4.2.29 of [37]). Rewriting the first line of (3.40) for
P = CnS and using (3.44) we have

ΓM∂M (P χ(X)) =
{

ΓMP ∂M + ΓMP (P−1∂MS)
}
χ(X) (3.46)

= −P ΓA (JdnU)MA
(
∂M + S−1∂MS

)
χ(X),

where we have also used P−1∂MP = S−1∂MS for P = CnS. Using (3.41) again, one can
see that we have

ΓM∂M (Pχ) = −P (ΓA∇Aχ), (3.47)

where ∇ is as in (3.43), now with fluxes f ′ABC = (Jdn)DAfDBC with f being the fluxes
associated with the Spin+(d, d) matrix S.

Collecting the results in (3.14), (3.31), (3.32), (3.42) and (3.47), we conclude that
the fields after the transformation generated by the non-constant P ∈ Pin(d, d) satisfy
the supersymmetry equations (3.25), (3.26) if and only if the fields before the transfor-
mation satisfy the following equations, which can be regarded as a deformation of those
in (3.25), (3.26) determined by the fluxes associated with P .

ΓM∇M (e2A−φeB ∧ Φ1) = 0, (3.48)

ΓM∇M (e2A−φeB ∧ Φ2) = e2A−φΓM∂MA ∧ eB ∧ Φ̄2 ∓ (−1)n i8e
3AK6e

BF. (3.49)

Here, n is the number of Λi factors that appear in the definition of P = CnS, S ∈
Spin+(d, d).

Before we move on to the next subsection, we would like note that the transformation
of pure spinor equations under a non-constant O(d, d) transformation was also studied
in [57] and [58]. They called such transformations twist transformations and also used
them as solution generating transformations in Type II theory.

3.3 Invariance under NATD

As we discussed in section 2, the transformation under NATD of the fields in the NS-
NS sector can be performed via the action of the matrix TNATD given in (2.1). Accord-
ingly, the transformation of the RR fields can be performed via the projected element
SNATD under the double covering homomorphism between Pin(d, d) and O(d, d), see equa-
tions (2.2)–(2.5). An important point that should be stressed here is that SNATD and
TNATD act on the so-called untwisted fields g(X), B(X), φ(X),Φ(X) and F (X). These un-
twisted fields depend only on 10− dimG coordinates, where dimG is the dimension of the
non-Abelian isometry group G,10 and is related to the background fields g(X, θ), B(X, θ),

10For simplicity, we assume here that the action of G is free. However, the whole argument can be
extended to the case where isotropy group of the action of G is non-trivial, see [59].
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φ(X, θ),Φ(X, θ) and F (X, θ) exactly as in (2.2)–(2.5), where we replace the NATD coor-
dinates ν with the space-time coordinates θ associated with the isometry directions11 and
the matrices TNATD and SNATD with L and SL, respectively with,

L =
(
lT 0
0 l−1

)
, (3.50)

and SL ∈ Spin+(d, d) is such that ρ(SL) = L. Here, l is the GL(10) matrix obtained by
embedding the GL(d) matrix ld with components (ld)Ii = lIi such that (ld)Im = lai = 0
and (ld)am = δam. lIi are components of the left invariant 1-forms σI = lIidθ

i on G defined
from the Maurer-Cartan form: g−1dg = σITI with TI forming a basis for the Lie algebra G
of the isometry group G. For more details see [17]. We also assume that the pure spinors
associated with the background respect the isometry so that (3.13) also holds for both pure
spinors:12

Φ(X, θ) =
√
G SL(θ) . Φ(X) =

√
det l e−B

′(X,θ)SL(θ)eB(X)Φ. (3.51)

Now suppose that the background we start with preserves at least N = 1 supersymmetry
so that the pure spinor equations (3.1), (3.2) are satisfied. According to the discussions
in the previous subsection and the paragraph above, this means that the untwisted fields
(which have no dependence on the isometry directions) satisfy the deformed pure spinor
equations (3.48), (3.49), where the deformation is determined by the flux associated with
the matrices L and SL. But this is just geometric flux with f k

ij = C k
ij , see [17]. Now

we act on these untwisted fields with the NATD matrices (2.1), (2.3) as in (2.2)–(2.5)
to generate the NAT dual background. The resulting fields satisfy the field equations
of Type II supergravity as was shown in [17] by embedding these equations in DFT. To
check supersymmetry of the dual background we also transform the untwisted pure spinors
of the initial background (that is, the pure spinors Φ(X) in (3.51) rather than Φ(X, θ))
as in (3.13) with P = SNATD. Now we have to check whether these new pure spinors
Φ(X, ν) still satisfy the supersymmetry equations (3.1), (3.2). As discussed in the previous
subsection, this is equivalent to checking whether the untwisted pure spinors satisfy the
deformed supersymmetry equations (3.48), (3.49), where the deformation is determined
by the flux associated with the NATD matrix SNATD. As discussed above, due to the
special form of the NATD matrix: SNATD = CnSθ, the associated flux can be computed
by calculating the flux associated with Sθ first (which gives the H-flux) and then raising
one index with J6

n. This yields geometric flux with f k
ij = C k

ij , and we already know
that the untwisted pure spinors satisfy these deformed equations due to the existence of
isometry respected by the initial background and the pure spinors associated with it. This
completes the proof that a background that preserves N = 1 supersymmetry will still be
supersymmetric after NATD.

11We choose a coordinate system adapted to the isometries so that the fields can be written in this
separated form.

12Note that the second equality in (3.51) is valid due to the special form of L and SL, see equations
(4.22)–(4.23) in [17].
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4 Examples

In this section, we will demonstrate how the NATD transformation formulas (2.2)–(2.5)
and (3.13) work by looking at a specific class of Type IIB backgrounds, which were first
studied in [25]. The topology of the background we will study is R1,3 ×M3 × S3 so that
there is an SU(2) isometry associated with S3, which can be utilized to perform NATD.

The ansatz for the metric and the 5-form flux is

ds2 = e2Adx2
1,3 + ds2(M3) +

3∑
i=1

(
ei
)2
, (4.1)

F5 = F2 ∧ e1 ∧ e2 ∧ e3

F5 = (1 + ?)F5 = F2 ∧ e1 ∧ e2 ∧ e3 − e4A ?3 F2 ∧Vol4

and F1 = F3 = B = φ = 0. F2 is a 2-form, ?3 is the Hodge star operator onM3, and A is
the warp factor. It is a function which has dependence only on the coordinates ofM3. S3

is assumed to be fibered overM3 and hence the vielbeins ei on S3 have the form

ei = λi(σi +Ai). (4.2)

Here, Ai are 1-forms onM3 and λi are functions onM3. The forms σi are left invariant 1-
forms for the isometry group SU(2) so that dσi = 1

2ε
i
jkσ

j ∧σk. We denote the left invariant
vector fields Li, so iLi σ

j = δji . We also define (as in [25]) a set of undetermined frame
fields hi so that

ds2(M3) =
3∑
i=1

(hi)2. (4.3)

Another assumption that is made in [25] is that this geometry preserves at least N = 1
supersymmetry in four dimensions in the form of an SU(3) structure characterized by the
following 2-form J and 3-form Ω which are given by means of a vielbein ei and frame
fields hi:

J = h3 ∧ e3 + e1 ∧ e2 + h1 ∧ h2 , Ω = (h3 + ie3) ∧ (e1 + ie2) ∧ (h1 + ih2) . (4.4)

As discussed in appendix A, SU(3) structure can be regarded as a special case of
SU(3) × SU(3) structure with associated pure spinors of the form (A.4). In our case,
setting Φ1 = Φ− and Φ2 = Φ+ we have

Φ+ = 1
8e

iθ+eAe−iJ , Φ− = − i8e
iθ−eAΩ (4.5)

Due to assumption of preservation of supersymmetry, these pure spinors must satisfy
the equations (3.1), (3.2). As shown in [25], this forces θ+ = π

2 and A1 = A2 = 0. The pos-
sible values for θ− for different geometries is given in appendix B of [25]. Comparing (4.5)
with (A.4) one can see that it is of the general form of a general SU(3) pure spinor with
a = eiθ−/2eiθ+/2eA/2 and b = eiθ−/2e−iθ+/2eA/2, which satisfy |a|2 = |b|2 = eA.

The ansatz (4.1) is general enough to cover many examples important for AdS/CFT
duality, notably AdS5×T 1,1, AdS5×Y p,q and AdS5×S5. The detailed description of how
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these backgrounds fall within this general ansatz can be found in appendix B of [25]. For
example, for T 1,1 background the required values are as follows:

A = log r, A3 = cos θdϕ, θ− = 0,

λ1 = λ2 = 1√
6
, λ3 = 1

3 , h1 = 1√
6

sin θdϕ, h2 = 1√
6
dθ, h3 = dr

r
.

On the other hand, the required values for the AdS5 × S5 background are:

A = log 2R, A3 = 0, θ− = β, λ1 = λ2 = λ3 = cosα,

h1 = 2R cosαdα+ sinαdR
R

, h2 = 2 sinαdβ, h3 = 2cosαdR−R sinαdα
R

.

Now, we perform the NATD transformation of the background described by the
ansatz (4.1). We begin with the transformation of the metric and the B-field. For this
we use (3.7) where T is obtained by embedding TNATD in (2.1) in O(6, 6) in the usual way.
We will call this O(6, 6) matrix also TNATD.13 Then we read off the transformed metric and
the transformed B-field from the symmetric and antisymmetric parts of E′, respectively:

E′(g′, B′) = TNATD. E(g,B) (4.6)

g′ = E′ + E′t

2 , B′ = E′ − E′t

2 (4.7)

As mentioned before, this transformation is equivalent to what is given in (2.2). We refer
to [17] for details. This gives

ds′2 = e2Adx2
1,3 + ds2(M3) + 1

∆

(
(νiνj + λ2

1λ
2
2λ

2
3

λ2
(i)

δ(i)j) dνi dνj − 2λ2
3λ

2
2ν2 dν1 A3

+2λ2
3λ

2
1ν1 dν2 A3 + (λ2

3∆− 4λ4
3(λ2

1λ
2
2 + ν2

3)) A3 A3

)
B′ = − 1

∆

(1
2εijkνiλ

2
i dνj ∧ dνk + λ2

3ν3ν1 dν1 ∧ A3

+λ2
3ν3ν2 dν2 ∧ A3 + (λ2

3ν
2
3 + λ2

1λ
2
2λ

2
3) dν3 ∧ A3

)
,

∆ = G−1 = λ2
1λ

2
2λ

2
3 + λ2

1ν
2
1 + λ2

2ν
2
2 + λ2

3ν
2
3

e−2φ′ = ∆ (4.8)

These are the same as the results obtained in [25] (except for a sign difference in the B-field,
see footnote 5).

Next, we perform the NATD transformation of the RR flux F5 from the transformation
rule (2.4), with SNATD (2.6). To this end, it is convenient to write the spinor field F that
packages the RR fluxes as a non-homogeneous differential form as follows (see [17, 41]):

F =
∑
p

(
F (p) + F

(p−1)
i σi + 1

2F
(p−2)
ij σi ∧ σj + F (p−3)σ1 ∧ σ2 ∧ σ3

)
, (4.9)

13Note that, since the isometry group SU(2) is three dimensional, the matrix (2.1) is in O(3, 3).
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where each p-form is decomposed according to how many legs it has along the SU(2)
directions. This non-homogeneous differential form maps to a Clifford algebra element in
the usual way where we identify the element σi with the Clifford algebra element ψi, for
i = 1, 2, 3, see (3.19). It has the following form:

F =
∑
p

(
F (p) + F

(p−1)
i ψi + 1

2F
(p−2)
ij ψiψj + F (p−3)ψ1ψ2ψ3

)
(4.10)

Then, the spinorial action of ψi on F is given by wedge product, whereas the spinorial
action of ψi is given by contraction [17, 41]:

ψi.F = ψi ∧ F, ψi.F = iψi
F. (4.11)

Since there is no B-field, we will first calculate the action of CSθ on differential forms
then apply e−B′ . The action of Sθ in (2.6) on a non-homogeneous differential form α is as
follows:

Sθ · α = e−θ ∧ α = α+ νk ε
k

ij ψi ∧ ψj ∧ α (4.12)
= α+ ν1 ψ

2 ∧ ψ3 ∧ α+ ν2 ψ
3 ∧ ψ2 ∧ α+ ν3 ψ

1 ∧ ψ2 ∧ α

On the other hand, the action of C given in (C.7) can be calculated by using (4.11).
We calculate the following NATD transformed RR flux.

F ′5 = e−B
′
CSθ F5

= λ1λ2λ3 F2 − λ1λ2λ3 B
′ ∧ F2 − λ1λ2λ3 ψ

3 ∧ A3 ∧ F2 + e4AVol4 ∧ νiψi ∧ ?3F2

−e4AVol4 ∧ ψ1 ∧ ψ2 ∧ ψ3 ∧ ?3F2 −B′ ∧ e4AVol4 ∧ νiψi ∧ ?3F2 (4.13)

where the Hodge duality ?3 is taken with respect to the transformed metric. This polyform
packages all the RR fluxes of the NAT dual background, which we read off (after identifying
ψi with dνi) to be:

F ′2 = λ1λ2λ3F2, (4.14)
F ′4 = (−B′ +A3 ∧ dν3) ∧ F ′2, (4.15)
F ′6 = ?10F

′
4 = e4AVol4 ∧ νi dνi ∧ ?3F2, (4.16)

F ′8 = − ?10 F
′
2 = −B′ ∧ F ′6 + e4AVol4 ∧ ?3F2 ∧ dv1 ∧ dν2 ∧ dν3. (4.17)

These agree with the results obtained in [25] (up to sign differences in B′, and the 6- and
8-forms due to differences in conventions, see footnote 5).

Finally, we will apply the NATD transformation rule (3.13) (with P = SNATD) to
the SU(3) pure spinors given in (4.5) (which are known to satisfy the supersymmetry
equations (3.1), (3.2)) and obtain the NAT-dual pure spinors Φ′+ and Φ′−. The explicit
form of the transformed pure spinors are presented in appendix B. In obtaining the results
there, we first calculate SθΦ−:

SθΦ− = Φ− + ν1 ψ
2 ∧ ψ3 ∧ Φ− + ν2 ψ

3 ∧ ψ2 ∧ Φ− + ν3 ψ
1 ∧ ψ2 ∧ Φ−

= Φ− −
i

8e
iθ−eA{λ1ν1 ψ

2 ∧ ψ3 ∧ h3 ∧ ψ1 ∧ h1 + i λ1ν1 ψ
2 ∧ ψ3 ∧ h3 ∧ ψ1 ∧ h2

−λ1λ3ν1 ψ
2 ∧ ψ3 ∧ A3 ∧ ψ1 ∧ h2 + i λ2ν2 ψ

3 ∧ ψ1 ∧ h3 ∧ ψ2 ∧ h1

− λ2ν2 ψ
3 ∧ ψ1 ∧ h3 ∧ ψ2 ∧ h2 − i λ2λ3ν2 ψ

3 ∧ ψ1 ∧ A3 ∧ ψ2 ∧ h2}

Applying
√
G e−B

′
C to SθΦ− above, we obtain Φ′−, whose explicit form is given in (B.2).
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Now we calculate SθΦ+:

SθΦ+ = Φ+ + ν1 ψ
2 ∧ ψ3 ∧ Φ+ + ν2 ψ

3 ∧ ψ2 ∧ Φ+ + ν3 ψ
1 ∧ ψ2 ∧ Φ+

= Φ+ + 1
8e

iθ+eA{ν1 ψ
2 ∧ ψ3 − i λ3ν1 ψ

2 ∧ ψ3 ∧ h3 ∧ A3 − i ν1 ψ
2 ∧ ψ3 ∧ h1 ∧ h2

+ν2 ψ
3 ∧ ψ1 − i λ3ν2 ψ

3 ∧ ψ1 ∧ h3 ∧ A3 − i ν2 ψ
3 ∧ ψ1 ∧ h1 ∧ h2

+ν3 ψ
1 ∧ ψ2 − i λ3ν3 ψ

1 ∧ ψ2 ∧ h3 ∧ A3 − i λ3ν3 ψ
1 ∧ ψ2 ∧ h3 ∧ ψ3

−i ν3 ψ
1 ∧ ψ2 ∧ h1 ∧ h2 + λ3ν3 ψ

1 ∧ ψ2 ∧ ψ3 ∧ h1 ∧ h2 ∧ h3}

Applying
√
G e−B

′
C to SθΦ+ we obtain Φ′+, whose explicit form is given in (B.1).

One can check by direct computation that the transformed pure spinors Φ′− and Φ′+
can be written in the following form:

Φ′− = − i8e
Aeiθ−e

1
2 z∧z̄ ∧ ω (4.18)

Φ′+ = −1
8e

iθ+eAe−ij ∧ z, (4.19)

where the complex 1-form z = v + iw, and the real and complex 2-forms j and ω are as
given below

z =− 1√
∆

(
(λ1λ2λ3 + i λ3ν3) h3 − ν1 dν1 − ν2 dν2 − (ν3 − i λ1λ2) dν3

)
(4.20)

j = 1
∆
(
∆ h1 ∧ h2 + λ1λ2λ

2
3 dν1 ∧ dν2 + λ1λ2λ

2
3ν1 dν1 ∧ A3 + λ2

2λ3ν2 dν1 ∧ h3 (4.21)

−λ1λ2λ
2
3ν2 A3 ∧ dν2 + λ2

1λ3ν1 h
3 ∧ dν2 − (λ2

2λ3ν
2
2 + λ2

1λ3ν
2
1) A3 ∧ h3

)
ω = 1√

∆

(
λ2λ3 h

1∧ dν1 + i λ1λ3 h
1∧ dν2 + (ν1λ1 + i ν2λ2)h1 ∧ h3 + (i ν1λ1 − ν2λ2)h2∧ h3

+i λ2λ3 h
2 ∧ dν1 − λ1λ3 h

2 ∧ dν2 − (i λ2λ3ν2 + λ1λ3ν1) h2 ∧ A3
)
. (4.22)

Comparing (4.18), (4.19) with (A.6) one can see that they define an SU(2) structure,
as can be seen by taking a = eiθ−/2eiθ+/2eA/2 and b = e−iθ−/2eiθ+/2eA/2 in (A.6). Note
that |a|2 = |b|2 = eA, as needed. So, under NATD, a background with SU(3) structure is
transformed to a background with SU(2) structure, as has been demonstrated many times
in the literature previously, in particular in [25, 26].

The results we present in (4.18)–(4.22) are in agreement with those obtained in [25].14

Whether these transformed pure spinors satisfy the supersymmetry equations (3.1), (3.2)
was checked in [25] by direct computation. The results we obtained in section 3.3 make such
a calculation redundant. Indeed, the pure spinors (4.18), (4.19) are obtained through the
action of SNATD and we have proved that this transformation maps solutions of (3.1), (3.2)
to new solutions.

14To be more precise, the results presented in equation (5.4) of [25] differ from our results in (4.18), (4.19)
with an extra -1 factor in Φ′+ and with a −i factor in Φ′− although the differential forms (5.6), (5.7) in [25]
and ours in (4.20)–(4.22) are exactly the same. However, we checked that the pure spinors (4.18), (4.19)
satisfy the pure spinor equations (3.25), (3.26).
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5 Conclusions and outlook

In this paper, we studied how the pure spinor equations (3.1), (3.2) transform under NATD.
These are equations to be satisfied for preservation of N = 1 supersymmetry in com-
pactifications of Type II string theory to four dimensions. Our approach in analyzing
supersymmetry under NATD is different from those in the literature in that we exploit
the recently discovered fact that NATD can be described as an O(d, d)/Pin(d, d) (in the
NS-NS/RR sectors) transformation. Although this is a coordinate dependent transforma-
tion we start in section 3.1 by considering constant Pin(d, d) transformations. Writing the
equations (3.1), (3.2) in terms of DFT fields makes it easy to show that they are Pin(d, d)
covariant. This then means that solutions of these equations will be mapped to new so-
lutions under Pin(d, d). This analysis can be regarded as a generalization of those carried
out in [34] and [56], where the behavior of pure spinor equations under Abelian T-duality
(a certain type of O(1, 1)/Pin(1, 1) transformation) and LM deformations (a certain type
of O(2, 2)/Pin(2, 2) transformation) was studied, respectively.

Since the NATD matrix is coordinate-dependent, further analysis is needed to see
whether solutions are mapped to solutions under NATD. This is done in section 3.2. We
show in that section that this is indeed the case, due to the simple fact that the fluxes
generated by the NATD matrix (regarded as a twist matrix within the formalism of GDFT)
is the same as the geometric flux associated with the isometry group that is used to perform
NATD. This idea of ‘preservation of flux’ has been used before to analyze field equations of
supergravity under NATD in [17], under YB deformations in [42–46] and under U-duality
transformations in [47].

As we emphasized before, our approach here in analyzing supersymmetry equations
under NATD is novel, as it implements NATD as an O(d, d)/Pin(d, d) transformation. We
believe that this starting point is quite useful, as it has been realized in various works
recently that there are other interesting O(d, d) transformations that can be utilized to
generate new supergravity backgrounds, notably related with integrable deformations of
string sigma models [15, 43, 45], [60]–[63]. The approach taken here would also be use-
ful to analyze supersymmetry of such backgrounds. Also, viewing NATD as a Pin(d, d)
transformation makes it easier to apply it to other backgrounds, which fall outside the
ansatz considered in section 4 with different isometry groups and supporting a generic
SU(3) × SU(3) structure [36, 64, 65]. The methods we employed here are well suited to
analyze the supersymmetry and structure group of the resulting backgrounds. We plan to
consider these issues in future work.

A SU(3) and SU(2) structures and pure spinors

The structure group of the generalized tangent bundle TM ⊕ T ∗M of the six dimensional
internal manifold M reduces to SU(3)× SU(3) if there exists two globally defined SU(3)×
SU(3) pure spinors Φ1 and Φ2 of non-vanishing norm, [35, 36]. Adopting the conventions
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of [56], the explicit form of these pure spinors can be given as below:

Φ+ = 1
8
[
c1c̄3e

−ij + c2c̄4e
ij − i(c1c̄4ω + c̄3c2ω̄)

]
∧ ezz̄/2 , (A.1)

Φ− = 1
8
[
i(c2c4ω̄ − c1c3ω) + (c2c3e

ij − c1c4e
−ij)

]
∧ z . (A.2)

where c1, c2, c3, c4 are complex functions on M . For a background of the form (3.3) re-
quirement of existence of supersymmetric branes imposes that |c1|2 + |c2|2 = |c3|2 + |c4|2 =
eA [56].15 Here z = v + iw is a complex 1-form, j is a real 2-form and ω is a complex
2-form.

Reduction of the structure group of the tangent bundle TM to SU(3) is equivalent
to existence on M of an invariant real 2-form J and a complex 3-form Ω satisfying the
following compatibility conditions, [66–69].

i

8Ω ∧ Ω̄ = 1
3!J ∧ J ∧ J, J ∧ Ω = 0. (A.3)

SU(3) structure can be regarded as a special case of SU(3) × SU(3) structure [28–30]
and the form of the pure spinor describing the SU(3) structure is a special case of (A.1)
and (A.2) [35, 36, 56]

SU(3) : Φ− = −i ab8 Ω , Φ+ = ab̄

8 e
−iJ (A.4)

Comparing to (A.1) and (A.2) we have J = j + v ∧ w , Ω = ω ∧ (v + iw) and c1 = a,
c3 = b, c2 = c4 = 0. Due to the condition |c1|2 + |c2|2 = |c3|2 + |c4|2 = eA we need
|a|2 = |b|2 = eA. In (4.5) we had a = eiθ−/2eiθ+/2eA/2 and b = eiθ−/2e−iθ+/2eA/2.

On the other hand, SU(2) structure on M is characterized by the existence of a com-
plex 1-form z = v + iw, a real 2-form j and a complex 2-form ω satisfying the following
compatibility conditions [66–69]:

ω ∧ j = 0, (A.5)
iz j = iz ω = 0,

ω ∧ ω̄ = 2j ∧ j.

Again, SU(2) structure can be regarded as a special case of SU(3) × SU(3) struc-
ture [28–30] and the form of the pure spinor describing the SU(2) structure is a special
case of (A.1) and (A.2). The corresponding pure spinors are [35, 36, 56]:

SU(2) : Φ− = −ab8 e
−i j ∧ (v + iw) , Φ+ = −iab̄8 e

−i v∧w ∧ ω. (A.6)

Comparing to (A.1) and (A.2) we have c2 = c3 = 0 and c1 = a, c4 = b, again with
|a|2 = |b|2 = eA. In (4.18), (4.19) we had a = eiθ−/2eiθ+/2eA/2 and b = e−iθ−/2eiθ+/2eA/2.

15In fact only then the pure spinor equations whose general form is given in equation (2.17) of [56] reduce
to those in (3.1), (3.2). See section 2 of [56] for more details.
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B NAT-dual pure spinors

Transformation of the SU(3) pure spinors given in (4.5) under the NATD transformation
yields the pure spinors presented below:

Φ′+ = − 1
8
√

∆
eiθ+eA

(
ν1 dν1 + ν2 dν2 + (ν3 − iλ1λ2) dν3 − (λ1λ2λ3 + iλ3ν3) h3

−( λ2
1λ

2
2λ

2
3 + i λ1λ2λ

2
3ν3) dν1 ∧ dν2 ∧ dν3 + (i λ1λ2λ3 − λ3ν3) h1 ∧ h2 ∧ h3

−i ν1 h
1 ∧ h2 ∧ dν1 − i ν2 h

1 ∧ h2 ∧ dν2 − (λ1λ2 + i ν3) h1 ∧ h2 ∧ dν3

− 1
∆(i λ3

3ν
2
3 + λ1λ2λ

3
3ν3 − i λ3∆) dν1 ∧ dν2 ∧ h3

− 1
∆(i λ2

2λ3ν2ν3 + λ1λ
3
2λ3ν2) dν1 ∧ h3 ∧ dν3

− 1
∆(i λ2

1λ3ν1ν3 + λ3
1λ2λ3ν1) h3 ∧ dν2 ∧ dν3

+ 1
∆(i λ1λ2λ

2
3ν1ν3 + λ2

1λ
2
2λ

2
3ν1) dν1 ∧ dν3 ∧ A3

+ 1
∆(i λ1λ2λ

2
3ν2ν3 + λ2

1λ
2
2λ

2
3ν2) dν2 ∧ dν3 ∧ A3

+ 1
∆(λ1λ2λ

2
3ν1ν3 − i λ2

1λ
2
2λ

3
3ν1 − i λ2

2λ3ν1ν
2
2 − i λ2

1λ3ν
3
1) dν1 ∧ h3 ∧ A3

+ 1
∆(i λ2

1λ
2
2λ

3
3ν2 − λ1λ2λ

3
3ν2ν3 − i λ2

2λ3ν
3
2 − λ2

1λ3ν2ν
2
1) dν2 ∧ h3 ∧ A3

− 1
∆(λ1λ

3
2λ3ν

2
2 + λ3λ2λ

3
1ν

2
1 + i λ2

2λ3ν
2
2ν3 + i λ2

1λ3ν3ν
2
1) dν3 ∧ h3 ∧ A3

+ 1
∆(i λ1λ2λ

3
3ν3 − λ3

3ν
2
3 + λ3∆) h1 ∧ h2 ∧ h3 ∧ dν1 ∧ dν2

+ 1
∆(λ2

2λ3ν2ν3 − i λ1λ
3
2ν2ν3) h1 ∧ h2 ∧ h3 ∧ dν1 ∧ dν3

+ 1
∆(i λ3

1λ2λ3ν1 − λ2
1λ3ν1ν3) h1 ∧ h2 ∧ h3 ∧ dν2 ∧ dν3

+ 1
∆(i λ2

1λ
2
2λ

2
3 − λ1λ2λ

2
3ν3) h1 ∧ h2 ∧ dν1 ∧ dν2 ∧ dν3

)
(B.1)

Similarly, we transform Φ− under NATD and obtain

Φ′− = −i
8
√

∆
eiθ−eA

(
− λ2λ3 dν1 ∧ h1 − i λ1λ3 dν2 ∧ h1

+(ν1λ1 + i ν2λ2) h1 ∧ h3 + i λ2λ3 h
2 ∧ dν1

−λ1λ3 h
2 ∧ dν2 − (i ν1λ1 − ν2λ2) h2 ∧ h3 − (i λ2λ3ν2 + λ1λ3ν1) h2 ∧ A3

+ 1
∆(λ1λ

2
3ν1ν3 + i λ2λ

2
3ν2ν3) h3 ∧ dν1 ∧ h1 ∧ dν2

+ 1
∆(i λ1λ

2
3ν1ν3 − λ2λ

2
3ν2ν3) h3 ∧ dν1 ∧ h2 ∧ dν2

+ 1
∆(i λ3

2ν
2
2 + λ1λ

2
2ν2ν1 − i λ2∆) h3 ∧ dν3 ∧ h1 ∧ dν1

+ 1
∆(λ1∆− i λ1λ2ν2ν1 − λ3

1ν
2
1) h3 ∧ dν3 ∧ h1 ∧ dν2
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+ 1
∆(λ2∆ + i λ1λ

2
2ν2ν1 − λ3

2ν
2
2) h3 ∧ dν3 ∧ h2 ∧ dν1

+ 1
∆(i λ1∆ + λ2λ

2
1ν2ν1 − i λ3

1ν
2
1) h3 ∧ dν3 ∧ h2 ∧ dν2

− 1
∆λ1λ2λ3(λ1ν1 + i λ2ν2) dν1 ∧ dν2 ∧ dν3 ∧ h1

+ 1
∆λ1λ2λ3(λ2ν2 − i λ1ν1) dν1 ∧ dν2 ∧ dν3 ∧ h2

+ 1
∆(i λ1λ

2
3ν1ν2ν3 − λ2λ

2
3ν

2
2ν3) h3 ∧ dν2 ∧ h2 ∧ A3

+ 1
∆(i λ1λ

2
3ν

2
1ν3 − λ2λ

2
3ν1ν2ν3) h3 ∧ dν1 ∧ h2 ∧ A3

− 1
∆(λ2

1λ
3
2λ

2
3ν2 + λ2λ

2
3ν2ν

2
3 − i λ2

2λ
3
1λ

2
3ν1 − i λ1λ

2
3ν1ν

2
3) h3 ∧ dν3 ∧ h2 ∧ A3

+ 1
∆(λ1λ

2
2λ3ν1ν2 − i λ2

1λ2λ3ν
2
1) dν1 ∧ dν3 ∧ h2 ∧ A3

+ i

∆(λ1λ
2
2λ3ν

2
2 − λ2

1λ2λ3ν1ν2) dν2 ∧ dν3 ∧ h2 ∧ A3

)
(B.2)

Note that after the transformation ψi are identified with dνi. It can be checked by direct
computation that the spinors Φ′+ and Φ′− can be written as in (4.18)–(4.22).

C Mukai pairing

Mukai pairing is the natural inner product on the Clifford module ∧•T ∗ and described as
follows.
〈 , 〉 : S ⊗ S → ∧nT ∗:

〈χ1, χ2〉 = (τ(χ1)∧χ2)top =
∑
j

(−1)j(χ2j
1 ∧χ

n−2j
2 +χ2j+1

1 ∧χn−2j−1
2 ), χ1, χ2 ∈ ∧•T ∗, (C.1)

here ()top denotes the top degree component of the form and the superscript k denotes the
k-form component of the form. This is equivalent to

< χ1, χ2 >= (χ1 ∧ λ(χ2))top, (C.2)

where λ is the natural linear extension of λ in (3.5) to a non-homogeneous differential form.
Mukai pairing is symmetric in dimensions n ≡ 0, 1 (mod 4) and is skew-symmetric

otherwise:
〈χ1, χ2〉 = (−1)n(n−1)/2〈χ2, χ1〉. (C.3)

See [41] for details.
Mukai pairing has an important property related to the action of the Spin group, [30]:

〈Sχ1, Sχ2〉 = ±〈χ1, χ2〉, S ∈ Spin(d, d). (C.4)

This follows from
〈Pχ1, Pχ2〉 = (P, P )〈χ1, χ2〉, (C.5)
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where (, ) is the natural indefinite inner product defined as

(X + ξ,X + ξ) = iXξ = ξ(X), X + ξ ∈ T ⊕ T ∗.

Since (P, P ) = ±1, when P ∈ Spin(d, d), (C.5) implies (C.4). In the special case when
S ∈ Spin+(d, d) we have (S, S) = +1, so Mukai pairing is invariant under the connected
component to identity, Spin+(d, d). See [30] for further details.

The NATD matrix is not an element of Spin+(d, d). However, due its special form
given in (2.6) we still have

< SNATDχ1, SNATDχ2 >= − < χ1, χ2 > . (C.6)

This can be seen as follows: as discussed in detail in [21, 41] the matrix that appears in
the definition of (2.6) (and also of K with n = d) is

Cn = Λ1 · · ·Λn, (C.7)

where
Λi = (ψi − ψi). (C.8)

Here, ψi, ψi are elements of the Clifford algebra Cliff(d, d) given in (3.19), and hence obey
the commutation relations following from (3.18). Since (Λi,Λi) = −iψi

ψi = −1, repeated
use of (C.5) gives

< Cnχ1, Cnχ2 >= (−1)n < χ1, χ2 > (C.9)

From this it follows (again using (C.5) repeatedly)

< SNATDχ1, SNATDχ2 >=< SβC3χ1, SβC3χ2 >=< C3χ1, C3χ2 >= − < χ1, χ2 >,

(C.10)
as claimed. Note that in the second equality we used the fact that Sβ ∈ Spin+(6, 6).

In addition to the elements Λi defined in (C.8), it is also useful to define the elements

Λ+
i = (ψi + ψi), (C.11)

and
C+
n = Λ+

1 · · ·Λ+
n . (C.12)

From the Clifford commutation relations (3.18) one can easily compute

Λ+
i .Γ

M .(Λ+
i )−1 =


Γi if ΓM = Γi

Γi if ΓM = Γi .
−ΓM otherwise

(C.13)

This then means that ρ(Λ+
i ) = h+

i , where

h+
i = −

(
1− Ei −Ei
−Ei 1− Ei

)
, (Ei)jk = δijδik. (C.14)

The charge conjugation matrix which appears in the definition of K ∈ Spin(d, d) is Cd
for even d, whereas it is C+

d for odd d, as explained in [21].
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